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Abstract:  
The pushing structures of cells include laminar sheets, termed lamellipodia, made up of a 

meshwork of actin filaments that grow at the front and depolymerise at the rear, in a 

treadmilling mode. We here develop a mathematical model to describe the turnover and the 

mechanical properties of this network. 

Our basic modelling assumptions are that the lamellipodium is idealised as a two-dimensional 

structure, and that the actin network consists of two families of possibly bent, but locally 

parallel filaments. Instead of dealing with individual polymers, the filaments are assumed to 

be continuously distributed. 

The model has the potential to include the effects of (de)polymerization, of the mechanical 

effects of cross-linking, bundling, and motor proteins, of cell-substrate adhesion, as well as of 

the leading edge of the membrane. 

In the first version presented here, the total amount of F-actin is prescribed by assuming a 

constant polymerisation speed at the leading edge and a fixed total number and length  

distribution of filaments. We assume that cross-links at filament crossing points as well as 

integrin linkages with the matrix break and reform in response to incremental changes in 

network organisation. In this first treatment, the model successfully simulates the persistence 

of the treadmilling network in radially spread cells.   

1. Introduction 

Cells migrate by protruding at the front and retracting at the rear. Protrusion occurs in thin 

membrane bound cytoplasmic sheets, 0.2 0.3 mµ−  thick and up to several microns long, 

termed lamellipodia
1
. The major structural components of lamellipodia are actin filaments, 

which are organised in a more or less two-dimensional diagonal array with the fast growing, 

plus ends of the actin filaments directed forwards, abutting the membrane
2
. Protrusion is 

effected by actin polymerisation, whereby actin monomers are inserted at the plus ends of the 



filaments at the membrane interface and removed at the minus ends, throughout and at the 

base of the lamellipodium, in a treadmilling regime
3
. Stabilisation of the actin meshwork is 

achieved by the cross-linking of the filaments by actin-associated proteins, such as filamin
4
 as 

well as protein complexes, such as the Arp2/3 complex
5
, although the density and location of 

such cross-links remains to be established. Since actin polymerisation is involved in diverse 

motile processes aside from cell motility, including endocytosis and the propulsion of 

pathogens that invade cytoplasm
6
, the question of how actin filaments are able to push against 

a membrane has spawned the development of various models
7
.  

Comprehensive modelling efforts were initiated in 1996 and fall into two groups. The first 

group includes continuum models for the mechanical behaviour of cytoplasm: a two phase 

formulation for cytosol and the actin network
8
; a one dimensional viscoelastic model

9
; a one 

dimensional model for the actin distribution
10

; and a two dimensional elastic continuum 

model
11

. The second group makes presumptions about the microscopic organisation of the 

actin network. The Brownian ratchet model for the polymerisation process introduced by 

Mogilner and Oster
12

 considers actin cross-linking proteins as stabilisers of the lamellipodium 

meshwork, allowing enough flexibility for actin filaments to bend away from the membrane 

to accept actin monomers. Other models are based on the current idea
5
, that the actin 

filaments in lamellipodia form a branched network with the Arp2/3 complex at the branch 

points
13-15

. A related model considers the lamellipodia as constructed from short filaments that 

take one of six orientations
16

.  

Recent studies have indicated that filaments in lamellipodia are not organised in branched 

arrays
17

. Rather, the pseudo-two-dimensional actin network contains unbranched filaments 

whereby the filament density decreases from the front to the rear of the lamellipodium, 

indicative of a graded distribution of filament lengths. According to this structural 

information, we present a quasi-stationary modelling approach for the simulation of the 

turnover of the lamellipodium in a circularly symmetric cell, corresponding to real situations 

such as cytoplasmic fragments of keratocytes
18

. Our approach differs from previous ones in 

that we describe the lamellipodium in terms of a continuous distribution of filaments of 

graded length and their linkages. In this first analysis we consider four primary parameters: 

bending elasticity of actin filaments, cross-links between the filaments; the resistance against 

polymerisation by the membrane; and interactions between the filaments and the substrate via 

trans-membrane linkages. With a selected set of parameters we compute the dynamics of the 

network organisation. The simulations reproduce several features also found experimentally: 

treadmilling, the lateral flow of filament plus ends along the front edge
17

, and persistence of 

the network organisation after achievement of a steady state. 

2. Results 

2.1. Modelling 

The formulation of the model is based on the following considerations (more details can be 

found in the appendix). 

A1: At each point in the lamellipodium, actin filaments have one of two directions in the 

diagonal network, represented by oriented, slightly curved segments with the barbed ends 

attached to the leading (outer) edge of the lamellipodium. Filaments are inextensible. 

A2: The lamellipodium is two dimensional and rotationally symmetric, i.e. at any point in 

time it has the shape of a circular ring.  

