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PREFACE

This book resulted from various probability and statistics courses that we have
taught over the years. Of course, there are many good books available that teach
probability from a very elementary to a highly advanced level, so why the need for
another one? We wanted to create a probability course that was (1) mathematically
rigorous at an upper-undergraduate/lower-graduate level, and (2) would cover most
of the important topics in advanced probability and stochastic processes, while (3)
still being concise enough to fit into a one-semester curriculum. Another reason
why we wrote the book is that it is enjoyable to try to explain mathematical “truth” in
as simple a way as possible. We hope that we have succeeded in this. To paraphrase
Richard Feynman: “if you cannot explain something in simple terms, you don’t
really understand it”.

Naturally, in writing this book, we have been influenced by our own teachers.
In particular, Dirk has been fortunate to have experienced the probability lectures
of Erhan Cinlar in person at Princeton, and several results in this book have been
inspired by his lecture notes, which later appeared in Cinlar (2011). Other main
sources used were Billingsley (1995), Chung and Williams (1990), Grimmett and
Stirzaker (2001), Kallenberg (2021), Karatzas and Shreve (1998), Klebaner (2012),
Kreyszig (1978), Kroese et al. (2019), Kroese et al. (2011), and Morters and Peres
(2010). The online lecture notes of Lalley (2012) were also very helpful.

Ideally, the reader should be well-versed in mathematical foundations (calculus,
linear algebra, real- and complex-analysis, etc.), and should have had some exposure
to elementary probability and stochastic processes, including topics such as Markov
chains and Poisson processes, although the latter is not essential.

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. 1. Botev. Xi



Xii Preface

An outline of the rest of the book is as follows. We start by emphasizing the
crucial role of mathematical notation and introduce the “house-style” of the book.

An advanced course in probability should have measure-theoretic foundations.
For this reason, Chapter 1 reviews the fundamentals of measure theory. We introduce
o -algebras, measurable spaces, measurable functions, measures, and integrals.

Probability starts in earnest in Chapter 2. We explain how concepts such as
probability spaces, random variables, stochastic processes, probability distribu-
tions, and expectations, can be elegantly introduced and analysed through measure
theory. We also discuss L? spaces, moment and characteristic functions, the role
of independence in probability, and how filtrations of o -algebras can model in-
formation flow. Important stochastic processes such as Gaussian processes, Poisson
random measures, and Lévy processes make their first appearance at the end of the
chapter.

Chapter 3 deals with convergence concepts in probability. We discuss almost
sure convergence, convergence in probability, convergence in distribution, and L?
convergence. The notion of uniform integrability connects various modes of con-
vergence. Main applications are the Law of Large Numbers and the Central Limit
Theorem.

Chapter 4 describes how the concept of conditioning can be used to process
additional knowledge about a random experiment. We first introduce conditional
expectations and then conditional distributions. Two existence results for probability
spaces are also presented. At the end of the chapter we introduce Markov chains
and Markov jump processes, and show how they are related to Lévy processes and
Poisson random measures.

Martingales form an important class of stochastic processes. They are introduced
and discussed in Chapter 5. Stopping times, filtrations, and uniform integrability
play important roles in their analysis. The key results are Doob’s stopping theorem
and the martingale convergence theorem. Example applications include proofs for
the Law of Large Numbers and the Radon—Nikodym theorem.

Chapter 6 deals with the Wiener process and Brownian motion. We prove the
existence of the Wiener process and put some of its many properties on display, in-
cluding its path properties, the strong Markov property, and the reflection principle.
Various martingales associated with the Wiener process are also discussed, as well
as its relation to the Laplace operator. We show that the maximum and hitting time
processes have close connections to Lévy processes and Poisson random measures.

Chapter 7 concludes with a detailed introduction to stochastic integrals with
respect to the Wiener process, Itd diffusions, stochastic differential equations, and
stochastic calculus.

There are many definitions, theorems, and equations in this book, but not all
of them are equally important. The most important definitions and theorems are
displayed in blue and yellow boxes, respectively:
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Definition 1: Complex i Theorem 3: Euler’s Identity

The number i is given by It holds that

2) i=vV-1. 4) e +1=0.

It is important to note that definitions, theorems, equations, figures, etc., are
numbered consecutively using the same counter. This facilitates searches in the
text. Less important definitions may appear within the text, and are often stressed
by the use of italics. Less fundamental theorems are stated as propositions or
lemmas and are displayed in boxes with a lighter color. Sections, subsections, and
exercises are numbered separately.

We have included many exercises throughout the book and encourage the reader
to attempt these, as actions speak louder than (reading) words. Similarly, the
inclusion of various algorithms, as well as pseudo and actual MATLAB code, will
help with a better understanding of stochastic processes, when actually simulating
these on a computer. Solutions to selected exercises (indicated by a *) are given in
Appendix A. Appendix B summarizes some important results on function spaces.
Appendix C gives a complete proof of the existence of the Lebesgue measure.

Acknowledgments
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larva of the Scribbly Gum Moth (ogmograptis scribula) from southern Queensland,
Australia. Many thanks to Shanna Bignell for providing this photo. We thank
Nhat Pham, Thomas Taimre, Ross McVinish, Chris van der Heide, Phil Pollett, Joe
Menesch, Pantea Konn, Kazu Yamazaki, Joshua Chan, and Christian Hirsch for
their very helpful comments. Of course, this book would not have been possible
without the pioneering work of the giants of probability: Kolmogorov, Lévy, Doob,
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NOTATION

Notation is the heart of mathematics. Its function is to keep the myriad of ideas
and concepts of the mathematical body connected and alive. A poorly performing
notation system confuses the brain.

We have tried to keep the notation as simple as possible, descriptive, easy to
remember, and consistent. We hope that this will help the reader to quickly recognize
the mathematical objects of interest (functions, measures, vectors, matrices, random
variables, etc.) and understand intricate ideas. The choice of fonts plays a vital role
in the notation. In this book we use the following conventions:

* Boldface font is used to indicate composite objects, such as column vectors
x = [x1,...,x,] " and matrices X = [x;;]. Note also the difference between the
upright bold font for matrices and the slanted bold font for vectors.

* Random variables are generally specified with upper case roman letters X, Y, Z
and their values with lower case letters x, y, z. Random vectors are thus denoted in
upper case slanted bold font: X = [Xy,...,X,]T

* Sets are generally written in upper case roman font D, E, F' and their o--algebras
are in calligraphic font D, &, F. The set of real numbers uses the common
blackboard bold font R. Expectation E and probability P also use the latter font.

* Probability distributions use a sans serif font, such as Bin and Gamma. Excep-
tions to this rule are the standard notations N and U for the normal and uniform
distributions.

A careful use of delimiters (parentheses, brackets, braces, etc.) in formulas
is important. As a rule, we omit delimiters when it is clear what the argument
is of a function or operator. For example, we prefer EX? to E[X?] and Inx to
In(x). Summation and other indexes will also be suppressed when possible. Hence,
we write (x,) rather than (x,,n € N), limx,, instead of lim, .« x,, and ), x,, for
Y0 Xn. When defining sets and other unordered objects, we will use curly braces

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. 1. Botev. XV



XVi Notation

{ }. In contrast, parentheses ( ) and square brackets [ | signify ordered objects,
such as sequences and vectors.

Measures are generally denoted by Greek letters A, u, v, and 7. An exception is
the occasional use of the notation Leb for the Lebesgue measure. Whether  plays
the role of a measure or of the fundamental constant 3.14159 . .. will be clear from
the context.

For (Lebesgue) integrals we favor the notations f u(dx) f(x), f fduorjust yuf
over f f(x)u(dx); and when u is the Lebesgue measure, we simply write f dx f(x).
Putting the integrating measure directly after the integral sign avoids unnecessary
brackets in repeated integrals; for example,

[u@o [ va@nseey inseador [ ( / f(x,y>v<dy>)u<dx>.

We make an exception for stochastic and Stieltjes integrals, which have the integrator
at the end, such as in / F; dW;.

The qualifiers positive and increasing are used in a “lenient” sense. Thus,
a positive function can take values > 0 and an increasing function can remain
constant in certain intervals. We add the adjective strict to indicate the stringent
sense. Thus, a strictly positive function can only take values > 0.

A function f is a mapping from one set to another set. Its function value at x is

f(x). The two should not be confused.

Reserved letters

B Borel o-algebra on R

C set of complex numbers

d differential symbol

E expectation

e the number 2.71828 . ..

1{A} or 1, indicator function of set A

i the square root of —1

In (natural) logarithm

N set of natural numbers {0, 1, ...}

o big-O order symbol: f(x) = O(g(x)) if | f(x)| < ag(x) for some

constant @ as x — a
little-o order symbol: f(x) = o(g(x)) if f(x)/g(x) > 0asx — a

probability measure

the number 3.14159. . .; also used for measures

O 3 T o

set of rational numbers
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set of real numbers (one-dimensional Euclidean space)
index (time) set of a stochastic process

sample space

N O 3 &

set of integers {...,—-1,0,1,...}

General font/notation rules

scalar
vector

random vector

Mo R =

matrix

Matrix/vector notation

AT, x7 transpose of matrix A or vector x

Al inverse of matrix A

det(A) determinant of matrix A

|A| absolute value of the determinant of matrix A

Specific notation

N A N B is the intersection of sets A and B

U A U B is the union of sets A and B

\ A\ B is the set difference between sets A and B

C A C B means that A is a subset of, or is equal to, B

2 A 2 B means that A contains or is equal to B

Y x V y is the maximum of x and y. Also, ¥ V G is the smallest
o -algebra generated by the setsin ¥ U G

A x Ay is the minimum of x and y

o f o g is the composition of functions f and g. Also used to define the
[t6—Stratonovich integral f Y, o dX|

® & ® F is the product o-algebra of & and F. Also, u ® v is the
product measure of measures y and v.

€ is an element of, belongs to

v for all

~ is distributed as

id

, ~iid are independent and identically distributed as



xviii Notation

e is approximately distributed as
C[0,1] space of continuous functions on [0, 1]

Es, Es;  conditional expectation given ¥
E* expectation operator under which a process starts at x
T+ set of positive ¥ -measurable numerical functions

L?[0,1] space of square-integrable functions on [0, 1]

N extended natural numbers: N U {co}

P* probability measure under which a process starts at x
R extended real line: R U {—o0, co}

R” n-dimensional Euclidean space

R, positive real line: [0, co)

o f partial derivative of f with respect to component i
0ij f second partial derivative of f with respect to components i and j
of gradient of f

3 f Hessian matrix of f

Af Laplace operator acting on f

fr max{f, 0}

I max{-f,0}

~ is approximately

< is absolutely continuous with respect to

=: is defined as, is denoted by

= implies

— converges/tends to

T increases to

! decreases to

— maps to

= converges almost surely to
Y converges completely to
N converges in distribution to
5 converges in probability to
L converges in L” norm to
E

absolute value
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|-l norm; e.g., Euclidean norm or supremum norm. Also, ||[IT|| is the
mesh of a segmentation

-1y L? norm

[x] smallest integer larger than x

|x] largest integer smaller than x

(X) quadratic variation process of X

(-, ) (f, g) 1s the inner product of functions f and g. Also, (X,Y) is the

covariation process of stochastic processes X and Y

Probability distributions

Ber Bernoulli

Beta beta

Bin binomial

Exp exponential

F Fisher—Snedecor F
Geom geometric

Gamma  gamma

[t6 Itd process

N normal or Gaussian
Pareto Pareto

Poi Poisson

t Student’s ¢

u uniform

Abbreviations

a.s. almost surely

cdf cumulative distribution function

iid independent and identically distributed

MGF moment generating function

Leb Lebesgue measure

ODE ordinary differential equation

pdf probability density function (discrete or continuous)
SDE stochastic differential equation

Ul uniformly integrable






CHAPTER 1

MEASURE THEORY

The purpose of this chapter is to introduce the main ingredients of measure
theory: measurable spaces, measurable functions, measures, and integrals.
These objects will form the basis for a rigorous treatment of probability, to be
discussed in subsequent chapters.

1.1 Measurable Spaces

Measure theory is a branch of mathematics that studies measures and integrals on
general spaces. A measure can be thought of as a generalization of a length, area, or
volume function to an arbitrary one- or multi-dimensional space. We will see that
the concept is, in fact, much more general. Why do we need a study of length? Is it
not obvious that, for example, the length of an interval (a, b) with a < b is equal to
b — a? The following two examples indicate that there are potential complications
with the “length” concept.

B Example 1.1 (Cantor Set) Consider the set that is constructed in the following
way, illustrated in Figure 1.2:

Figure 1.2: Construction of the Cantor set.

Take the interval [0, 1]. Divide it into three parts: [O, %], (%, %), and [%, 1].
Cut out the middle interval Dg; := (%, %). Next, divide the remaining two closed

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. 1. Botev. 1



2 1.1. Measurable Spaces

intervals in the same way by removing the middle parts (i.e., removing the open
intervals Dy := (%, %) and D, := (%, %)), and continue this procedure recursively,
ad infinitum. The resulting set is called the Cantor set. Figure 1.2 only shows a few
steps of the construction, starting with the interval [0, 1] of length 1 at the bottom
and ending with a set that is the union of 32 intervals with a combined length of
(2/3)°> ~ 0.13 at the top. If we keep going, we end up with a “dust” of points,
invisible to the eye, with a combined length of 0. However, the cardinality of this
Cantor set (i.e., the number of elements in this set) is equal to the cardinality of the
set of real numbers, R; see Exercise 19. [ |

Although the above example may seem artificial, similar sets appear quite nat-
urally in the study of random processes. For example, we will see in Chapter 6 that
the set of times when a Wiener process is zero behaves very much like the Cantor
set. The Cantor set shows that the “length” of a set is fundamentally different from
its size or cardinality. Even more bewildering is that some sets may not even have
a length, as shown in the following example. Here, we make use of the axiom of
choice, which states that, given an arbitrary collection of sets, we may construct a
new set by taking a single element from each set in the collection. The axiom of
choice cannot be proved or disproved, but states a self-evident fact.

B Example 1.3 (A Set Without Length) We wish to construct a set C on the
unit circle S that cannot have a length. We can denote the points on the circle by
e = (cosx, sinx), x € [0,2x), and we know that the circle has length 2.

Let us divide the circle into equivalence classes: each point e'* is grouped into
a class with all points of the form e!("**) for all n € Z, where Z is the set of integers.
Each equivalence class has a countably-infinite number of points (one for each
n € Z) and there are uncountably many of these equivalence classes.

Applying the axiom of choice, we can make a subset C of the circle by electing
one member from each equivalent class as the representative of that equivalence
class. The collection of representatives, C, can thus be viewed as a “congress” of
the points on the circle.

The set C has uncountably many elements. What else can we say about C? Let
C, := e"(C be a rotated copy of C, for each n € Z. Then, by construction of C, the
union U,,C,, = S and, moreover, all the copies are disjoint (non-overlapping).

Since the union of the C,, is the whole circle, i.e.,

S=ChuCiuC_1U---

and all copies C,, must have the same length as C (as they are simply obtained by a
rotation) — if they indeed have a length —, we must have

(1.4) 27 = length(S) = length(C) + length(C) + - - -

Suppose that C has some length ¢ > 0. Then, (1.4) leads to a contradiction, as we
either get 2 = 0 or 2n = co. Hence, C cannot have a length. [ |
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The above examples illustrate that, when dealing with large sets such as R or
the interval (0, 1], we cannot expect every subset therein to have a length. Instead,
the best we can do is to define the length only for certain subsets.

In what follows, we let E be an arbitrary set; e.g., the interval (0, 1] or the
square (0, 1] x (0, 1]. We wish to assign a “measure” (think of “length” or “area”)
to certain subsets of £. We can apply the usual set operations to subsets of E, as
illustrated in Figure 1.5.

ANB AUB A€ A\ B

Figure 1.5: Venn diagrams of set operations: intersection, union, complement, and
set difference.

The collection of all subsets to which we wish to assign a measure is usually a
o -algebra:

Definition 1.6: o-Algebra

A o-algebra & on E is a collection of subsets of E that contains E itself, and
that is closed under complements and countable unions; that is:

1. Ec€é&.

2. If A € &, then also A€ € &.

3. If A1, Ay, ... € &, then also U, A, € &.

A o-algebra is also closed under countable intersections: If Ay, A, ... € &,
then also N,A,, € &; see Exercise 1. If instead in Definition 1.6 the collection &
is closed only under finite unions (while Items 1. and 2. remain the same), then &
is said to be an algebra. Convince yourself that the conditions of a o--algebra are
natural and are minimal requirements to have, for a collection of sets to which we
wish to assign a measure.

B Example 1.7 (Algebra and o-Algebra) Let E := (0,1] and let &y be the
collection of finite unions of non-overlapping intervals of the form (a, b], where
0 <a < b <1;wealsoadd 0 to &y. For example, the set (0, 1/4] U (1/3,1/2] lies
in &y. Note that & is an algebra. However, it is not a o-algebra; see Exercise 6.
For any set E, the collection of all subsets of E, the so-called power set of E,
written as 2%, is of course a o--algebra. Unfortunately, as Example 1.3 indicates, it
will often be too large to allow a proper measure to be defined thereon. [ |



4 1.1. Measurable Spaces

Let E be a set with o-algebra & The pair (E,E) is called a measurable
space. The usual way to construct a o-algebra on a set E is to start with a smaller
collection C of sets in E and then take the intersection of all the o-algebras that
contain C. There is at least one o-algebra that contains C: the power set of E,
so this intersection is not empty. That the intersection of o-algebras is again a
o-algebra can be easily checked; see Exercise 7. We write o (C) (or also oC) for
this o-algebra and call it the o-algebra that is generated by C.

B Example 1.8 (Borel o-algebra on R") Consider £ := R, and let C be the
collection of all intervals of the form (—co, x] with x € R. The o-algebra that is
generated by C is called the Borel o-algebra on R; we denote it by 8. This B
contains all sets of interest to us: intervals, countable unions of intervals, and sets
of the form {x}. We can do the same in n dimensions. Let E := R” and let C be the
collection of subsets of the form (—oo,x1] X - -+ X (=00, x,], Xx1,...,Xx, € R. The
o-algebra o-(C) is called the Borel o-algebra on R"; we denote it by B”. [ |

In the above example, we could have taken different collections C to generate the
Borel o-algebra on R. For instance, we could have used the collection of open sets
on R. More generally, for any fopological space (see Definition B.4), the o-algebra
generated by the open sets is called the Borel o-algebra on this set.

Note that the collections C in Example 1.8 are closed under finite intersections;
e.g., (—oo,x] N (=00, y] = (—oo,x] if x < y. Such a collection of sets is called a
p-system (where p is a mnemonic for “product”).

Definition 1.9: p-System

A collection C of subsets of E is called a p-system (or m-system) if it is closed
under finite intersections.

One final collection of sets that will be important for us, mainly to simplify
proofs, is the Dynkin- or d-system (an equivalent definition is given in Exercise 10):

Definition 1.10: d-System

A collection D of subsets of E is called a d-system (or A-system) if it satisfies
the following three conditions:

1. E€D.

2. If A,Be D,withA D B,then A\ B e D.

3. If (A,)) e D, withA] C Ay CA3C---CU,A, =: A, then A € D.
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Similar to a o-algebra, the intersection of an arbitrary number of d-systems is
again a d-system, and the intersection of all d-systems that contains a collection C
of sets is called the d-system that is generated by C; we write d(C) for it. The two
main theorems that connect p-systems, d-systems, and o-algebras are given next.

Theorem 1.11: o-Algebra as a d- and p-System

A collection of subsets of E is a o--algebra if and only if it is both a p-system
and a d-system on E.

Proof. Obviously, a o-algebra is both a d- and p-system. We now show the converse.
Suppose & is both a d- and p-system. We check the three conditions in Definition 1.6:

1. E € &, because & is a d-system.

2. & is closed under complements, as E € & and for any B € & we have B¢ =
E \ B € & by the second condition of a d-system.

3. & is closed under finite unions: A U B = (A N B€)¢ € &, because & is closed
under complements (as just shown) and is a p-system. It remains to show that it
is also closed under countable unions. Let A{, A, ... € &. Define B} := A and
B, =B,_1UA,,n=2,3,.... As & is closed under finite unions (just shown),
each B, € &. Moreover, by condition 3 of a d-system, U, B, € &. But this union
is also U, A,. This completes condition 3 for a o--algebra.

Theorem 1.12: Monotone Class Theorem

If ad-system contains a p-system, then it also contains the o--algebra generated
by that p-system.

Proof. The proof requires the following result, which is easily checked: If D is a
d-system on E and B € D, then

(1.13) DB ={AeD:ANBeD} isad-system.

Consider a d-system that contains a p-system C. We do not need to give it a
name, as all we need to appreciate is that it contains the d-system D := d(C) that is
generated by C, as d(C) is the smallest d-system that contains C. We want to show
that D contains o (C), and for this it suffices to show that D is a o-algebra itself.
By Theorem 1.11 we just need to show that D is a p-system (i.e., is closed under
finite intersections).

First take a set B in C and consider the set D? defined in (1.13). We know it is
ad-system, as B € C C D. Italso contains C, as C is a p-system. Hence, D% = D.
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In other words: for any B € C the intersection of B with any set in D lies in D.
Now take any set A € D and consider the set

D :={BeD:ANBe D).

It is again a d-system (by (1.13)), and we have just shown that it contains every set B
of C. Hence, DA 2 D. Thatis, A,Be D = AN B € D, as had to be shown. O

A final important definition in this section is that of a product space of two
measurable spaces.

Definition 1.14: Product Space

The product space of two measurable spaces (E, &) and (F, ) is the meas-
urable space (E X F,E ® ), where E X F := {(x,y) : x € E,y € F} is the
Cartesian product of E and F, and & ® ¥ is the product o-algebra on E X F
that is generated by the rectangle sets

AXB, Ac€&EBeTF.

J

m Example 1.15 (Borel o-algebra on R?) The product space of (R, 8) and (R, B)
is (R?, 8?%), with B2 = 8 ® B. We can think of the product o-algebra 8 @ B as the
collection of sets in R? that can be obtained by taking complements and countable
unions of rectangles in R?. In particular, we can obtain all the usual geometric
shapes: triangles, polygons, disks, etc. from this procedure.

Figure 1.16: A shape being approximated by a countable union of rectangles in the
product set B2.
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1.2 Measurable Functions

Now we have established the basics of measurable spaces, we are going to define a
class of “well-behaved” functions between such spaces.

Definition 1.17: Measurable Function

Let (E,&) and (F, ¥) be two measurable spaces, and let f be a function
from E to F. The function f is called &/F -measurable if for all B € F it
holds that

(1.18) {xeE: f(x)eB}e&.

The set in (1.18) is called the inverse image of B under f, and is also written as

fY(B), f'B, or {feB}.

(E, &)

(F, %)

Gl

Figure 1.19: All elements in f~!' B are mapped to somewhere in B.

Note that here f~! does not mean the functional inverse of f. Notwithstanding,
if f has an inverse [T, then f~'{y} = {f7(y)}, so the notation f~! is natural.

As most o-algebras in practice are generated from smaller sets, the following
theorem is useful in checking if a function is measurable:

Theorem 1.20: Measurable Function on a Generated o-Algebra

A function f : E — F is &/F -measurable if and only if (1.18) holds for all
B € ¥y, with Fy generating F.

Proof. Necessity is obvious. To prove sufficiency, we start from the fact that
{f € B} € & for all B € ;. Now consider the collection of sets G := {B € ¥ :
f~1(B) € &}. By assumption, this collection contains the sets in 7. Is G a
o-algebra? Let us check this.



8 1.2. Measurable Functions

1. Obviously, F € G,as E = f~1(F).

2. Take B € G. Is its complement also in G? Yes, because f~!(B¢) is the comple-
ment of £~'(B) (Hint: draw a picture).

3. Finally, take a sequence (B,) of sets in G. Then, the inverse image of their union
is

f_l(Uan) = Unf_l(Bn)a
and so the union lies in G.

Consequently, G is a o-algebra. Also, it contains every element of ¥y, and so it
must be at least as large as (i.e., contain all elements of) o (%y) = . That is,
G 2 ¥. But, by the definition of G, we also have G C ¥. So the two must be
equal. And hence f~!(B) € & forall B € F. |

The next theorem shows that measurable functions of measurable functions are
again measurable. Recall that the composition g o f of functions g and f is the
function x — g(f(x)).

Theorem 1.21: Composition of Measurable Functions

Let (E,&), (F,¥), and (G, G) be measurable spaces. If f: E — F and
g : F — G arerespectively &/F - and ¥ /G-measurable, theng o f : E — G
is &/G-measurable.

