
Chapter 1

How do cells move? Mathematical
modelling of cytoskeleton dynamics
and cell migration.

1.1 Introduction

We present a novel approach to the modelling of the lamellipodial Actin-cytoskeleton mesh-
work. The model is derived starting from the microscopic description of mechanical prop-
erties of filaments and cross-links and also of the life-cycle of cross-linker molecules. The
result is a multiphase evolution model for lamellipodia with arbitrary shape which allows us
to relate computationally the structure and dynamics of the Actin network to the traction
forces and shape changes that constitute the amoeboid movement of cells.

The description of cell migration by the action of a lamellipodium given in [OSS08] is
reproduced here for completeness: Cells migrate by protruding at the front and retracting
at the rear. Protrusion occurs in thin membrane bound cytoplasmic sheets, 0.2-0.3 µm thick
and several microns long, termed lamellipodia ([SSVR02]). The major structural components
of lamellipodia are actin filaments, which are organised in a more or less two-dimensional
diagonal array with the fast growing, plus ends of the actin filaments directed forwards,
abutting the membrane ([SIC78]). Protrusion is effected by actin polymerisation, whereby
actin monomers are inserted at the plus ends of the filaments at the membrane interface
and removed at the minus ends, throughout and at the base of the lamellipodium, in a
treadmilling regime ([PLCC01]). Stabilisation of the actin meshwork is achieved by the
cross-linking of the filaments by actin-associated proteins, such as filamin ([NOH+07]) as
well as protein complexes, such as the Arp2/3 complex ([Pol07]), although the density and
location of such cross-links remains to be established. Since actin polymerisation is involved
in diverse motile processes aside from cell motility, including endocytosis and the propulsion
of pathogens that invade cytoplasm ([CP07]), the question of how actin filaments are able
to push against a membrane has spawned the development of various models ([Mog06]).

Modelling efforts go back to 1996 and fall into two groups. The first group includes
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continuum models for the mechanical behaviour of cytoplasm: a two phase formulation for
cytosol and the actin network [AD99]; a one dimensional viscoelastic model [GO04]; a one
dimensional model for the actin distribution [MMB]; and a two dimensional elastic continuum
model [RJM05]. The second group makes presumptions about the microscopic organisation
of the actin network. The Brownian ratchet model for the polymerisation process introduced
by Mogilner and Oster [MO96] considers actin cross-linking proteins as stabilizers of the
lamellipodium meshwork, allowing enough flexibility for actin filaments to bend away from
the membrane to accept actin monomers. Other models are based on the current idea
([Pol07]), that the actin filaments in lamellipodia form a branched network with the Arp2/3
complex at the branch points [MB01, STB07, LPV+07]. A related model considers the
lamellipodia as constructed from short filaments that take one of six orientations [MJD+06].

Recent studies have indicated that filaments in lamellipodia are not organised in branched
arrays ([KAV+08]). Rather, the pseudo-two-dimensional actin network contains unbranched
filaments whereby the filament density decreases from the front to the rear of the lamel-
lipodium, indicative of a graded distribution of filament lengths. According to this struc-
tural information, we present a quasi-stationary modelling approach for the simulation of
the turnover of the lamellipodium surrounding a cell on a flat substrate. This corresponds
to in vitro situations such as cytoplasmic fragments of keratocytes [VSB98]. Our approach
differs from previous ones in that we describe the lamellipodium in terms of a continuous
distribution of filaments of graded length and their linkages.

In this work the models from [OSS08] and [OS09a] are generalized from rotationally
symmetric to arbitrary geometries. Otherwise, the assumptions on the mechanics of the
network are the same: there is an elastic resistance against bending of actin filaments, against
stretching and twisting of cross-links between the filaments, against polymerisation of the
barbed ends by the membrane, and against the stretching of trans-membrane linkages (called
adhesions) between filaments and the substrate. Our model of the cell-substrate interaction
assumes a homogeneous isotropic substrate. However, inclusion of substrate inhomogenity
and anisotropy (cp. [CPH07]) does not represent a principle obstacle.

In the following section the basic model is derived with a detailed probabilistic account
of the life cycle of cross-links and adhesions. In Section 1.3 the model is simplified by
carrying out the limit of instantaneous cross-link and adhesion turn-over. A picture from
a time dependent simulation is reproduced from [OS09b], where numerical methods for
simulations with the limiting model are presented. Finally, the connection to the results
from [OSS08] and [OS09a] is established in Section 1.4 by showing that the general model
possesses rotationally symmetric solutions. An analysis of the stability of a trivial steady
state illustrates simulation results presented in [OSS08].

1.2 Modelling

A central feature of the model is an age-structured production/decay of cross-links and ad-
hesions, consistent with dynamic association/dissociation of linkage molecules with the actin
network. In order to obtain a feasible mathematical description we will adopt a homogenisa-
tion limit, based on the assumption that the density of filaments within the lamellipodium is
very high. We let the number of filaments tend to infinity in order to obtain a model based
on continuous quantities instead of discrete ones.
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The assumptions made are as follows:

A1: The lamellipodium is two dimensional and has the topology of a ring, i.e. it lies between
two closed curves.

A2: All actin filaments belong to one of two families, called clockwise and anti-clockwise. Fil-
aments of the same family do not cross each other. Crossings of clockwise with anti-clockwise
filaments are transversal. All barbed ends touch the leading edge of the lamellipodium, i.e.
the outer curve of the previous assumption. Filaments are inextensible.

A3: Filaments polymerise at the barbed ends with given polymerisation speed. Depolymeri-
sation at the pointed ends is a stochastic process with prescribed distribution.

As a consequence of A1 and A2 the lamellipodium has the organisation depicted in Figure
1.1.

Figure 1.1: Constituent elements of the model.

There are two families of locally parallel filaments. Looking from the centre of the lamel-
lipodium ring, the filaments in the first group bear to the right and the second group to the
left (relative to each other); referred to as clockwise and anti-clockwise filaments, respectively.