This compares with the situation of a radially spread cytoplast from a keratocyte. 

A3: Filaments polymerise at the barbed ends with constant polymerisation speed. 

Depolymerisation at the pointed ends is a stochastic process with prescribed distribution.  

As a consequence of A1 and A2 the lamellipodium has the organisation depicted in Fig. 1.   

There are two families of locally parallel filaments. Looking from the centre of the 



lamellipodium ring, the filaments in the first group bear to the left and the second group to the 

right; referred to as clockwise and anti-clockwise filaments. As a consequence of rotational 

symmetry, all filaments can be constructed from one reference filament (which, “without loss 

of generality”, we shall take clockwise) with the maximal filament length. All clockwise 

filaments can then be constructed by rotation of the reference filament and subsequent random 

cutting at the pointed end; correspondingly, all anti-clockwise filaments are created by 

reflection, rotation, and cutting.  

A central feature of the model is the description of production and decay of cross-links and 

integrins, consistent with dynamic association/dissociation of linkage molecules with the actin 

network, leading to the next assumption.  

A4: A cross-link is an elastic connection between a clockwise and an anti-clockwise filament. 

The cross-link has both an elastic and a torsional component (Fig.2 and Appendix). Cross-

links form and break stochastically at the crossing between two filaments with  at most one 

cross-link for any pair of filament crossing points at any time.   

With stable cross-links unrealistic deformations of the filament meshwork occur.  

A5: An adhesion is an elastic link between a filament and a point on the substrate via a 

transmembrane linkage. Adhesions can form or break spontaneously, breaking being 

dependent on the degree of link extension. 

A6: The cell membrane simulates an elastic rubber band stretched around the barbed ends of 

the filaments. 

This assumption only serves to mimic a situation in which forces exerted on the barbed ends 

of filaments by the membrane are counteracted by the protrusive forces generated by 

polymerisation. To a first approximation the radius of the lamellipodium is determined by a 

balance of these forces. (A more thorough modelling of the size-determining mechanisms will 

be presented in a future study. One problem with this assumption is that membrane resistance 

increases with radius, which is probably not the case.) 

A7: The position of the filaments in time is determined by a quasistationary balance of elastic 

forces resulting from bending of the filaments, stretching and twisting the cross-links, 

stretching the adhesion linkages, and stretching the cell membrane. 

The quasistationary assumption means that we neglect elastic oscillations, assuming that the 

filament network is damped by viscous forces in the cytosol and that the system therefore 

always operates at minimal potential energy. Thus, the evolution of the network is a 

consequence of actin polymerization dynamics together with the creation and breaking of 

cross-links and adhesions.  

 

In summary, the model we present has two major ingredients (see Appendix for details): 1, 

the making and breaking of cross-links in the filament network and between the filaments and 

the matrix, based on renewal equations; and 2, minimisation of the potential energy of the 

system.   

2.2. Simulation results 

We model a simple symmetrical cell with a  hypothetical radius of slightly more then 8 mµ , 

but with a realistic density of actin filaments and graded filament lengths
17

. Realistic values 

for several of our model parameters can be found in the literature. Examples are the stiffness 

of filaments
19

, the equilibrium angle between filaments and their total number
17

 and reaction 

rates of cross-links and integrins
20, 21

.  For the latter, however, it turns out that our linear 

elasticity assumptions are a strong simplification from a microscopic point of view. Therefore 

approximate averaged values of elasticity parameters have been used.  

For other quantities no reliable information seems to be available (in particular for in-vivo 

situations). For those we fixed values of a reasonable size such that a balance was reached 

between the forces of pushing at the periphery and the adhesion forces with the substrate. At 



the same time, both force components had to be low enough to prevent buckling of the actin 

filaments. Most notably the elasticity of the membrane, the on-rate of integrins adhβ , and also 

the maximal density of integrins adh

maxρ  are determined with a view to get reasonable 

simulation results.  

 

A typical long time (quasi-)equilibrium is shown in Fig. 3. The left subfigure represents the 

lamellipodium where the position of the standard filament is drawn in black. . Other filaments 

were created by rotating and/or reflecting the standard filament and introducing graded 

lengths to give a linear decrease in  filament density from the tip to the base of the 

lamellipodium
17

.  

The upper right picture represents the density of cross-links ρ  depending on the position 

along the standard filament, where the value 0 represents the pointed end, and on the age. The 

lower right picture represents the density of integrins, adhρ , in an analogous way.  

With respect to age both densities decay rapidly, but for different reasons: Cross-links break 

rapidly since their decay rate is rather high, cp. Table 2. On the other hand integrins are much 

more stable, but since the cell is in a non-moving state, they get stretched rapidly and, 

consequently, they are much more likely to break. This is modelled by a Boltzmann-factor 

according to Li, Moy
21

. 