Proof. Take any set B € G and let C := {g € B} = g"!(B). By the measurability
of g, C € F. Moreover, since f is &/F -measurable, the set { f € C} belongs to &E.
But this set is the same as {g o f € B} (make a diagram to verify). Thus, the latter
set is a member of & for any B € G. In other words, g o f is &/G-measurable. O

Let (E, &) be a measurable space. We will often be interested, especially when
defining integrals, in real-valued functions that are &/8B-measurable, where B is
the Borel o-algebra in R. In fact, it will be convenient to consider the extended
real line R := [—o0, +o0], adding two “infinity” points to the set R, and extending
the arithmetic in a natural way, but leaving operations such as oo — co and co/oco
undefined. The corresponding Borel o-algebra, denoted B, is generated by the
p-system consisting of intervals [—co, r],r € R.

Definition 1.22: Numerical Function

Let (E, &) be a measurable space.

* A function f : E — R s called a real-valued function on E.

* A function f : E — R = [—00, +00] is called a numerical function on E.

* An &/8B-measurable numerical function f is said to be &-measurable; we
write f € . Also, &, is the class of positive &-measurable functions.
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Theorem 1.20 shows that to check if f € &, all we have to verify is that
{f<ry=f-c0,r] €& forall reR.

B Example 1.23 (Indicator Function) Let (E, &) be a measurable space. It will
turn out that the building block for all &-measurable functions is the indicator
function (in real analysis also called characteristic function — not to be confused
with the characteristic function defined in Section 2.6.2). The indicator function of
a set A C E is defined as

) 1 if x € A,
X) =
A 0 if x ¢A.

If A € &, then 1,4 is &-measurable (in our notation: 14 € &). However, if A ¢ &,
then 14 is not E-measurable. [ ]

The moral of the previous example is that not all numerical functions are meas-
urable, but if we start from measurable indicator functions, we should be able to
construct a large class of measurable functions. We will show this next.

The first extension is to take linear combinations of measurable indicator func-
tions. A numerical function f on E is called simple if there exists ann € {1,2,...}
and subsets A; € &, i = 1,...,n, such that f can be written as

f= Zn: aily;,
i=1

with each a; € R. Any simple function can be written in a “canonical” form, where
the sets {A;} form a partition of E; that is, they do not overlap and their union is E.
It is easy to check that simple functions are measurable. Moreover, with f and g
simple functions, any of the functions

f+8 f-¢ fg flg. fnrg, fVg

—_— =
min{f,g} max{f,g}

is again a simple function. For the function f/g we require that g(x) # O for all

x € E. We can further expand the collection of measurable functions that can

be obtained from simple functions by taking limits of sequences of measurable

functions. Let us first recall some definitions regarding sequences of real numbers.
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Definition 1.24: Infimum and Supremum

Let (a,) be a sequence of real numbers.

1. The infimum, inf a,,, is the greatest element in R that is less than or equal
to all a,. It can be —co.

2. The supremum, sup a,, is the smallest element in R that is greater than or
equal to all a,. It can be co.

If for some N € N it holds that infa,, = ay, then we can write inf a,, also
as mina,. In that case, the set of indexes for which the minimum is attained is
denoted by argmin a,. In the same way, when the supremum is attained by some
N € argmax a,, we can write max a, instead of sup a,. Similarly, the infimum and
supremum can be defined for any set A C R. In particular, if A := {a,,n € N},
then inf A = inf a,,.

Definition 1.25: Liminf and Limsup
Let (a,) be a sequence of real numbers.

1. The limit inferior, lim inf a,, is the eventual lower bound for the sequence
(an); that is, liminf a,, := lim,,, inf,>,, a, = sup,, inf,;>,, a,.

2. The limit superior, lim sup a,, is the eventual upper bound for the sequence
(an); that is, lim sup a,, := lim,, e SUP,,5,, @y = inf,, sup,,,, an.

For a sequence ( f;,) of numerical functions on a set E, we can define functions

inf f,, sup f,, liminf f,, limsup f,

pointwise, considering for each x the sequence (a,) defined by a,, := f,(x).

Obviously, liminf f,, < limsup f, (pointwise). If the two are equal, we write
lim f,, for the limit, and write f, — f. If (f,) is a sequence of functions that
increases pointwise, then the limit f := lim f,, always exists. In this case we write
fu T f. A similar notation f,, | f holds for a decreasing sequence of functions.

Proposition 1.26: Limits of Measurable Functions

Let (f;) be a sequence of &-measurable numerical functions. Then,
the numerical functions sup f,, inf f,, limsup f,, and liminf f, are also &-
measurable. In particular, limits of measurable functions (when limsup f,, =
liminf f,) are measurable as well.

Proof.
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1. Let f := sup f,. Since sets of the form [—co, r] form a p-system that generates the
Borel o-algebra on R, it suffices to show, by Theorem 1.20, that f~![-c0, 7] € &
for all ». The latter follows from the observation that

f_l [_OO’ r] = ﬁl’lf‘n_l [—OO, r]a
where f;![~-co, 7] € & by the measurability of f;,, and the fact that & is closed
under countable intersections.
2. To show inf f,, € &, we simply observe that inf f, = — sup(—f;,).

3. Since lim sup f, = inf,, sup,,,, f», we can use Steps 1 and 2 above to conclude
that limsup f, € &.

4. Similarly, since liminf f,, = sup,, inf,>,, f,, we have liminf f, € &.
O

The next theorem shows that, for any measurable space (E, &), every positive
numerical function on E can be obtained as an increasing limit of simple functions.
Recall that the set of all positive measurable functions on E is denoted by &,.

Theorem 1.27: Approximation from Below

A positive numerical function on E is &-measurable if and only if it is the
(pointwise) limit of an increasing sequence of simple functions.

Proof. Foreachn € {1,2,...}, define

k=1 o k=1 k
— if — <r < 5= forsome k € {1,...,n2"},
(1.28) d,(r) ::{ o2 2 { )
n if r>n.

Then, d, is an increasing right-continuous simple function that takes values in Ry,
and d,(r) increases to r for each r as n — oo; see Figure 1.29 for the case n = 3.

37 =
2t —_
~~ G
~ o
N— G
el Ll
] -
1 -
(e :
0 1 2 3 4

Figure 1.29: The graph of the function d3.
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Take a function f € &.. We are going to use the function d,, to define the
sequence (f,) via f, := d, o f; thatis, f, is the composition of d,, and f, meaning
fu(x) =d,(f(x)) for all x. Note that, by construction, f, T f, because d,,(r) T r.
Moreover, each f, is positive and only takes a finite number of values, so f, is a
simple function. Itis also measurable, since it is the composition of two measurable
functions. This completes the necessity part of the proof. Sufficiency follows from
Proposition 1.26. O

The previous theorem characterizes the functions in &;, but what about the
functions in &? Fortunately, the solution is easy: each numerical function f on E
can be written as the difference of its positive and negative part:

f=rr=r.

where f* = f Vv 0is the positive part and f~ = —(f A0) = (=f) Vv 0 is the negative
part of f; see Figure 1.30 for an illustration.

1 L L L L |

l -
=05 \
S—
0 1 1 L L L
1 -
=
=05
- /
O 1 1 1
2 2.5 3

0 0.5 1 L5
x

Figure 1.30: Any function can be decomposed as the difference of its positive and
negative part.

We now have the following characterization:

Theorem 1.31: Positive and Negative Part of a Function

A function f is &-measurable if and only if both f* and f~ are.
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Proof. To prove sufficiency, suppose f* and f~ are measurable. Sketch graphs of
f*and f~ to verify the following: For r > 0, we have {f < r} = {f* < r}. For
r <0,wehave {f <r}={f" > —r}. Inboth cases the inverse image of f isin &.
Hence, f is &-measurable.

Necessity is proved in a similar way; e.g., {f* <r}={f <r} e Eforr >0
and is equal to the empty set (also in &) for r < 0. O

The important point of the preceding results is that every measurable function
can be viewed as the pointwise limit of simple functions, which themselves are
constructed as linear combinations of indicator functions. As a consequence, arith-
metic operations on &-measurable functions f and g, suchas f+g, f — g, fg.
flg, f AN g, and f VvV g are E-measurable as well, as long as these functions are
well-defined (for example, co — co and co/co are undefined).

As an example, if f,g € &, then f*, f~,g* and g~ are in &,. Moreover, each
of these functions is the limit of a sequence of simple functions f,f, f,", g/, and g,
respectively. Thus, f — g is the limit of the simple function f, — f, — g + g,
which lies in €. Hence, the limit is also in &.

We conclude this section with the notion of a monotone class of functions.

Definition 1.32: Monotone Class of Functions

Let (E, &) be a measurable space. A collection M of numerical functions
on E is called a monotone class if it satisfies:

1. 1g € M.

2. If f, g € Marebounded and a,b € R, thenaf + bg € M.

3. If (f,) is a sequence of positive functions in M that increases to some f,

then f € M.

The following theorem is useful in proving that a certain property holds for all
positive measurable functions:

Theorem 1.33: Monotone Class Theorem for Functions

Let M be a monotone class of functions on E and let C be a p-system that
generates &. If 14 € M for every A € C, then M includes

* all positive &-measurable functions,

* all bounded &-measurable functions.

Proof. We first show that M contains all indicator functions in &; it already contains
all indicator functions in C. To this end, define the collection of sets

D={Ae&:1,e M}.

This is a d-system. Namely:
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1. £ € D.

2. Take A, B € D with A C B. Then, by Property 2 of M, the function 15 — 14 €
M. But this is the indicator function of B\ A. So B\ A € &.

3. Let(A,) be anincreasing sequence of sets in 9 . Then, the sequence of indicators
(14,) increases to 1,4, where A = U,A,. By Property 3 of M, 14 € M, and
hence A € D.

Because D is a d-system that contains the p-system C, it must contain &, by the
Monotone Class Theorem 1.12. Thus, 14 € M forall A € &.

Next, let f € &, (i.e., a positive E-measurable function). By Theorem 1.27,
there is a sequence of simple functions (f,) in &, that increases to f. Each f is a
linear combination of indicator functions, which by the previous step all lie in M.
It follows by Property 2 of M that each f,, is a positive function in M as well, and
so, by Property 3, f € M.

Finally, let f be bounded and &-measurable. Then, its positive and negative
parts are &-measurable and thus in M via the preceding step, and are bounded
obviously. By Property 2 of M, we have f = f* — f~ e M. ]

1.3 Measures

Let (E, &) be a measurable space. We wish to assign a measure to all sets in & that
has the same properties as an area or length measure. In particular, any measure
should have the property that the measure of the union of a disjoint (i.e., non-
overlapping) collection of sets is equal to the sum of the measures for the individual
sets, as illustrated in Figure 1.34.

Figure 1.34: Any measure has the same properties as the “area” measure. For
example, the total area of the non-overlapping triangles is the sum of the areas of
the individual triangles.
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Definition 1.35: Measure

Let (E, &) be a measurable space. A measure u on & is a set function

p & — [0, 0]
with ¢ (0) = 0, such that for every sequence (A;) of disjoint sets in &,

(136) :u(UnAn) = Zn :u(An)

The main property (1.36) is called countable additivity or o-additivity. The
triple (E, &, u) is called a measure space. If u(E) < oo, then u is called finite. If
u(E) =1, it is called a probability measure. A measure u is called o -finite if there
exists a sequence of sets (E,) in & such that U,E,, = E and u(E,) < oo for all n.
Exercise 11 gives an equivalent way to verify countable additivity.

It is easy to check (Exercise 20) that if 4 and v are measures on (E, &), then
au + by with a,b > 0 is a measure on (E, &) as well. In fact, for any sequence
(un) of measures, Y, i, is also a measure. Such a measure is said to be X-finite if
un(E) < oo for each n. Clearly, any o-finite measure is X-finite.

B Example 1.37 (Dirac Measure) Perhaps the simplest measure is one that assigns
ameasure of 1 to any set in & that contains a specific element x € E and 0 otherwise.
This is called the Dirac measure at x, and is written as d,. In particular, for any
A€ é&:

1 ifxeA,

6:(4) = 1A<x>={0 "

B Example 1.38 (Counting Measure) Let D be a countable subset in &. The
counting measure on D counts for each A € & how many points of A fall in D; that
is, it is the measure v defined by

V(A) = Z 5.(A), A€é.

xeD

|
We can further generalize counting measures to discrete measures as follows:

B Example 1.39 (Discrete Measure) Let D be a countable subset in & and for
each x € D, let m(x) be a positive number. Any measure u of the form

u(A) = Z m(x)6,(A), A€é&
xeD
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is called a discrete measure. If E is countable and & is the set of all subsets of £
(i.e., the power set of E), then all measures on (E, &) are of this form. [ |

The preceding example indicates that for discrete measurable spaces, where E
is countable and & := 2F, measures are easy. However, for uncountable sets such as
R and R" or subsets thereof, the existence of measures may be complicated, as we
have seen in Example 1.3. Fortunately, the following theorem comes to the rescue.
It guarantees that, under certain mild conditions, there exists exactly one measure
uon o (&) that coincides with a pre-measure g on an algebra &y. The latter is a
countably additive set function g : Eg — [0, oo], with po(0) = 0. We cannot call
o a measure, as & 1s not a o-algebra.

Theorem 1.40: Extension Theorem (Carathéodory)

Let E be a set with an algebra &g thereon. Every pre-measure uo : g —
[0, o] can be extended to a measure u on (E, 0(&Ep)).

Proof. Appendix C provides a complete proof for the case where pg is finite; see
Theorem C.21. This is usually all that is required. O

B Example 1.41 (Lebesgue Measure) Let &g be the algebra in Example 1.7; that
is, every non-empty set in &y is a finite union of intervals of the form (a, b]. Let
B 0,11 denote the o-algebra that is generated by &yp. The natural length of the set in
& formed by the union (ay, by] U--- U (a,, b,] of disjoint intervals is of course

po((ar, i) U -+ U (a, bal) = > (bi = ay).
k=1

In Theorem C.6 we prove that w is countably additive (this is not trivial). Hence,
by the extension theorem there exists a measure on B 1] that coincides with 1 on
&Ep. We will show shortly why there can be only one such measure. We have thus
found the natural “length” measure on B 1). It is called the Lebesgue measure (on
(0,1]). In the same manner we can prove the existence of unique “volume” measures
on (R",8B"),n=1,2,.... These measures are also called Lebesgue measures. All
these measures are o -finite. [ |

As a direct consequence of the definition of a measure, we have the following
properties for any measure u:
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Proposition 1.42: Properties of a Measure

Let u be a measure on a measurable space (E, &), andlet A, Band Ay, Ay, . ..
be measurable sets. Then, the following hold:

1. (Monotonicity): A € B = u(A) < u(B).

2. (Continuity from below): If A1, Ay, .. .1isincreasing (i.e., A C Ay C ---),
then

(1.43) lim p(Ap) = u(UpAp).

3. (Countable subadditivity): u(U,A,) < ., u(An).

Proof.

1. Suppose A C B. Then, we can write B = AU (AN B). The countable additivity
and positivity of u imply that

u(B) = u(A) + u(A°N B) > u(A),
which proves monotonicity.

2. Suppose (A,) is an increasing sequence of measurable sets. From the definition
of a o-algebra it follows that A := U, A,, is again a measurable set. Now consider
Figure 1.44.

Figure 1.44: Sequential continuity from below.

Define sets By, B,... via By := A and B, := A, \ A,—1, n=2,3,.... The
“rings” By, Ba, . . . are disjoint, with

n _ n _ o) _
Uis1 Bi = Ui Ai = Ay and UZ) B = A.
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Hence, from the countable additivity property (1.36) it follows that

p(A) = p (U2, Bi) = X2, u(By)
= lim ¥, u(By) = lim u(UL_, By) = lim p1(A,),

which proves the sequential continuity from below.

3. Let (A,) be a sequence of measurable sets, not necessarily disjoint. Define
By :=Ajand B, := A, \ Ut’.lz‘llBl- forn=2,3,.... We have

u(UpAn) = u(UpBy) = X, u(By) < X 1(Ay).

O

Often we are dealing with a measurable space (E, &) in which & can be generated
by a p-system C; i.e., a collection that is closed under finite intersections (such as
an algebra). In that case, any finite measure y on (E, &) is completely specified by
its value on C. This is a consequence of the following theorem:

Theorem 1.45: Uniqueness of Finite Measures

Let C be a p-system that generates &. If u and v are two measures on (E, &)
with u(E) = v(E) < oo, then

u(A)=v(A) forall Ae C = u(A)=v(A) forall A e&.

Proof. Consider the collection
D={Aec&E:u(Ad)=v(A)}.
This is a d-system, because:

1. E € D by the assumption of the theorem.
2. Take A, B € D such that A D B. Then, A \ B € D, because

p(A\ B) = u(A) — u(B) = v(A) —v(B) =v(A\ B).

3. Take an increasing sequence of sets (A,) in D. Then, for all n, u(A,) = v(A,)
and, by continuity from below, u(UA,) = lim, u(A,) = lim, v(A,) = v(UA,),
so that U, A, € D.

Since P is a d-system that contains the p-system C, it must also contain the o -
algebra generated by C (see the Monotone Class Theorem 1.12), which is &. O
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B Example 1.46 (Uniqueness of Lebesgue Measures) Continuing Example 1.41,
consider the Lebesgue measure on the measurable space ((0, 1], B(o,1}). Existence
is guaranteed by Carathéodory’s extension Theorem 1.40. Moreover, Theorem 1.45
ensures that there can only be one measure for which its value (length) of an interval
(a,blisb—aforall0 <a<b < 1.

To prove uniqueness for the Lebesgue measure A on (R, 8) we need an extra
step, as A is not finite. Define E,, := (n,n + 1], n € Z. The collection {E,} forms
a partition of R. Consider the algebra C of finite unions of intervals of the form
(a,b] in R. This is a p-system that generates 8. Suppose that u is a measure that
coincides with 4 on C. We want to show that u = A4 on B. Take A € B. Then,
{A N E,} forms a partition of A. For each measurable space (E,, Bg,) we can
invoke Theorem 1.45 to conclude that u(A N E,) = 1(A N E,). Hence,

n(A) = ) p(ANE) = ) A(ANE,) = A(A),

which had to be shown. [ ]

Suppose we have two measure spaces (E, &, u) and (F, F,v). We can define a
measure u ® v on the product space (see Definition 1.14) (E X F,E ® F) as follows:

Definition 1.47: Product Measure

Let (E, &, u) and (F, F, v) be two measure spaces. The product measure of
w and v on the product space (E X F,& ® ¥) is defined as the measure 7
with

(1.48) 7(AxB) = u(A)v(B), Ac& BeF.

This measure 7 is often written as u @ v.

Note that the collection of rectangles {A X B,A € &, B € ¥} is a p-system that
generates & ® ¥, so the product measure is unique if it is finite. This uniqueness
property can be extended to the o -finite case by considering a partition of E X F on
which the measure is finite.

®m Example 1.49 (Lebesgue Measure on (R”, 8%)) We can think of the Lebesgue
measure A on (R?, B82) in two ways. First, it is the natural area measure on this
measurable space. Second, it is the product measure of the Lebesgue measures on
the coordinate spaces (R, 8). That is, if u is the Lebesgue (length) measure on
(R,8B),then A = uQ pu. [ |
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1.4 Integrals

In this section, we combine measurable functions and measures to define integrals
in a unified and elegant way. The procedure for building up proofs for measurable
functions from indicator functions, simple functions, and limits thereof is often
referred to as “the standard machine”.

1.4.1 Definition of an Integral

In elementary mathematics, the integral of a function is thought of as the area
underneath the graph of the function. We wish to extend this idea to a broad class
of functions and measures, using the standard machine. In particular, let (E, &, )
be a measure space and let f be a (numerical) &-measurable function. We define
the (Lebesgue) integral of f with respect to u in four stages (given next) and denote
the integral by any of

uf, /E f du, or /E (o) £ ().

The index E under the integral sign is often omitted. The four defining stages are
as follows:

1. If f = 14, then
uf = u(A).

2. If f is simple and positive, and its canonical form is f = 3'"" | a;14,, then (with
0-:0:=0=:0-00)

n

pf = Z ai (A;).

i=1

3. If f is positive, put f, :=d, o f, with d, defined in (1.28). Then, (f,) is a
sequence of simple positive functions such that f,(x) T f(x) for all x. The
sequence (u f,) is increasing and so lim u f,, exists (possibly +c0). We define

puf =lmpuf,.

4. For general (not necessarily positive) &-measurable numerical functions we can
often also define the integral. Namely, each such function f can be written as

f=r=-r,

where f* = fvO0and f~ = (-f) v 0 are both positive and E-measurable
(Theorem 1.31). We define in this case

uf = uft—uf,
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provided that at least one of the terms on the right-hand side is finite. Functions
for which the above integral is finite are called (u-) integrable. This is equivalent
to uft <ooand uf~ < oo, andthusto u|f|=u(f*+ f7) < co.

B Example 1.50 (Integrals for Discrete Measures) Let u be a discrete measure
(see Example 1.39) on (E, &) of the form

(1.51) U= Zm(x) Sy

xeD

for some countable set D and positive masses {m(x),x € D}. Then, forany f € &,:

uf =) m@) f).

xeD

In particular, if E is a countable set and & := 2F is the discrete o-algebra (power
set of E), then all measures on (E, &) are of the form (1.51), with D = E and
m(x) = u{x}. Thus, for every f € &, we have uf = > g u{x}f(x). The notation
wf is thus similar to the one used in linear algebra regarding the multiplication of
a row vector u with a column vector f, to yield a number u f. [ |

B Example 1.52 (Lebesgue Integrals) Let A be the Lebesgue measure on (R, B)
and let f be a B-measurable function. The integral Af = / f dA (provided it exists,
e.g.,if f > 0) is called the Lebesgue integral of f. We can view this number as the
area under the graph of f. The crucial difference between the Lebesgue integral
and the Riemann integral is illustrated in Figure 1.53. In Riemann integration the
domain of the function is discretized, whereas in Lebesgue integration the (real)
range of the function is discretized. In order to keep the notation the same as in
elementary (Riemann) integration, we write / f da as any of

/Rf(x)dx, [:f(x)dx, or /dxf(x).

The integral of f over the interval (a, b) is written as

/(a,b)f(x)dx, /abf(x)dX, or /ahdxf(x),

For a general A € B, we write

/Af(x)dx for /]lAfdxl.

In the same way, we can define the Lebesgue integral f f dAof a B"-measurable
function on R"” with respect to the Lebesgue measure 4 on (R", 8"). We often use
the notation

/---/f(xl,...,xn)dxl...dxn, /f(x)dx, or /dxf(x)
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instead of A f or f fda.
P m
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Figure 1.53: In Lebesgue integration the range (y-axis) is discretized and in Riemann
integration the domain (x-axis) is discretized.

Continuing the notation in the last example, we define the integral of an &-
measurable function f over a set C € & as the integral of f1¢, and write it as any
of the following:

uirie) = [ = [ rau
The natural property holds thatif A = BU C, with B € & and C € & disjoint, then

u(fla) = pu(flp) +u(flc).

Let (E, &, u) be a measure space. A set A C E is said to be negligible if there
exists a B € & that contains A and for which u(B) = 0. It is possible to “complete”
a measure space to contain all negligible sets. Two functions f and g are said to
be equal u-almost everywhere if the set of points for which they differ is negligible.
The following shows that such functions have the same integral:

Proposition 1.54: Insensitivity of the Integral

Let (E, &, u) be a measure space and let f and g be positive &-measurable
functions that are equal u-almost everywhere. Then, uf = ug.

Proof. The set A := {f # g} has measure 0. We show that u(f14) =0. If f € &,
is simple, then by definition of the integral (Steps 1 and 2), u(f14) = 0. For general
f € &, take the sequence ( f;,) of simple functions increasing to f (in Step 3 of the
definition). All the integrals u( f,14) are O and so their limit, u( f14), is 0 as well.
For the same reason u(gls) = 0. Thus, uf = u(flac) = u(glae) = ug. O
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1.4.2 Properties of an Integral

Below, the numerical functions refer to a measurable space (E,&). Let &, be the
set of positive &E-measurable numerical functions. The following theorem lists the
main properties of an integral. Property 3 is called the Monotone Convergence
Theorem and is the main reason why this integral definition is so powerful.

Theorem 1.55: Properties of an Integral

Below a, b are in R, and f, g, f, are in &,.

1. (Positivity and Monotonicity): uf >0, and f=0= uf =0. Also,
f<g=>uf<ug.

2. (Linearity): u(af + bg) = auf + bug.
3. (Monotone convergence): If f, T f,then uf, T uf.

Proof.

1. That uf > 0 and that the integral of the zero function is 0 follows directly from
the definition. Next, take f < g. With d,, as in (1.28), let f, := d,, o f and
gn = d,og be simple measurable functions that increase to f and g, respectively.
Then, for each n, uf, < ug, (check this for simple functions). Now take the
limit for n — oo to obtain u f < ug.

2. Linearity of the integral for simple functions in &, is easily checked. For
general functions f, g, € &, we take, as above, simple measurable functions
that increase to f and g, respectively; thus, a f,, + bg, increases to af + bg. We
have u(af, +bg,) = auf, + bug,. The limit of the left-hand side is u(a f +bg)
and the limit of the right-hand side is au f + bug by Step 3 of the definition of
an integral.