We assume the presence of n+ clockwise filament with indices i = 0, ..., n+ − 1 and n−

anti-clockwise filament with indices j = 0, ..., n− − 1. An arc length parametrisation of
the clockwise filaments at time t is given by {F+

i (t, s) : −L+
i (t) ≤ s ≤ 0} ⊂ R2, where

s = −L+
i (t) corresponds to the pointed end and s = 0 to the barbed end. Analogously we

represent the anti-clockwise filaments at time t by {F−j (t, s) : −L−j (t) ≤ s ≤ 0} ⊂ R2 such

that |∂sF+
i | ≡ |∂sF−j | ≡ 1.

The lengths L+
i (t) and L−j (t) of the filaments are random variables whose distributions
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are considered as given by

P (−L+
i (t) ≤ s) = η+

i (t, s) , P (−L−j (t) ≤ s) = η−j (t, s) . (1.2.1)

The arclength s is a geometric parameter. Because of the polymerisation at the barbed
ends, polymerised actin molecules travel along the filament towards the pointed ends with the
polymerisation speed denoted by v+

i (t) and v−j (t) respectively. Because of this and because
of the inextensibility assumption in A2, Lagrange variables along the filaments are given by
σ+
i = s+

∫ t
0
v+
i (t̃)dt̃ and σ−j = s+

∫ t
0
v−j (t̃)dt̃. In other words, the path of the actin molecule

with label σ+
i on the clockwise filament F+

i is given by F+
i

(
t, σ+

i −
∫ t

0
v+
i (t̃)dt̃

)
. The fact

that only depolymerisation happens at the pointed ends is reflected by the assumption that

−L+
i (t) +

∫ t

0

v+
i (t̃)dt̃ and − L−j (t) +

∫ t

0

v−j (t̃)dt̃ (1.2.2)

are increasing functions of time. As a consequence, the distribution functions η+
i and η−j are

decreasing with respect to time when written in terms of the Lagrangian variables. In other
words, ∂tη

+
i − v+

i ∂sη
+
i ≤ 0 and ∂tη

−
j − v−j ∂sη−j ≤ 0.

The next step is to describe the kinematics of cross-links, and we start with the modelling
assumptions:

A4: A cross-link is a connection between a material point on a clockwise and a material
point on an anti-clockwise filament. Cross-links can be created spontaneously at the crossing
between two filaments and they can also break. Creation and breaking are stochastic processes.
There exists at most one cross-link for any pair of filaments at any time.

For the creation of cross-links, we need the information about filament crossings. We
assume that each clockwise filament crosses each anti-clockwise filament at most once. At
time t, the crossings are described by a set of index pairs:

C(t) := {(i, j) : ∃ s+
i,j(t), s

−
i,j(t) such that F+

i (t, s+
i,j(t)) = F−j (t, s−i,j(t))} . (1.2.3)

If a cross-link between the filaments with indices i and j is created at time t∗, then this
happens at the crossing point. Once established, however, the two binding sites will travel
with the material along the two filaments. Thus, at a later time t = t∗+ a, the binding sites
will be located at

F+
i (t, s+

a,i,j(t)) , s+
a,i,j(t) := s+

i,j(t− a)−
∫ t

t−a
v+(t̃)dt̃ , (1.2.4)

F−j (t, s−a,i,j(t)) , s−a,i,j(t) := s−i,j(t− a)−
∫ t

t−a
v−(t̃)dt̃ , (1.2.5)

until the cross-link eventually breaks. We call a the age of the cross-link. Below we shall
assume a resistance of cross-links against stretching and twisting. This means there are
elastic forces related to the stretching

Si,j(t, a) := F+
i (t, s+

a,i,j(t))− F−j (t, s−a,i,j(t)) , (1.2.6)
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and to the twisting
Ti,j(t, a) := ϕi,j(t, a)− ϕ0 , (1.2.7)

where
ϕi,j(t, a) := arccos

[
∂sF

+
i (t, s+

a,i,j(t)) · ∂sF−j (t, s−a,i,j(t))
]

(1.2.8)

is the angle between the directions of the filaments at the binding sites, and ϕ0 is an equilib-
rium angle determined by the properties of the cross-linking molecule. We allow also obtuse
angles 0 ≤ ϕ, ϕ0 ≤ π allowing for cross-linkers sensitive to the orientation of actin filaments.

The probability distribution for the existence of a cross-link with respect to age will be
denoted by ri,j(t, a), where ∫ ∞

0

ri,j(t, a) da ≤ 1 (1.2.9)

is the probability that a cross-link between the ith clockwise filament and the jth anti-
clockwise filament exists at time t. We postulate the following model for the evolution of
the distribution:

∂tri,j + ∂ari,j = −ζ(Si,j, Ti,j)ri,j , ri,j(t, 0) = β(Ti,j(t, 0))

(
1−

∫ ∞
0

ri,j(t, a) da

)
. (1.2.10)

This model has the standard form of age-structured population models (see, e.g., [Per07]).
The differential equation describes ageing and breaking of cross-links, the boundary condi-
tion at a = 0 describes their creation. The dependence of the breaking rate on stretching
and twisting reflects that a cross-link might be broken by being loaded too much. The
twisting dependence of the creation rate β could eliminate the possibility for a cross-link
to be established, if the angle between the filaments is too far from the equilibrium angle.
Integration of the differential equation with respect to a shows that the second factor in the
creation rate guarantees (1.2.9), i.e., the fact that there is at most one cross-link. Just as
for the pointed-end (de)polymerisation process, all we need to know about the processes of
creation and breaking of cross-links is the distribution ri,j.

The domain of the differential equation in (1.2.10) is determined by the requirement that
both binding sites (on the ith clockwise filament and on the jth anti-clockwise filament)
have not been depolymerised yet: s+

a,i,j(t) > −L+
i (t), s−a,i,j(t) > −L−j (t).

