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Abstract. A steepest descent approximation scheme is derived for a recently developed model
for the dynamics of the actin cytoskeleton in the lamellipodia of living cells. The scheme is
used as a numerical method for the simulation of thought experiments, where a lamellipodial
fragment is pushed by a pipette, and subsequently changes its shape and position.

1. Introduction

Lamellipodia are the motility organs of many types of crawling cells. They are flat structures
supported by a network of actin polymers. The modelling of their dynamic chemo-mechanical
behaviour has received considerable attention recently. As examples we mention dynamic sim-
ulations based on a Potts model, where the polymer filaments locally may take one of six
orientations [10], a two dimensional elastic continuum model [15], and a multiscale model [7].

The philosophy of our recent modeling approach (cp. [14], [13]) is the derivation of continuum
models for the lamellipodium, based on models for individual filaments. It combines the effects
of filament bending, polymerization and depolymerization, and of cytoskeleton proteins cross-
linking the network and providing adhesion to the substrate. The modeling accounts for the
reaction kinetics and for the mechanical effects of the latter.

The result is a multiphase evolution model for lamellipodia with arbitrary shape which allows
to relate the structure and dynamics of the actin network to the traction forces and shape
changes that constitute the amoeboid movement of cells. For a more detailed description of the
biological phenomena and other modelling approaches we refer to [14] and [13].

After presenting the model in the remainder of this section, we formulate a numerical scheme
in Section 2, namely the steepest descent approximation scheme based on solving a minimiza-
tion problem in each time step. In Section 3 simulations are presented, which correspond to
situations, where cells [6] or cytoplasmic fragments [17], placed on a flat substrate, assume a
preferably circular form, even after deformation by external mechanical forces.

The model assumes that there is an elastic resistance against bending of actin filaments,
against stretching and twisting of cross-links between the filaments, against polymerization of
the barbed ends by the membrane, and against the stretching of transmembrane linkages (called
adhesions) between filaments and the substrate.

The model assumes that the lamellipodium is two-dimensional and has the topology of a ring,
i.e. it lies between two closed curves. Furthermore it assumes that all actin filaments belong to
one of two families, called clockwise and anti-clockwise filaments. Filaments of the same family
do not cross each other. Crossings of clockwise with anti-clockwise filaments are transversal. All
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Figure 1. The functional framework of the model.

barbed ends touch the leading edge of the lamellipodium, i.e. the outer curve of the previous
assumption. Filaments are inextensible.

As a consequence, the lamellipodium has the organization depicted in Figure 1. The model
will be presented in nondimensional form (see [13] for details of the scaling). The index α ∈ S1

is used for labelling filaments, where the torus S1 will occasionally be represented by the interval
[−π, π). Thus, all functions of α are assumed 2π-periodic in the following, which is a consequence
of the ring topology. The position along filaments is given by the arclength parameter s ∈ [−L, 0],
where the maximal length of filaments is given by L > 0. Hence we define

B := S1 × [−L, 0] .

For any time t ≥ 0, F+(t, α, s) and F−(t, α, s) with

F± : [0,∞)×B → R2 ,

describe the positions of the clockwise and, respectively, anti-clockwise filaments.
The fact that filaments of the same family do not cross, implies that F±(t, ·) : B → R2 has

to be one-to-one. The shape of the lamellipodium at time t is given by

Ω(t) = F+(t, B) ∪ F−(t, B) .

Its boundary consists of an inner and an outer curve: ∂Ω(t) = ∂Ωin(t)∪∂Ωout(t). The facts that
s is an arclength parameter and that all barbed ends touch the leading edge of the membrane,
is translated into the two constraints

(1.1)
|∂sF+| = |∂sF−| = 1 ,

∂Ωout(t) = {F+(t, α, 0) : α ∈ S1} = {F−(t, α, 0) : α ∈ S1} .

Filaments polymerize at the barbed ends (s = 0) with given polymerization speed v±(t, α). Since
filaments are assumed inextensible, σ = s +

∫ t
0 v
±(t′, α)dt′ can be interpreted as a Lagrangian
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variable, i.e. as a label for monomers, along the clockwise (resp. anticlockwise) filament with
label α. Correspondingly, the material derivative

(1.2) D±t := ∂t − v±∂s
is used here and in the following. Depolymerization at the pointed ends is a stochastic process
with prescribed distribution. The length distributions

η± : [0,∞)×B → R+

are considered as given. They are nondecreasing functions of s, which we interpret as the number
density of filaments in each index element dα, whose length at time t is bigger than −s.