3. The result is true, by definition, if f, is of the form f, = d,, o f with f € &;.
But the point of the monotone convergence property is that it also holds for any
increasing sequence ( f,) in &, with limit f = lim f,. Since (f,) is increasing,
the limit f is well-defined, and f € &,. So uf is well-defined. Since (f,) is
increasing, the integrals (u f;;) form an increasing sequence of numbers (by the
monotonicity property of integrals) and so lim u f, exists. We want to show
that this limit is equal to pf. Since f > f,, we have uf > uf, and hence
uf = limuf,. We want to show that also limuf, > uf. We do this in three
steps.

(a) Letb > 0and suppose that f(x) > b forevery x € B, where B € &. Define
B, .= BN{f, > b}. Then, B, T B and lim u(B,) = u(B) by the sequential
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continuity from below property of u; see (1.43). Since

fl’l:ﬂ‘B 2 fl’lﬂBn 2 bﬂBn’

the monotonicity and linearity of the integral yield that u( f,15) > bu(B))
and, by taking limit for n — oo, that

lim p(fulp) > b u(B).

This remains true if instead f(x) > b on B. This is trivially true for
b =0. For b > 0, choose a sequence (b,,) strictly increasing to b. Then,
lim, u(f,1p) = by, u(B). Now take the limit for m — oo.

(b) Letg = Z;’; | bilp, be a positive simple function, in canonical form, such
that f > g. Thus, f(x) > b; forevery x € B;,i = 1,...,m, and part (a)
above yields

1im,u(ntlBl.) > bl‘/l(B,'), i=1,...,m.
n

Hence,
lim g f = lirranﬂ(fnﬂBi) = Z lim p(folp;) 2 Z b; u(B;) = ug.
i=1 i=1 i=1

(c) Taking g in (b) equal to d,, o f and letting m — oo, we find lim u f,, > wf.
O

In our definition of the integral, we used a specific approximating sequence ( f;,),
given by f, := d, o f. An important consequence of the Monotone Convergence
Theorem is that we could have taken any sequence ( f,,) with f, T f.

We leave it as an exercise to show that the linearity of the integral extends to
integrable f, g € & and arbitrary a, b € R.

B Remark 1.56 (Monotone Convergence and Insensitivity) A consequence of
the insensitivity property (Property 1.54) of the integral is that Theorem 1.55 also
holds in an almost everywhere sense. For example, if f,(x) T f(x) for x € Eq with
/J(E \ EO) =0, then an T /Jf Namely’ let fn = fn]lEo +f]1E\E0- Then, :ufn = /an
by the insensitivity of the integral, and the Monotone Convergence Theorem yields

pfn T plim fry = pf. u

Any positive linear functional L( f)) on the set of positive measurable functions
can be represented as an integral uf if it possesses the three main properties of
the integral (positivity, linearity, and monotone convergence), as shown in the next
theorem.
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Theorem 1.57: Measures from Linear Functionals

Let L : &, — R,. Then, there exists a unique measure ¢ on (E, &) such that
L(f) = uf if and only if

1. f=0=L(f) =0,

2. f,gebianda,b e Ry = L(af +bg)=aL(f)+bL(g),

3. (fu) €Evand f, T f = L(fu) T L(f).

Proof. Necessity is immediate from the properties of integration. To show suffi-
ciency, suppose L has the properties stated above. The obvious candidate for y is the
set function i : & — R, via u(A) := L(14). We first show that u satisfies the prop-
erties of a measure on (E, &). First, u(0) = 0, because u(0) = L(0) = 0. Second,
let (A,) be a sequence of disjoint sets in & with union A. Define B, := U:.“zlA,-.
Then, (B,) increases to A and 1p, = 3" | 14,. The sequence (1p,) increases to
14, and hence by the monotone convergence (Property 3) of L and the linearity
(Property 2) of L, we have

L(ILA) = lirll’nL (Zn: I[Ai) = llrll‘nzn: L(ﬂAi) = i L(]lAi)-
i=1 i=1 i=1

In other words, u(A) = 32, 11(A;), and so u is a measure.

To show that L(f) = uf for all f € &,, first observe that this is true for simple
f € &, e, of the form 37, b;1p,, by using the linearity of L and the linearity
property of an integral. For a general f € &,, take a sequence (f;,) of simple
functions in &, that increases to f. For all f, we have L(f,) = uf,. Taking the
limit on the left-hand side gives L( f) by the monotone convergence property of L,
and taking the limit on the right-hand side gives u f by the monotone convergence
property of integrals with respect to u. Hence, L(f) = uf for all f € &,. O

1.4.3 Indefinite Integrals, Image Measures, and Measures with
Densities

Let u be a measure on (E, &) and p a positive &-measurable function. We have
defined the integral of p over a subset A € & as

ﬂ(pllA)=/Apdﬂ=/1Apdﬂ-

A|—>/pd,u
A

defines a measure v on (E, &), which is called the indefinite integral of p with
respect to u. We leave the proof as an exercise; see Exercise 25. Conversely, we
say that v has density p with respect to u, and write v = ppu.

The mapping
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Theorem 1.58: Integrals with Densities

Let v := pu. Then, for every f € &;, we have vf = u(pf).

Proof. Let L(f) := u(pf). L satisfies the properties in Theorem 1.57, so there is
a unique measure v on (E, &) with vf = u(pf). Taking f := 14 for A € &, we see
that v(A) = L(14) = u(pls) = v(A). Sov =v. ]

Let v and u be two measures on (E,&). Measure v is said to be absolutely
continuous with respect to p if forall A € &,

u(A) =0 implies v(A) = 0.

We write v < u. To answer the question whether a certain measure v can be
represented as the indefinite integral with respect to a given measure u, we only
need to verify v < u. That is the purport of the celebrated Radon—Nikodym
theorem. A martingale-based proof will be given in Section 5.5.3.

Theorem 1.59: Radon-Nikodym

Let v and u be two measures on (E, &) such that y is o-finite and v < p.
Then, there exists a p € &, such that v = pu. Moreover, p is unique up to
equivalence; that is, if there is another p € &, such that v = py, then p = p,
p-almost everywhere.

The function p is referred to as the Radon—Nikodym derivative of v with respect
to u, and is frequently written as p = dv/du. The functions p and p above are said
to be versions of each other.

Another way of creating measures from integrals is via a change of variable.
Specifically, let (E, &) and (F, ) be measurable spaces and let 2 : E — F be an
& /F -measurable function. Suppose on (E, &) we have a measure u. Then, we can
create a measure v on (F, F) by defining

(1.60) v(B) := u(h"1(B)) = u({x € E : h(x) € B}).

It is called the image measure of u under h; the name pushforward measure is also
used. Suggestive notation v = u o h~! (or also h(u)); see Figure 1.61. The figure
also illustrates how integration with respect to image measures works, as detailed
in Theorem 1.62.
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(E,&, 1) h

Figure 1.61: The image measure v of the dark blue set in F is the same as the
measure u of the dark blue set in E. Also, the integral of f with respect to v is the
same as the integral of f o h with respect to u.

Theorem 1.62: Integration with Respect to Image Measures

Let v = u o h™! be the image measure of u under /. Then, for every positive
¥ -measurable function f,

Vf=(uoh'l)f=/Ffdv=/Efohdu=u(foh)-

Proof. The idea is again to use the characterization from Theorem 1.57. Define
L(f) := u(f o h). Check yourself that L satisfies the conditions of Theorem 1.57.
Thus, L(f) = v f for some measure v. Taking f := 1 showsthatv(B) = u(h™'B) =
(1o h™Y)(B). Thus, v = v. O

1.4.4 Kernels and Product Spaces

Recall that a measure u and a measurable function f can be treated, via The-
orem 1.57, as a row vector (linear functional) and a column vector, respectively.
Their integral u f is then viewed as a “product” of the two. Continuing this analogy,
we wish to consider vector-matrix products such as uK and K f. The corresponding
matrix-like object in measure theory and probability is the transition kernel.

Definition 1.63: Transition Kernel

Let (E, &) and (F, ) be measurable spaces. A fransition kernel from (E, &)
into (F, ) is a mapping K : E X ¥ — R, such that:

1. K(-, B) is &-measurable for every B € F.

2. K(x,-) is a measure on (F, ¥) for every x € E.

If (F,¥) = (E,&) and K(x, -) is a probability measure for every x € E, K is
said to be a probability transition kernel on (E, E).
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As K(x,-) is a measure for every x € E, we can consider its integral with
f € 4. This will define a function in E. Is it measurable? Similarly, as K (-, B)
is &-measurable for every B € ¥, we can consider its integral with respect to a
measure u on (E,&), seen as a function of B. Will this result in a measure on
(F,F)? The following theorem confirms both these questions:

Theorem 1.64: Measures and Functions from Kernels

Let K be a transition kernel from (E, &) into (F, F).

1. For all f € ¥ the function K f defined by (K f)(x) := /F K(x,dy)f(y),
x € E,isin &,.

2. For every measure u on (E, &) the set function uK defined by (uK)(B) :=
fE u(dx)K(x, B), B € ¥, is a measure on (F, ).

3. For every measure p on (E, &) and f € 7y,

(WK)f = u(Kf) = /E (dx) /F K(x.dy) F(3).

Proof.
1. Take f € #+. Clearly, the function K f is well-defined and positive. To show that
K f € &, first consider simple functions; i.e., f = 3", b;1p,. Then, (K f)(x) =
w1 biK(x, B;), and since each K (-, B;) is &-measurable, we have K f € &,.
For general f € ¥, we know there exists a sequence of simple functions f,, € ¥,
increasing to f. By the preceding, each K f;,, € E,. Moreover, for each fixed x,
K (x,-) is a measure on (F, F) and so by the Monotone Convergence Theorem
applied to K(x,-) and f;,, we have that the sequence of integrals (K (x, ) f;,)
converges to K(x, ) f = (K f)(x). In other words, the function K f is the limit
of &,-measurable functions and is therefore &,-measurable as well.

2. Take a measure u on (E, &). The set function uK is well-defined. We want to
show that it is a measure by identifying its actions on functions f € ¥.. Thereto,
consider the functional L : ¥, — R, defined by

L(f) = p(Kf).
It satisfies the properties of Theorem 1.57:

(a) If f =0, then K f =0 and hence u(Kf) = 0.

(b) If f,g € ¥+ and a,b € R4, then L(af + bg) = u(K(af + bg)). Note
that (K(af + bg))(x) is defined as the integral of a f + bg with respect to
the measure K (x, -). Hence, by the linearity of the integral, K(af + bg) =
aK f+bKg. The integral of this function with respect to p is u(aK f + bKg)
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which, again by linearity of the integral, is equal to au(K f) + bu(Kg). But
the latter can be written as aL(f) + bL(g). So L is linear.

(c) Take a sequence (f,) in F, with f, T f. By the Monotone Convergence
Theorem applied to each K (x, -), we have (K f,,) (x) T (K f)(x). By the same
theorem, applied to u and K f,;, we have u(Kf,) T u(Kf). In other words

L(f) T L(S).

It follows from Theorem 1.57 that there exists a measure v on (F, ) such that
L(f)=vf, f € ;. But this measure is 4K, as can be found by taking f = 1p,
B € ¥. Namely: v(B) = u(K1p) = uK(-,B) = (uK)(B). So uK is indeed a
measure.

3. A byproduct from the proof in Step 2 is that we have established that (uK) f =
vf=L(f) =pKf).

O

Let (E,&) and (F, F) be measurable spaces, and let K be a transition kernel
from (E, &) into (F, ). The above shows that by starting with a measure y on
(E,&), we can obtain a measure uK on (F,¥). Using u and K, we can also
construct a measure u ® K on the product space (E X F,&E ® ) by defining

(1.65) (1 ® K)(A X B) := /y(dx)K(x, B), Ac& Be?F.
A

The notation
(1 ® K)(dx,dy) = p(dx)K(x,dy)

is also used. This notation is compatible with the one that we used for the product
measure ¢ ® v in the case where K (x, dy) = v(dy) does not depend on x.

Instead of (1.65), one can also define the measure by specifying its integrals
with respect to functions f € (& ® F),, via

(166  (u@K)f:= /E u(dv) /F K(r.dy)f(ry). fe(Eo®F).

More generally, the same construction can be employed to define measures on
higher-dimensional product spaces. For example, using a kernel L from (F, ¥) to
a measurable space (G, G), the integrals

(LeKBL)f = /E u(dv) /F K(x.dy) /G L. f(x.y,2), f e (EOF@G)s

define a measureon (EX F X G, EQ@F ® G).

For (1.65) and (1.66) to be well-defined, we need some form of finiteness
restrictions on K and u. Mild conditions are that u should be o -finite and K should
be o-bounded, meaning that there is a measurable partition (F,) of F such that
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K (-, F,,) is bounded for each n. You can check with Exercises 26 and 27 that the
right-hand side of (1.66) indeed defines a measure on (E X F,E ® F).

For a product measure u ® v, the order in which the integral (1.66) is evaluated
should be irrelevant. This is the message of Fubini’s theorem: under mild condi-
tions, an integral with respect to a product measure, i.e., a multiple integral, can be
computed by repeated integration, where the order of integration does not matter.
Recall that a X-finite measure u is of the form u = ), u,, where u,(E) < oo for
each n. A o-finite measure is thus 2-finite as well.

Theorem 1.67: Fubini

Let u and v be X-finite measures on (E, &) and (F, ), respectively.

1. There exists a unique Z-finite measure 7 on the product space (E X F,E®
%) such that for every positive f in & ® F,

(168) nf = /E () /F A7) = /F v(dy) /E ) e )

2. If f € E® F and is n-integrable, then f(x, -) is v-integrable for g-almost
every x, and f(-,y) is u-integrable for v-almost every y and (1.68) holds
again.

Proof. Assume first that u and v are finite measures. From Exercise 27, with
K(-,B) = v(B), the first integral in (1.68) defines a measure 7 := u ® v on the
product space (E X F, E®F). With the same reasoning, the second integral defines
ameasure, 7T :=v® uon (FXE,F ®&). Defining f(y,x) := f(x,y), we need to
show that _

nf=nf.
The “swap” mapping s : (x,y) — (y,x) is obviously (EQF)/(F ® E)-measurable,
and for any A € & and B € ¥, we have

nos H(BxA)=n(AXB)=u(A)v(B) =7(BxA).

Since the rectangles A X B form a p-system that generates & ® ¥, it follows by
Theorem 1.45 that 7 is simply the image measure of 7 under s; thatis 7 = 7 o s~ 1.

It follows then from Theorem 1.62 that
Af=(mos)f=n(fos)=nf.

We can generalize this to Z-finite measures u := } y; and v := }} v;, where the {y;}
and {v;} are finite measures. Namely, in this case we have nf = 3}, ;(1; ® v;) f
and wf = 3, ;(v; ® ;) f, so that again 7 f = 7 f, because (u; ® v;) f = (v; ® ;) f
for every pair (u;, v;) of finite measures.
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For the second part of the theorem, suppose f is m-integrable, then (1.68) holds
for f, because it holds for both f* and f~, and nf = nf* — nf~, where both terms
are finite. From Exercise 12, we know that the section f(x, -) is ¥ -measurable, and
hence for each x the integral /F v(dy) f(x,y) is well-defined. Moreover, from the
integrability of f, this integral must be finite for u-almost every x; that is, f(x,-)
is v-integrable for u-almost every x. Similarly, f (-, y) is u-integrable for v-almost
every y. O

Exercises

1. Prove that a o-algebra is also closed under countable intersections; that is, if
A, Ay, ... € &, thenalso N,A, € &E.

2. Let A, B, C be a partition of E. Describe the smallest o--algebra containing the
sets A, B, and C.

3. Let E be a sample set with n elements. If ¥ = 2F (j.e., the collection of all
subsets of E£), how many sets does ¥ contain?

4* Let C be a countable partition of E. Show that every set in oC is a countable
union of sets in C.

5. Let C := {{x},x € R}. Show that every set in oC is either countable or has a
countable complement.

6. Show that &y in Example 1.7 is not a o--algebra.

7. Let{&;,i € I} bean arbitrary (countable or uncountable) collection of o-algebras
on E. Show that the intersection N;¢;&; is also a o-algebra on E.

8. Let (E, &) be a measurable space. Let D C E (not necessarily in &). Define
D as the collection of sets of the form A N D, where A € &. Show that D is a
o-algebra on D. The measurable space (D, D) is called the trace of (E, &) on D.

9F Let E be a set and (F, ) a measurable space. For f : E — F, define
f'F={f"'B:BeF}

where f~!B is the inverse image of B. Show that f~!¥ is a o-algebra on E. It
is the smallest o-algebra on E such that f is measurable relative to it and . It is
called the o-algebra generated by f.

10. Prove that Definition 1.10 of a d-system is equivalent to Definition 1.6 of a
o -algebra, replacing (in the latter definition) & with O and Item 3. with:

3. If Ay, Ay, ... € D are disjoint, then also U, A, € D.
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117 Let (E, &) be a measurable space and u a mapping from & to [0, 1] such that

c w(E)=1;

* forevery finite sequence Ay, . . ., A, of disjoint sets in & it holds that u(U!_ | A;) =
Z?:l u(A;p);

* for every decreasing sequence Aj, Ap,..., of sets in & that converges to the

empty set, i.e., A, | 0, it holds that lim, u(A,) = 0.
Prove that u is a probability measure on (E, &).

12. Let f : EXF — G be (& ® ¥)/G-measurable, where &, F, and G are o -
algebras on E, F, and G. Show that the function y — f(x¢,y) is ¥ /G-measurable
for any fixed xo € E. Such a function is called a section of f.

13. Prove the two assertions in Example 1.23 rigorously.

14F Show that because (—o0, x], x € R, are elements of B, the sets of the form
(a,b], (a,b), and {a} are also in B.

15 What is the Lebesgue measure of Q, the set of rational numbers?

16. Let (E, &, u) be ameasure space and let D € &. Define v(A) ;== u(AND), A €
&. Show that v is a measure on (E, &). It is called the trace of u on D.

17. Let (E, &, u) be a measure space and let (D, D) be the trace of (E,&) on
D € & (see Exercise 8). Define v by

v(A) =u(A), AeD.

Show that (D, D, v) is a measure space. The measure v is called the restriction of
uto (D, D).

18. Let (E, &) be a measurable space and let (D, D) be the trace of (E, &) on
D € &. Let v be a measure on (D, D). Define u by

u(A) =v(AnD), Aecé&.
Show that i is a measure on (E, &). It is called the extension of v to (E, &).

197 Prove that the Cantor set in Example 1.1 has Lebesgue measure 0, and argue
why it has as many points as the interval [0, 1].

20. Prove that if u and v are measures, then au + by with a, b > 0 is a measure as
well. Hint: The main thing to verify is the countable additivity.

21. Let (E, &, u) be ameasure space and f an &-measurable (numerical) function.
Prove that if f is integrable, then f must be real-valued p-almost everywhere. Hint:
show this first for f € &,.
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22. Let p : Bp1] — [0, 0] be defined by p(A) := |A]; that is, the number of
elements in A. Show that u is a measure, but is not Z-finite.

23. Verify that v in (1.60) is indeed a measure.

24. Let ¢ be an increasing right-continuous function from R, into R,. Define
a(u) :=inf{t e Ry : c(t) > u}, ueckR,,

with the usual convention that inf () = oco.

(a) Show that the function a : R, — R, is increasing and right-continuous, and
that
c(t) =inf{u e Ry : a(u) >t}, teR,.

Thus, a and c are right-continuous functional inverses of each other.

(b) Suppose c(t) < oo. Show that a(c(z)) > t, with equality if and only if
c(t+¢&) > c(t) for every € > 0.

25. Let u be a measure on (E, &) and p a positive &-measurable function. Show
that the mapping

viA u(lap) =/11Apdu, Aeé&
defines a measure v on (E, &).

26" Let K be a transition kernel from (E, &) into (F, 7). Consider the transform-
ationT : (E® F); — &, defined by (T f)(x) := fF K(x,dy)f(x,y).
(a) Show that T(af +bg) =aTf +bTg forall f,g € (E® F);and a,b € R,.
(b) Show that if (f;;) is a sequence in (& ® ), increasing to f,then T'f,, T T f.

(c) Prove that T f is a positive &E-measurable numerical function for every f €
(& ® F),. Hint: show that

M={fe(EF).: Tfec&E}
i1s a monotone class that includes 1 4xp forevery A €e Eand B € F.

27. Using Theorem 1.57 and Exercise 26, show that the right-hand side of (1.66)
indeed defines a measure on (E X F, & ® ). Hint: define L(f) := u(Tf).

28. The X-finiteness condition is necessary in Fubini’s theorem. For example, take
E=F=(0,1]and & =F = Bg,]. Let u be the Lebesgue measure on (E, &) and
v the counting measure defined in Exercise 22. Show that, with f(x,y) := Ly,
(x,y) e EXF,

/E () /F V(dy)f(x,y) # /F v(dy) /E u(d) £ (x, ).






CHAPTER 2

PROBABILITY

The purpose of this chapter is to put various results from elementary prob-
ability theory in the more rigorous and mature framework of measure theory. In
this framework we will treat concepts such as random variables, expectations,
distributions, etc., in a unified manner, without necessarily having to introduce
the dichotomy between the “discrete” and “continuous” case, as is customary in
elementary probability.

2.1 Modeling Random Experiments

Probability theory is about modeling and analysing random experiments: experi-
ments whose outcome cannot be determined in advance, but are nevertheless still
subject to analysis. Mathematically, we can model a random experiment by defining
a specific measure space (Q, H,P), which we call a probability space, where the
three components are: a sample space, a collection of events, and a probability
measure.

The sample space €2 of arandom experiment is the set of all possible outcomes of
the random experiment. Sample spaces can be countable, such as N, or uncountable,
such as R” or {0, 1}*°. The sets in the o--algebra H are called events. These are the
subsets to which we wish to assign a probability. We can view H as the hoard of
events. An event A occurs if the outcome of the experiment is one of the elements
in A. The properties of H are natural in the context of random experiments and
events:

* If A and B are events, the set A U B is also an event, namely the event that A or
B or both occur. For a sequence Aq, Aj, ... of events, their union is the event
that at least one of the events occurs.

* If A and B are events, the set A N B is also an event, namely the event that A
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and B both occur. For a sequence Ay, Ay, ... of events, their intersection is the
event that all of the events occur.

* If A is an event, its complement A€ is also an event, namely the event that A
does not occur.

* The set Q itself is an event, namely the certain event (it always occurs). Similarly
0 is an event, namely the impossible event (it never occurs).

When the sample space Q is R, the natural o--algebra H is the Borel o-algebra
8. Recall that this is the smallest o-algebra on R that contains all the intervals
of the form (—oo, x] for x € R. This o-algebra of sets is big enough to contain all
important sets and small enough to allow us to assign a probability to all events.

The third ingredient in the model for a random experiment is the specification
of the probability of the events. In fact, this is the crucial part of the model.
Mathematically, we are looking for a measure P that assigns to each event A a
number P(A) in [0, 1] describing how likely or probable that event is.

Definition 2.1: Probability Measure

A probability measure is a measure on (Q, H) with P(Q) = 1. Thus, Pis a
mapping from H to [0, 1] with the following properties:

1. P(0) =0 and P(Q) = 1.

2. For any sequence Ay, Ay, . .. of disjoint events,

P(UnAp) = P, P(A,).

An event A is said to occur almost surely (a.s.) if P(A) = 1. The following prop-
erties follow directly from the properties of a general measure in Proposition 1.42:

Theorem 2.2: Properties of a Probability Measure

Let P be a probability measure on a measurable space (Q,H), and let A, B
and Ay, Ay, ... be events. Then, the following hold:

1. (Monotonicity): A € B = P(A) < P(B).

2. (Continuity from below): If A1, A,, . . .1is an increasing sequence of events,
i.e., Ay € Ay C ---, then

(2.3) limP(A,) = P (UpA,) .

3. (Countable subadditivity): P(U,A,) < Y, P(A,).
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Additional properties arise from the fact that P is a finite measure.

Theorem 2.4: Additional Properties of a Probability Measure

Let P be a probability measure on a measurable space (Q,H), and let A, B
and Ay, Ay, ... be events. Then, the following hold:

1. (Complement): P(A) =1 —-P(A).
2. (Union): P(AU B) = P(A) + P(B) — P(A N B).

3. (Continuity from above): If A1, A,, . ..1is a decreasing sequence of events,
1.e., Ay 2 Ay D ---, then

(2.5) limP(A,) =P (N,A,).

\.

Proof. Properties 1 and 2 follow directly from the (finite) additivity of P and the
fact that P(Q) = 1. It remains to prove Property 3. Let Ay, A», ... be a sequence
of events that decreases to A := N,A,. Then, Ai, Ag, ... 1s a sequence of events
that increases to U,A¢ = (N,A,)¢ = A°. By the continuity from below property,
limP(AS) = P(A€). Now apply Property 1 to conclude that limP(A,) = P(A). O

Thus, our model for a random experiment consists of specifying a probability
space. We give two fundamental examples.