The next modelling step is the passage to a continuum description by letting the total
numbers of filaments n+ and n− tend to infinity. In the limit, the discrete indices α+

i =
π(2i/n+ − 1), i = 0, . . . , n+ − 1 and α−j = π(2j/n− − 1), j = 0, . . . , n− − 1 are replaced by a

continuous parameter α ∈ [−π, π). Then we interpret the discrete filament positions F+
i (t, s)

and F−j (t, s) as approximations for the values F+(t, αi, s) and, respectively, F−(t, αj, s) of
continuous functions

F± : [0,∞)×B → R2 , with B := [−π, π)× [−L, 0] , (1.2.11)

where L is a maximal length of filaments. Note that we assume periodicity of B in the sense
that all functions of α are 2π-periodic. The fact that filaments of the same family do not
cross, implies that F±(t, ·) has to be one-to-one. The shape of the lamellipodium at time t is
given by Ω(t) = F+(t, B) ∪ F−(t, B). According to Assumption 1, its boundary consists of
an inner and an outer curve: ∂Ω(t) = ∂Ωin(t)∪∂Ωout(t). The fact that, by Assumption 2, all
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Figure 1.2: The functional framework of the model.

barbed ends touch the leading edge, takes the mathematical form ∂Ωout(t) = {F±(t, α, 0) :
−π ≤ α < π}.

Continuous versions of the length distributions η+
i and η−j are given by

η± : [0,∞)×B → [0, 1] , (1.2.12)

now getting the deterministic interpretation as the expected fraction of filaments in each
index element dα, whose length at time t is bigger than−s. They are nondecreasing functions
of s satisfying η±(t, α, 0) = 1.

Crossings of filaments can only occur in Ωc(t) = F+(t, B) ∩ F−(t, B) ⊂ Ω(t). Similar to
C(t), we construct a set of index pairs by

C(t) =
{

(α+, α−) ∈ [0, 2π)2 : ∃ s±(t, α+, α−) such that

F+(t, α+, s+(t, α+, α−)) = F−(t, α−, s−(t, α+, α−))
}
,

(1.2.13)

which corresponds to the discrete set C(t) in the sense that (αi, αj) ∈ C(t) if (i, j) ∈ C(t).
Consistent with the assumption that two given filaments cross at most once, we assume that
for each pair (α+, α−) ∈ C(t) there is only one s±(t, α+, α−). Defining

B±(t) := {(α±, s±(t, α+, α−)) : (α+, α−) ∈ C(t)} ⊂ B , (1.2.14)

the maps (α+, α−) 7→ (α±, s±(t, α+, α−)) from C(t) to B±(t) are invertible. Combining one of
them with the other’s inverse gives an invertible map (α+, s+) 7→ (α−(t, α+, s+), s−(t, α+, s+))
from B+(t) to B−(t). We complete the description of the geometry of crossings by defining
the angle between crossing filaments:

ϕ(t, α+, α−) = arccos
[
∂sF

+(t, α+, s+(t, α+, α−)) · ∂sF−(t, α−, s−(t, α+, α−))
]
. (1.2.15)
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We introduce the polymerisation rates v±(t, α) such that v+
i approximates v+(t, αi) and

v−j approximates v−(t, αj) and abbreviate the s-values at time t of cross-links with age a by

s+
a (t, α+, α−) := s+(t− a, α+, α−)−

∫ t

t−a
v+(t̃, α+)dt̃ , (1.2.16)

s−a (t, α+, α−) := s−(t− a, α+, α−)−
∫ t

t−a
v−(t̃, α−)dt̃ . (1.2.17)

The age-depedent probability distribution of cross-links can be understood as an expected
cross-link density ρ(t, α+, α−, a) with (α+, α−) ∈ C(t − a). This condition means that for a
cross-link of age a connecting the filaments with labels α+ and α− to exist at time t, the
filaments must have crossed at time t − a. From (1.2.10) the transport equation for the
cross-link density becomes

∂tρ+ ∂aρ = −ζ(S, T )ρ . (1.2.18)

Boundary conditions are required at a = 0, describing the creation of new cross-links, and
for (α+, α−) ∈ ∂C(t − a)+, with ∂C(t − a)+ denoting the part of the boundary of C(t − a),
where the filaments with labels α+ and α− start to have a crossing. In other words, the time
direction points into the domain of ρ at these points. The boundary datum there has to be
zero, since there are no pre-existing cross-links. So the boundary conditions are

ρ(a = 0) = β(T0)

(
1−

∫ ∞
0

ρ da

)
, ρ(t, α+, α−, a) = 0 for (α+, α−) ∈ ∂C(t− a)+ ,

(1.2.19)
with T0 = T (a = 0). Note that the upper bound in the integration should actually be
t− t0(α+, α−) with (α+, α−) ∈ ∂C(t0)+, but for simplicity we consider the definition of ρ as
continued by zero to arbitrary values of a > 0. The stretching and twisting terms are now
given by

S(t, α+, α−, a) = F+(t, α+, s+
a (t, α+, α−))− F−(t, α−, s−a (t, α+, α−)) , (1.2.20)

T (t, α+, α−, a) = ϕa(t, α
+, α−, a)− ϕ0 , (1.2.21)

with

ϕa(t, α
+, α−) = arccos

[
∂sF

+(t, α+, s+
a (t, α+, α−)) · ∂sF−(t, α−, s−a (t, α+, α−))

]
. (1.2.22)

The boundedness property (1.2.9) of the microscopic cross-link density determined by (1.2.10)
carries over to the modified model (1.2.18), (1.2.19). The accumulated distribution

ρ̄(t, α+, α−) =

∫ ∞
0

ρ(t, α+, α−, a) da (1.2.23)

satisfies the equation

∂tρ̄ = −
∫ ∞

0

ζρ da+ β (1− ρ̄) , (1.2.24)

preserving the property 0 ≤ ρ̄(t, α+, α−) ≤ 1.

Taking into account the length distribution of the filaments, we arrive at the effective
cross-link density

ρeff(t, α+, α−, a) = ρ(t, α+, α−, a)η+(t, α+, s+
a (t, α+, α−))η−(t, α−, s−a (t, α+, α−)) , (1.2.25)
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where each of the two filaments involved in a cross-link contributes a factor η±. Note that
ρeff satisfies

∂tρeff + ∂aρeff = −ρeff

(
ζ(S, T )− ∂tη

+ − v+∂sη
+

η+
− ∂tη

− − v−∂sη−

η−

)
, (1.2.26)

hence the same type of transport equation as ρ but with a modified decay rate, which takes
into account the loss of cross-links due to depolymerisation of the pointed ends. Note that,
just as in the microscopic model, the fact that only depolymerization happens at the point
ends is described by the inequality ∂tη

± − v±∂sη± ≤ 0.