The solution tends to (quasi-)equilibrium very quickly, within the time necessary for two 

phases of treadmilling of the filaments.  

In the long term the solution is stationary in the sense that the shape of the filaments and the 

density of cross-links do not change. However, there is a dynamic rotation of the clockwise 

filaments in clockwise direction and of the anti-clockwise filaments in anti-clockwise 

direction,  corresponding to a bilateral flow of filament plus ends along the cell periphery. 

This lateral filament flow mimics that deduced for filaments in living cells, based on filament 

geometry and the observed lateral translation of filament bundles
17

. Another feature found in 

lamellipodia already present in this simulation is a characteristic angle between filaments and 

between filaments and the membrane. Because of the presence of a preferred cross-link angle, 

this result is not very surprising (compare to Schaus e.a.
15

, where a preferred branching angle 

is used, too).  

However, torsional stiffness of cross-links Tκ  was not necessary to achieve short-term 

stability (12 min), but became relevant in the longer term (100 min).  

This, however, requires a balance between the forces mediated by adhesion with the substrate,  

the tangential forces exerted by cross-links and the radial ones exerted by the membrane (see 

simulation result Fig. 5) where we did the computation with adh 1

max 0.67125 mρ µ −= .  

If we set the maximal density of integrins adh

maxρ  at a value higer large, the meshwork collapses 

to a dense ring close to the membrane like in Fig. 6, where we computed with 
adh 1

max 0.685 mρ µ −= . On the other hand, when we set the maximal integrin density to the 

smaller value adh 1

max 0.67 mρ µ −= , the meshwork disintegrates, since the filaments adopt a radial 

direction as in Fig. 7. 

Finally, as observed by other authors
22

, we compute forces per filament barbed end in the pN 

range. 

 

3. Conclusion 

We have here attempted to model the organisation of a continuously treadmilling 

lamellipodium. In contrast to other recent models (reviewed by Mogilner
12

), we assume that 

the actin filaments are continuously distributed, of variable length and stabilised in a network 



by cross-linking proteins. Recent studies by electron microscopy
17

 have not supported the idea 

that actin filaments in lamellipodia form a branched, dendritic array
5
; therefore branches were 

not considered. In reality the lamellipodium is not truly 2 dimensional, but in the order of 

0.2 mµ  thick. In the context of the present model, assumptions about cross-links between 

filaments are unaffected. However, transmembrane linkages to the substrate will only be 

possible for filaments closely apposed to the membrane. To assess the potential frequency of 

such linkages as well as the frequency of cross-links between filaments, new information 

about the three-dimensional arrangement of filaments in lamellipodia, by electron microscope 

tomography will be required. There are limitations to the present status of the model. Our 

current model does not consider how the actin network is generated in the first place, nor does 

it explain how filaments rearrange during different phases of protrusive activity
17

. Also the 

effect of myosin is not incorporated yet, whose contractive effect might largely replace the 

strong mechanical effect of the cell membrane in the present model.  

Nevertheless, it is interesting to note that filament reorientations can be induced by changing 

the substrate linkage constant. Further work will be required to integrate other parameters into 

the present scheme in order to develop a more comprehensive model of network dynamics.  

4. Appendix 

4.1. Mathematical formulation of the model 

In order to obtain a feasible mathematical description we will adopt a homogenisation limit, 

based on the assumption that the density of filaments within the lamellipodium is very high; 

we let the number of filaments tend to infinity in order to obtain a model based on continuous 

quantities instead of discrete ones.  

With the maximal filament length L , an arc length parameterisation of the reference filament 

at time t  is given by 2{ ( ) 0 }z t s s L R, : ≤ ≤ ⊂ , where 0s =  corresponds to the pointed and 

s L=  to the barbed end. Occasionally we shall need the representation 

( ) ( ) (cos ( ) sin ( ))z t s z t s t s t sϕ ϕ, =| , | , , ,  in polar coordinates with the angle 1( )t s Sϕ , ∈ . We 

expect ( )z t s| , |  to be strictly increasing with respect to s . Then ( 0)z t| , |  is the inner radius of 

the lamellipodium and ( )z t L| , |  the radius of its leading edge at time t . As mentioned above, 

the reference filament is assumed to be clockwise, i.e. ( )t sϕ ,  is a strictly decreasing function 

of s . Note that ( ) 1
s
z t s| ∂ , |= .  