B Example 2.6 (Discrete Probability Space) Let Q := {aj,a3,...} and let
{p1,p2,...} be a set of positive numbers summing up to 1. Take H to be the
power set of . Then, any P : H — [0, 1] defined by P(A) := };.;.ca Pi» A € L,
is a probability measure on (Q, H) and, conversely, any probability measure on
(Q, H) is of this form. Thus, we can specify P by specifying only the probabilities
of the elementary events {a;}; see Figure 2.7 for an illustration.

. J

Figure 2.7: A discrete probability space.
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B Example 2.8 (Lebesgue Measure) We select randomly a point in the interval
(0, 1] such that each point is equally likely to be drawn. Let Q := (0,1]. How
should we choose H and P? We know that the probability that a randomly selected
point falls in the interval [a, b] should be proportional to the length of that interval,
that is,

P(la,b]) =b - a,

for 0 < a < b < 1. Does such a P exist? Yes, take H := B 1] and P := Lebq 1
as respectively the Borel o-algebra and Lebesgue measure on (0, 1]. Both are
well-defined; see Example 1.41. [ |

Specifying an explicit probability space may not always be easy or necessary,
and in practice we often leave the probability space in the background and choose
to formulate and analyse the model via random variables instead.

2.2 Random Variables

Usually the most convenient way to describe quantities of interest connected with
random experiments is by using random variables. Random variables allow us to
use intuitive notations for certain events, such as {X € A}, {max(X,Y) < Z}, etc.
Intuitively, we can think of a random variable X as a measurement on a random
experiment that will become available fomorrow. However, all the think work can
be done today. If for each possible outcome w, the measurement is X (w), we can
specify today probabilities such as P(X € A).

We can translate our intuitive notion of a random variable into rigorous math-
ematics by defining a random variable to be a measurable function from (L, H) to
a measurable space (E, &).

Definition 2.9: Random Variable

Let (Q,H,P) be a probability space and (E,&) a measurable space. A
random variable X taking values in E is an H /E-measurable function; that
is, a mapping X : Q — E that satisfies

2100 X '"A={XecAl={weQ: X(w)ec A eH forallAcé&.

B Example 2.11 (Coin Tosses) Let X be the total number of heads in 20 tosses of
a fair coin. We know from elementary probability theory that

k=0,1,...,20.

20\ 1
(2.12) P(X = k) = (k)ﬁ
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We have left the probability space completely in the background. How can we
reconcile this result with our mathematical model? First, for the sample space we
could choose

Q := {0, 1}%,

i.e., the set of vectors [x1,...,x20] where each x; = 0 or 1, indicating the result of
the ith toss (1 = heads, 0 = tails). Since £ has a finite number of elements, we can
define H as the set of all subsets of Q. The measure P can now be specified by
assigning probability 1/22° to each elementary event {[x1, . ..,x20]}. This finalizes
our probability space.

Let X be the function that assigns the total number of heads to each outcome w.
In particular, for w = [x, ..., x20], we have

20

X(w) := Zx,-.

i=1

Now consider the set {w € Q : X(w) = k}. The probability of this event is given
by the right-hand side of (2.12). Thus, if we abbreviate {w € Q : X(w) = k} to
{X = k} and further abbreviate P({X = k}) to P(X = k), then we have justified
(2.12)! m

We often are interested in numerical random variables; that is, random variables
taking values in E := R (the extended real line), with o-algebra & := B. However,
note that Definition 2.9 allows for a general measurable space (E, &). The meaning
of (2.10) becomes clear in a probabilistic context: we want to be able to assign a
probability to each set {X € A}, and so these sets should be events.

B Example 2.13 (Indicator Functions and Simple Functions) The simplest
example of a numerical random variable is an indicator function of an event A:

1 if weA,

1 =
4(@) {0 if e A

Positive linear combinations of indicator random variables, i.e., };; a;14, with
a; € R, and A; € ‘H for all 7, are again positive numerical random variables. In fact,
any positive numerical random variable is the increasing limit of a sequence of such
simple random variables. See also Theorems 1.27 and 1.31 for a characterization
of numerical random variables. [ |

The fact that random variables are measurable functions has some nice con-
sequences. For example, any measurable function of X is again a random variable,
by Theorem 1.21. In particular, if X is a real-valued random variableand g : R — R
is measurable with respect to the Borel o-algebra 8 on R, then g(X) = g o X is
again a numerical random variable.
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B Example 2.14 (Quadratic Function) Let X be a real-valued random variable
and let g be the function x > x2, x € R. The function g is continuous, meaning that
the inverse image g~ (0) of any open set O is again open. Since the open sets in R
generate B, we have g~'(0) € B and thus, by Theorem 1.20, g is 8/8B-measurable.
It follows then from Theorem 1.21 that g o X is H /B-measurable; that is, it is again
a real-valued random variable. This random variable maps w € € to the number
g(X(w)) = (X(w))?. Therefore, we write g o X also as X>. [ |

Often a random experiment is described via more than one random variable.
Let (2, H,P) be a probability space and let T be an arbitrary index set, which may
be countable or uncountable. We can think of T as a set of times. For each ¢, let
(E;, &) be a measurable space. Generalizing Definition 1.14, the product space of
{(E;, &), t € T} is the measurable space (X;eTE;, ®;eT &;). That is, each element
X € XserE; is of the form x = (x,,t € T). Often (E;, &) is one and the same
measurable space (E, &), and in that case x can be viewed as a function from T to
E. The o-algebra on X,cTE; is the o-algebra generated by the rectangles

(2.15) ><A,:{x€><E,:xteAtforeachtinT},

teT teT

where A, = E; except for a finite number of z.

Definition 2.16: Stochastic Process

A collection of random variables X := {X;,t € T}, where T is any index set,
is called a stochastic process. When T is finite, X is called a random vector.

The point of the following theorem is that we can think of a stochastic process
X := {X,,t € T} in two equivalent ways.

Theorem 2.17: Stochastic Process

X :={X;,t € T} is a stochastic process taking values in X;crE; with o-
algebra ®;cT &; if and only if each X; is a random variable taking values in
E,; with o-algebra &;.

Proof. Let X := {X;,t € T} be a stochastic process taking values in X;c7E; with
o-algebra ®;eT &;. We wish to show that each X; is a random variable taking values
in E, with o-algebra &;. In ®,eT &; consider rectangles of the form X, 1 A,, where
A, =E, forallu #t and A, = B; € &;. The inverse image of this set is an event,
since X is a stochastic process. But this inverse image is exactly {X; € B;}. As this
is true for all B; € &;, X; is a random variable. To prove the converse, suppose all
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the X; are random variables. Now take a rectangle of the form (2.15). Its inverse
image under X is the intersection of {X; € A,} for a finite number of 7 and is thus
an event. Since these rectangles generate ®;c1&,, X is a stochastic process. O

From Section 1.2, we see that measurable functions of stochastic processes
again yield stochastic processes. In particular, when dealing with numerical random
variables X and Y, the functions X + Y, XY, X/Y are random variables as well,
as long as they are well-defined. Also, if (X},) is a sequence of numerical random
variables then, by Proposition 1.26, sup X,,, inf X,,, lim sup X,;, and liminf X,, are
all random variables. In particular, if (X)) converges (that is, pointwise) to X, then
X is again a random variable. Two random variables are said to be equal almost
surely, if they are the same P-almost everywhere; that is, if the set of points for
which they differ has probability O.

2.3 Probability Distributions

Let (Q, H,P) be a probability space and let X be a random variable taking values
in a set E with o-algebra &. To simplify our usage, we also say that “X takes values
in (E,&)”. If we wish to describe our experiment via X, then we need to specify
the probabilities of events such as {X € B}, B € & In elementary probability
theory we usually made a distinction between “discrete” and “continuous” random
variables. However, it is sometimes better to analyse random variables in a more
unified manner; many definitions and properties of random variables do not depend
on whether they are “discrete” or “continuous”. Moreover, some random variables
are neither discrete nor continuous.

Recall that by definition all the sets {X € B} with B € & are events. So we
may assign a probability to each of these events. This leads to the notion of the
distribution of a random variable.

Definition 2.18: Probability Distribution

Let (Q, H,P) be a probability space and let X be a random variable taking
values in (E, &). The (probability) distribution of X is the image measure u
of P under X. That is,

(2.19) u(B):=P(X €B), Beé&.

The probability distribution of X therefore carries all the “information” about
X that is known. Note that above we should have written P({X € B}) instead of
P(X € B). Since this abbreviation is harmless, we will use it from now on.

A distribution u defined by (2.19) is thus a probability measure on (E, &) and
is completely specified by its values on a p-system that generates &, as shown in
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Theorem 1.45. In particular, for a numerical random variable, it suffices to specify
u([—o0,x]) = P(X < x) for all x € R. This leads to the following definition:

Definition 2.20: Cumulative Distribution Function

The (cumulative) distribution function of a numerical random variable X is
the function F : R — [0, 1] defined by

F(x) =P(X <x), xeR.

We usually abbreviate cumulative distribution function to cdf. In Figure 2.21
the graph of an arbitrary cdf is depicted.

F(z) —
'd
—3
/
< 5 - >

Figure 2.21: A cumulative distribution function.

The following properties for a cdf F are a direct consequence of the properties
of the probability measure P. We leave the proof as an exercise; see Exercise 3.

Proposition 2.22: Properties of a Cumulative Distribution Function

1. (Bounded): 0 < F(x) < 1.
2. (Increasing): x <y = F(x) < F(y).
3. (Right-continuous): limp o F(x + h) = F(x).

The uniqueness result in Theorem 1.45 shows that to each distribution y of a
numerical random variable X there corresponds exactly one cdf F and vice versa.
The distribution is said to be proper if lim,_,_o, F'(x) = 0 and lim,_,o, F(x) = 1.

In many cases we specify distributions of random variables as measures with a
density with respect to some other measure, usually a counting measure or Lebesgue
measure; see Section 1.4.3 for the measure-theoretic background.
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Definition 2.23: Discrete Distribution

We say that X has a discrete distribution p on (E, &) if u is a discrete measure;
that is, it is of the form

:u:Zf(x)éx

xeD

for some countable set D and positive masses { f(x),x € D}.

We see that f is the density of u with respect to the counting measure on D,
and that f(x) = u({x}) = P(X = x). The number f(x) represents the amount of
probability “mass” at x. In elementary probability f is often called the probability
mass function (pmf) of the discrete random variable X.

Definition 2.24: Distribution with a Density

We say that X has an absolutely continuous distribution g on (E, &) with
respect to a measure A on (E, &) if there exists a positive &-measurable
function f such that u = f 4; that is,

u(B)=P(X € B) = /B/l(dx) f(x), Be&.

The function f is thus the (probability) density function (pdf) of X with respect
to the measure A — often taken to be the Lebesgue measure. Note that u is absolutely
continuous with respect to A in the sense that for all B € &: A(B) =0 = u(B) =0.

£

X

Figure 2.25: A probability density function of a numerical random variable.

Describing an experiment via a random variable and its probability distribution
or density is often more convenient than specifying the probability space. In fact, the
probability space usually stays in the background. The question remains, however,
whether there exists a probability space (€2, H,P) and a numerical random variable
X for a given probability distribution. Fortunately, existence can be established for
all practical probability models. We will have a closer look at this in Section 4.4.
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Here is a simple example: there exists a probability space and a numerical random
variable X such that X has a given cdf F. Namely, take Q := R, H := B, and let P
be the measure on B that is defined by

P([—c0,x]) := F(x).

Now, let X be the identity function x — x on R. Then, X is a random variable on
(Q, H,P) with cdf F, because

P(X < x) =P([-c0,x]) = F(x).

Some probability distributions (R, 8) are neither discrete nor absolutely con-
tinuous with respect to the Lebesgue measure; see the example below. In elementary
probability the pdf f of a “continuous” random variable is often taken to be the
derivative of its cdf F. This is not true in general. In Exercise 6 a continuous cdf F
is constructed for a distribution that does not have a pdf with respect to the Lebesgue
measure, even though the derivative of F exists almost everywhere.

B Example 2.26 (Mixture Distribution) Let F; and F, be distribution functions
of a discrete and absolutely continuous (with respect to the Lebesgue measure)
distribution on (R, B), respectively. For any 0 < @ < 1, the function F defined by

F(x):=aF;(x)+ (1 —a)F:.(x), x€eR,

is again a distribution function, but the corresponding distribution is neither discrete
nor absolute continuous with respect to the Lebesgue measure. This is an example
of a mixture of distributions. [ |

Tables 2.1 and 2.2 list a number of important absolutely continuous (with
respect to the Lebesgue measure) and discrete distributions on (R, 8). Note that in
Table 2.1, I is the gamma function: I'(a) := fooo dxe™*x*!, @ > 0. The normal
distribution is often called the Gaussian distribution — we will use both names. The
Gamma(n/2, 1/2) distribution is called the chi-squared distribution with n degrees
of freedom, denoted )(,21. The t; distribution is also called the Cauchy distribution.

We write

X ~Dist or X~ f

to indicate that the random variable X has distribution Dist or density f.
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Table 2.1: Commonly used continuous distributions.

X € Parameters

Name Notation f(x)
1
Uniform Ule, B]
p—a
1 1(x-p\2
Normal N(u, o?) e 1 (%)
oV2n
19 a—1,-Ax
Gamma Gamma(a, 1) 4x ¢
I'(a)
P —a-1,-Ax"!
Inverse InvGamma(e, 1) cr ©
Gamma [(a)
Exponential Exp(2) de
MNa+p) .1 .
Bet Beta(a, = el _ )R
o (@F) Mg 7Y
Weibull Weib(a, 1) ad (Ax) e~ ()°
Pareto Pareto(a, 1) ad (1 + ax)~ @+
(e 2\~ (v+1)/2
Student t, & (1 + x_)
war Uy

F F(m,n)

T (242) ()"0 12

C(Z)T(F) [1+ (m/n)x] w2

la.8] a<p

R o>0,uekR

R, a,4>0
R, a,A>0
R, A>0

[0,1] a,8>0
R, a,A1>0
R, a,1>0
R v>0

R, m,n € N,

Table 2.2: Commonly used discrete distributions.

Name Notation f(x) X € Parameters
Bernoulli  Ber(p) p¥(1-p)l== {0,1} 0<p<1
Binomial  Bin(n, p) (n) pr(1-p)t* {0,1,...,n} 0<p<l,neN
X
i 1
Discrete vy - (,...nt ne{l,2..}
uniform n
Geometric Geom(p) p(1—-p)*! {1,2,..} 0<p<l1
AX
Poisson  Poi(A) —ﬂ—' N A1>0
X
i -1
Negatlye NegBin(n, p) nEx p"(1-p)* N 0<p<l,neN
binomial n-1
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Definition 2.18 is very general and applies, in particular, to any numerical
random vector X := [X|,..., X,]|". In this case, the distribution u of X is defined
by

u(B):=P(XeB), BeB&.
Where possible, we characterize the distribution of a numerical random vector
via densities with respect to counting or Lebesgue measures. For example, if the
distribution of X has a density f with respect to the Lebesgue measure, then

P(XeB):/dxf(x), BeB".
B

If instead X is a discrete random vector, i.e., one that can only take values in
some countable set D, then the distribution of X is most easily specified via its
probability mass function f(x) := P(X = x), x € D, whichis in this case a function
of n variables.

The concept of independence is of great importance in the study of random
experiments and the construction of probability distributions. Loosely speaking,
independence is about the lack of shared information between random objects.

Definition 2.27: Independent Random Variables

Let X and Y be random variables taking values in (E, &) and (F, F), re-
spectively. They are said to be independent if for any A € & and B € F it
holds that

(2.28) P(X € A,Y € B) =P(X € A)P(Y € B).

J

Intuitively, this means that information regarding X does not affect our know-
ledge of Y and vice versa. Mathematically, (2.28) simply states that the distribution,
u say, of (X,Y) is given by the product measure of the distributions px of X and
uy of Y. We can extend the independence concept to a finite or infinite collection
of random variables as follows:

Definition 2.29: Independency

We say that a collection of random variables {X;, r € T}, with each X; taking
values in (E;,&;), is an independency if for any finite choice of indexes
f,...,tp € Tandsets A, € &,,...,A;, € &, it holds that

P(th (S Atl’ . e ,th (S Atn) = ]P(th S Al‘]) t .P(th S Atn)'

B Remark 2.30 (Independence as a Model Assumption) More often than not, the
independence of random variables is a model assumption, rather than a consequence.
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Instead of describing a random experiment via an explicit description of € and P,
we will usually model the experiment through one or more (independent) random
variables. [ |

Suppose Xi, ..., X, are independent random variables taking values in (E, &).
Denote their individual distributions — the so-called marginal distributions — by
Ui, - - ., Un, and suppose that these have densities fi, ..., f, with respect to some
measure A on & (think Lebesgue measure or counting measure). Then, the product
distribution u := u; ® - - - ® u, has a density f with respect to the product measure
A®---®A4, and

S, x0) = filxn) - fu(xn).
If the {X;} are independent and have the same distribution, they are said to be
independent and identically distributed, abbreviated as iid. We write

Xt 0 Xa 2 f or Xi,....X, " Dist,

to indicate that the random vectors are iid with a density f or distribution Dist.

B Example 2.31 (Bernoulli Trials) Consider the experiment where we throw a
coin repeatedly. The easiest way to model this is by using random variables, via:

Xl,Xz,...ifivd Ber(p).

We interpret {X; = 1} as the event that the ith toss yields a success, e.g., heads.
Here, we (naturally) assume that the X, X», . . . are independent. Note that the model
depends on a single parameter p, which may be known or remain unspecified; e.g.,
p = 1/2 when the coin is fair. The collection of random variables {X;} is called
a Bernoulli process with success parameter p. It is the most important stochastic
process in the study of probability and serves as the basis for many more elaborate
stochastic processes.

For example, let S, denote the number of successes (i.e., the number of 1s) in
the first # trials; that is,

S, ::ZXi, n=1,2....
i=1

Put Sy := 0. The stochastic process {S,,n € N} is an example of a random walk.
Verify yourself that S, ~ Bin(n, p). For p = 1/2, letY,, := 2S,, — n. The process
{Y,, n € N} is called the symmetric random walk on the integers. A typical path is
given in Figure 2.32.
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20

Figure 2.32: Symmetric random walk on the integers.

Another process derived from the Bernoulli process is the process {7}, k € N},
where Ty := 0 and T} is the time of kth success, kK = 1,2, .... Verify yourself that
the intersuccess times Ty — Ty—1, kK = 1,2, ... are independent and have a Geom(p)
distribution.

Finally, note that in our model for the coin toss experiment, we have completely
ignored the probability space (€2, H,P). The question arises whether there exists
a probability space on which we can define independent Ber(p) random variables
X1, X>, . ... Exercise 7 gives a concrete probability space for thecase p = 1/2. ®

We will come back to the concept of independence in Section 2.7 and define it
for various other probabilistic objects.

2.4 Expectation

The expectation of a (numerical) random variable is a weighted average of all the
values that the random variable can take. In elementary probability theory the
expectation of a discrete random variable X is defined as

EX := ZxP(X = x)
X
and for a continuous random variable X with pdf f it is defined as

EX = [:dxxf(x).

Having to define the expectation in two ways is not very satisfactory. Also, we
have seen that there exists random variables whose distribution is neither discrete
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nor continuous. How should we define the expectation for these random variables?
Again, measure theory comes to the rescue. Here is the formal definition:

Definition 2.33: Expectation

Let (Q,H,P) be a probability space and X a numerical random variable.
The expectation of X is defined as the integral

EX:zPXz/XdP.

Below, we could have copied the four defining steps for a general integral,
given in Section 1.4.1, but we slightly simplified these using the linearity and
monotone convergence properties of general integrals, which were given and proved
in Theorem 1.55.

1. If X is an indicator function, X = 14 of an event A, then we define

EX :=P(A).

2. If X is a simple function, X = }."_, a; 14, for events {A;}, then we define
n
EX := Z a; P(A;).
i=1

3. If X is a positive random variable, then, see Theorem 1.27, X is the (pointwise)
limit of an increasing sequence of positive simple random variables Xy, X», .. .,
and by the Monotone Convergence Theorem (see Theorem 1.55), we define

EX :=1limEX,.

4. For general X, write X = X* — X~, where X* := max{X,0} and X~ :=
max{—X,0}. Then, X" and X~ are both positive random variables, for which
the integral is defined. We now define

EX :=EX*'-EX,
provided that the right-hand side is well-defined.

Thus, for positive random variables the expectation always exists (can be +o0).
For general random variables, it only fails to exist if both the positive and negative
parts of a random variable have infinite integrals. Next, we list various properties of
the expectation. The first list of properties is simply a restatement of Theorem 1.55.
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Theorem 2.34: Properties of an Expectation

Leta,b € Randlet X, Y, and (X)) be numerical random variables for which
the expectations below are well-defined. Then, the following hold:

1. (Monotonicity): If X <Y, then EX < EY.

2. (Linearity): E(aX + bY) = aEX + b EY.

3. (Monotone convergence): If X, T X, then EX,, T EX.

The next property, Fatou’s lemma, is helpful in various technical proofs. Simply
replace E with y and X,, with f,, to obtain the result for a general measure u and
positive numerical functions ( f,).

Lemma 2.35: Fatou

For any sequence (X)) of positive numerical random variables,

Eliminf X,, < liminf EX),.

Proof. Define Y, := inf,5,, X;,. Then, Y,, T liminf X,,. Hence, by Theorem 2.34
(monotone convergence):

IimEY,, = Eliminf X,,.

But we also have Y,, < X,, for all n > m, so that EY,, < EX,, for n > m by the
monotonicity property of the expectation. Thus,

EY,, < inf EX,.

nzm
Combining the two displayed results above gives Elim inf X, < liminf EXj,. O

We can use Fatou’s lemma to prove the following instrumental properties:

Theorem 2.36: Dominated and Bounded Convergence

Let (X,) be a sequence of numerical random variables for which lim X;,, = X
exists. Then, the following hold:

1. (Dominated convergence): 1If, for each n, |X,| <Y for some random
variable Y with EY < oo, then EX,, —» EX < oo.

2. (Bounded convergence): If | X,| < c for all n for some ¢ € R, then EX,, —
EX < oo.
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Proof. IfEY < oo, thenY is real-valued almost surely and X, +Y > 0 almost surely.
Hence, by Fatou’s lemma,

Eliminf(X, +Y) < liminf E(X,, +Y),
which shows that
Eliminf X,, < liminf EX),.

Similarly, ¥ — X, > 0 almost surely, so that
Eliminf(Y — X,,) < liminf E(Y - X,,),

leading to
limsupEX, < Elimsup X,.

Combining, we have
Eliminf X,, < liminf EX,, < limsupEX,, < Elimsup X,,.

Since lim X, =: X exists, liminf X,, = limsup X,,, and so we have equality of the
four terms above. In particular, by the monotonicity property of E, this limit must
have a finite expectation, EX, which lies between —EY and EY. In the case where
(X,) is bounded by a constant ¢, we can take Y := ¢ (i.e., Y (w) := ¢ for all w € Q)
to obtain the bounded convergence result. O

In Theorem 2.36, replace E with y and X,,, X,Y with f,, f, g to obtain the
corresponding results for integration with respect to a general measure u. For
bounded convergence, this measure needs to be finite.

The following theorem — which is just Theorem 1.62 — is the workhorse of the
theory. It enables us to actually calculate the expectation of a function of a random
variable.

Theorem 2.37: Expectation and Image Measure

Let X be a random variable taking values in (E, &) with distribution u and
let & be an &-measurable function. Then, provided the integral exists:

Eh(X):/h(X)dP:/R,u(dx)h(x):,uh.

Combining Theorem 2.37 with Theorem 1.58 for measures with a density, gives
the familiar results for the expectation of a function of a random variable. In
particular, when X has a discrete distribution, we have

Eh(X) = Z h(x)P(X = x).
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Similarly, when X has a density f with respect to the Lebesgue measure, we have

Eh(X):[ dx h(x) f(x).

The generalization to random vectors is immediate. Namely, if X := [X;,..., X,,] "
is a random vector with (n-dimensional) pdf f, and & a measurable numerical
function on R”, then
Eh(X) = dx h(x) f(x).
Rn

Once we have specified a probabilistic model in terms of random variables and
their distributions (possibly including independence assumptions), we may wish to
explore the properties of certain functions of the random variables in the model.
For example, the following theorem is useful for computing probability densities of
functions of random variables. See Exercises 8—14 for more examples.