Figure 1.3: Cross-links: Microscopic description and possible transformations.

Now we turn to the dynamics of adhesion molecules:

A5: An adhesion is a connection between a material point on a filament and a point on
the substrate via a transmembrane linkage. Adhesions can be created spontaneously and they
can also break. Creation and breaking are stochastic processes. The number of adhesions per
filament length is restricted.

The densities ρ±adh(t, α, s, a) of adhesions on clockwise and anti-clockwise filaments, re-
spectively, satisfy the differential equations

∂tρ
±
adh + ∂aρ

±
adh − v

±∂sρ
±
adh = −ζadh(S±adh)ρ±adh , (1.2.27)

with the boundary conditions

ρ±adh(a = 0) = βadh

(
ρ̄adhmax −

∫ ∞
0

ρ±adh da

)
, ρ±adh(s = 0) = 0 , (1.2.28)

where ρ̄adhmax is the maximal density of cross-links along the filament and the breaking rate
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ζadh depends on the stretching of the adhesions:

S±adh(t, α, s, a) = F±(t, α, s)− F±
(
t− a, α, s+

∫ t

t−a
v±(t̃, α)dt̃

)
. (1.2.29)

Like for the cross-link density, the second boundary condition means that there are no pre-
existing adhesions on newly polymerized parts of the filaments.

It remains to formulate assumptions determining the position of the filaments:

A6: The position of the filaments is determined by a quasi-stationary balance of elastic forces
resulting from bending the filaments, stretching and twisting the cross-links, stretching the
adhesions, and stretching the cell membrane around the leading edge.

The quasi-stationarity assumption means that elastic oscillations are neglected, since the
filament network is damped by viscous forces in the cytosol. Thus, the dynamics of the
network results only from (de)polymerisation and from the creation and breaking of cross-
links and adhesions.

Mathematically, the Assumption A6 will be formulated by assuming that the filament
positions minimize a potential energy functional containing contributions from the above
mentioned elastic effects. We require the functions F+(t, ·, ·) and F−(t, ·, ·) to minimize the
functional

U(t)[G+, G−] :=U+
bending(t)[G+] + U−bending(t)[G−] + Uscl+tcl(t)[G

+, G−]

+ Umembrane[G
±] + U+

adh(t)[G+] + U−adh(t)[G−] .
(1.2.30)

The energy contribution from bending the filaments is the Kirchhoff bending energy from
standard linearized beam theory:

U±bending(t)[G±] :=
κB

2

∫
B

|∂2
sG
±|2η± d(α, s) , (1.2.31)

where κB is the bending stiffness of one filament.

The stretching and twisting energy of the cross-links is modelled by

Uscl+tcl(t)[G
+, G−] :=

∫ ∞
0

∫
C(t−a)

(
κS

2
|S|2 +

κT

2
T 2

)
ρeff d(α+, α−) da , (1.2.32)

with the quantities S and T from (1.2.20) and (1.2.21) applied to G+ and G− respectively.
The constants κS and κT are Hooke constants describing the stretching and, respectively,
torsional stiffnesses of the cross-link molecules.

Furthermore the energies associated to the stretching of integrins on clockwise and anti-
clockwise filaments, respectively, read

U±adh(t)[G±] :=
κF

2

∫
B

∫ ∞
0

∣∣∣∣G± − F±(t− a, α±, s+

∫ t

t−a
v±(t̃, α) dt̃

)∣∣∣∣2 ρ±adhη
± da d(α, s) .

(1.2.33)
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Note that the evaluation of the adhesion energy and of the cross-link stretching and twist-
ing energy at time t requires information on previous filament positions. Because of the
treadmilling of filaments, the lifetime of monomers in a filament and, thus, of binding sites
of cross-links and adhesion molecules is finite. The densities ρeff and ρ±adh have compact
supports in the age direction and the above integrals with respect to a can be restricted
to these supports. It is obvious that past filament positions enter in the computation of
the adhesion energy. However, this is also the case for the energy in cross-links, where past
filament positions enter in the computation of s±a .

It remains to model the action of the cell membrane on the leading edge of the network:

A7: The cell membrane simulates a rubber band stretched around the barbed ends of the
filaments.

This leads to a model of the form

Umembrane[G
±] := κM

(
C+[G+] + C−[G−]

2
− C0

)2

+

, (1.2.34)

with the circumference of the lamellipodium C+[G+] = C−[G−], given by either one of the
two equivalent formulations

C±[G±] :=

∫ π

−π
|∂αG±(t, α, 0)| dα . (1.2.35)

The arithmetic mean is used in the energy for symmetry reasons. This models resistance
against stretching the membrane as soon as its circumference exceeds the equilibrium value
C0.

The positions of the filaments at time t is now determined by minimizing the energy:

U(t)[F+(t, ·, ·), F−(t, ·, ·)] = minU(t)[G+, G−] , (1.2.36)

under the constraint of inextensibility

|∂sG+| = |∂sG−| = 1 , (1.2.37)

and under the constraint that all barbed ends touch the leading edge:

{G+(t, α, 0) : −π ≤ α < π} = {G−(t, α, 0) : −π ≤ α < π} . (1.2.38)

The formulation of a well posed problem still requires a start-up procedure. It first involves a
decision about the maximal age A of all cross-links and adhesions which are present at time
t = 0. In other words, initial data ρ(0, α+, α−, a) and ρ±adh(0, α, s, a) have to be prescribed,
which vanish for a > A. In order to be able to compute the binding sites of all the initial
cross-links and adhesions, the positions F±(t, α, s) of the filaments for −A ≤ t ≤ 0 have to
be given.

1.3 The limit of instantaneous cross-link and adhesion turnover

For two reasons, numerical simulations with the model presented in the previous section are
very costly. On the one hand, the densities of cross-links and adhesions are functions of



1.3. THE LIMIT OF INSTANTANEOUS CROSS-LINK AND ADHESION TURNOVER11

three variables ((α+, α−, a) and (α, s, a), respectively). On the other hand, the problem for
the deformation of the filaments is a delay problem, such that the history of the filament
dynamics has to be stored up to the maximal age of cross-links and adhesions.