The model assumes that each clockwise filament crosses each anti-clockwise filament at most
once. Crossings of filaments only occur in Ωc(t) = F+(t, B) ∩ F−(t, B) ⊂ Ω(t). In terms of the
filament labels, this set can also be represented by

(1.3)
C(t) =

{
(α+, α−) ∈ (S1)2 : ∃ s±(t, α+, α−) such that

F+(t, α+, s+(t, α+, α−)) = F−(t, α−, s−(t, α+, α−))
}
.

Consistent with the assumption that two given filaments cross at most once, we assume that for
each (α+, α−) ∈ C(t), s+(t, α+, α−) and s−(t, α+, α−) are unique. Defining the sets of potential
binding sites for cross-linkers

B±(t) := {(α±, s±(t, α+, α−)) : (α+, α−) ∈ C(t)} ⊂ B ,

the maps (α+, α−) 7→ (α±, s±(t, α+, α−)) from C(t) to B±(t) are invertible. Combining one of
them with the other’s inverse gives an invertible map (α+, s+) 7→ (α−(t, α+, s+), s−(t, α+, s+))
from B+(t) to B−(t).

We complete the description of the geometry of crossings by defining the angle

(1.4) ϕ(t, α+, α−) = arccos
[
∂sF

+(t, α+, s+(t, α+, α−)) · ∂sF−(t, α−, s−(t, α+, α−))
]
,

between crossing filaments. This will be compared to an equilibrium angle ϕ0 determined by
the properties of cross-linking molecules. Permitting also obtuse angles 0 ≤ ϕ, ϕ0 ≤ π, we allow
for cross-linkers sensitive to the orientation of actin filaments.

The stochastic building and breaking of cross-links can be described as a macroscopic friction
effect with friction coefficient µS [ϕ − ϕ0] as well as a resistance against torsion with torsional
elasticity µT [ϕ − ϕ0], both possibly depending on the deviation ϕ − ϕ0 from the equilibrium
angle. When writing these macroscopic stiffness parameters as functions on the B-domains, it
has to be taken into account that they only contribute on B±, and the number of crossings per
unit length |∂α∓/∂s±| has to be considered:

(1.5) µS± =

{
µS
∣∣∣∂α∓∂s±

∣∣∣ in B±(t) ,
0 in B \B±(t) ,

µT± =

{
µT
∣∣∣∂α∓∂s±

∣∣∣ in B±(t) ,
0 in B \B±(t) .

The building and breaking of connections to the substrate by adhesion molecules leads to a
macroscopic friction effect with a constant friction coefficient µA. This assumes uniform distri-
butions of possible adhesion sites across the substrate and along the filaments.

We compute the circumference C[F+] = C[F−] of the lamellipodium, given by either one of
the two equivalent formulations

(1.6) C[F±] :=
∫
S1

|∂αF±(t, α, 0)| dα .
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The parameter κM > 0 represents the resistance of the membrane against stretching beyond an
equilibrium circumference C0. The bending elasticity of actin filaments is denoted by κB.

The model is given by the two equations

(1.7) κB∂2
s (η±∂2

sF
±)− ∂s(η±λ±∂sF±) + η± µA D±t F

±

± ∂s
(
η+η−µT± (ϕ− ϕ0) ∂sF±⊥

)
± η+η−µS±

(
D+
t F

+ −D−t F−
)

= 0 .

The terms in the first row correspond to standard linear models for the deformation of beams.
The first term corresponds to bending, the second to stretching (just the right amount such that
|∂sF±| = 1 holds), and the third to friction caused by adhesion to the substrate. All these terms
are evaluated at (t, α, s) and none of them generates any coupling in α, i.e., between different
filaments. The terms in the second line describe the effects of cross-linking. Note that, in the
equation for F+, the derivatives of F− have to be evaluated at (t, α−(t, α, s), s−(t, α, s)) and
vice versa, employing the mapping between B+(t) and B−(t). The last term represents the
macroscopic effect of the resistance against stretching of cross-links.

The solutions of the equations (1.7) have to satisfy the boundary conditions

(1.8)

κB∂s(η±∂2
sF
±)− λ±∂sF± ± µT±(ϕ− ϕ0)∂sF±⊥

= ±λ±edgeν − κ
M (C± − C0)+ ∂α

(
∂αF±

|∂αF±|

)
, for s = 0 ,

−κB∂s(η±∂2
sF
±) + η±λ±∂sF

± ∓ η+η−µT±(ϕ− ϕ0)∂sF±⊥ = 0 , for s = −L ,
η±∂2

sF
± = 0 , for s = −L, 0 .