For the parameterisation of the other filaments we need matrices of rotation and of reflection-

rotation:  

 
cos( ) sin( ) 1 0

( ) ( ) ( )
sin( ) cos( ) 0 1

R D R
β β

β β β
β β

−   
:= , := .   −  

 

Assuming an equal number n  of clockwise and anti-clockwise filaments, their 

parameterisations are given by  

 
2

( ) ( ) ( ) 0 1c c

i i

i
F t s R z t s s t s L i … n

n

π 
, = , , ≤ ≤ , = , , − , 

 
 

 
2

( ) ( ) ( ) 0 1a a

j j

j
F t s D z t s s t s L j … n

n

π 
, = − , , ≤ ≤ , = , , − , 

 
 (1) 

 

where the pointed end parameters are (according to the rotational symmetry assumption) 

distributed identically such that  

 ( ( ) ) ( ( ) ) ( ) 0 1c a

i jP s t s P s t s t s i j … nη≤ = ≤ = , , , = , , − ,  

where the given distribution function η  satisfies ( 0) 0tη , = , ( ) 1t Lη , = . It is not necessary for 



our purposes to describe the stochastic depolymerisation process in detail, since for large 

numbers of filaments only the distribution will be needed.  

The arclength s  is a geometric parameter. Because of the polymerisation at the barbed ends, 

polymerised actin molecules travel along the filament towards the pointed ends with the 

polymerisation speed denoted by 0v . Because of this and because of the inextensibility 

assumption in A1, a Lagrange variable along the filaments is given by 0s v tσ = + . In other 

words, the path of the actin molecule with label σ  on the reference filament is given by 

0( )z t v tσ, − . The fact that the filaments are depolymerised at the pointed ends is reflected by 

the assumption that 0( )a

js t v t+  and 0( )c

i
s t v t+  are increasing functions of time. As a 

consequence, 0( )t v tη σ, −  is decreasing in t .  

For the description of the kinematics of cross-links according to assumption A4 it will be 

sufficient to describe the cross-links between the reference filament and all anti-clockwise 

filaments. For this purpose we first have to find the crossings, which are unique due to A4. 

We compute  

 
2 2 2

( ) ( ) 2 1 cos 2a

j

j
z t s F t s z

n

π
ϕ

 
| , − , | = | | − + 

  
 

Then, if at time t  there is a crossing point between the reference filament and the j th anti-

clockwise filament, it is given by ( ( )) ( ( ))a

j j jz t s t F t s t, = ,  where ( )js t  is defined by 

( ( ))jt s t j nϕ π, = − /  or ( ( ))jt s t j nϕ π π, = − / .  

If a cross-link between the reference filament and the j th anti-clockwise filament is created 

at time t
∗ , then this happens at the crossing point. Once established, however, the two binding 

sites will move along the two filaments due to the treadmilling effect. Thus, at a later time 

t t a
∗= + , the binding sites will be located at 0( ( ) )jz t s t a v a, − −  and 0( ( ) )a

j jF t s t a v a, − − , 

until the cross-link eventually breaks. We call a  the age of the cross-link. Below we shall 

assume a resistance of cross-links against stretching and twisting. This means there are elastic 

forces related to the stretching  

 0 0( ) ( ( ) ) ( ( ) )a

j j j jS t a z t s t a v a F t s t a v a, :=| , − − − , − − |,  

and to the twisting  

 0 0( ) arccos[ ( ( ) ) ( ( ) )]a

j s j s j j
T t a z t s t a v a F t s t a v a α, := ∂ , − − ⋅ ∂ , − − − ,  

where α  is an equilibrium angle determined by the cross-link geometry.  

The probability distribution of the cross-link with respect to age will be denoted by ( )jr t a, , 

where  

 
0

( ) 1jr t a da
∞

, ≤∫  (2) 

is the probability that a cross-link between the reference filament and the j th anti-clockwise 

filament exists at time t . We postulate the following model for the evolution of the 

distribution:  

 ( )0
( ) ( 0) ( ( 0)) 1 ( ) .

t j a j j j j j j j
r r S T r r t T t r t a daζ β

∞

∂ + ∂ = − , , , = , − ,∫  (3) 

This model has the standard form of age-structured population models (see, e.g., Perthame 
23

). 

The differential equation describes ageing and breaking of cross-links, the boundary condition 

at 0a =  describes their creation. The dependence of the breaking rate on the physical distance 

between the binding sites (stretching) and the deviation from the equilibrium angle of cross-

links (twisting) reflects that a cross-link might be broken by being loaded too much. The 

twisting dependence of the creation rate β  could eliminate the possibility for a cross-link to 



be established, if the angle between the filaments is too far from the equilibrium angle. 

Integration of the differential equation with respect to a  shows that the second factor in the 

creation rate guarantees (2), i.e., the fact that there is at most one cross-link. Just as for the 

pointed-end (de)polymerisation process, all we need to know about the processes of creation 

and breaking of cross-links is the distribution jr .  