Therefore a simplification will be carried out below, which can also be motivated by the
fact that in the model macroscopic and microscopic scales are still mixed. The typical length
and bending radius of a filament will in general be large compared to the size of a cross-
linking or adhesion molecule, even when the latter is stretched, as assumed in our model.
This also makes it plausible that the life time of such a connection is short compared to the
typical time scale for the dynamics of the network. We shall make this assumption, although
it is not true for all applications. It means for example that we exclude the build-up of large
adhesion complexes from our considerations.

Asymptotic methods will be used to derive an approximative problem, where the cross-
link and adhesion densities can be computed explicitly. Also the delays disappear, and the
problem becomes local in time at the expense of time derivatives appearing in the equations
for the filament displacements. A physical interpretation of the approximation is that the
rapid turnover of cross-links and adhesions can be described as effective friction.

A nondimensionalisation is carried out, where the typical filament length L is used as
reference length for scaling s, F±, S±, Sadh, and C0. With v0 being the reference speed for
the polimerisation speed v±, the reference time L/v0 for scaling t is the typical time an actin
molecule spends in a filament between polymerization at the barbed end and depolymeriza-
tion at the pointed end. The birth and death rates of cross-links and adhesions β, ζ, βadh,
and ζadh will be assumed to be of the same order of magnitude with a typical value 1/ā used
for nondimensionalisation, where ā can be interpreted as typical life time of cross-links and
adhesions. Our main scaling assumption is that the dimensionless parameter

ε :=
āv0

L
, (1.3.1)

is small. The reference values for the densities of cross-links and of adhesions are 1/(āL)
and, respectively, ρ̄adh

max/ā. Finally, energy (U and all its contributions) is scaled with the
reference value κBL, and the reference values for κS, κT , κA, and κM , are κB/(εL), κBL,
κB/(ερ̄adh

maxL), and κB/L, respectively.

For notational simplicity, the same symbols will be used for the dimensionless quantities
as for their dimensional counterparts. The filament displacement F±(t, ·, ·) is determined as
a minimizer (with the side conditions (1.2.37) and (1.2.38)) of the sum of the scaled energy
contributions

Umembrane[G
±] = κM

(
C+[G+]+C−[G−]

2
− C0

)2

+
,

U±bending(t)[G±] = 1
2

∫
B
|∂2
sG
±|2η± d(α, s) ,

Uscl(t)[G
+, G−] = κS

2ε

∫∞
0

∫
C(t−εa)

|S|2ρeff d(α+, α−) da ,

Utcl(t)[G
+, G−] = κT

2

∫∞
0

∫
C(t−εa)

T 2ρeff d(α+, α−) da ,

U±adh(t)[G±] = κF

2ε

∫∞
0

∫
B
|G± − F±∗|2 ρ±adhη

± d(α, s) da ,

(1.3.2)

with
S = G+(t, α+, s+

εa(t, α
+, α−))−G−(t, α−, s−εa(t, α

+, α−)) ,
T = ϕεa(t, α

+, α−)− ϕ0 ,
(1.3.3)
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and

F±∗ := F±
(
t− εa, α±, s+

∫ t

t−εa
v±(t̃, α) dt̃

)
. (1.3.4)

The problems for the cross-link density and for the adhesion density become
ε∂tρ+ ∂aρ = −ζ(S, T )ρ ,
ρ(a = 0) = β(T0)

(
1−

∫∞
0
ρ da

)
,

ρ(t, α+, α−, a) = 0 for (α+, α−) ∈ ∂C(t− εa)+ ,
ρ(t = 0) = ρI ,

(1.3.5)

with T0 = arccos [∂sF
+(t, α+, s+) · ∂sF−(t, α−, s−)]− ϕ0 and, respectively,

εD±t ρ
±
adh + ∂aρ

±
adh = −ζadh(S±adh)ρ±adh ,

ρ±adh(a = 0) = βadh
(
1−

∫∞
0
ρ±adh da

)
,

ρ±adh(s = 0) = 0 ,
ρ±adh(t = 0) = ρ±adh,I ,

(1.3.6)

with S±adh(t, α±, s, a) = F±(t, α±, s) − F±(t − εa, α±, s + ε
∫ t
t−a v

±(t̃) dt̃). For notational
convenience, the material derivative

D±t := ∂t − v±∂s (1.3.7)

is used here and in the following.

The reason for the scaling assumption that the stiffnesses of the adhesions and of the
cross-links against stretching are O(ε−1) relative to the other stiffnesses is a priori not
obvious. Actually, when replacing G±(α±, s) by the minimizer F±(t, α±, s), the energies
Uscl(t)[F

+, F−] and Uadh(t)[F±] are formally O(ε). It will be shown below that in the limit
ε→ 0 they still contribute to the minimization conditons.

The above mentioned approximation is derived by passing to the limit ε → 0. We start
with (1.3.6). The formal limiting equations

∂aρ
±
adh = −ζadh(0)ρ±adh , ρ±adh(a = 0) = βadh

(
1−

∫ ∞
0

ρ±adh da

)
, (1.3.8)

have the solution

ρ±adh(t, α±, s, a) =
βadhζadh(0)

βadh + ζadh(0)
e−ζ

adh(0)a . (1.3.9)

This is a singular limit, since the small parameter ε multiplies the material derivative. As a
consequence, the conditions at s = 0 and at t = 0 cannot be satisfied by the limiting (outer,
in the language of singular perturbation theory) solution. We ignore eventual boundary and
initial layers (i.e., thin regions close s = 0 and t = 0 with strong variation of the solution).
Analogously we deal with (1.3.5). The main difference is that the limiting equations

∂aρ = −ζ(0, T0)ρ , ρ(a = 0) = β(T0)

(
1−

∫ ∞
0

ρ da

)
, (1.3.10)

and therefore also the limiting solution

ρ =
β(T0)ζ(0, T0)

β(T0) + ζ(0, T0)
e−ζ(0,T0)a (1.3.11)
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depend on the displacement of the filaments via T0. As announced above, the dependence
is local in time.

If the limit ε→ 0 is carried out formally in (1.3.2), the contributions from the adhesions
and from stretching the cross-links disappear. In order to reveal their influence, the solution
of the variational problem needs to be discussed.