The Lagrange parameters λ±(t, α, s) and λ−edge(t, α) = λ+
edge(t, α

+(t, α, 0)) have to be determined
such that the constraints (1.1) are satisfied.

The weak formulation of (1.7), (1.8) is given by

(1.9)

∫
S1

[
κM

(
C± − C0

)
+

∂αF
±

|∂αF±|
· ∂αδF± ± λ±edgeν · δF

±
]
s=0

dα

±
∫
C(t)

(
µS(DtF

+ −DtF
−) · δF± − µT (ϕ− ϕ0)∂sF±⊥ · ∂sδF±

)
η+η− d(α+, α−)

+
∫
B

(
κB∂2

sF
± · ∂2

sδF
± + µAD±t F

± · δF± + λ±∂sF
± · ∂sδF±

)
η± d(α, s) = 0 ,

with the test functions δF± : B 7→ R2 . The first integral corresponds to the leading edge and
contributes to the first boundary condition in (1.8). The remaining boundary conditions are the
natural conditions modelling the absence of a linear force acting on the pointed ends and of a
moment of momentum at either end. From the second and the third integral, the system (1.7) is
derived. For that purpose the integration domain C(t) has to mapped to B. Noting that in the
second integral F± and δF± and their derivatives are evaluated at (t, α±, s±), we employ the
transformations (α+, α−) 7→ (α, s) = (α±, s±(t, α+, α−)), which yields the additional coefficients
in (1.5).

2. Numerical scheme

In this section we will present an approximation scheme for solutions of the system (1.7),
(1.8), (1.1). It is derived from the usual steepest descent approximation scheme for gradient
flows. (cp. [3, 2] and [1]). Let

(2.1) A :=
{
G : B → R2 : |∂sG| ≡ 1

}
,
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then we define the set of admissible network configurations A as

(2.2) A :=
{

(G+, G−) ∈ A×A : {G+(α, 0) : α ∈ S1} = {G−(α, 0) : α ∈ S1}
}
,

which represents the set of all network configurations that satisfy the constraints (1.1).
Let τ > 0 be the constant size of the time steps and tn = nτ , n = 0, 1, ..., the discrete times.

By F±n (α, s) we denote discrete approximations for F±(tn, α, s). We also use the abbreviations
η±n (α, s) = η±(tn, α, s) and v±n (α) = v±(tn, α). As an approximation of C(tn−1) we define Cn−1

as the set of pairs (α+, α−), such that s±n−1(α+, α−) ∈ [−L, 0] exist, satisfying

(2.3) F+
n−1(α+, s+n−1) = F−n−1(α−, s−n−1) .

The angle ϕn−1(α+, α−) is defined by (1.4) in terms of ∂sF±n−1(α±, s±n−1). We also define µSn−1 =
µS [ϕn−1 − ϕ0] and µTn−1 = µT [ϕn−1 − ϕ0].

Starting with initial data (F+
I , F

−
I ) ∈ A, we define the sequence (F+

n , F
−
n ) by the recursive

scheme

(2.4) (F+
0 , F

−
0 ) = (F+

I , F
−
I ) and (F+

n , F
−
n ) = argmin(G+,G−)∈A U

n[G+, G−] .

Mathematically, the scheme (2.4) assumes that the filament positions minimize a potential
energy functional containing contributions from elastic and dissipative effects,

(2.5)
Un[G+, G−] :=U+,n

bending[G+] + U−,nbending[G−] + Unscl[G
+, G−] + Untcl[G

+, G−]

+ Umembrane[G+, G−] + U+,n
adh [G+] + U−,nadh [G−] ,

where

(2.6)

Umembrane[G+, G−] := κM
(
C[G+] + C[G−]

2
− C0

)2

+

,

U±,nbending[G] :=
κB

2

∫
B
|∂2
sG|2η±n d(α, s) ,

Unscl[G
+, G−] :=

1
2τ

∫
Cn−1

µSn−1

∣∣G+
(
α+, s+n−1 − v

+
n τ
)
−G−

(
t, α−, s−n−1 − v

−
n τ
)∣∣2

η+
n η
−
n d(α+, α−) ,

Untcl[G
+, G−] :=

1
2

∫
Cn−1

µTn−1

(
arccos

(
∂sG

+

|∂sG+|
(α+, s+n−1) · ∂sG

−

|∂sG−|
(α−, s−n−1)

)

− ϕ0

)2

η+
n η
−
n d(α+, α−) ,

U±,nadh [G] :=
1
2τ

∫
B
µA
∣∣G (α, s− v±n τ)− F±n−1 (α, s)

∣∣2 η±n d(α, s) .