The domain of the differential equation in (3) is determined by the requirement that both 

binding sites (on the reference filament and on the j th anti-clockwise filament) have not been 

depolymerised yet: 0 0( ) max{ ( ) ( )}a c

j js t a v a s t s t− − ≥ , .  

The next modelling step is the passage to a continuum description by letting the total number 

2n  of filaments tend to infinity. In the limit, the discrete rotation angles 2j j nβ π= / , 

0 1j … n= , , − , are replaced by a continuous angle [0 2 )β π∈ , . Then we interpret the discrete 

filament positions ( )c

i
F t s,  and ( )a

jF t s,  as approximations for the values ( )c

i
F t s β, ,  and, 

respectively, ( )a

jF t s β, ,  of continuous distributions  

 ( ) ( ) ( ) ( ) ( ) ( )c aF t s R z t s F t s D z t sβ β β β, , = , , , , = − , .  

The distribution ( )t sη ,  now gets a deterministic interpretation as the expected fraction of 

filaments in each angle element dβ , whose pointed end parameter at time t  is smaller than 

s .  

Similarly, the probability distribution ( )jr t a,  for cross-links will be interpreted as an 

approximation of the expected cross-link density ( )r t a β, ,  per filament at jβ β= . In the 

following, however, cross-links will be described in terms of their arc length parameter and 

their age. A cross-link at arc length s  and with age a  at time t  on the reference filament has 

been created at arc length 0s v a+  at time t a− , and it connects the reference filament to the 

anti-clockwise filament with parameter  

 0( ) 2 ( )t s a t a s v aβ γ ϕ= , , := − − , + .  

By the strict monotonicity of ϕ  with respect to s , this relation can be used to replace the 

variable β  by s . By 
s

d dsβ γ= ∂ , the cross-link density per filament in terms of s  and a  is 

given by  

 ( ) ( ( )) ( )
s

t s a r t a t s a t s aρ γ γ, , = , , , , ∂ , , .  

The factor 
s
γ∂  can be interpreted as density of crossing anti-clockwise filaments per unit 

length along the reference filament. From (3) and using 0 0
t a s

vγ γ γ∂ + ∂ − ∂ = , the transport 

equation for the cross-link density per filament becomes  

 0 ( )
t a s

v S Tρ ρ ρ ζ ρ∂ + ∂ − ∂ = − , ,  (4) 

with the boundary condition  

 
0

1
( )

10

( ( ( 0)) )
( 0) ( 0) ( ( 0)) 1

( ( ( 0)) )

L s v

s

s

t t a t s a
t s t s T t s da

t t a t s a

ρ γ γ
ρ γ β

γ γ γ

−
− /

−

 , , , , , ,
, , = ∂ , , , , − ,

∂ , , , , , , 
∫  

where 1γ −  is the inverse function of γ  with respect to the argument s , i.e., 
1( ) ( )t s a s t aβ γ γ β−= , , ⇐⇒ = , , , and the stretching and twisting terms are now given by  

 ( ) ( ) ( ( )) [ ( ( ))] ( )aS t s a z t s F t s t s a I D t s a z t sγ γ, , =| , − , , , , |=| − − , , , |,  (5) 

  

 
( ) arccos[ ( ) ( ( ))]

arccos[ ( ) ( ( )) ( )]

a

s s

s s

T t s a z t s F t s t s a

z t s D t s a z t s

γ α

γ α

, , = ∂ , ⋅ ∂ , , , , − =

= ∂ , ⋅ − , , ∂ , − .
 (6) 

 

Note that the integration in the boundary condition has now been limited to the upper bound 



0( )L s v− /  for the age of a cross-link at position s . The rather complicated boundary 

condition can be simplified by the assumption that typical life times of cross links will be 

small compared to other characteristic times for the network dynamics. We then approximate 
1( ( 0))t a t sγ γ− , , , ,  by 1( 0 ( 0))t t s sγ γ− , , , , = , and 1( ( ( 0)) )

s
t t a t s aγ γ γ−∂ , , , , , ,  by ( 0)

s
t sγ∂ , , :  

 ( )0( )

0
( 0) ( ( 0)) ( 0) ( )

L s v

s
t s T t s t s t s a daρ β γ ρ

− /

, , = , , ∂ , , − , , .∫  (7) 

The boundedness property (2) of the microscopic cross-link density determined by (3) carries 

over to the modified model (4), (7). The accumulated distribution  

 
0( )

0
( ) ( )

L s v

t s t s a daρ ρ
− /

, = , ,∫  

satisfies the equation  

 
0( )

0
0

( ) ( ( 0))( ( 0) )
L s v

t s sv S T da T a aρ ρ ζ ρ β γ ρ
− /

∂ − ∂ = − , + = ∂ = − ,∫  

preserving the property ( ) ( 0)
s

t s t sρ γ, ≤ ∂ , , .  