The displacement F±(t, ·, ·) at time t has to satisfy the variational equation

δU [F+, F−](δF+, δF−) = 0 (1.3.12)

for all admissible variations (δF+, δF−), where δU is the variation of the total energy, i.e., the
sum of all terms in (1.3.2). Admissibility conditions for the variations are a consequence of
the constraints |∂sF±| ≡ 1 and {F+(t, α, 0) : −π ≤ α < π} = {F−(t, α, 0) : −π ≤ α < π}.
The derivation of a strong formulation of the variational equations will be facilitated by a
Lagrange multiplier approach, where we employ the additional functionals

U±ext[G
±] =

1

2

∫
B

λ±(α, s)(|∂sG±(α, s)|2 − 1)η± d(α, s) , (1.3.13)

describing extension of filaments, and

Uedge[G
+, G−] =

∫ π

−π
λedge(α

+)(G+(t, α+, 0)−G−(t, α̂(t, α+), 0)) · ν(t, α+)dα+ , (1.3.14)

describing the deviation between the outer edges of both filament families. Here α̂(t, α+)
is chosen such that G+(t, α+, 0)−G−(t, α̂(t, α+), 0) is parallel to ν(t, α+), the outward unit
normal vector along the barbed ends of the clockwise filaments, which can be computed from
∂αG

+(t, α+, 0).

In the following the variations of the energy contributions and their limits as ε → 0 are
computed individually.

1. The variation of the stretching energy of the membrane reads

δUmembrane[F
±]δF± = κM

(
C± − C0

)
+

∫ π

−π

∂αF
±(s = 0)

|∂αF±(s = 0)|
· ∂αδF±(s = 0) dα , (1.3.15)

with the same expression in the limit ε→ 0.

2. For the variation of the bending energy of the filaments we obtain

δU±bending[F±]δF± =

∫
B

∂2
sF
± · ∂2

sδF
± η± d(α, s) , (1.3.16)

again with the same expression for ε→ 0.

3. The variation of the energy contribution by stretching the cross-links can now be written
as

δUscl(t)[F
+, F−]δF± = ±κ

S

ε

∫ ∞
0

∫
C(t−εa)

SδF±(t, α±, s±εa) ρeff d(α+, α−) da . (1.3.17)
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We may write (1.3.3) as

S =F+(t, α+, s+
εa)− F+(t− εa, α+, s+(t− εa, α+, α−))

−(F−(t, α−, s−εa)− F−(t− εa, α+, s−(t− εa, α+, α−))) .
(1.3.18)

This implies S = εa(DtF
+ −DtF

−) + O(ε2), and therefore passing to the limit ε → 0
gives

δUscl(t)[F
+, F−]δF± = ±

∫
C(t)

µS(T0)(DtF
+ −DtF

−)δF± η+η− d(α+, α−) , (1.3.19)

with

µS(T0) = κS
∫ ∞

0

aρ da =
κSβ(T0)

ζ(0, T0)(β(T0) + ζ(0, T0))
. (1.3.20)

4. Before we compute the variation of the twisting energy, we observe that our formula for
the angle between filaments is only valid if the constraint |∂sF±| = 1 holds. Since, in the
Lagrange multiplier approach, also variations are allowed which violate this condition,
we reformulate the definition of the angle as

cosϕεa =
∂sF

+

|∂sF+|
(s = s+

εa) ·
∂sF

−

|∂sF−|
(s = s−εa) . (1.3.21)

With T = ϕεa − ϕ0 and
(
δ x
|x|

)
|x|=1

= (x⊥ · δx)x⊥, (here and from now on we write

orthogonal vectors as (x1, x2)⊥ = (−x2, x1)), we obtain

δT [F+, F−]δF± = −(∂sF
±⊥ · ∂sF∓)(∂sF

±⊥ · ∂sδF±)

sinϕεa
= ∓∂sF±⊥ · ∂sδF± , (1.3.22)

where ∂sF
± and ∂sδF

± are evalutated at (t, α±, s±εa). The sign in the last term is due
to the fact that the superscript + indicates the family of clockwise filaments. It then
holds that

δUtcl(t)[F
+, F−]δF± = ∓κT

∫ ∞
0

∫
C(t−εa)

T (∂sF
±⊥ · ∂sδF±)ρeff d(α+, α−) da , (1.3.23)

and therefore, as ε→ 0, we conclude

δUtcl(t)[F
+, F−]δF± = ∓

∫
C(t)

µT (T0)T0(∂sF
±⊥ · ∂sδF±)η+η− d(α+, α−) , (1.3.24)

where now ∂sF
± and ∂sδF

± are evalutated at (t, α±, s±(t, α+, α−)) and

µT (T0) = κT
∫ ∞

0

ρ da =
κTβ(T0)

β(T0) + ζ(0, T0)
. (1.3.25)

5. The variation of the stretching energy of the adhesions is straightforward and reads

δU±adh[F±]δF± =
κA

ε

∫ ∞
0

∫
B

(F± − F±∗) · δF± ρ±adhη
± d(α, s) da . (1.3.26)
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In the limit ε→ 0, a material derivative occurs similarly to the stretching of the cross-
links:

δU±adh[F±]δF± = µA
∫
B

D±t F
± · δF± η± d(α, s) , (1.3.27)

with

µA = κA
∫ ∞

0

aρadh da =
κAβadh

ζadh(0)(βadh + ζadh(0))
. (1.3.28)

6. In the two Lagrangian terms, we do not include the contributions from the variation of
the Lagrange multipliers. For the inextensibility term we obtain

δU±ext[F
±]δF± =

∫
B

λ±∂sF
± · ∂sδF± η± d(α, s) . (1.3.29)

7. The term which guarantees that all pointed ends touch the leading edge gives

δUedge[F
+, F−]δF± = ±

∫ π

−π
λ±edgeν · δF

±(s = 0) dα , (1.3.30)

where λ+
edge = λedge(α) and λ−edge = λedge(α

+(t, α, 0)).