Lemma 1. The one-step scheme defined by (2.4)–(2.6) is a consistent method for solving (1.9)
subject to the initial conditions F±(t = 0) = F±I .

Proof. The displacements F±n have to satisfy the variational equations

(2.7) δUn[F+
n , F

−
n ](δF+, δF−) = 0

for all admissible variations (δF+, δF−), where δUn is the variation of the total energy (2.5).
Admissibility conditions for the variations are a consequence of the constraints (1.1). Since this
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leads to rather inconvenient equations, a Lagrange multiplier approach is used instead, with the
additional Lagrangian functionals

U±,next [G±] =
1
2

∫
B
λ±
(
|∂sG±|2 − 1

)
η±n d(α, s) ,

and

Uedge[G+, G−] =
∫
S1

λedge(α+)(G+(α+, 0)−G−(α̂(α+), 0)) · ν(α+) dα+ ,

where ν(α+) is the unit outward normal vector along the barbed ends of the clockwise filaments
(i.e. orthogonal to ∂αG+(α+, 0)) and α̂(α+) is such that (G+(α+, 0)−G−(α̂(α+), 0)) is parallel
to ν(α+) (cp. [13] for more details).

The variational equation now becomes

(2.8)
(
δUn[F+

n , F
−
n ] + δU+,n

ext [F+
n ] + δU−,next [F−n ] + δUedge[F+

n , F
−
n ]
)

(δF+, δF−) = 0 ,

where δF+ and δF− are unrestricted test functions. We claim that (2.8) is consistent with
(1.9) in the limit τ → 0. This will be shown by computing the variation and by carrying
out the limit for each energy contribution individually after substituting Fn(α, s) = F (t, α, s),
Fn−1(α, s) = F (t− τ, α, s) with a smooth function F .

(1) For the resistance against stretching the membrane, we obtain

(2.9) lim
τ→0

δUmembrane[F±n ]δF± = κM
(
C[F±]− C0

)
+

∫
S1

∂αF
±(s = 0)

|∂αF±(s = 0)|
· ∂αδF±(s = 0) dα .

(2) The bending energy of the filaments gives

(2.10) lim
τ→0

δU±,nbending[F±n ]δF± = κB
∫
B

(
∂2
sF
± · ∂2

sδF
±) η± d(α, s) .

(3) The variation of the energy contribution by stretching the cross-links is given by

δUnscl[F
+
n , F

−
n ]δF± = ±1

τ

∫
Cn−1

(
F+
n

(
α+, s+n−1 − v

+
n τ
)
− F−n

(
α−, s−n−1 − v

−
n τ
))

· δF±(α±, s±n−1 − v
±
n τ) η+

n η
−
n µ

S
n−1 d(α+, α−) .

Using (2.3), the term in parentheses can be written as

F+
n (α+, s+n−1 − v

+
n τ)− F+

n−1(α+, s+n−1 − v
+
n τ) + F+

n−1(α+, s+n−1 − v
+
n τ)− F+

n−1(α+, s+n−1)

+F−n−1(α−, s−n−1)− F−n−1(α−, s−n−1 − v
−
n τ) + F−n−1(α−, s−n−1 − v

−
n τ)− F−n (α−, s−n−1 − v

−
n τ) .

Therefore passing to the limit τ → 0 gives

(2.11) lim
τ→0

δUscl[F+
n , F

−
n ]δF± = ±

∫
C(t)

µS(D+
t F

+ −D−t F−) · δF± η+η− d(α+, α−) .

(4) For the computation of the variation of the twisting energy we use the identity(
δ x
|x|

)
|x|=1

= (x⊥ · δx)x⊥ (with the orthogonal vector (x1, x2)⊥ = (−x2, x1)). We obtain

δ arccos
(
∂sF

+
n

|∂sF+
n |
· ∂sF

−
n

|∂sF−n |

)
δF± = −(∂sF±⊥n · ∂sF∓n )(∂sF±⊥n · ∂sδF±)

sinϕn
= ∓∂sF±⊥n · ∂sδF± ,
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where ∂sF±n and ∂sδF
± are evaluated at (α±, s±n−1). This implies

(2.12) lim
τ→0

δUntcl[F
+
n , F

−
n ]δF± = ∓

∫
C(t)

µT (ϕ− ϕ0)(∂sF±⊥ · ∂sδF±)η+η− d(α+, α−) ,

where now ∂sF
± and ∂sδF

± are evaluated at (t, α±, s±).
(5) The variation of the stretching energy of the adhesions is straightforward and reads

δU±,nadh [F±n ]δF± =
1
τ

∫
B
µA
(
F±n (α, s− v±n−1τ)− F±n−1(α, s)

)
· δF±

(
α, s− v±n−1τ

)
η±n d(α, s) .