Taking into account the length distribution of the filaments, we arrive at the effective cross-

link density  

 
2

eff ( ) ( ) ( )t s a t s a t sρ ρ η, , = , , , ,  

where each of the two filaments involved in a cross-link contributes a factor η . Note that effρ  

satisfies  

 0
eff 0 eff eff eff ( ) 2 t s

t s a

v
v S T

η η
ρ ρ ρ ρ ζ

η

 ∂ − ∂
∂ − ∂ + ∂ = − , − ,

 
 

hence the same type of transport equation as ρ  but with a modified decay rate, which takes 

into account the loss of cross-links due to depolymerisation of the pointed ends. Recall that 

0t s
vη η∂ − ∂  is negative.  

Concerning the dynamics of adhesion molecules (modelling assumptions A5), not only the 

assumptions are similar to the cross-links but also the model. The density adh ( )t s aρ , ,  of 

adhesions per filament satisfies the differential equation  

 
adh adh adh adh adh adh

0 ( )
t a s

v Sρ ρ ρ ζ ρ∂ + ∂ − ∂ = − ,  (8) 

with the boundary condition  

 ( )0( )
adh adh adh

0
( 0) ( )

L s v
adh

max
t s t s a daρ β ρρ

− /

, , = − , , ,∫  (9) 

where the breaking rate adhζ  depends on the stretching of the adhesions:  

 
adh

0( ) ( ) ( )S t s a z t s z t a s v a, , =| , − − , + |.  

 

The position of the filaments (supposition A7) finally will be formulated by assuming that the 

filament positions minimise a potential energy functional containing contributions from the 

above mentioned elastic effects:  

 bending scl tcl adh membrane( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] [ ]U t w U t w U t w U t w U t w U w:= + + + + .  

Here 2( )w s R∈ , 0 s L≤ ≤ , is a place holder for the reference filament position at time t .  

The energy contribution from bending the filaments is taken in the standard form of linearised 

beam theory:  

 
2 2

bending
0

( )[ ]
2

B
L

s
U t w w ds

κ
η= | ∂ | ,∫  

where Bκ  can be interpreted as the product of the bending stiffness of one filament and the 

total number 2n  of filaments. Note that 2 ( )n t sη ,  is the total number of filaments whose 

length is at least L s− .  



Stretching the cross-links contributes the following energy term:  

 
0( )

2 2

scl
0 0

( )[ ] [ ( )]
2

S
L L s v

U t w I D w da ds
κ

γ ρη
− /

= | − − | ,∫ ∫  

and similarly for twisting the cross-links:  

 
0( )

2 2

tcl
0 0

( )[ ] (arccos[ ( ) ] )
2

T
L L s v

s s
U t w w D w da ds

κ
γ α ρη

− /

= ∂ ⋅ − ∂ − .∫ ∫  

The constants Sκ  and Tκ  are the products of 2n  with Hooke constants describing the 

stretching and, respectively, torsional stiffnesses of the cross-link molecules.  

The potential energy of the stretched adhesions is given by  

 
0( )

2 adh

adh 0
0 0

( )[ ] ( )
2

A
L L s v

U t w w z t a s v a da ds
κ

ρ η
− /

= | − − , + | .∫ ∫  

Note that the evaluation of the adhesion energy at time t  requires information on previous 

filament positions at all times between 0t L v− /  and t . Actually, the same is true for the 

cross-link energies through the function 0( ) 2 ( )t s a t a s v aγ ϕ, , = − − , + .  

The action of the cell membrane on the leading edge of the network (A6) leads to a model of 

the form  

 
2

membrane 0[ ] ( ( ) )
2

M

U w w L R
κ

+= | | − .  

This models resistance against stretching the membrane above the equilibrium radius 0R . We 

remark that 2/ (4 )Mκ π  is the force resulting from stretching the membrane by unit length. 

The force acting on any single barbed end is therefore given by the total force exerted by the 

membrane divided by the total number of barbed ends,  

0(| ( ) | )

2 #

M
z L R

F
F

κ +−
=

×
. 

The position of the reference filament at time t  is now determined by minimising the energy 

under the side condition that s  is the arc length:  

 
1

( )[ ( )] min ( )[ ]
dw ds

U t z t U t w
| / |=

,⋅ = .  (10) 

 

This concludes the derivation of the model. However, the formulation of a well posed 

problem still requires a start-up procedure. The problems (4), (7) and (8), (9) for the cross-link 

density and, respectively, for the adhesion density have to be supplemented by initial 

conditions  

 
adh adh

0(0 ) ( ) (0 ) ( ) 0 0 ( )
I I

s a s a s a s a s L a L s vρ ρ ρ ρ, , = , , , , = , , ≤ ≤ , ≤ ≤ − / .  