Collecting the terms computed under (1)–(7) leads to the variational equation∫ π

−π

[
κM
(
C± − C0

)
+

∂αF
±

|∂αF±|
· ∂αδF± ± λ±edgeν · δF

±
]
s=0

dα

±
∫
C(t)

(
µS(T0)(DtF

+ −DtF
−)δF± − µT (T0)T0∂sF

±⊥ · ∂sδF±
)
η+η− d(α+, α−)

+

∫
B

(
∂2
sF
± · ∂2

sδF
± + µAD±t F

± · δF± + λ±∂sF
± · ∂sδF±

)
η± d(α, s) = 0 ,

(1.3.31)

where now there is no restriction on the variations δF+ and δF−. The first integral corre-
sponds to the leading edge and will contribute boundary conditions to a strong formulation
of the problem. From the second and third integrals the Euler-Lagrange equations will be
derived. For that purpose the integration domains have to mapped to each other. Noting
that in the second integral F± and δF± and their derivatives are evaluated at (t, α±, s±),
we employ the transformations (α+, α−) 7→ (α, s) = (α±, s±(t, α+, α−)). We incorporate the
corresponding Jacobians and the fact that these terms only contribute in B±(t) into the
macroscopic stiffness parameters for the cross-links:

µS± =

{
µS
∣∣∣∂α∓∂s±

∣∣∣ in B±(t) ,

0 in B \B±(t) ,
µT± =

{
µT
∣∣∣∂α∓∂s±

∣∣∣ in B±(t) ,

0 in B \B±(t) ,
(1.3.32)

where the interpretation of the additional factor is the number of crossings per unit length.
The Euler-Lagrange equations are given by

∂2
s (η
±∂2

sF
±)− ∂s(η±λ±∂sF±) + η± µA D±t F

±

± ∂s
(
η+η− (ϕ− ϕ0)µT±(ϕ− ϕ0) ∂sF

±⊥)± η+η−µS±(ϕ− ϕ0)
(
D+
t F

+ −D−t F−
)

= 0 .

(1.3.33)
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The terms in the first row correspond to standard linear models for the deformation of
beams. The first term corresponds to bending, the second to stretching (just the right
amount such that |∂sF±| = 1 holds), and the third to friction caused by adhesion to the
substrate. All these terms are evaluated at (t, α, s) and, obviously none of them generates
any coupling in α, i.e., between different filaments. The terms in the second line describe
the effects of cross-linking. Note that, in the equation for F+, the derivatives of F− have
to be evaluated at (t, α−(t, α, s), s−(t, α, s)) and vice versa, employing the mapping between
B+(t) and B−(t). The last term shows that the macroscopic effect of the resistance against
stretching of cross-links is friction caused by the relative motion of the two filament families.

The solution of the Euler-Lagrange equations (1.3.33) have to satisfy the boundary con-
ditions

−∂s(η±∂2
sF
±) + η±λ±∂sF

± ∓ η+η−µT±(ϕ− ϕ0)∂sF
±⊥ = 0 , for s = −L ,

∂s(η
±∂2

sF
±)− λ±∂sF± ± µT±(ϕ− ϕ0)∂sF

±⊥

= ±λ±edgeν − κM (C± − C0)+ ∂α

(
∂αF±

|∂αF±|

)
, for s = 0 ,

η±∂2
sF
± = 0 , for s = −L, 0 .

(1.3.34)

The Lagrange parameters λ± and λedge have to be determined such that the constraints are
satisfied:

|∂sF+| = |∂sF−| = 1 ,

{F+(t, α, 0) : −π ≤ α < π} = {F−(t, α, 0) : −π ≤ α < π} .
(1.3.35)

The problem (1.3.33)-(1.3.35) is the formal limit as ε → 0 of (1.3.2)-(1.3.6). Figure
1.4 shows one frame of a time dependent simulation based on this model carried out in
[OS09b]. It describes a situation where an originally circular cell is pushed from the left
side and returns to its circular shape after the pushing force has been turned off. The
pushing forces induce deformation and a steady movement to the right. We remark the the
observed deformation is not of elastic nature, although the shape becomes round again after
the applied force ceases to be active. The stability of the round shape seems to be the result
of the dissipative nature of the model.

1.4 Rotationally symmetric solutions

In [OSS08] a model has been derived, where in addition to the assumptions of Section 2,
the lamellipodium was assumed to be rotationally symmetric, i.e. to have the shape of a
circular ring. The limit of instantaneous cross-link and adhesion turn over in this symmetric
model has been carried out in [OS09a]. In this section we shall demonstrate that the model
of [OS09a] can be recovered as a special case of (1.3.33)–(1.3.35).

A symmetric solution is only possible with symmetric data. This means that the pre-
scribed polymerization speeds and the length distributions have to be the same all around
the lamellipodium,

v±(t, α) = v(t) , η±(t, α, s) = η(t, s) . (1.4.1)

The first equation gives Dt := D+
t = D−t = ∂t − v∂s. We search for solutions, where

all filament positions can be computed from the positions of one reference filament, such
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Figure 1.4: Pushed lammelipodium. Simulation result at time t = 1.4.

that all clockwise filaments are constructed by rotation of the reference filament, whereas a
reflection followed by rotations is used for the anti-clockwise filaments. Using the matrices
of rotation and reflection/rotation

R(α) :=

(
cosα − sinα
sinα cosα

)
, D(α) := R(α)

(
1 0
0 −1

)
, (1.4.2)

we make the ansatz

F+(t, α+, s) = R(α+)z(t, s) , F−(t, α−, s) = D(−α−)z(t, s) , (1.4.3)

where z(t, s), −L ≤ s ≤ 0, denotes the arc-length parametrization of the reference filament,
in the following sometimes written in terms of polar coordinates: z = |z|(cosφ, sinφ), −π <
φ ≤ π.