Theorem 2.38: Transformation Rule

Let X be a random vector with density fx with respect to the Lebesgue
measure on (R™, B"). Let Z := g(X), where g : R” — R" is invertible with
inverse g~! and Jacobian' | 6Z |. Then, at z = g(x) the random vector Z has
the following density with respect to the Lebesgue measure on (R", 8"):

fx(x)

, z€R™
| 52|

(2.39) fz(2) =

_1 o0x
= fx(g™ (2)) ‘a—z

Proof. By Theorem 2.37, we have for any function 7 € 8":

EA(Z) = / 4z h(2) f2(z) = / dx h(g (1)) fx (x).

Evaluating the last integral via a multidimensional change of variables, with x =
g7 '(2), gives

file (@)

|51

/ dx h(g () fx (x) = / dz h(z)

As his arbitrary, the first equation in (2.39) follows. The second equation is because
the matrix az of partlal derivatives of g is the inverse of the matrlx - of partial

derivatives of g~ !, and so their determinants (and Jacobians) are rec1proca1. O

IThe Jacobian is the absolute value of the determinant of the matrix of partial derivatives of g.
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B Example 2.40 (Linear Transformation) Let X := [Xj,..., X,] " be anumerical
random column vector with density fx with respect to the Lebesgue measure on
(R", 8™). Consider the linear transformation:

Z =AX,
where A is an invertible matrix. Then, by Theorem 2.38, Z has density

fx(A™1z)

, e R".
Al

fz(z) :=
|

We conclude this section with a review of some common notions from elemen-
tary probability and statistics that involve expectations.
The variance of a random variable X is defined by

Var X := E(X - EX)?.

The variance measures the “spread” in the values of X — the average squared
distance from the mean. The square root of the variance is called the standard
deviation. The standard deviation measures the spread in the same units as the
random variable — unlike the variance, which uses squared units. The expectation
EX" is called the nth moment of X. The covariance of two random variables X and
Y with expectations px and uy, respectively, is defined as

Cov(X,Y) =E[(X — ux)(Y — py)].

This is a measure of the amount of linear dependency between the variables. For
0')2( := Var X and 0'3 := VarY, a scaled version of the covariance is given by the
correlation coefficient,

Ox Oy
Table 2.3 shows properties of the variance and covariance, which follow directly
from their definitions. We leave the proof as an exercise; see Exercise 15.
As a consequence of Properties 2, 8, and 9 in Table 2.3, we have that for any

sequence of independent random variables X, . . ., X,, with variances o2 o2

122 Yn>

_ 22,2 2 2 2
Var(a1 X +axXo + - +a,X,) =ajo; +ay0;5 +---+a, o,

for any choice of constants ay, ..., a,.

For random vectors, it is convenient to write the expectations and covariances
in vector and matrix form. For a random column vector X := [X,...,X,]", we
define its expectation vector as the vector of expectations:

W=ty 1n]" = [EX1,...,EX,]".
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Table 2.3: Properties of the variance and covariance.

VarX = EX? - i3,
Var(aX + b) = a® 0')2(.
Cov(X,Y) =E[XY] — ux uy.

Cov(X,Y) = Cov(Y, X).

—oxoy < Cov(X,Y) < oxoy.
Cov(aX+bY,Z)=aCov(X,Z)+bCov(Y, Z).
Cov(X,X) = o3.

Var(X +Y) = 0'}2( + 0')% +2Cov(X,Y).

If X and Y are independent, then Cov(X,Y) = 0.

A S S O o e

Similarly, letting the expectation of a matrix be the matrix of expectations, we define
for two random vectors X € R"” and Y € R™ their n X m covariance matrix by:

Cov(X,Y) :=E[(X —-EX)(Y —EY)"],

with (7, j)th element Cov(X;,Y;) = E[(X; — EX;)(Y; — EY;)]. A consequence of
this definition is that

Cov(AX,BY) = ACov(X,Y)B™,

where A and B are two matrices with n and m columns, respectively.

The covariance matrix of the vector X is defined as the n X n matrix Cov(X, X).
Any such covariance matrix X is positive semidefinite, meaning that x "Xx > 0 for
all x € R”. To see this, write

x"Ex =E[x"(X -EX) (X -EX)"x | =EY* > 0.

Y Y

Any positive semidefinite matrix X can be written as
X =BB'

for some real matrix B, which can be obtained, for example, by using the Cholesky
square-root method; see, for example, Kroese et al. (2019, Algorithm A.6.2).
Conversely, for any real matrix B, the matrix BBT is positive semidefinite. The
covariance matrix is also denoted as VarX := Cov(X, X), by analogy to the scalar
identity VarX = Cov(X, X).

A useful application of the cyclic property and linearity of the trace of a matrix
is the following:
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Proposition 2.41: Expectation of a Quadratic Form

Let A be an n X n matrix and X an n-dimensional random vector with
expectation vector u and covariance matrix X. The random variable ¥ :=
X TAX has expectation tr(AX) + u"Apu.

Proof. Since Y is a scalar, it is equal to its trace. Now, using the cyclic property:
EY =Etr(Y) =Etr(XTAX) =Etr(AXX") = tr(AE[XX]) = tr(A(Z+puu")) =
tr(AX) + tr(Apuu ") = tr(AX) + u"Ap. m|

B Example 2.42 (Multivariate Normal (Gaussian) Distribution) Let Z;,...,Z,
be independent and standard normal (i.e., N (0, 1)-distributed) random variables.
The joint pdf of Z := [Z1,...,Z,] " is given by

L 1 1.2 n 1,7
fz(z) = l_[ —e 2% =(2m)"2e2% % zeRM
i=1 V21

We write Z ~ N(0,1,,), where I, is the n-dimensional identity matrix. Consider the
affine transformation
X=u+BZ

for some m X n matrix B and m-dimensional vector u. Note that X has expectation
vector p and covariance matrix X := BBT. We say that X has a multivariate normal
or multivariate Gaussian distribution with mean vector g and covariance matrix X.
We write X ~ N(u,X). The multivariate normal distribution has many interesting
properties; see, for example, Kroese et al. (2019, Section C.7). In particular:

1. Any affine combination of independent multivariate normal random vectors is
again multivariate normal.

2. The (marginal) distribution of any subvector of a multivariate normal random
vector is again multivariate normal.

3. The conditional distribution of a multivariate normal random vector, given any
of its subvectors, is again multivariate normal.

4. Two jointly multivariate normal random vectors are independent if and only if
their covariance matrix is the zero matrix.

2.5 LP Spaces

Let X be a numerical random variable on (Q, H,P). For p € [1, c0) define

1
X1l == (BIX]?)»
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and let
[| X||oo := inf{x : P(|X| < x) =1}.

Definition 2.43: L” Space

For each p € [1, o] the space L” is comprised of all numerical random
variables X for which || X||, < oo.

In particular, L' consists of all integrable random variables and L? is the space
of all square-integrable random variables. If we identify random variables that are
almost surely equal as one and the same, then L? is a Banach space: a complete
normed vector space. Completeness means that every Cauchy sequence converges,
with respect to the norm || - ||,,. That is, if lim,, ;e || X, — Xi|l, = O, then there
exists an X € L? such that lim,,« || X, — X||, = 0. Of particular importance is
L?, which is in fact a Hilbert space, with inner product (X,Y) := E[XY]; see
Appendix B for more details.

Theorem 2.47 summarizes important properties of L” spaces through the prop-
erties of || - || ,; the first three show that L” is a vector space with norm || - ||,. To
prove these properties, we first need the following result on expectations of convex
functions, which is of independent interest and is very useful in many applications.
Let X € R". A function & : X — R is said to be convex on X if for each x in the
interior of X there exists a vector v — called a subgradient of h — such that

(2.44) h(y) > h(x)+v'(y —x), yelX.

Lemma 2.45: Jensen’s Inequality

Let 4 : X — R be a convex function and let X be a random variable taking
values in X, with expectation vector EX. Then,

Eh(X) > h(EX).

Proof. In (2.44) replace y with X and x with EX, and then take expectations on
both sides, to obtain:

En(X) > ER(EX) +v E(X — EX) = h(EX).
O

B Example 2.46 (Convex Function) A well-known property of a convex function
h is that
h(au + (1 —a)v) < ah(u)+ (1 —a)h(v), «ac€[0,1].



Chapter 2. Probability 57

This is a simple consequence of Jensen’s inequality, by taking X the random variable
that takes the value u with probability a and the value v with probability 1 — a.

For convex functions on R we can further exploit the above inequality by taking
u := U and v :=V for any pair of real-valued random variables (U, V). Using the
monotonicity of the expectation, we conclude that

Eh(aU + (1 —a)V) < aEBh(U) + (1 —a)EAR(V), a€][0,1].

We use this device to prove various properties of the L” norm. [ ]

Theorem 2.47: Properties of the L” Norm

Let X and Y be numerical random variables on (Q, H, P). Then, the following
hold:

1. (Positivity): || X||, > 0, and ||X]||, =0 & X = 0 almost surely.
2. (Multiplication by a constant): ||c X||, = |c| | X]| -
3. (Minkowski’s (triangle) inequality):

XNy = Y1 < [IX + Y, < [IX][, + Y]]

4. (Holder’s inequality): For p,q,r € [1, co] with % + % =1

r’

(2.48) XYl < [1X1[, 1¥lg-

5. (Monotonicity): If 1 < p < g < oo, then [|X||, < [ X]]4.

Proof.

1. Obviously, E[X|? > 0 implies [|X]|[, >0, and X = 0 (a.s.) = E[X|’ =0 =
IX]l, = 0. Conversely, ||X]||, =0 = E|X|?” =0, which can only be true if
P(X =0)=1.

2. This follows from the linearity of the expectation for p < co. The identity is also
trivial for p = co and ¢ = 0. In the case of p = oo and |c| > 0, we have

llc X]|lo = inf{x : P(Jc X| < x) = 1}
=inf{x : P(|X| < x/|c|) = 1}
= [c[inf{x/lc| : P(IX| < x/|c|) = 1}
=[] [[ X loo-

3. Assume X,Y € L?; otherwise, there is nothing to prove. For p = oo, let x :=
| X|loo and y := ||Y||e. Then, almost surely | X+Y| < x+y, and so || X+Y||co < x+y.
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Next, consider the case p € [1, o). Since x — |x|? is convex, we have
laU + (1 —a)V|P < a|U)” + (1 —a)|V|IP, ac€]0,1]

for any a € [0, 1] and random variables U and V. In particular, it holds for
U:=X/IIX|l,,V=Y/Y|l,,and a := || X|[,/([IX]|, + [IY]l,). Substituting and
taking expectations on both sides gives the inequality:

X+Y
X1, + 1Y,

" _ EIXI|
S a
X115

ElY|” _

+(1-a)
vl

b

which after rearrangement, yields the second inequality in Minkowski’s Property
3. The first inequality is a consequence of this, because || X||, = [|[ X +Y = Y|, <
X+ Y+ 1Yl and [Y]l, = IX +Y = X|l, < [IX + Y], +[|X]].

4. Let X,Y € LP. For p = oo, we have r = g, and almost surely | XY| < || X|||Y],
o)
IXYl, = EBIXY)'" < (IXII% EY DY = 1 Xle 1Y

For g = oo, we have r = p and the same holds. Next, consider the case where
both p and ¢ are finite. Since the logarithmic function is concave (that is, —g is
convex), we have that for any « € [0, 1] and positive u and v:

alnu+ (1 —-a)lnv < In(au + (1 —a)v).
We have thus proved the geometric and arithmetic mean inequality:
uv'" < au+ (1 - a)o.

This inequality remains valid, almost surely, if we replace u# and v with positive
random variables U and V. In particular, letting

/ U |X|r/a v |Y|r/(l—a)
@ :=r/p, = , TR
X115 |l

and taking expectations on both sides yields:

XYP _ BIXPP

E[Y|?
S a =
X115 1Y 11 X115

E
Y1l

’

+(1-a)

which, after rearrangement, yields Holder’s inequality.

5. Apply 2.48) withY :=1,r :=p, p:=q,and q := pq/(q — p).
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For random variables in L? the concepts of variance and covariance have a
geometric interpretation. Namely, if X and Y are zero-mean random variables (their
expectation is 0), then

VarX = ||X||3 and Cov(X,Y) = (X,Y).

In particular, from the Holder’s inequality with p = ¢ = 2 and r = 1, we obtain the
famous Cauchy—Schwarz inequality

(2.49) |Cov(X,Y)| < VVar X VarY.

2.6 Integral Transforms

Expectations are used in many probabilistic analyses. In this section, we highlight
their use in integral transforms. Many calculations and manipulations involving
probability distributions are facilitated by the use of such transforms. We describe
two major types of transforms.

2.6.1 Moment Generating Functions

Definition 2.50: Moment Generating Function

The moment generating function (MGF) of a numerical random variable X
with distribution u is the function M : R — [0, o], given by

(o)

M(s) :=Ee** :/ u(dx)e™, seR.

—00

We sometimes write My to stress the role of X. Table 2.4 gives a list of MGFs
for various important distributions that are absolutely continuous with respect to
the Lebesgue measure.

The MGF of a positive random variable is called the Laplace transform. In most
definitions the sign of s is then flipped. That is, the Laplace transform of X is the
function s > Ee™X = M(-s), s € R.

The set 1 :={s € R: M(s) < oo} always includes 0. For some distributions
this may be the only point. However, the important case is where I contains a
neighborhood of 0; i.e., there is an s¢ such that M (s) < oo for all s € (—s¢, 50). In
this case M completely determines u. That is, two distributions are the same if and
only if their MGFs are the same.
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Theorem 2.51: Uniqueness of the MGF
A measure u is determined by its MGF M if the latter is finite in a neighbor-

hood of 0.

The proof relies on a similar uniqueness result for the characteristic function,
which we will prove in Section 2.6.2; see also Billingsley, page 390.

Table 2.4: MGFs for common distributions.

Distr. f(x) X € M (s) S
1 ebs — eds
Ula, b ,b] ———— R
[a.D] b-a [a.D] s(b—a)
A
Exp(Q) de™ R, (ﬁ ) (=00, )
-
/lozxaf—le—/lx 1 @
A _— R — —o00, A
Gamma(a, 1) (a) 4 (/l — S) (—00,A)
L_ A0 g oo g

N(p, 0?) -

For a discrete random variable X it is often convenient to express the MGF M (s)
in terms of z = e°; that is, Ee*® = EzX. For common discrete distributions this

is done in Table 2.5. The function z — E z¥X is called the probability generating

function of X.

Table 2.5: MGFs M (s), expressed in terms of z = e*.

Distr. f(x) X € M(s)
Ber(p) pr-p) {0,1} l-p+pz
Bin(n, p) (Z) pr(1-p)"™* {0,1,...,n} (1=p+p2)"
Poi(1) et i—f {0,1,...} e 4179
- Pz
Geom(p) p(l—p) 1 {1,2,} mn

14

NegBin(n, p) (n-'n-izl)l?n(l—p)x {0,1,...} T—(-p2
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Theorem 2.52: Taylor’s Theorem for MGF's

Suppose M (s) := Ee*¥ is finite in the neighborhood (—so, so) of 0. Then, M
has the Taylor expansion

s

S
M(s):E FEX", |s| < so.

k=0

In particular, all moments EX k k e N are finite.

Proof. Suppose M (s) < oo fors € (—sp, o) for some sg > 0. The Taylor expansion
for e* is Zfzo(sx)k/k!, SO we can write

M(s) = Ee'* = Ehmz (SX)k.

We want to use the Dominated Convergence Theorem (see Theorem 2.36) to swap
the limit and expectation. This would give

n o]
R (sX)k (sX) . sk EXk _ sk EXk
M(s)-Eh}gnkZ_é ko EZ Z X! _Z Kkl

k=0 ’ k=0

which would prove the result. It remains to show that | 20 (S,)f!)k | <Y for all n, for

some positive random variable Y with finite expectation. We can take ¥ := elX.
For all s € (-5, s0) the expectation of Y is finite, since ¥ < e X + %X and both of
the right-hand side terms have finite expectations. O

Theorems 2.51 and 2.52 show that the positive integer moments of a random
variable completely determine its distribution, provided that the MGF is finite in a
neighborhood of 0.

The Taylor expansion in Theorem 2.52 is a power series, and we know from real
and complex analysis that such infinite sums behave like finite sums as long as s is
less than the radius of convergence — in particular, less than sg. It follows that

ExXf=M® ), k>1;

that is, the kth derivative of M, evaluated at 0. This allows us to derive moments
if we have an expression for M (s) in terms of a power series. Another very useful
property is the following convolution theorem:

Theorem 2.53: Product of MGFs
If X and Y are independent, then Mx.y(s) = Mx(s) My(s).
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Proof. The distribution of (X,Y) is a product measure u ® v. Hence, by Fubini’s
Theorem 1.68:

Bt = / (4 ® v)(dx,dy) e* ™) = / p(dx) / y(dy) e™ e
:/,u(dx) e”/v(dy) e’ :/y(dx) e* Ee'Y = Ee’X Ee'Y.

O

B Example 2.54 (Sum of Poisson Random Variables) Let X ~ Poi(1) and Y ~
Poi(u) be independent. Then, the MGF of X + 7Y is given by the product

g A1-¢") gu(1=e®) _ o~(Lu)(1-¢’) ¢ R
By the uniqueness of the MGF, it follows that X + Y ~ Poi(4 + u). [ |

B Example 2.55 (Binomial Distribution) There is an interesting method for
deriving the density of X ~ Bin(n, p) using MGFs. First, the expression for the
MGEF of a Ber(p) random variable is pe® + g, with g := 1 — p for s € R. Since X
can be viewed as the sum of n independent Ber(p) random variables, the expression
for its MGF is (pe® + ¢)". But using the well-known Newton’s formula (binomial
theorem), we have
s n_n n s\k n—k_n n k n—k _sk
(pe’ +4) —;(k)(pe) q —;)(k)p q"" e,

which shows that X has density k — (Z) pk ¢"* with respect to the counting meas-

ureon {0, 1,...,n}. [ |

B Example 2.56 (Linear Combinations of Normal Random Variables) An
important property of the normal distribution is that any affine combination of
independent normals is again normal; that is, if X; ~ N(y;, o'l.z), independently,
fori=1,2,...,n,then

Y = a+Zn:biXi ~ N(a+ibi/.li,ib?0'i2) .
i=1 i=1

i=1
Note that the parameters follow easily from the rules for the expectation and variance.
We can prove this via the MGF. Namely,

Ee*! = exp(sa) ﬁ E exp(sb; X;) = exp(sa) ﬁ exp {,u,-sb[ + %O_izszbiz} ,
i=1 i=1
so that i i
Ee*’ = exp {s (a + Z b,-,u,-) + % 52 Z bl~20'l-2} ,
which shows the desired result, by thel Tllniqueness of tlllze1 MGEF. [ |
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2.6.2 Characteristic Functions

The ultimate integral transform is the characteristic function. Every random variable
has a characteristic function that is finite, no matter how strange that random variable
might be. It is closely related to the classical Fourier transform of a function and
has analytical properties superior to those of the MGF.

Definition 2.57: Characteristic Function

The characteristic function of a numerical random variable X with distribu-
tion u is the function ¥ : R — C, defined by

(o)

W (r) :=Ee!’* = Ecos(rX) +iEsin(rX) = / u(dx)e'™, reR.

—00

For a random vector X € R¢, the characteristic function is defined similarly as
w(r) =Ee" X, reR%

The characteristic function has many interesting properties, some of which are
similar to those of the generating functions already mentioned. The following
establishes the uniqueness property:

Theorem 2.58: Inversion and Uniqueness of the Characteristic Function

If the probability measure u has characteristic function ¢, and if u{a} =
u{b} =0, then

—ira _ .-irb

1
(2.59) pu(a,b] = lim —/dr L (r) —————4¢/(r) =: lim I;.
1= 21 Jr ’ ir t—o0

In particular, the characteristic function determines u uniquely. If, in addi-
tion, /R dr |y (r)| < oo, then u has a density f with respect to the Lebesgue
measure, given by

1 [ .
(2.60) f(x):= ﬂ‘/ dre™ ™y (r).

(o)

Proof. Let I, be the quantity for which we take the limit, as defined in the theorem.
Then, by expanding the definition of ¥ () and using Fubini’s theorem, we may write

1 o0 t ir(x—a) _ air(x—b)
I, = —/ ,u(dx)/ dr S - ¢ .
27 J_oo s ir
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Using e'* = cos z +isin z, we can compute the inner integral in terms of functions
sin, cos, and Si(z) := /OZ dx (sin(x)/x) to obtain

L= [ w@o (w sicr 1x —a) — B i1~

Since lim,_, Si(z) = 7/2 and fzoo dx (sin(x)/x) = cos(z)/z = [7° dx (cos(x)/x?)
for z > 0, we have

\Si<|z|)—f\s/ g Snx 2
2 |z| X |Z|

| v

|z| > 0.

Hence, the integrand in the integral I; above is bounded and converges as t — oo to
ga.»(x), given by
0 ifx <aorx > b,
8ap(x):=491/2 ifx=aorx=>0,
1 ifa <x<b.

So, ga.» is almost-everywhere the indicator function of the interval [a, b]. Hence,
I; — u ga.p, which implies (2.59), if u{a} = u{b} = 0. Uniqueness follows from
the fact that intervals of the form (a, b] form a p-system that generate 8 and so
determine a measure uniquely.

When fR dr [y (r)| < oo, then the integral in (2.59) can be extended to R; that

is, from |(e77¢ — e71"?) /(ir)| = |/’ due | < |b — a| and Theorem 2.36, we have

) 1 e—ira _ e—irb 1 e—ira _ e—irb
lim —/dr ﬂ[_,,t](}’) —Y(r) = —‘/dr,—lﬁ(i’),
t—00 21 Jr ir 21 Jr ir
so in terms of the cdf of u:

F(x+h) -F(x) 1 / eTiry _ gmir(x+h)
h " LI irh w(r).

Taking the limit for 2 — 0 gives (2.60). O

Proposition 2.61 lists some more properties of the characteristic function.
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Proposition 2.61: Properties of the Characteristic Function

1. (Symmetry): The random variables X and —X are identically distributed
if and only if the characteristic function of X is real-valued.

2. (Convolution): If X and Y are independent, then ¥ x,y = ¥ x ¥y.

3. (Affine transformation): If a and b are real numbers, then
Vaxss(r) =€Pyx(ar), reR.

4. (Taylor’s theorem): If E|X"| < oo, then

© k

w(r) = Z EX ik o), reR.

!
k:O k!

Proof. The only non-trivial result is Taylor’s theorem. We prove it by using the

following useful inequality:
o | x|n+1 2| x|n
min , .
- (n+1)!" n!

x o (0F
X
=) k!
If X has a moment of order n, it follows that

k=0
|¢,(r) Sy
k=0 )

(2.62)

Pl 1X ™ 21X
(n+1)!" n!

< |r|"Emin{ } =: |r|" EY,.

The random variable Y, defined above goes to 0 when r — 0. Moreover, it is
dominated by 2|X"|/n!, which has a finite expectation. Hence, by the Dominated
Convergence Theorem 2.36, EY, — 0 as r — 0. In other words, the error term is
of order o(r") for r — 0. O

Table 2.6 gives a list of the characteristic functions for various common distri-
butions. In the table, we assume the geometric distribution with probability masses
(1=p)*1p k =1,2,... (so starting from 1, not 0). Note that for X ~ U[-a, @],

where a > 0, we have
sinar, r# 0’
r) = ar
v(r) {1, r=20.

It is also worth mentioning that the Cauchy distribution does not have an MGF that
is finite in a neighborhood of 0, and so does not appear in Table 2.4 for the MGFs,
whereas its characteristic function is perfectly well-defined.
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Table 2.6: Characteristic functions for common distributions.

Distr. W (r) Distr. w(r)
. eibr _ eiar
irc U , b e —
constant ¢ € [a, D] ir(b—a)
. A
Ber(p) 1 —p+pe” Exp(Q) ( - )
A—1r
. ir A @
Bin(n,p) (1 —-p+pe'’")" Gamma(a, A1) (/1 - )
—1ir
. _ _alr 1
Poi(1)  exp( /1.(1 e'”)) N(u, o2) exp (i,ur _ 50_2,,2)
e1 rp
Geom S —
(P) 1-(1-p)eir Cauchy eIl

2.7 Information and Independence

In this section, we have another look at the role of o-algebras and independence
in random experiments. As always, (€2, H,P) is our probability space in the
background. Let X be a random variable taking values in some measurable space
(E, &). We are usually only interested in events of the form {X € A} = X~!(A) for
A € &. These events form a o-algebra by themselves; see Exercise 1.9.

Definition 2.63: o-Algebra Generated by a Random Variable

Let X be arandom variable taking values in (E, &). Thesets {X € A},A € &
form a o-algebra, called the o-algebra generated by X, and we write o X.

Definition 2.63 also applies to a stochastic process X := {X;,t € T}. Recall
from Theorem 2.17 that X may be viewed equivalently as (1) a random variable
taking values in (E, &) := (XseTE;, ®:c1E;) and (2) a collection of random variables
where X, takes values in (E;, &;).