Since, as mentioned above, the problem (10) for the determination of the filament positions is 

a delay problem, we need to prescribe  

 0( ) ( ) 0 0
I

z t s z t s L v t s L, = , , − / ≤ < , ≤ ≤ .  

The knowledge of the history of the filament positions is necessary for specifying the binding 

sites of the cross-links and adhesions which are present initially. If, for example, initially only 

cross-links and binding sites with a maximal age 0a L v< /  are present, i.e., 
adh( ) ( ) 0

I I
s a s aρ ρ, = , =  for a a> , then it is also sufficient to prescribe ( )z t s,  for 0a t− ≤ < .  

4.2. Numerical method 

We found that in order to perform simulations based on the model above, it was convenient to 

parameterise the set of admissible functions by making the ansatz  



 
cos( ( )) cos( ( ))

( ) ( )
sin( ( )) sin( ( ))

s

L

t t s
z t s R t ds

t t s

ω ψ

ω ψ

′,  
′, = + .   ′,  

∫  

Hence for fixed 0t ≥  the position of the reference filament is being described by the radius 

( ) 0R t >  and the argument ( )t Rω ∈  of the barbed end and by the tangential directions, which 

we represent by the angle-valued function ψ . With this representation not only the side 

condition 1
s
z| ∂ |=  is satisfied automatically, but also some of the energy terms are simplified. 

Most notably the bending component of the energy functional is then written as  

 
2

bending
0

( )
2

B
L

s
U ds

κ
ψ= ∂∫  

and the twisting of cross-links (6) simplifies to  

 ( ) 2 ( ) ( )T t s a t s t s aψ γ α, , = , + , , − .  

This ansatz allows the direct application of techniques for unconstrained optimisation 

problems.  

We performed simulations based on equidistant discretisations of time and arc length and 

present the numerical long time result  

We start with the initial conditions 0
I

ρ ≡  and adh 0
I

ρ ≡  and alternate computing one timestep 

of the transport models for these densities and the minimisation step (10), where we start with 

a straight initial condition with arg (0) 0 6
I

z = − .  and arg ( ) 1 3
I

z L = − /  and 0( ) 1.05
I

z L R| |= ×  

as depicted in figure 3.  

 

Acknowledgements 

This work has been supported by the Austrian Science Fund (FWF) through the 

Wissenschaftskolleg Differential Equations and by the Austrian Academy of Science. 

Furthermore it was supported by the WWTF-Project ’How do cells move? Mathematical 

modelling of cytoskeletal dynamics and cell migration’ of C. Schmeiser and V. Small and by 

the Wittgenstein-2000 award of P. Markowich.  

We also thank one of the referees for helpful advice. 

Legends of figures:  

1. Constituent elements of the model. 
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5. Solution without torsional stiffness. 

6. Collapse to a dense ring without torsional stiffness when adhesion is to strong. 

7. Dissolving lamellipodium without torsional stiffness when adhesion is to weak. 

 

Legends of tables:  

1. List of parameters describing the Actin-filament meshwork. 

2. List of parameter rate constants. 

 



References:  

 

1. Small JV, Stradal T, Vignal E, Rottner K. The lamellipodium: where motility begins. 

Trends Cell Biol 2002; 12:112-20. 

2. Small JV, Isenberg G, Celis JE. Polarity of actin at the leading edge of cultured cells. 

Nature 1978; 272:638-9. 

3. Pantaloni D, Le Clainche C, Carlier MF. Mechanism of actin-based motility. Science 

2001; 292:1502-6. 

4. Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP. Structural basis of 

filamin A functions. J Cell Biol 2007; 179:1011-25. 

5. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. 

Annu Rev Biophys Biomol Struct 2007; 36:451-77. 

6. Carlier MF, Pantaloni D. Control of actin assembly dynamics in cell motility. J Biol 

Chem 2007; 282:23005-9. 

7. Mogilner A. On the edge: modeling protrusion. Curr Opin Cell Biol 2006; 18:32-9. 

8. Alt W, Dembo M. Cytoplasm dynamics and cell motion: Two-phase flow models. 

Math Biosci 1999; 156:207-28. 

9. Gracheva ME, Othmer HG. A continuum model of motility in ameboid cells. Bull 

Math Biol 2004; 66:167--93. 

10. Mogilner A, Marland E, Bottino D. A Minimal Model Of Locomotion Applied To The 

Steady Gliding Movement Of Fish Keratocyte Cells. 

11. Rubinstein B, Jacobson K, Mogilner A. Multiscale two-dimensional modeling of a 

motile simple-shaped cell. Multiscale Model Simul 2005; 3:413-39. 