A straightforward computation shows that at crossings of filaments, i.e., F+(t, α+, s) =
F−(t, α−, s),

α+ + α− = −2φ (1.4.4)

holds. With Dtz = zDt|z|/|z|+ z⊥Dtφ this implies

D+
t F

+ −D−t F− = (R(α+)−D(−α−))Dtz = R(α+)(I−D(−α+ − α−))Dtz

= R(α+)(I−D(2φ))z⊥Dtφ = 2R(α+)z⊥Dt arg z
(1.4.5)

and

cosϕ = ∂sF
+ · ∂sF− = ∂sz ·D(2φ)∂sz = (∂s|z|)2 − (|z|∂sφ)2 = 2(∂s|z|)2 − 1 , (1.4.6)

where the last equality is due to |∂sz|2 = (∂s|z|)2 + (|z|∂sφ)2 = 1. Because of ∂sα
± = −2∂sφ,

the symmetry also gives

µS+ = µS− = µS2|∂sφ| , µT+ = µT− = µT2|∂sφ| . (1.4.7)
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With these preparations, the Euler-Lagrange equation for F+ can be written as (after mul-
tiplication with R(−α+))

∂2
s (η∂

2
sz)− ∂s(ηλ∂sz) + ηµADtz + ∂s

(
η2µT (ϕ− ϕ0)∂sz

⊥)+ 4η2µS|∂sφ|z⊥Dtφ = 0 , (1.4.8)

with ϕ = arccos(2(∂s|z|)2 − 1). In the same way, the equation for F− also turns out to be
equivalent to (1.4.8), using (D(α)z)⊥ = −D(α)z⊥.

The boundary conditions now take the form −∂s(η∂
2
sz) + ηλ∂sz − η2µT (ϕ− ϕ0)∂sz

⊥ = 0 , for s = −L ,
∂s(η∂

2
sz)− λ∂sz + µT (ϕ− ϕ0)∂sz

⊥ = κM (C − C0)+
z
|z| , for s = 0 ,

η∂2
sz = 0 , for s = −L, 0 .

(1.4.9)

The Lagrange multiplier λ has to be determined such that the constraint |∂sz| = 1
is satisfied. The other constraint is now satisfied automatically, and λedge is not needed
any more. Thus the model (1.4.8)-(1.4.9) represents the rotationally symmetric version of
(1.3.33)-(1.3.35).

Finally, we are looking for a stationary situation, where the geometry of the lamellopodium
does not change. This requires the assumption on the data that the polymerization speed
and the length distribution are independent from time, i.e., v = const and η = η(s). We
then expect a time dependence of the reference filament of the form

z(t, s) = R(−ωt)y(s) , y = |y|(cosψ, sinψ) , (1.4.10)

so, |z|(t, s) = |y|(s) and φ(t, s) = ψ(s)−ωt. This means that the reference filament does not
change its shape but rotates with constant angular velocity ω. This corresponds to lateral
flow of barbed ends along the leading edge as observed in experiments.

The ansatz impliesDtφ = ∂tφ−v∂sφ = −ω−v∂sψ andDtz = −ωR(−ωt)y⊥−vR(−ωt)∂sy,
and we obtain

∂2
s (η∂

2
sy)− ∂s(ηλ∂sy)− η µA v∂sy

+ ∂s
(
η2µT (ϕ− ϕ0)∂sy

⊥)− 4η2µS|∂sψ|y⊥v∂sψ = ω
(
ηµA + 4η2µS|∂sψ|

)
y⊥ ,

(1.4.11)

where we have multiplied by R(ωt) already. The boundary condtions for y are the same as
for z, i.e. (1.4.9).

In numerical experiments in [OSS08], stable steady states have been observed. However,
it seems that the resistance against twisting the cross-links is necessary. With µT = 0, the
network typically degenerated in one of two ways. Either the filaments became more and
more radial, or more and more aligned to the leading edge. We try to understand the former
situation by setting µT = 0 and observing that in this case there is a stationary solution of
(1.4.8), (1.4.9) of the form

z0(s) = (r + s)

(
1
0

)
, (1.4.12)

where the equilibrium radius r and the Lagrange multiplier λ0(s) are given by

κM(2πr − C0) = µAv

∫ 0

−L
η(s)ds , η(s)λ0(s) = −µAv

∫ s

−L
η(ŝ)dŝ . (1.4.13)
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We try to analyze the stability of this state, where all filaments are in the radial direction,
by linearization. In the ansatz

z(t, s) = z0(s) + eγtz(s) , λ(t, s) = λ0(s) + eγtλ(s) , (1.4.14)

the perturbation of the filament position has to be of the form z(s) = (b, a(s)), to satisfy the
linearized constraint ∂sz0 · ∂sz = 0. The components of the linearization of (1.4.8), (1.4.9)
give two decoupled eigenvalue problems. The second component leads to

−∂s(ηλ) + ηµAγb = 0 , η(−L)λ(−L) = 0 , λ(0) = −κM2πb . (1.4.15)

An easy computation produces the only eigenvalue

γ = −2πκM
(
µA
∫ 0

−L
η(s)ds

)−1

. (1.4.16)

So the steady state is stable under perturbations in the radial direction. The other eigenvalue
problem can be written as

∂2
s (η∂

2
sa)− ∂s(ηλ0∂sa) + ηµAγa− ηµAv∂sa = 0 ,

−∂s(η∂2
sa) + ηλ0∂sa = 0 , for s = −L ,

∂s(η∂
2
sa)− λ0∂sa = µAv a

r

∫ 0

−L η(s)ds , for s = 0 ,
η∂2

sa = 0 , for s = −L, 0 .

(1.4.17)

No explicit solution is available here. Some information can be drawn from multiplication
of the differential equation by the complex conjugate of a and subsequent integration, using
integrations by parts and the boundary conditions:

γ

v

∫ 0

−L
η|a|2ds =− 1

µAv

∫ 0

−L
η|∂2

sa|2ds+

∫ 0

−L

(∫ s

−L
η(ŝ)dŝ

)
|∂sa|2ds

− 1

2

∫ 0

−L
∂sη|a|2ds−

|a(0)|2

r

∫ 0

−L
η ds− 1

2
η(−L)|a(−L)|2 +

1

2
|a(0)|2 .

(1.4.18)
The first term on the right hand side has the highest differential order. The fact that it is
negative reflects the well-posedness of the problem. Among the remaining terms, the second
term dominates the terms in the second row for high frequency perturbations. This indicates
that instability of the steady state is likely for large values of the product µAv, i.e. for strong
adhesion and/or fast polymerization at the leading edge. These observations are compatible
with the simulation results in [OSS08].
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