Theorem 2.64: o-Algebra Generated by a Stochastic Process

For the stochastic process X := {X;,t € T}, the o-algebra generated by X is
the smallest o-algebra on Q that is generated by the union of the o--algebras
oX;,t € T. We write \/,cr 0 X; or c{X;,t € T}.

Proof. Let H = o X. Then, X is a random variable. By Theorem 2.17, it follows
that each X; is a random variable. This in turn implies that each o X; is contained in
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o X and, therefore, o X contains o{X;,t € T}. Conversely, let H = o{X;,t € T}.
Then, each X, is a random variable. By Theorem 2.17, it follows that X is a random
variable and, therefore, o-X is contained in o-{X,,t € T}. Hence, the two must be
the same. O

We can think of o X as a precise way of describing the information on a stochastic
experiment modelled by a random variable or process X. What do o X-measurable
numerical functions look like? The following theorem shows that they must be
deterministic measurable functions of X. Recall that if / is &/8B-measurable, we
write h € &E.

Theorem 2.65: o X-Numerical Random Variables

Let X be a random variable taking values in a measurable space (E,&). A
mapping V :  — RbelongstooX ifand only if V = h o X for some & € &.

Proof. Sufficiency follows from Theorem 1.21: If & and X are measurable with
respect to &/8B and o X /&, then the composition V := h o X is measurable with
respect to 0 X/B,s0V € o X.

For necessity, we invoke the Monotone Class Theorem 1.33. Define

M:={V=hoX:he&}

This is a monotone class of random variables. Check this yourself. Now, consider
an event H € oX. Since X is a random variable, there is a set A € & such that
H = X'A. Hence, 1y = 14 o X, which lies in M. So M contains all indicator
variables in oX. By the Monotone Class Theorem, it must therefore contain all
positive random variables in o X.

Finally, for an arbitrary V € o X, we write V = V* — V™, where both the positive
and negative part can be written as measurable functions of X. O

A corollary is that for a stochastic process X := {Xi, X5, ...} arandom variable
V belongs to o X if and only if it can be written as some measurable function of
X1, X2, . ... In fact, we have the following generalization:

Theorem 2.66: Stochastic Process with Arbitrary Index Set

For each ¢ in an arbitrary set T, let X; be a random variable taking values
in a measurable space (E;, &;). Then, the mapping V : @ — R belongs to
o{X;,t € T} if and only if there exists a sequence (7,) in T and a function &
in ®,&;, such that

V=hX,Xs,,...)
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We can view o X as the information that we have about the stochastic experi-
ment, based on the measurement X. If we have more measurements on the same
experiment, say ¥ and Z, we may gain more information about the experiment.
So o{X,Y,Z} contains at least as many events of interest as cX — usually many
more. For stochastic processes indexed by time, it makes sense to consider in-
creasing collections of information as time increases. This leads to the following
definition:

Definition 2.67: Filtration

Let T be a subset of R. A filtration is an increasing collection {#; : t € T} of
sub-o-algebras of H; that is, 5 C F; whenever s < t.

Filtrations are often used when dealing with stochastic processes {X; : t € T},
where T C R. The natural filtration is then the filtration defined by F; := o {X; :
s <t seT}

We can also use families of o-algebras to model the notion of independence in
a random experiment. We already defined independence for random variables. We
now extend this to o-algebras.

Definition 2.68: Independence for o--Algebras

Let {#,i = 1,...,n} be a collection of sub-c--algebras of H. The {¥;} are
said to be (mutually) independent or form an independency if

(2.69) EVy---V, =EV;---EV,

for all positive random variables V; € F;,i = 1,...,n.

We can extend the independence definition to an arbitrary collection of o-
algebras by requiring that every finite choice of o-algebras forms an independency.
The following extends the criterion for independence of random variables given in
Definition 2.29:

Theorem 2.70: Independence of o-Algebras

Sub-c-algebras 71, ..., F, of H generated by p-systems Cj, ..., C, are in-
dependent if and only if for all H; € C; U {Q},i =1,...,n, it holds that:

2.71) P(H; N ---NH,) =P(H)) - P(H,).

Proof. If (2.69) holds, then it holds in particular for V; = 1y,,i = 1,...,n, and so
(2.71) follows. This proves necessity.
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Next, suppose that (2.71) holds for all H; € C; U {Q},i = 1,...,n. Fix such
H,, ..., H, and define

D={H eFi:P(HIN---NH, =P(Hy)---P(H,)}.

This is a d-system (check yourself). It contains C; and so by Theorem 1.12 it must
contain 7. We can do the same process for H,, Hs, . .., H, to see that (2.71) holds
for Hy € #1, ..., H, € ¥,. Hence, (2.69) holds for all indicator functions V; := 1g,.
This extends to positive simple functions and from these to positive measurable
functions via the Monotone Convergence Theorem 2.34. O

We now have an equivalent characterization of independence between random
variables.

Theorem 2.72: Independence of Random Variables

Random variables X and Y taking values in (E, &) and (F, F) are independ-
ent if and only if

2.73) Eg(X) h(Y) =Eg(X)Bh(Y), ge€&; he T

Proof. Suppose X and Y are independent in the sense of (2.69). Take any g € &,
and h € F.. By Theorem 2.65, V := g(X) and W := h(Y) are positive random
variables in X and oY, respectively. Thus, (2.69) implies (2.73). Conversely,
suppose that (2.73) holds and take positive random variables V € o X and W € oY.
Again, by Theorem 2.65, there must be a g € &, and h € ¥, such that V=go X
and W = h oY, and so (2.73) implies (2.69); i.e., EVW = EVEW. O

We can rewrite equation (2.73) in terms of the joint distribution 7 of (X, Y) and
marginal distributions ¢ and v of X and Y as follows:

/E e dy) ) ) = /E w(dx) g(x) /F v(dy) h(y).

In other words; 7 is equal to the product measure y ® v.

2.8 Important Stochastic Processes

We conclude this chapter by showcasing some important classes of stochastic pro-
cesses, namely Gaussian processes, Poisson random measures, and Lévy processes.
Together with Markov processes, they account for most of the study of stochastic
processes. We will discuss Markov processes at the end of Chapter 4, after we have
had more experience with the concept of conditioning.
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2.8.1 Gaussian Processes

Gaussian processes can be thought of as generalizations of Gaussian random vari-
ables and vectors. Their distributional properties derive directly from the properties
of the multivariate Gaussian distribution; see also Example 2.42.

Definition 2.74: Gaussian Process

A real-valued stochastic process {X;,7 € T} is said to be Gaussian if all its
finite-dimensional distributions are Gaussian (normal); that is, if the vector
[X;,...,X;,]" is multivariate normal for any choice of nand 74, ...,t, € T.

An equivalent condition for a process to be Gaussian is that every linear com-
bination ) | b;X;, has a Gaussian distribution. The probability distribution of a
Gaussian process is determined completely by its expectation function

My = EXI, t e T
and covariance function
Vst = Cov(Xs, X)), s, eT.

The latter is a positive semidefinite function; meaning that for every n > 1 and every
choiceof a¢,...,a, € Randt,...,t, € T, it holds that

n n

(2.75) > @ivisa; 20
1

i=1 j=

A zero-mean Gaussian process is one for which y; = 0 for all z.
To simulate a realization of a Gaussian process with expectation function (u;)

and covariance function (7y,,) at times ?1,...,#,, we can simply generate a mul-
tivariate normal random vector Y := [Yy,...,Y,]" = [X,, ..., X;,]T with mean
vector pt = [y, . .. ,,u,n]T and covariance matrix X, with X; ; := Yiia;- As such,

the basic generation method is as follows:

B Algorithm 2.76 (Gaussian Process Generator)
1. Construct the mean vector u and covariance matrix X as specified above.
2. Derive the Cholesky decomposition £ = AAT.
3. Simulate Zi, . .., Z, " N(0,1). Let Z := [Z1, ..., Za] .

4. OutputY := u+AZ.
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B Example 2.77 (Wiener Process and Brownian Motion) The prototypical Gaus-
sian process on R, is the Wiener process (W;,t > 0), which will be discussed in
detail in Chapter 6. For now, it suffices to define the Wiener process as a zero-mean
Gaussian process with continuous sample paths and covariance function y,; = s A ¢
for s, > 0. A typical path of the process is given in Figure 2.78, suggesting that
the Wiener process can be viewed as a continuous version of the symmetric random
walk in Figure 2.32.

Figure 2.78: A typical realization of the Wiener process on the interval [0,10].

By applying the affine transformation
B;=Bg+at+cW,, t>0,

where By is independent of (W;), we obtain a Brownian motion process (B;,t > 0),
with drift> a and diffusion coefficient ¢. It is a Gaussian process only if By is
Gaussian. More generally, a d-dimensional Wiener process W := (W,,t > 0) is a
stochastic process whose component processes are independent Wiener processes.
Similarly, a d’-dimensional Brownian motion B := (B;,t > 0) is obtained from W
via the affine transformation

Bt:Bo+at+CWt, tZO,

where C is a d’ X d matrix and a a d’-dimensional vector, and B) is independent of
w. [ ]

20ften p and o are used for the drift and diffusion coefficients, but in this chapter we would
rather reserve the Greek letters for measures.
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2.8.2 Poisson Random Measures and Poisson Processes

Poisson random measures are used to model random configurations of points in
space and time. Specifically, let E € R¢ and let & be the collection of Borel sets
on E. To any collection of random points {X;,7 € I} in E corresponds a random
counting measure N defined by

N(A) = Z T(x,cn, A€E,
iel

counting the random number of points in A. The quintessential random counting
measure is the Poisson random measure.

Definition 2.79: Poisson Random Measure

A random measure N on (E, &) is said to be a Poisson random measure with
mean measure  if the following properties hold:

1. N(A) ~ Poi(u(A)) for any set A € &.

2. For any selection of disjoint sets Ay, ..., A, € &, the random variables
N(Ay),..., N(A,) are independent.

J

In most practical cases, the mean measure has a density r with respect to the
Lebesgue measure, called the infensity or rate function, so that

u(A) = /Adxr<x>.

In that case, u is a diffuse measure; that is, u({x}) = 0 for all x € E. The Poisson
random measure is said to be homogeneous if the rate function is constant.

The distribution of any random counting measure N is completely determined
by its Laplace functional:

L(f):=EBe™™, feé&,,

where N f is the random variable / N(dx) f(x). This is an example of a stochastic
integral. For every outcome w € € the integral is an ordinary Lebesgue integral in
the sense of Section 1.4.1. For the Poisson random measure with mean measure u,
the Laplace functional is

(2.80) Be N/ =" feg..

see Exercise 22 for a proof. Compare this with the Laplace transform of a Poisson
random variable N with rate u:

Ee NS =e#1-¢7)  5>0.
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We can think of N both in terms of a random counting measure, where N(A)
denotes the random number of points in A € &, or in terms of the (countable)
collection {X;,i € I} of random points (often called atoms) in E, where I C N may
be finite and random, or countably infinite. In particular, we have

@81 V= [ N@OSe) = YA e

iel

The following proposition describes one way of constructing a Poisson random
measure on a product space. In its proof, the principle of repeated conditioning is
used; see Theorem 4.5. An elementary understanding will suffice at this point.

Proposition 2.82: Poisson Random Measure on a Product Space

Let X := {X;,i € I} be the atoms of a Poisson random measure N on (E, &)
with mean measure yu, and let {Y;,7 € N} be iid random variables on (F, )
with distribution 7, independent of X. Then, {(X;,Y;),i € I} form the atoms
of a Poisson random measure M on (E X F, & ® ¥ ) with mean measure y Q7.

Proof. Forany f € (6E® F)4, wehave Mf =3; f(X;,Y;), and
Ee ™M/ =EEyx l_[ e /XY - | ]—[ Exe /Xi¥) = l—[ / n(dy) e /Xiy),
, . L JF
1 1 1

where repeated conditioning is used in the first equation, and the independence of
Y, of X is used in the second equation. Defining

es®) . / r(dy) e~/ &),
F

we thus have
Ee Mf R 1—[ e 8(Xi) — ge N8 = g-n(1-¢7%)
i

where we have used (2.80) for the Laplace functional of N. Since

(1 —e8) = /E u(dx) / r(dy)(1—e /&) = (e m)(1 -,

the Laplace functional of M is of the form (2.80), and hence M is a Poisson random
measure with mean measure y Q@ 7. O

Let N be a Poisson random measure on (£, &) with mean measure y, with
U(E) =: ¢ < oo. The total number of atoms of N has a Poisson distribution with
mean c. The following theorem shows how the points are distributed conditional on
the total number of points. Conditioning will be discussed in detail in Chapter 4.
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Theorem 2.83: Conditioning on the Total Number of Points

Let N be a Poisson random measure on ( E, &) with mean measure u satisfying
U(E) =: ¢ < co. Then, conditional on N(E) = k, the k atoms of N are iid
with probability distribution u/c.

Proof. LetK := N(E) ~ Poi(c), and on {K = k} denote the atoms by X1, ..., X.
Suppose that, conditionally on {K = k}, the atoms are iid with probability distribu-
tion u/c. We want to show that the Laplace functional of such a random measure
is precisely that of N. For f € &, we have

K K
Eexp (— D, f(X0)| =EExexp (— 2, F(X0)
k=1 k=1

=E (/ (u(dx)/c) e‘f(x))K =E ((,U/C) e‘f)K = EZX,

where Ex denotes the expectation conditional on K. In the first equation we
are applying the repeated conditioning property; see Theorem 4.5. The second
equation follows from the conditional independence assumption for the atoms. The
third equation is just a simplification of notation, as in vg = / v(dx)g(x). Since K
has a Poi(c) distribution, it holds that

EZK = e_C(l_Z) = e_c(l_(#/c) e_f) = e_'u(l_e_f) = Ee_Nf7

as had to be shown. m|

The preceding theorem leads directly to the following generic algorithm for
simulating a Poisson random measure on E, assuming that u(E) = /E dx r(x) < oo:

B Algorithm 2.84 (Simulating a General Poisson Random Measure)

1. Generate a Poisson random variable K ~ Poi(u(E)).

2. Given K = k, draw X1, ..., X id g, where g := r/u(FE) is the mean density,
and return these as the atoms of the Poisson random measure.

B Example 2.85 (Convex Hull of a Poisson Random Measure) Figure 2.86
shows six realizations of the point sets and their convex hulls of a homogeneous
Poisson random measure on the unit square with rate 20. The MATLAB code is given
below. A particular object of interest could be the random volume of the convex
hull formed in this way.
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Figure 2.86: Realizations of a homogeneous Poisson random measure with rate 20.
For each case the convex hull is also plotted.

for i=1:6

K = poissrnd(20); %using the Statistics Toolbox
rand (K, 2);
j = convhull(x(:,1),x(:,2));
% [J,v] = convhulln(x); %v is the area
subplot(2,3,1);
plot(x(j,1),x(j,2), 'r-",x(C:,1),x(:,2),'b. ")

>
1l

end

For a homogeneous Poisson random measure on R, with rate r a more direct
simulation algorithm can be formulated. Denote the pointsby 0 < 77 <75 < - - -,
which are interpreted as arrival points of some sort, and let A; := T; — T;_; be the
ith interarrival time, i = 1,2, ..., setting Tp := 0. It turns out that the interarrival
times {A;} are iid and Exp(r) distributed. We will see an elegant proof of this in
Example 5.38, once we have been introduced to martingales.

Let N; := N(]0, t]) be the number of arrivals in [0, ] of the above homogeneous
Poisson random measure N on R.. The process (N,,t > 0) is called a Poisson
counting process, or simply Poisson process, with rate r. We can thus generate the
points of this Poisson process on some interval [0, ¢] as follows:

B Algorithm 2.87 (Simulating a Poisson Process)
1. SetTp:=0and n := 1.



76 2.8. Important Stochastic Processes

2. Generate U ~ U(0, 1).
3. SetT,, :=T,_1 — %an.

4. If T, > t, stop; otherwise, set n := n + 1 and go to Step 2.

For an intuitive “proof” of the above, it is useful to view the properties of
a Poisson process or, more generally, a Poisson random measure, through the
glasses of the following Bernoulli approximation. Divide the time-axis into small
intervals [0, &), [h,2h), .... The numbers of arrivals in each of these intervals are
independent and have a Poi(r /) distribution. So, for small 4, with a large probability
there will be either no arrivals or 1 arrival in each time interval, with probability
1 —rh + O(h?*) and rh + O(h?), respectively. Next, consider a Bernoulli process
{X,,} with success parameter p :=r h. PutYy :=0andletY, := X; +---+ X,, be the
total number of successes in n trials. Properties 1 and 2 of Definition 2.79 indicate
that for small 4 the process {Y;,i = 0, 1,...,n} should have similar properties to
the Poisson counting process (N;,0 < s < t), if t and n are related vian = ¢/h. In
particular:

1. For small A, N; should have approximately the same distribution as Y,,. Hence,

B(N; = k) = imP(¥, = k) = lim (’,Z) (r)* (1= (rh))"*

lim [ (rt)k (1 rt)”‘k (re)k B n! (1 rt)”‘k
= lim — - — = im —— (1 - —
n—oo \k| \ n n k! n—conk (n—k)! n

_(rt)k . rt ”_(rt)k _rt
B nllné(l_ﬁ) T ©

This shows heuristically that N; must have a Poisson distribution and that this is
entirely due to the independence assumption in Property 2.

2. Let Uy, Us,, ... denote the times of success for the Bernoulli process X. We
know that the intersuccess times Uy, Uy — Uy, ... are independent and have a
geometric distribution with parameter p = rh. The interarrival times A1, As, . . .
of N should therefore also be iid. Moreover, for small # we have, again with
n=t/h,

t n
P(A1 > 1) ~B(U > m) = (1=rh)" ~ (1= 2]~ e,
n

which is in accordance with the fact that A; ~ Exp(r). This can be made precise
by observing that

P(A; > 1) =P(N,=0)=¢™", ¢>0.
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3. In higher dimensions we can make similar Bernoulli approximations. For ex-
ample, we can partition a region A C R? into a fine grid and associate with each
grid cell a Bernoulli random variable — a success indicating a point in that cell;
see Figure 2.88. In the limit, as the grid size goes to 0, the Bernoulli process
tends to a Poisson random measure on A. The independence property follows
directly from the independence of the Bernoulli random variables, and this in-
dependence leads also to the number of points in any region having a Poisson
distribution. The Poisson random measure is homogeneous if all the Bernoulli
success probabilities are the same.

Figure 2.88: Bernoulli approximation of a two-dimensional Poisson random meas-
ure.

Let (E,&,v) be a measure space with a finite measure v. Combining Pro-
position 2.82 with Algorithm 2.87 gives a convenient algorithm for simulating the
points {(7;,Y;),i = 1,2,...} of a Poisson random measure (PRM) on R, X E with
mean measure Leb® v. This algorithm is relevant for the construction of compound
Poisson and Lévy processes, to be discussed next.

B Algorithm 2.89 (Simulating a PRM on R, X E with Mean Measure Leb ® v)
1. SetTy:=0,i:=1,and c := v(E).
2. Simulate U ~ U(0, 1) and set T; ;== Tj_; —c ' InU.
3. Simulate Y; ~ v/c.

4. Seti :=i+ 1 and repeat from Step 2.
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2.8.3 Compound Poisson Processes

Let N be a Poisson random measure on R, x R? with mean measure Leb ® v —
we also write the latter as df v(dx). We assume that ¢ := v(R?) < co. The process
(K;) with K, := N([0, ] x R¢) is a Poisson process with rate c. We now construct
the following stochastic process as a stochastic integral with respect to N.

Definition 2.90: Compound Poisson Process

The process (X;,t > 0) defined by
X; ::/ N(ds,dx)x, >0,
[0,f]xR4

is the compound Poisson process corresponding to the measure v.

A compound Poisson process can be thought of as a “batch” Poisson process,
where arrivals occur according to a Poisson process with rate ¢, and each arrival
adds a batch of size Y ~ v/c to the total, so that we may also write

K;
L=;n,

where Y1,Y,,... iy /c are independent of K; ~ Poi(ct). The compound Poisson
process is an important example of a Lévy process — a stochastic process with
independent and stationary increments; see Section 2.8.4. In this context the
measure v is called the Lévy measure.

The characteristic function of X; can be found by conditioning on K;:

Eel” Xi = ]EEKteirT Sl Ve = E (Eei'TY)K’ =exp(—ct (1 - Eei’TY))

= exp (;/ v(dy)(e'™ ' — 1)).

Denoting the jump times of the compound Poisson process by {7} } and the jump
sizes by {Y}, we have the following simulation algorithm.

B Algorithm 2.91 (Simulating a Compound Poisson Process)
1. Initialize Ty := 0, X := 0, and set k := 1.
2. Generate Ay ~ Exp(c).

3. Generate Y, ~ v/c.
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4. SetTy :=Ty_1 + A and XTk = XTk_] +Yy.
5. Set k := k + 1 and repeat from Step 2.
B Example 2.92 (Compound Poisson Process) The bottom panel of Figure 2.93
shows a realization of the compound Poisson process X := (X;,¢ > 0) with Lévy
measure
v(dx) :=5eMdx, xeR.
The top panel shows the atoms of the corresponding Poisson random measure N.
For each atom (¢, x) of N, the process jumps an amount x at time 7.
4 L L]
N (dt,dz)
2 N °
oF———— — — — — .__°_L__..__._L___._..-_. _______
2k ° I : ° I I e I ]
0 1 2 3 4 5
t
oL - -
< ook — - '_
2t — - = - _
0 1 2 3 4 5
t
Figure 2.93: Realization of a compound Poisson process taking values in R.
|
2.8.4 Lévy Processes
Lévy processes generalize the stationarity and independence of increments prop-
erties of the Wiener and compound Poisson processes. They can be completely
characterized in terms of a Poisson random measure and a Brownian motion.
Let (Q, H,P) be a probability space and X := (X,,¢ > 0) a stochastic process
with state space RY.
4@
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Definition 2.94: Lévy Process

The process X is said to be a Lévy process with respect to its natural filtration

(F1) if

1. the paths of X are almost surely right-continuous and left-limited, with
Xo =0, and

2. for every t,u > 0, the increment X,;, — X; is independent of #; and has
the same distribution as X,.

Property 2 is summarized by stating that a Lévy process has independent
and stationary increments. A Lé&vy process can be viewed as a continuous-time
generalization of a random walk process. Indeed the process observed at times
0=ty <t <t <---forms arandom walk,

n
(2.95) X, = > (X, = X)),
i=1

whose increments {X;, — X, } are independent. Moreover, if the times are chosen
at an equal distance from each other, #; — t,_1 = h, then the increments are iid,
and so the distribution of the Lévy process is completely specified by its increment
distribution in any time interval of length # > 0, for example by the distribution of
X1. Note also that linear combinations of independent Lévy processes are again
Lévy. It is not difficult to show (see Exercise 24) that the characteristic function of
X, must be of the form

Bel” Xi = ¢4 p e R

for some complex-valued function ¢. This is called the characteristic exponent of
the Lévy process.

B Example 2.96 (Brownian Motion and the Compound Poisson Process) A d-
dimensional Brownian motion process starting at 0 is the archetypal Lévy process
with continuous sample paths; in fact, we will see it is the only Lévy process with
this property.

To check independence and stationarity of the increments for the Brownian
motion process, it suffices to verify these properties for a one-dimensional Wiener
process. Namely, a linear drift process ¢ — at is a trivial Lévy process, and a
Brownian motion minus its drift process and initial position is a linear transformation
of a d-dimensional Wiener process, whose components, in turn, are independent
one-dimensional Wiener processes. So, let W := (W, ¢ > 0) be a Wiener process.
Since W is a zero-mean Gaussian process with covariance function s A ¢, the
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increment Wy, — W; has a Gaussian distribution with expectation 0 and variance

COV(WH.M — Wt, Wt+u — W;) = COV(WH.M, Wt+u) + COV(Wt, Wt) - 2COV(W[+M, W;)
=t+u+t-2t=u,

which does not depend on ¢. Next, take #; < t, < t3 < tgandletU := W;, — W,, and
V=W, — W;. We have

COV(U, V) = COV(W[Z, Wt4) — COV(W[Z, Wt3) — COV(W[I , W[4) + COV(VV[1 , WtS)
=th—-th—t1+1t1 =0.

This shows that U and V are independent, since [U,V]" is a Gaussian random
vector. A similar argument can be used to show independence of increments at
arbritrary times 0 =19 <t < -+ < 1.

On the other side of the coin is the compound Poisson process

(2.97) X; = / N(ds,dx)x, >0,
[0,¢]xR4

where N is a Poisson random measure on R, x R¢ with mean measure Leb ® v,
satisfying v(R9) < co. This is the typical pure jump Lévy process. Independence
and stationary of increments follow directly from the properties of the Poisson
random measure. u

For a Lévy process, each increment can be written as the sum of n iid random
variables, for every n. We say that the increments have an infinitely divisible distri-
bution. Many of the common distributions are infinitely divisible; see Exercise 25.