12. Mogilner A, Oster G. Cell Motility Driven by Actin Polymerization. Biophysical 

Journal 1996; 71:3030-45. 

13. Lacayo CI, Pincus Z, VanDuijn MM, Wilson CA, Fletcher DA, Gertler FB, Mogilner 

A, Theriot JA. Emergence of Large-Scale Cell Morphology and Movement from Local Actin 

Filament Growth Dynamics. PLoS Biol 2007; 5. 

14. Maly IV, Borisy GG. Self-organization of a propulsive actin network as an 

evolutionary process. Proc Natl Acad Sci 2001; 98:11324-9. 

15. Schaus TE, Taylor EW, Borisy GG. Self-organization of actin filament orientation in 

the dendritic-nucleation/array-treadmilling model. Proc Natl Acad Sci USA 2007; 104:7086-

91. 

16. Marée AFM, Jilkine A, Dawes A, Grieneisen VA, Edelstein-Keshet L. Polarization 

and movement of keratocytes: a multiscale modelling approach. Bull Math Biol 2006; 

68:1169-211. 

17. Koestler SA, Auinger S, Vinzenz M, Rottner K, Small JV. Differentially oriented 

populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at 

the cell front. Nat Cell Biol 2008. 

18. Verkhovsky AB, Svitkina TM, Borisy GG. Self-polarization and directional motility 

of cytoplasm. Current Biology 1998; 9:11-20. 

19. Gittes F, Mickey B, Nettleton J, Howard J. Flexural rigidity of microtubules and actin 

filaments measured from thermal fluctuations in shape. Journal of Cell Biology 1993; 

120:923-34. 

20. Goldmann WH, Isenberg G. Analysis of filamin and alpha-actinin binding to actin by 

the stopped flow method. FEBS Lett 1993; 336:408-10. 

21. Li F, Redick SD, Erickson HP, Moy VT. Force measurements of the alpha5beta1 

integrin-fibronectin interaction. Biophysical Journal 2003; 84:1252-62. 

22. Mogilner A, Oster G. Force Generation by Actin Polymerization II: The Elastic 

Ratchet and Tethered Filaments. Biophysical Journal 2003; 84:1591-605. 



23. Perthame B. Transport equations in biology. Basel: Birkhäuser Verlag, 2007. 

 

 



List of parameters describing the Actin-filament meshwork. 

 

Parameter Value Reference 

#F … number of (anti-)clockwise filaments 

in the lamellipodium ( 2 #F× …total number) 

2200  Koestler e.a. 2008 

0R …equilibrium radius of the cell 8 mµ    

L … maximal length of filaments 6 mµ    

α … equilibrium angle of cross-links 70°  
2/ (4 )M

κ π …stretching elasticity of the 

membrane 

900 /pN mµ   

/ (2 # )B
Fκ × …flexural rigidity of one 

filament 

2 27  10 pN mµ
−

× ×  Gittes e.a. 1993  

/ (2 # )A
Fκ × … stretching elasticity of one 

integrin-fibronectin complex 

250 /pN mµ  cp. Oberhauser e.a. 

2002; Li e.a. 2003 

2/ #FS
κ … stretching elasticity of one cross-

link (filamin) 

1000 /pN mµ  cp.  Schweiger e.a. 

2004 
2/ #FT

κ … torsional stiffness one cross-link 0 0.1pN mµ− ×   

( , )t sη η= …fraction of filaments present. 1 9

10 10

s

L
+ (dimensionless) 

 

 



List of parameter rate constants. 

 

Parameter Value Reference 

0v …polymerisation rate 8 / minmµ   

β …rate of cross-link (filamin) attachment  11.3sec−  c.p. Goldmann, 

Isenberg 1993 

assuming 1 Mµ  of 

filamin 

ζ …rate of cross-link (filamin) detachment 10.6sec−  Goldmann, Isenberg 

1993. 
adh

maxρ ...max. density of integrins on a filament 10.491 0.685 mµ −−   

adhβ … rate of integrin attachment 10.03sec−   

adhζ … rate of integrin detachment 

 
10.012 exp sec

0.04

S

mµ
−

× 
 

 

Li e.a. 2003 

 







Load on single barbed ends: 3.807

Distances from center: pointed end: 2.658, barbed end: 8.471
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Load on single barbed ends: 3.230

Distances from center: pointed end: 3.891, barbed end: 8.400
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Load on single barbed ends: 7.538

Distances from center: pointed end: 3.322, barbed end: 8.933
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Load on single barbed ends: 3.518

Distances from center: pointed end: 6.959, barbed end: 8.436
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Load on single barbed ends: 7.267

Distances from center: pointed end: 2.925, barbed end: 8.900
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