In the limit τ → 0, a material derivative occurs similarly to the stretching of the cross-
links:

(2.13) lim
τ→0

δU±adh[F±n ]δF± =
∫
B
µAD±t F

± · δF± η± d(α, s) .

Adding the contributions (2.9)–(2.13) completes the proof. �

3. Simulations
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Figure 2. Initial data and solution at time t = 0.12 min with the number values
of of the spatial grid in µm.

For the purpose of numerical computations, we add an additional component to the energy
functional. It is meant to be a rough model for outer forces acting on the lamellipodium.

In the first case we assume that the additional component of the energy functional is given
by

(3.1) Upush,1[G±] :=
κP,1

2

∫
S1

(G±x )2−(∂αG±y )± dα ,

where we refer to the membrane represented by either α 7→ G+(α, 0), which describes the
membrane in the clockwise sense, or α 7→ G−(α, 0) describing the membrane in the anti-clockwise
sense. The subscripts (.)± represent the modulus of the positive and negative part respectively
and the subscripts .x and .y denote the first and second component respectively of the vector.
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Figure 3. Linearly decreasing pushing force: solutions at times t = 0.2 min and
t = 0.6 min .
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Figure 4. Linearly decreasing pushing force: solutions at times t = 0.8 min and
t = 1.5 min (almost quasi-equilibrium situation).

The functional (3.1) models pushing forces from the left which decrease linearly to become zero
at x = 0 and which act on those components of the membrane that are directed towards the left
hand side.

In a second numerical experiment we assume that the additional component to the energy
functional is given by

(3.2) Upush,2[G±] :=
κP,2

2

∫
S1

(−G±x )(∂αG±y )± dα ,

which is meant to model constant pushing forces from the left again acting on those components
of the membrane that are directed towards the left hand side.
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Figure 5. Constant pushing force: solutions at times t = 0.2 min and t = 0.6 min.
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Figure 6. Constant pushing force: solutions at times t = 0.8 min and t = 1.5 min.

The fact that we can model additional phenomena by adding additional energy components
illustrates the flexibility of the present modelling approach. In order to do numerical experi-
ments, it is even not necessary to go through the analysis part above. We rather implement the
time step approximation (2.4) minimising at every time-step the sum of (2.5) and either (3.1)
or (3.2).

The constraints (1.1) are enforced by choosing an appropriate parametrization of the functions
G− and G+,

G−(α, s) = b−(α)−
∫ 0

s

(
cos(φ−(α, s̃))
sin(φ−(α, s̃))

)
ds̃
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Description Symbol Value Reference
Total number of filaments #F 4400 [8]
Number density of filaments with
length ≥ −s.

η±(t, α, s) 1
2π

#F
2 (1.0 + 3/20s)

Equilibrium circumference of the
membrane

C0 8× 2π µm

Maximal length of filaments L 6µm
Polymerization rate v±(t, α) 8µmmin−1

Equilibrium angle of cross-links ϕ0 70◦

Elasticity of the membrane κM 911.25 pN µm−1 [14]
Bending elasticity of one filament κB 0.07 pN µm2 [4]
Macroscopic friction mediated by
integrin bonds

µA 0.1367 pN minµm−2 [11, 9]; estimation
in [14]; compu-
tation of macro-
scopic parameters
in [13, 12].

Macroscopic friction mediated by
cross-linker proteins at one filament
crossing

µS 19.006 pN minµm−1 [16, 5], computa-
tion in [13, 12].

Macroscopic effect of torsional stiff-
ness of cross-linker proteins at one
filament crossing

µT 0.21495 pN µm [14, 5]; together
with computation
in [13, 12]

Force parameter in Scenario 1 κE,1 154.0 pN µm−2

Force parameter in Scenario 2 κE,2 924.0 pN µm−1

Table 1. List of parameters and literature sources.

for a vector valued function b− = b−(α) ∈ R2 and a scalar valued function φ− : B 7→ R and

G+(α, s) = b−(ω(α))−
∫ 0

s

(
cos(φ+(α, s̃))
sin(φ+(α, s̃))

)
ds̃

for scalar valued functions ω(α) and φ+ : B 7→ R.
All the parameters with their respective interpretations are listed in Table 1. Many of them

have already been used in [14] to simulate the original microscopic model in the special case of
rotational symmetry.