For the compound Poisson process in (2.97), the requirement is that v(R¢) < co.
If this restriction on v is relaxed to

(2.98) /E y(dx) (]l A 1) < oo,

the process (X;) in (2.97) still defines a pure-jump Lévy process, but not necessarily
a compound Poisson process. In fact, any pure-jump Lévy process must be of this
form for some Poisson random measure N, with v satisfying (2.98). In this context,
N measures the times and magnitudes of the jumps, and v the expected number of
jumps of a certain magnitude.

More precisely, for a Lévy process X, the jump measure N is such that N ([0, t] x
A) counts the number of jumps of X during the interval [0, #] whose size lies in
Ae B9 excluding 0. The mean measure of N is then Leb ® v, where v is the Lévy
measure. The expected number of jumps of X during [0, 1] whose size lies in A is
then v(A) = EN([O, 1] X A). The main theorem on Lévy processes is the following.
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Theorem 2.99: Lévy-Ito Decomposition

The process X := (X;,7 > 0) is a Lévy process if and only if there exists a
d-dimensional Brownian motion process B := (B;,t > 0) starting at 0 and
a Poisson random measure N on R, x R¢ that is independent of B and has
mean measure Leb ® v, with v satisfying

(2.100) / y(dx) (el A 1) < oo,
Rd

such that X = B+U + Z, where the summands are independent, U := (U;, t >
0) is the compound Poisson process

t
Ul ::/ / N(ds,dx)x, IZO,
0 [|x]|>1

and Z := (Z;,t > 0) is the limit of compensated compound Poisson pro-
cesses:

t
Z:=limZ° with Zf = / / [N(ds,dx) —dsv(dx)]x, t > 0.
610 0 Jo<|lx|<1

Proof. (Sketch). To show necessity, one needs to show (1) that adding independent
Lévy processes gives another Lévy process, and (2) that each of the processes B, U,
and Z is a Lévy process. The first statement follows easily from the definition
of a Lévy process, and we already proved (2) for the Brownian motion B and
the compound Poisson process U. Obviously, Z° is a Lévy process as well, for
every 0 > (0. Thus, the main thing that remains to be proved is that the limit Z is
well-defined under condition (2.100) and that it is Lévy. We omit the proof.

To show sufficiency, start with a Lévy process X and let N be its jump measure.
This yields the Lévy processes U and Z via the integrals defined in the theorem. Let
B be the unit ball on R?. As U is determined by the trace of N on R, x B¢, and Z by
the trace of N on R, X B, the two processes are independent by the Poisson nature of
N. By removing the jumps from X, the process X — U — Z has continuous sample
paths. Moreover, it is a Lévy process. It can be shown that the only Lévy processes
with continuous sample paths are Brownian motions. Consequently, we have the
decomposition X = B +U + Z. There remains to show that B is independent of the
jump measure N (and hence independent of U and Z). This is the tricky part of the
proof. A complete proof can be found in Cinlar (2011, Chapter 7). O

B Remark 2.101 (Truncation Level) The choice of 1 for the truncation level in
the above theorem is arbitrary. It may be changed to any positive number. However,
this will change the drift of B. [ |
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The Lévy—Itd decomposition gives a complete and precise characterization of
Lévy processes. The continuous part is described by a Brownian motion process,
and the jump part by a Poisson random measure with Lévy measure v satisfying
(2.100). Note that this condition on v is less restrictive than (2.98). We now have
the following picture for the jumps of a Lévy process:

1. If v(E) < oo, there are finitely many jumps in any time interval.

2. If v(E) = oo, but (2.98) holds, then the process Z becomes

t
Z:/ / N(ds,dx)x—t/ vide)x, t=0,
0 JO<|x|I<1 0<|lx|I<1

where the first integral can be combined with U to give a pure jump process
of the form (2.97), and the second integral is a linear drift term. In each time
interval there are infinitely many small jumps, tending to 0.

3. When v(E) = o0, (2.98) does not hold, but (2.100) does hold, then the integral

/ v(dx)x
0<|lx|I<1

is not finite (or does not exist). Nevertheless, as § | 0, the limit of Zf still
exists, leading to a process Z that has both an infinite number of jumps in any
time interval as well as a drift.

A corollary of the Lévy-Itd decomposition is that the characteristic exponent ¢
of a Lévy process is of the form

1
=) r'xr +irTa+/

llxl[>1

v(dx) (ei’Tx - 1) +/”x”Sl y(dx) (ei”x - irTx)

from B, from U, from Z,

for some vector @ and covariance matrix ¥ = CC". It follows that each Lévy
process is characterized by a characteristic triplet (a, X, v).

B Example 2.102 (Gamma Process) Let N be a Poisson random measure on
R, X R, with mean measure df v(dx) := df g(x) dx, where

a e—/lx

g(x) := , x>0.
X

t (o)
X; = / / N(ds,dx)x, t=>0.
0 0

Define
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Then, (X;,t > 0) is, by construction, an increasing Lévy process. The characteristic
exponent is

é(r) = / dr (e - 1) g(x) = a(lnd —In(1 —ir)),

which shows that X; ~ Gamma(a, 1), hence the name gamma process. The char-
acteristic triplet is thus (a,0, v), with a = /01 dexg(x) = (1 - e™!). Note that
an increment X;,; — X; has a Gamma(as, 4) distribution. A typical realization on
[0, 1] with @ = 10 and A = 1 is given in Figure 2.103.

6*

be
|

il 1 1 1 1 1 1 1 1 |

0 01r 02 03 04 05 06 07 08 09 1

Figure 2.103: Gamma process realization for @ = 10 and A4 = 1.

The simplest method to simulate certain Lévy processes is based on the random
walk property (2.95). For this approach to work, the distribution of X; needs to be
known for all 7.

B Algorithm 2.104 (Known Marginal Distributions) Suppose X; has a known
distribution Dist(7), + > 0. Generate a realization of the Lévy process at times
0=ty <t <---<t,as follows:

1. Set Xp:=0and k := 1.
2. Draw A ~ Dist(ty — tx-1).
3. Set X;, =X, , +A.

4. If k = n then stop; otherwise, set k := k + 1 and return to Step 2.
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B Example 2.105 (Cauchy Process) Let (X;) be a Lévy process such that X; ~
Cauchy. We use Algorithm 2.104 and the ratio-of-normals method for Cauchy
random variables to simulate this process at times t; := kA, for k € N, and A :=
1073, Sample MATLAB code is given below, and a typical realization on [0, 1] is
given in Figure 2.106. Note that the process is a pure jump process with occasional
very large increments.

Delta=10A(-5); N=10A5; times=(0:1:N).*Delta;
Z=randn(1,N+1)./randn(1,N+1);

Z=Delta.*Z; Z(1)=0;

X=cumsum(Z) ;

plot(times,X)
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Figure 2.106: Cauchy process realization.

B

Exercises

1. We draw uniformly at random a point in the unit square E := [0, 1]>. Give a
probability space (Q, H, P) for this experiment such that the set A := {(x,y) € E :
x? +y? < 1} is an event. Calculate P(A).

2. Let X be a random variable with P(X = k) := (1/2)%,k = 1,2, .... Show that
such an object really exists. That is, construct an example of a probability space
and a function X with the above property.
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3. Prove Proposition 2.22.
4. Let F be a cumulative distribution function. Is lim,_,, F(x) always 1?

5 Consider the distribution u with cdf
Fx)=1-(1-a)e™, x>0,
with) < a < 1.

(a) Show that i is a mixture of a discrete and an absolutely continuous distribution.

(b) Give a measure v and a density f such that y has density f with respect to v.

6. Construct a cdf F on the interval [0, 1] in the following way, related to the
Cantor set in Example 1.1 and Exercise 1.19. Let D,,; be the ith open interval that is
removed in the nth stage of the construction of the Cantor set. For x € D, ;, where
i€f{l,...,2"} and n € N, define:

2i -1

F(x) := T

We may extend the domain of F' to include every point x € [0, 1] by taking F(x) :=
lim, F(x,), where (x,) is any sequence in D = U, U; D,; that converges to x.
This function F is called the Cantor function. The function F is increasing and is
continuous.

(a) Draw the graph of F.
(b) Verify that the derivative of F is almost everywhere equal to O.
(c) Let g be the functional inverse of F (see Exercise 1.24):

q(u) :=inf{x € [0,1] : F(x) > u}, ue€][0,1].

Show that the range of ¢ is C \ Cy, where C = [0, 1] \ D is the Cantor set and
Co is the union of {1} and the set of left-endpoints of the {D,;}.
(dy Deduce that C has as many elements as the interval [0, 1].

7 Consider the probability space (Q, H,P), where Q is the interval [0, 1), H is
the Borel o-algebra on [0, 1), and P is the Lebesgue measure (on [0,1)). Every
w € [0,1) has a unique binary expansion containing an infinite number of zeros,

e.g.,

47
— =.101111000000....
64
Now, for any w € [0, 1) write down the expansion w = .wjw> - - -, and define

Xy (w) = w,.
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(a) Draw the graphs of X, X, and Xj3.

(b) Verify that X;, X», ... are Ber(1/2) distributed random variables.

(c) Verify that the X, X5, ... are independent. Hence, we have constructed an
analytical model for the coin tossing experiment with a fair coin.

8" Let X ~U[0,1] and Y ~ Exp(1) be independent.

(a) Determine the joint pdf of X and Y and draw the graph.

(b) Calculate P((X,Y) € [0,1] x [0, 1]).

(c) Calculate P(X +Y < 1).
9 LetZ,,...,Z,beiid random variables, each with a standard normal distribution.
Determine the joint pdf of the vector Z := [Z},...,Z,]". Let A be an invertible

n X n matrix. Determine the joint pdf of the random vector X := [Xi,..., X,]"
defined by X := AZ.

Show that X1, . . ., X, are iid standard normal only if AAT = I,, (identity matrix);
in other words, only if A is an orthogonal matrix. Can you find a geometric
interpretation of this?

10¥ Let X ~ Exp(1) and Y ~ Exp(u) be independent.

(a) What distribution does min(X,Y) have?

(b) Show that
A

A+u
11" Let X ~ U(—n/2,7/2). What is the pdf of Y :=tan X?

P(X <Y) =

12. Prove the following. If Y := aX + b and X has density fx with respect to the
Lebesgue measure on (R, 8), then Y has density fy given by

1 y—b

fr(y) = = fx ( ) :
|al a

(Here, a # 0.)

137 Let X ~N(0, 1). Prove that Y := X2 has a )(f distribution.

14. Let U ~ U(0, 1). Let F be an arbitrary cdf on R, and let ¢ denote its quantile
(functional inverse):

q(u) :=inf{x e R: F(x) >u}, wueck.

(a) Let F(x—) := lim, 1, F(x,) be the left limit of F at x. This exists, since F is
increasing. Prove that for any x and u:

q(u) > x & F(x-) < u.
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(b) Show that X := g(U) is a random variable with cdf F. This gives the inverse-
transform method for simulating random variables from F.

15. Using the definitions of variance and covariance, prove all the properties for
the variance and covariance in Table 2.3.

16. Prove, using Fubini’s Theorem 1.67, that for any positive random variable X,
it holds that

EX? = / dx pxP7'P(X > x).
0

17. Show that if Y is a random variable taking values in [—c, ¢] and with EY = 0,
then for 8 € R,
e < 6%9262'

18. Using MGFs, show that the sum of n independent Exp(A) distributed random
variables has a Gamma(n, 1) distribution.

19" The double exponential distribution has pdf

1
f(x) = EC_M’ x €R.

Show that its characteristic function ¢ is given by

r € R.

Y(r) =

1+7r2

20. Using Exercise 19 and the inversion formula (2.60), prove that the characteristic
function of the Cauchy distribution is e !, » € R.

21. Algorithm 2.76 to simulate a N (0, X) requires the Cholesky decomposition of
Y. The following alternative method uses instead the precision matrix A = 7!
This is useful when A is a sparse matrix but X is not. Suppose that DD" is the
Cholesky factorization of A. Let Y satisfy Z = DY, where Z is a vector of iid
N(0, 1) random variables. Show that Y ~ N(0, X).

22 Let N be a Poisson random measure with mean measure u. Show that its
Laplace functional is given by (2.80). Hint: start with functions f = al, with
a > 0and A € & such that u(A) < oo. Then, use the defining properties of the
Poisson random measure.

23. Consider a compound Poisson process with Lévy measure
v(dx) := x| Lgap<py dx, x€R

forsome 0 < § < & < 0. Letc :=v(R) = 4(5—1/2 _ 3‘1/2).
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(a) Show thatif U ~ U(0, 1) and R ~ Ber(1/2) are independent, then

(2R - 1)6
(1 -U+U+[6/¢)?

has distribution v/c.
(b) Implement Algorithm 2.91 and show a typical realization for (a) the case
6 =107% and & = oo, and (b) the case § = 107 and & = 107.

24. Let (X;) be a Lévy process. Show that the characteristic function of X; must
be of the form
EeirTXt — etqb(r)’ re Rd

for some complex-valued function ¢.

25. Show that the Gamma(a, c), Poi(c), and N(u, o%) distributions are infinitely
divisible.






CHAPTER:B

CONVERGENCE

The purpose of this chapter is to introduce various modes of convergence in
probability and how they are interrelated. We discuss almost sure convergence,
convergence in probability, convergence in distribution, and L? convergence.
The notion of uniform integrability connects various modes of convergence.
Main applications are the Law of Large Numbers and the Central Limit Theorem.

3.1 Motivation

As a motivating example for convergence, consider the random experiment where
we repeatedly toss a biased coin. Suppose the probability of heads is 0.3. We can
model this experiment with a Bernoulli process X, Xz, ... ~ijiq Ber(0.3), where
{X; = 1} is the event that the ith throw is heads. The total number of heads in n
throws is the random variable S, := X; + - - - + X,,. The average number of heads in
n throws is S, /n. In Figure 3.1 we see a typical realization (s,/n,n = 1,...,100)
of the random process (S, /n,n=1,...,100).

0.6
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Sn /N
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n

Figure 3.1: Average number of heads in n tosses, against 7.
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The behavior of the realization in Figure 3.1 is in accordance with our intuition.
We would expect the estimate s, /n for the probability of heads, here 0.3, to be more
accurate for large n than for small n. However, it is not true that (s, /n) converges
to 0.3 for every realization (s,). For example, for the realization where only heads
occur, we have lim s,,/n = 1, and if only tails occur, lim s, /n = 0. In fact, any limit
between 0 and 1 can be obtained for specific realizations. To explain the intricacies
of the above example, we have to look at the convergence behavior of sequences of
random variables — in this case the sequence (S, /n).

To understand the convergence of a sequence of random variables, we need
to recall a few things about the convergence of real-valued sequences; see Defini-
tion 1.24. For any sequence (x,) of real numbers,

liminfx, :=sup inf x,, and limsupux, := inf sup x,,

m Nz m p>m

are well-defined (possibly infinite). If liminf x,, = lim sup x,, we say that (x,) has a
limit and we write lim x,, for it. We say that (x,) converges to limx,. If the limit
lies in R then (x,) is said to be a convergent sequence.

Another way to state that (x,) converges to x € R is: for every £ > 0 there is an
N¢ such that for all n > N, it holds that |x,, — x| < &. An equivalent statement is:

Z Ty, x>} < oo forevery e > 0.
n

When we do not know to which limit a sequence converges, we can alternatively
use the following Cauchy convergence criteria. The proposition is formulated and
proved for real numbers, but the results hold for any convergent sequence (x,) in a
Banach space equipped with a norm || - ||; see Exercise 3. In the proof, we make use
of the fundamental property of the real numbers that every bounded sequence (x,) in
R has a convergent subsequence; this is often referred to as the Bolzano—Weierstrass
theorem.

Proposition 3.2: Cauchy Criteria for Convergence

The following statements satisfy (1) < (2) and (3) = (2):

1. (x,) converges to some real x := lim x,,.
2. (x,) is Cauchy convergent, that is, lim, ,—co [Xm — Xn| = 0.

3.0 20 Lnpar—xa|>e,) < oo for any (&,) such that ¢ ==}, &, < c0.

Proof. If (x,) converges to x, then (x,) is a Cauchy sequence, since

|xm _xn| < |xm _xl + |xn _xl
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and by letting m,n — oo, the right-hand side goes to 0. We have thus shown that
(1) = (2).

Conversely, suppose that (x,) is a Cauchy sequence of real numbers; that is, it
satisfies lim, ,— |Xm — X,| = 0. Every such Cauchy sequence is bounded. To see
this, take N large enough such that |x,, — x,| < 1 for m,n > N. Then, form > N,
|xn| < 1+ |xn]|, and so for all m, we have |x,,| < 1+ Z,]-L |x;|, which is bounded.
Therefore, by the Bolzano—Weierstrass theorem, there exists a subsequence (x,, )
that converges to some limit x € R. Thus, for every &£ > 0, there is an Ny such that
|xn, — x| < &/2 for all k > Nj. Also, by the Cauchy property, there is an N> such
that |x,, — x| < &/2 for all m,nx > N,. Let k be an integer such that k > N; and

ni > Np. Then, for all m > N,
lXm = x| < X = X, | + |Xn, — x| < &,

which shows that (x,) converges to x. We have thus shown that (2) = (1).
Finally, suppose that 33; 1{jx,,,-xi|>s:3 < ©. Then, there is an i such that
|xr+1 — x| < &g forall k > i. So, for any k > j > i, we have

k—1 j-1
e = xj] < oo = xp—1 |+ e —xg] < Zam < C—Zsm,
m=j m=1

which goes to 0 as i — co. Hence, (x;) is a Cauchy sequence. This establishes that
3) = (2). O

All random variables in this chapter are assumed to be numerical; that is, they
are measurable functions from Q to R. When such random variables are finite, they
are said to be real-valued.

3.2 Almost Sure Convergence

If a sequence of random variables (X,) converges pointwise to a random variable
X; that is,
lim X, (w) = X(w) forallw € Q,

we say that (X)) converges surely to X. We have seen in Proposition 1.26 that
lim sup X,, and liminf X,, are again random variables, and if both are equal, then
lim X, is again a random variable. When the event {lim X,, = X} has probability 1,
we say that X, converges almost surely to X.
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Definition 3.3: Almost Sure Convergence

The sequence of random variables (X,,) converges almost surely (a.s.) to a
random variable X if
P(lim X, = X) = 1.

We denote the almost sure convergence by X, = X.

J

It will be convenient to characterize almost sure convergence in a different, but
equivalent, way:

Theorem 3.4: Almost Sure Convergence

The sequence of random variables (X,) converges almost surely to a random
variable X if and only if for every € > 0

(3.5) lim P(sup | X, — X| > &) =0.
m—00

nzm

Proof. Consider the event A,, := {sup,,, |X, — X| > €}, m € N. Because Ap 2
Aj 2 ---, we have by the sequential continuity from above (2.5) of the probability
measure P that

lim P(A,,) =P (Ny_yAn) = P(inf sup X, — X| > &) = P(limsup |X,, — X| > &).
m-—-oo m n>m
If X, = X, then limsup|X,, — X| = liminf |X,, — X| = 0 with probability 1, so
lim P(sup,,s,, | X, — X| > &) = 0 for all £ > 0 and hence (3.5) holds. Conversely, if
P(limsup | X,, — X| > &) = 0 for all € > 0, then P(limsup |X,, — X| = 0) = 1; and
since liminf | X,, — X| > 0, the limit of X, is equal to X with probability 1. O

B Example 3.6 (Complete and Almost Sure Convergence) A sequence of random
variables (X},) is said to converge completely to X if for all € > 0

quxn ~X|> &) < oo.
n

. 1. . .
We write X, =5 X. Complete convergence implies almost sure convergence. To
cpl.

see this, take any € > 0 and let H,, := {|X,, — X| > &}. If X;, = X, then using the
countable subadditivity in Theorem 2.2, we obtain

P(sup |X, — X| > &) = P( | H”) < S P(H,) -0

>
nzm nzm nxzm

as m — oo; thatis, X, = X.
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Sometimes we do not know to which limit a sequence converges. To estab-
lish if the sequence converges almost surely, we can apply the following Cauchy
characterization:

Proposition 3.7: Cauchy Criteria for Almost Sure Convergence

The following statements are equivalent:

1. X, = X.
2. lim,—e P(supysq | Xnex — Xu| > €) = 0 for any choice of &€ > 0.
3. limg e P(sup,, 51 |Xm — Xu| > &) = 0 for any choice of & > 0.

4. P (limy, oo | Xim — Xp| = 0) = 1; that is, (X,,) is a.s. a Cauchy sequence.

Proof. We first establish that (1) & (4). This is really just saying that for almost
every w € Q the sequence (x,) with x, := X,(w) is a Cauchy sequence of real
numbers if and only if (x,) converges to x := X(w). This, however, is immediate
from Proposition 3.2.

We now show that (3) & (4). Define

Y, := sup |Xn+j — Xntkls
k=0

and note that (Y},) is monotonically decreasing and that (4) is equivalent to P(lim Y,, =
0) = 1. Moreover, sup,,s,, |Y,| = Y,, which by Theorem 3.4 implies that (3) is
equivalent to ¥,, = 0. In other words, (3) is equivalent to P(limY, = 0) = 1,
completing the proof.

Finally, we demonstrate that (2) < (3). Since (3) is equivalent to ¥,, =5 0, and

SUp | Xust — Xul < SUp [Xpej — Xuar| = ¥, 250,
k>0 j.k>0

then (3) = (2). In addition, |X; — Xi| < |X; — X,| + | Xk — X,| implies that

Yy < sup (|X; — Xpl + | Xk — Xnl) < 2sup [Xpak — Xanl-
J.k=n k>0

Therefore, P(Y, > &) < P(sup;sq | Xnsk — Xu| > €/2) — 0 shows that ¥,, = 0, or
(2) = (3), completing the proof. O

The following inequalities are useful in many different proofs and applications:



96 3.2. Almost Sure Convergence

Proposition 3.8: Markov’s and Chebyshev’s Inequality

For any random variable Y and € > 0, Markov’s inequality holds:

(3.9) P(|Y] > &) < @.

As a consequence, we have Chebyshev’s inequality, where u := EX:

Var X
(3.10) P(IX -l > 6) < —==.
E

Proof. We have E|Y| > E[|Y|1y|>e1] = E[lel1yy>¢3] = e P(|Y| > &). We obtain
Chebyshev’s inequality by taking Y := (X —u)? in Markov’s inequality and replacing
€ with £2. O

An extension of Chebyshev’s inequality (3.10) for the case where X is the sum
of (possibly non-identically distributed) independent random variables is given by
Kolmogorov’s inequality.

Theorem 3.11: Kolmogorov’s Inequality

Let S, = Z?=1 X;, where X1, X», ... are independent with 0 mean. Then, for
every € > O:

Var S,
g2

(3.12) P(sup |Sk| > €) <

k<n

A basic proof is outlined in Exercise 4. We provide a more general result in
Theorem 5.44, using martingale techniques.

B Example 3.13 (Random Series) Suppose that the random series (that is, se-
quence of partial sums) (S,) in Kolmogorov’s Theorem 3.11 is such that ¢, :=
Var §,, < ¢ < co. We can then show that the series converges almost surely.

Since (c;) is a monotonically increasing and bounded sequence, it converges.
Hence, (c,) is a Cauchy sequence by Proposition 3.2. Applying Kolmogorov’s
inequality to Sy4x — Sy = X1 + -+ Xpux for k=1, ..., m yields

m+n

&2 P(sup |Sp+x — Sul > &) < Z Var X; = cjpn — Cp.
k<m j:n+1

Taking limits on both sides as m, n — oo, and using the sequential continuity from
above (2.5) yields:

& M P(sup |[Spsk — Sp| > €) < lim (Ciman — cn) =0,
n k m,n—oo
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which by Proposition 3.7 (Item 2) implies that (S,,) converges almost surely to a
real-valued random variable S.
As a specific case, let X; := (B; — %)(%)i,i =1,2,..., where {B;} ~iiq Ber(%).

Then, EX; = O for all i and Var §,, = %(1 —-4™) < % Hence, we conclude that

the random series (S,) converges almost surely to a random variable
< N1y S (1) 1
S = Bi—-=-|l=z| =) Bi|lz]| — =
23] =2 fa) -
and that Y, := 3", B,-(%)i converges to S + % [ ]

The following Borel-Cantelli lemma is useful in many proofs that require almost
sure convergence:

Lemma 3.14: Borel-Cantelli

Let (H,) be a sequence of events. Then, the following hold:

1. X, P(H,) < co implies that P (Y, Ly, < c0) = 1.

2. Y, P(H,) = coimplies thatP (},, 1, < ) = 0, provided that the events
(H,) are pairwise independent.

Proof. Let € > 0 be an arbitrarily small constant and let pj := P(Hy). Define the
event

A= {50 1y, < &)
and note that, since A} 2 A; 2 --- is a sequence of decreasing events, limP(A4,) =
P(Ny_;Ax) by Theorem 2.4. Similarly, imP(Aj) = P(U7 A7) by Theorem 2.2,
with U AC = {332, 1y, > 7'}

Assuming that }}, p, := ¢ < oo, Markov’s inequality (3.9) implies that

P(Arcz) = P(ZZ:l ]].Hk > 8_1) < 8EZZ:1 ]]‘Hk =& ZZ:] Pk-
Therefore, taking limits on both sides of the inequality as n — oo yields
P(Y2 1y, 2e) <ec.