We make the simplifying assumption that the polymerization rates v± and the length distribu-
tions η± are time-independent and do neither vary with respect to the filament index α ∈ S1, nor
between clockwise and anti-clockwise filaments, i.e. vpm(t, α) = v =const and η±(t, α, s) = η(s).
This allows for a rotationally symmetric steady state (without pushing forces). Furthermore the
length distribution η(s) is assumed to be uniformly positive with a strictly positive value at
s = −L, i.e. we assume a fraction of filaments to be longer than L but neglect the mechanical
effect of the excess parts.

We compute the macroscopic parameters which describe the effect of the cross-links, µS [ϕ−ϕ0]
and µT [ϕ − ϕ0], using the formulas given in [13, 12] omitting their possible dependence on the
deviation from the equilibrium angle. Finally we use the same argumentation as in [12] to
determine the value of µA, the macroscopic friction mediated by integrin bonds.
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For the numerical computations we use a uniform grid with N = 9 points in s-direction and
M = 32 points in α-direction. The contributions of cross-links in (2.6), namely Unscl[G

+, G−] and
Untcl[G

+, G−], are not evaluated as integrals on Cn−1. Instead, using the transformed densities of
cross-links (1.5), they are evaluated on B+

n−1 := B+(tn−1) and on B−n−1 := B−(tn−1) and finally
the average of the two values is taken. This special treatment guarantees that the network
stabilizing effect of cross-linkers, which we already observed in [14], is not inhibited by the
discretization.

We visualize the lamellipodium by a random sample of the filament length distribution η com-
bined with the information on the geometry F±n . This way we can create a realistic impression
of filament shape and density at every point within the lamellipodium, whereas the numerical
computations are done on the basis of 2× 32 discrete filaments of length L.

We start with the pushing force initially being switched off. The initial condition and the
lamellipodium after a short period of relaxation is shown in figure 2. In this figure, like in all
the following figures, the scaling of the spatial grid is given in µm.

The linearly decreasing pushing force due to the quadratic potential (3.1) is then switched on
at t = 0.15 min and initiates a slow movement combined with a gradual deformation which can
be observed at time t = 0.2 min and, more intensively, at t = 0.6 min (Figure 3). We observe a
horizontal compression of the lamellipodium since the potential (3.1) penalizes far left positions
of the membrane. Finally, at t = 0.6 min the pushing force is again switched off and we observe
that the shape of the lamellipodium gradually relaxes towards a circular shape as shown at
t = 1.5 min (Figure 4).

We remark that the observed deformation is not of elastic nature, although the shape becomes
round again after the applied force ceases to be active. The round shape is actually not stabilized
by the network-dynamics but by the membrane model which mimics an elastic rubber band and
which therefore generates forces that prefer the circular shape.

We also perform a second numerical simulation in which we change the characteristics of the
pushing force, this time using the linear potential (3.2) mimicking constant force, which we switch
on and off at the same times as before. The initial evolution therefore coincides with the one
of the previous setting (Figure 2). The constant pushing force again triggers a slow movement
to the right, but a deformation which mostly consists in vertical compression (Figure 5). This
can be easily explained by the fact that the linear potential (3.2) is most effectively avoided by
reducing the surface components which are directed towards the left hand side and of course by
displacement to the right against integrin-mediated friction. The relaxation to a roundish shape
(Figure 6) after switching off the pushing at t = 0.6 min is analogous to the previous situation.

Apart from the change in shape and the movement, the filaments perform ”lateral flow”, i.e.
those pointing in clockwise direction move in clockwise direction and those pointing in anti-
clockwise direction move in anti-clockwise direction. Two specific filaments are highlighted in
all the frames to illustrate this behaviour.

In fact, in both cases we do not expect a return to a perfect circle because pushing seems to
slightly modify the density of filaments due to a change in geometry and therefore lateral flow
speed. This effect seems to be stronger in the case of constant force and can be observed in
Figure 6 in terms of a local difference in density between clockwise and anticlockwise filaments.
We suppose that this implies a slightly inhomogeneous force distribution around the membrane
and thus inhibits the return to a perfect circular shape.
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