By taking £ | 0, we deduce that with probability O infinitely many of the events
(H,) occur; or, equivalently, that with probability 1 only finitely many of the events
(H,) occur. This completes the first statement in the Borel-Cantelli lemma.

Now assume that ), p, = oo; thus, for each £ > 0 we can find an n. such that
Cn = Yo pk > e 2 oralln > n,.
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Therefore, for all n > n. we have that
P(An) = P(ZZ;] ILHk < 8_1) = P(ZZ:1(pk - ]]-Hk) >Cp— 3_1)
< P(] Zzzl(pk - ILHk)l > Cp — 8_1)

Var(Xi_; 1a,)
(Cn - 8_1)2

D=1 Px(1 = pi) < 1
(cn— 3_1)2 (1 - 8)2‘

(by Chebyshev’s inequality) <

(by pairwise independence) =

Taking the limit on both sides of the inequality as n — oo, we obtain limP(A,) =

P(YX2, 1y, < &™) <lim c(ll——g)Z = 0. Since € > 0 was arbitrarily small, we deduce
that with probability 1 infinitely many of the events (H,) occur; thatis, P(3, 1n, =
o) = 1. O

3.3 Convergence in Probability

Almost sure convergence of (X),) to X involves the joint distribution of (X,,) and X.
A simpler type of convergence that only involves the distribution of X, — X is the
following:

Definition 3.15: Convergence in Probability

The sequence of random variables (X,,) converges in probability to a random
variable X if, for all € > 0,

IimP (|X, — X| > &) =0.

We denote the convergence in probability by X,, — X.

B Example 3.16 (Convergence in Probability Versus Almost Sure Convergence)
Since the event {|X, — X| > &} is contained in {sup;., |Xx — X| > &}, we can
conclude that almost sure convergence implies convergence in probability. However,
the converse is not true in general. For instance, consider the sequence X1, X», . ..
of independent random variables with marginal distributions

P(X,=1)=1-P(X,=0)=1/n, n=12,....
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Clearly, X, = 0. However, for ¢ < 1 and anyn =1,2,... we have,

P (sup | X,| < 8) =P(X, <&, Xu1 <e&,...)

nxzm

=P(Xy < &) P(Xpu41 < €) X - (using independence)

n n 1
pim [ 206 <o) = tim [ ] 1]
k=m k=m

-1 -1
lim 2= M P
n—oo  m m+1 n

other words, it is not true that X,, =5 0. |

It follows that P(sup,,, |X, —0] > &) = 1 forany 0 < e < landallm > 1. In

Proposition 3.17: Convergence of a Subsequence

If (X,) converges to X in probability, there is a subsequence (X,,) that
converges to X almost surely.

Proof. Let ey = 1/k,k > 1. Put ny := 0 and for k > 1, let n; be the first time
after nj_; such that P(|X,, — X| > &;) < 27%. There are such (n;) because (X,)
converges to X in probability by assumption. Setting Y, := X, , m > 0, we have
forany £ > Oand k > 1/e:

P(sup [V, = X| > &) < Y P(|¥ — X| > &) < 2'%.

m>k m>k

Taking the limit for k — oo shows that (¥;) converges almost surely to X, by
Theorem 3.4. O

Sometimes we do not know the limiting random variable X. The following
Cauchy criterion for convergence in probability is then useful:

Proposition 3.18: Cauchy Criterion for Convergence in Probability

The sequence of random variables (X)) converges in probability if and only
if for every £ > 0,

(3.19) lim P(|Xp — Xa| > &) = 0.
m,n— o0

Proof. Necessity is shown as follows. Suppose that X, — X. For any & > 0, we
have {|X,, — X| < e} n{|X,, — X| < &} C {| X\, — Xu| < 2¢&}, so that

P(| Xy — Xp| > €) < P(|1 X0 — X| > £/2) +P(|X, - X| > £/2),
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where the right-hand side tends to 0 as m,n — oo.

For sufficiency, assume that (3.19) holds. Put ng := 0. For k = 1,2, ... define
ny as the smallest n > n;_1 such that P(|X,, — X,,| > €x) < g for all m,n > ny,
with & := 27, so that 2k &k < oo. Let Yy := X, , k € N. The above shows that

P(|Yie1 — Y| > €r) < & forall k € N.

By the first part of the Borel-Cantelli Lemma 3.14, we have almost surely that
2 Ly -vijsery < 0. Define y := Yi(w) for an w for which the above holds.
Then, (yx) is a Cauchy sequence by part three of Proposition 3.2, and hence it
converges to some limit. Thus, the random sequence (Yj) converges almost surely
to some limit — call it X. Observe that, for any £ > 0, n, and k,

P(1X, — X| > &) < P(|1Xn — Xu,| > /2) +P(|Ys — X| > £/2).

Now take the limit for n, k — oo and the right-hand side converges to 0 because of
the assumption (3.19) and the fact that (Y;) converges almost surely and hence in
probability to X.

]

3.4 Convergence in Distribution

Another important type of convergence is useful when we are interested in estimating
expectations or multidimensional integrals via Monte Carlo methodology.

Definition 3.20: Convergence in Distribution

The sequence of random variables (X)) is said to converge in distribution to
a random variable X with cdf F provided that:

(3.21) limP(X, < x) = F(x) for all x such that lim F(a) = F(x).
a—x

We denote the convergence in distribution by X, -5 X.

J

The generalization to random vectors (or more generally, topological spaces)
replaces (3.21) with

(3.22) 1limP(X, € A) =P(X € A) for all Borel sets A with P(X € dA) =0,

where J A denotes the boundary of the set A.
A useful tool for demonstrating convergence in distribution is the characteristic
function; see Section 2.6.2. For a d-dimensional random vector X, it is defined as:

wx(r) =Eel" X reR’
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B Example 3.23 (Characteristic Function of a Gaussian Random Vector) The
density of the multivariate standard normal distribution is given by

d
1 12 d _1,T
f2(z) = | | =e% =(@2m) 22" zeRY,
B V2r
and thus the characteristic function of Z ~ N(0,1,) is
Wz (r) = Eel” Z — (271_)—51/2/ dz eiﬂz—%llzn2

R4

_ e—||r||2/2(2ﬂ)—d/2/ dze dlairl? o IrP/2 p ¢ R
Rd

Hence, the characteristic function of the random vector X = u+BZ with multivariate
normal distribution N(u, X) is given by
l//)((l‘) = Eei r'Xx _ EeirT(,u+BZ)
— ei erEei B'r)'Z _ ei erwZ (BTI‘)
irTu—|BTr|?/2 irTu—r'Xr/2

=€ =€

The importance of the characteristic function is mainly derived from the fol-
lowing result, for which a proof can be found, for example, in Billingsley (1995,
Sections 26 and 29).

Theorem 3.24: Characteristic Function and Convergence in Distribution

Suppose that Yy x, (r), ¥ x,(r), ... are the characteristic functions of the se-
quence of d-dimensional random vectors X, X, ... and yx(r) is the char-
acteristic function of X. Then, the following three statements are equivalent:
1. limyx, (r) = yx(r) forall r € RY.

2. X, 5 X.

3. limEh(X,) = Eh(X) for all bounded continuous functions 4 : RY — R.

The theorem can be slightly extended. It can be shown that any function ¢ that
is the pointwise limit of characteristic functions is itself a characteristic function
of a real-valued random variable/vector if and only if ¢ is continuous at 0. This
is useful in the case where we do not know the distribution of the limiting random
variable X from the outset.
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B Example 3.25 (Random Series Continued) Continuing Example 3.13, consider
the random series

n 1 k
Y”::ZB"(E) , n=12,...,
k=1
iid

where By, By, ... ~ Ber( %) We already established that (Y,) converges almost
surely to ¥ := 317, Bk(%)k. We now show that ¥, % ¥ ~ U(0, 1). First, note that

Eexp(irY,) = ﬁ Eexp(irBy/2%) = 27" ﬁ(l +exp(ir/25)).
k=1 k=1

Second, from the collapsing product, (1 —exp(ir/2")) [T;_,(1 + exp(ir/2%)) =
1 —exp(ir), we have

1/2"
—exp(ir/2")’

Eexp(irYy) = (1 —exp(ir))y

It follows that limEexp(irY,) = (exp(ir) — 1)/(ir), which we recognize as the
characteristic function of the U(0, 1) distribution. Because almost sure convergence
implies convergence in distribution (which will be shown in Theorem 3.40), we
conclude that Y ~ U(O0, 1). [ |

3.5 Convergence in L” Norm

Yet another mode of convergence can be found in L? spaces; see Section 2.5 for the
definition and properties of L? spaces.

Definition 3.26: Convergence in L” Norm

The sequence of random variables (X)) converges in LP norm (for some
p € [1, 0]) to arandom variable X, if || X,||, < oo for all n, || X]|, < oo, and

lim [| X, — X||, = 0.

We denote the convergence in L” norm by X,, =5 X.

For p =2 this type of convergence is sometimes referred to as convergence in
mean squared error. The following example illustrates that convergence in L” norm
is qualitatively different from convergence in distribution:

B Example 3.27 (Comparison of Modes of Convergence) Define X, :=1 - X,
where X ~ U(0, 1); thus, clearly, X, -5 U(0,1). However, E|X,, — X| — E|1 -
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2X| = 1/2 and so the sequence does not converge in L' norm. In addition,
P(|X, — X| > €) > 1 —& # 0 and so X, does not converge in probability either.
Thus, in general X, N implies neither X, = X nor X, Ly . [ ]

Again, when the limiting random variable X is not known, the following Cauchy
criterion is useful:

Proposition 3.28: Cauchy Criterion for Convergence in L” Norm

The sequence of random variables (X,,) converges in L” norm for p € [1, o]
if and only if ||X,|[, < oo for all n and

lim [|X,, — X,ll, = 0.
m,n— o0

Proof. If X, 5 X, then || X — Xull, — 0 for n — oo, and using Minkowski’s
inequality in Theorem 2.47 shows that (X)) is a Cauchy sequence in L?, because

”Xm - Xn”p < ”Xm - X”p + ”Xn - X”p -0

as m,n — oo. Showing the converse is not as straightforward and we first consider
the case with 1 < p < 0.

Assume that (X)) is Cauchy convergent and || X,||, < co. For k = 1,2,...
define ng := 0 and 7 as the smallest n > nx_; such that || X, — X, ||, < 272k for all
m,n > ng. Let Yy := X,,, and Hy := {|Yi+1 — Yi| > 275 for all k. It follows from
Markov’s inequality (3.9) that P(Hy) < 27%||Yx4+1 — Y«||%, and thus

ZP(Hk) < Zz—" < .
k k

Hence, by the first part of Borel-Cantelli’s Lemma 3.14, we have almost surely
that 3, 1y, < oo. If y; := Yx(w) for an w for which the above holds, then (y)
is a Cauchy sequence by part three of Proposition 3.2 (with g, := 27"). Hence,
the random sequence (Y%) thus converges almost surely to some limit, say X. By
Fatou’s Lemma 2.35

ElX, - X|P = Elimkinlen — X, P < limkinfE|Xn — X, |P >0,

where we take n — oo and use the Cauchy convergence assumption. In other words,
for a given & > 0, there exists a large enough N, such that || X — X, ||, < & for all
n > Ng. Since || X,||, < coand ||| X]||, = [ Xxll,| < [|X = Xull, < e forall n > Ng,
this shows that || X||, < oo, and completes the proof for p € [1, c0).

For the case p = oo, we have || X}, || = inf{x : P(|X,,| < x) = 1}. Define A, , :=
{I1Xm = Xu| > | X — Xullo} and A := Uy, A . Then, P(A) < 3, . P(Ay ) = 0.
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Thus, for all w € A¢ and any € > 0 we can find a large enough N, such that
(3.29) | X (w) = Xp(w)| < || X — Xnllow <& m,n > Ng,

which implies that (x,), with x, := X, (w), is a Cauchy sequence in R. The com-
pleteness of R implies that the limit X (w) := lim, X, (w) exists for each w € A€,
and we may set X(w) :=0 for w € A. Taking the limit as m — co in (3.29)
yields sup,c4c | Xn(w) — X(w)| < & and therefore || X,, — X||oo < & for all n > N,.
Finally, || X||co < | Xy = X|loo + | Xnllo < € + || X|leo for all n > N, showing that

| X]|co < 0. O

3.5.1 Uniform Integrability

Recall that a numerical random variable X is said to be integrable if EX exists and
is a real number; equivalently, if E |X| < co. Uniform integrability is a condition
on the joint integrability of a collection of random variables. We will see that this
concept ties together the notions of L! convergence and convergence in probability.
This will be particularly relevant for the convergence of martingales; see Chapter 5.

We now give an equivalent definition of integrability, whose proof is left for
Exercise 14.

Proposition 3.30: Integrable Random Variable

A real-valued random variable X is integrable if and only if

(3.31) Jim E[X] Lxjsp) = 0.

Uniform integrability extends property (3.31) to an arbitrary collection of ran-
dom variables.

Definition 3.32: Uniform Integrability

A collection K of random variables is said to be uniformly integrable (U]) if

lim sup Ele 1{|X|>b} =0.

b—eo xeqe

B Example 3.33 (Sum of two UI sequences) Let (X,) and (Y,) be two Ul
sequences of random variables. Then, the collection {Z,, ,}, where Z,, , := X, +Y,,
is also UL To see this, note that 1, is an increasing function for x > 0, so that
(x = ¥)(Lgxspy — Lgyspy) = 0 forx,y > 0. In other words, after rearrangement:

(x +y) Loy + Liyspy) < 2xLpspy + 2y Ly
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Using L{jysy>26) < Lix|>p) + 1{jy>5), We obtain the following inequality for any x
and y:

X + Y[ Lfjery>26r < X1+ YD (Lgupsny + Lijyispy) < 20 Ly + 2101 Lijy1>5) -
Therefore, as b T oo we have:

SupE|Zinnl 11z, 1526y < 2SUp E|X|L(ix,, 156} +2Sup E|Y,| Ly, 55y — 0+0,
m,n m n

which shows that {Z,, ,,} is also UL [ |

Proposition 3.34: Conditions for Uniform Integrability

Let K be a collection of random variables.

1. If K is a finite collection of integrable random variables, then it is UL
2. If |X| <Y for all X € K and some integrable Y, then K is UL
3. K is Ul if and only if there is an increasing convex function f such that
lim M =co and sup Ef(|X]|) < co.
roeo X XeK
4. K is ULif supy g E | X|1*¢ < oo for some & > 0.
5. K is Ul if and only if

(a) supycq E|X| < o0, and

(b) for every € > 0O there is a 6 > 0 such that for every event H:

(3.35) P(H) <6 = sup E|X|1y < &.
XeK

Proof.
1. Let K :={Xy,...,X,}. Then,

lim supE |X,| 1{x,|>5} = sup blim E |X,| 1gx,)5py =sup0 =0,
—00 n

b—oo n

since (3.31) holds for each integrable random variable.

2. We have
lim sup E [X| 1{x|>p) < hlim EY Tiyspy =0,
x —00

b—oo xe

since Y is integrable.
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3. Without loss of generality, we may assume that all X € K are positive and that
f = 1. Define g(x) :=x/f(x). Then,

Xxspy = [(X)g(X) L ix>py < f(X) supg(x).

x>b

Hence,

sup EXTxspy < sup Ef(X) supg(x).
XeK x>b

The proof of sufficiency is completed by observing that the right-hand side of
the above inequality goes to 0 as b — oco. To show necessity, suppose K is Ul
For every X € K we have

(o8]

EXT(x>py = / dy P(X1(xspy > y) = / dyP(X >bVy)
0 0
> / dyP(X > y).
b

It follows from the UI assumption of K that

lim sup/ dyP(X >y)=0
b=eo g¢ Jp

=: h(b)

Thus, there exists a sequence 0 = by < by < --- increasing to oo such that
h(b,) < h(0)27" for all n € N, where h(0) < supycy EX < co. Now define
g as the step function which starts at 1 and increases by 1 at each point b,,,
and let f(x) := fox dy g(y) be the area underneath the graph of f in [0, x].
Then, f is increasing and convex and lim, f(x)/x = co. It remains to show that
supg E f(X) < co. This follows from

Ef(X) = ZE/b dy Tixsy) < Y h(by) < 2h(0) < oo
n=0 n n=0

for all X € K.
4. This is a consequence of Point 3, by taking f(x) = x'*®

5. To simplify the notation, we can assume that X > 0. Take any £ > 0 and event
H. Let b > 0. We have

s(b)
—_—
(3.36) sup EX1y = sup EXILH(H{X<b}+]1{X>b}) <bP(H)+ Sup EXT1(x>p) -
XeK XeK
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In particular, EX < b + s(b) for all X € K. If K is Ul, the last term is finite
for b large enough. This shows that s(0) = supy.q EX < co. Moreover, if K
is UI, there is a b such that s(b) < &£/2. So if we take 6 < &/(2b), then
supyci EX1y < €. This shows sufficiency.

To show necessity, suppose that (3.35) holds and s(0) < co. We must show that
for every & > 0 there exists a b such that s(b) < &. To show this, in (3.35) take
b >5(0)/6 < coand H ={X’ > b} for an arbitrary X" € K. Then, by Markov’s

inequality (3.9),
0
P(X’>b)§%§5,

which in combination with (3.35) implies that EX'1y = EX'l{x/55) < & for

X’ € K. Since X’ is an arbitrary choice in K, the inequality EX 1 y.p) < & is
true for all X € K. In other words, s(b) < &, as had to be shown.

O

B Example 3.37 (Failure of UI) When uniform integrability fails to hold, then
X, — X does not necessarily imply that EX, — EX. For example, consider
the sequence of random variables (X,) with P(X,, = n) = 1/n = 1 - P(X,, = 0),
n=1,2,.... Then, X, - 0, because

P(|X,-0| >¢)=P(X,=n)=1/n -0,
but EX,, = 1 # 0 for all n. This is not surprising, since

1, b<n,

E|XulLyx, 26y = {O b

that is, limy_,o sup,, E|X,|1{|x,|>5) = 1, implying that (X;,) is not UL [ |

Theorem 3.38: L! Convergence and Uniform Integrability

A sequence (X,,) of real-valued integrable random variables converges in L'
if and only if it converges in probability and is uniformly integrable.

Proof. Suppose that (X)) is Ul and converges in probability. Let € > 0 be an
arbitrarily small number. Since (X,) is UI, then so is the collection {Z,, ,} with
Zmn = X — X,. In other words, for the given & we can find a large enough b, such
that E|Z,, »|1¢z,, ,1>6,} < €/3 forallm, n. Note that the uniform integrability means
that b, does not depend on m and n. Next, for the given € > 0 and ¢ := £/(3b,),
Proposition 3.18 tells us that we can find a large enough N, such that P(| X, — X,,| >
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g/3) < ¢ for all m,n > N.. Combining these results for m,n > N, we obtain

E|Xn = Xul = E|Znnl (L{1z,.01<e/3) + Lie/3<1Zmnl<be} + L Zpul>bo})
< 3/3 + b, P(lzm,n| > 8/3) + E|Zm,n|]1{|Zm,n|>bg}
<e/3+b,e/(3b;)+¢/3 =¢,

which implies that (X,,) is a Cauchy sequence in L!. By Proposition 3.28 there
exists an integrable X such that E|X,, — X| — 0. This completes the first part of the
proof.

Now, assume that E|X,, — X| — 0 with X and (X)) being integrable. From
Markov’s inequality (3.9) we have that P(|X, — X| > &) < ¢ 'E|X, - X| — 0,
proving convergence in probability. Next, we show that (X, — X) is Ul For a given
e > 0, we can choose a large enough N, so that E|X,, — X| < ¢ for all n > N,.
Therefore, for all b we have

sup E[X, — X|1qx,-x|>p} < sup E|X, - X| < &.

n>Ng n>Ng

However, since all X, and X are integrable, the finite sequence X; — X, X, —
X, ..., Xy, — X is uniformly integrable. Thus, there exists a large enough b, such
that sup, .y, E|X, — X[1{x,-x>py < € for all b > b.. Combining all the results
thus far, we obtain sup, E|X,, — X|1x,-x|>p} < € forall b > b,.

Since (X, — X) is Ul and X is integrable (and hence UI), then the sequence (X},)
is also UI, because it is the sum of two UI sequences. O

B Example 3.39 (Squeezing For Random Variables) Suppose that X, = X and
that (X)) is “squeezed” between (W,) and (Y,), in the sense that for all n:

W, <X, <Y,.

If Y, £ Y and W, £ W, then X,, &5 X.

To see this, define 7,, .= X, - W, and V,, =Y,—-W, > T, > 0. From the
L' convergence of (¥,) and (W,), we have V, LVi=Y-W. By Theorem 3.38
we then know that (V) is Ul, and since |T,,| < V,, for all n, (T,) is also UI. Since
X, = X and W, = W, we have that T, > T := X — W. From (T},) being UI,
another application of Theorem 3.38 allows us to conclude that 7;, L, T. In other
words, X, =T, + W, LT +w= X, because both 7, L5 T and W, Ly w. |

3.6 Relations Between Modes of Convergence

The next theorem shows how the different types of convergence are related to each

other. For example, in the diagram below, the notation qéf means that LZ-norm
convergence implies L”-norm convergence under the assumption that g > p > 1.
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Theorem 3.40: Modes of Convergence

The most general relationships among the various modes of convergence for
numerical random variables are shown below.

%, % x| > [%, 5 %]
)
X, 5X =|X,5X
)
x, % x| S x, B x

Proof.

1. We show that X,, = X = X, -5 X by considering the cdfs Fx, and Fy of X,
and X, respectively. We have:

Fx (x) =P(X, <x)=P(X,, <x,|X, - X| >¢) +P(X,, <x,|X, - X| < ¢)
<P(X,-X|>e)+P(X, <x,X <X, +¢&)
<P(X,—-X|>¢e)+P(X <x+e¢).

Now, in the arguments above we can switch the roles of X, and X (there is a
symmetry) to deduce that: Fx(x) < P(|X-X,| > €)+P(X, < x+¢). Therefore,
making the switch x — x — & gives Fx(x —¢) < P(|X — X,| > &) + Fx,(x).
Putting it all together gives:

Fx(x—¢) -P(|X - X,| > €) < Fx,(x) <P(|X,, — X| > &) + Fx(x + &).
Taking n — oo on both sides yields for any & > O:

Fx(x —¢) < lim Fx, (x) < Fx(x +¢).

Since Fy is continuous at x by assumption we can take £ | 0 to conclude that
lim, o Fx, (x) = Fx(x).

2. We show that X, 25 X = X, X5 X for ¢ > p > 1. This is immediate from
the monotonicity property of the L” norm in Theorem 2.47, which shows that
I X, — X, < ||X, = X|lg — 0, proving the statement of the theorem.

3. To show X, 5 X = X, 5 X, we need only show that X,, Lx o X, 5 X,
by the monotonicity property of the L” norm in Theorem 2.47. The result now
follows from Theorem 3.38. More directly, we can use Markov’s inequality (3.9)
and X, L X, to conclude that for every € > 0,

E|X, — X
P(|X, — X| > &) < ElX, — X]

— 0 asn— oo.
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4. Finally, X, &5 X = X, *5 X = X,, 5 X is proved in Examples 3.6 and 3.16.

O

Under certain conditions, the converse statements can be established as follows:

Theorem 3.41: Modes of Convergence under Additional Assumptions

Converse relationships among the various modes of convergence are:

il pairwise ind. "

X, =X = X, > X

ﬂsubseq‘

P X const. d
X, > X <= X, > X
Uix,)is urt

q (1X,]9) is UI 1

X, 5 X = X, 5 X

Proof.

1. We prove that X, 4% ¢ = X, 5 ¢ for some constant c. To this end, let

Flx) = {1, X 2 c,

0, x<c

be the cdf of a random variable X such that P(X = ¢) = 1. Then, X,, -5 ¢ stands
for P(X,, < x) =: F,(x) — F(x) for all x # c¢. In other words,

1, x>c,

lim F,(x) = {

0, x<ec,
and we can write:
P(|X,—c|>&) <1-P(X, <c+e)+P(X, <c—-¢) > 1-1+0=0, n — oo,
which shows that X,, = ¢ by definition.

2. Theorem 3.38 shows that if X, = X and (X,,) is UL then X, %> X.

3. We show that X, Ly X and (|X,|7) being UI for ¢ > 1 implies that X, X5 X.
Since X, X = X,, = X, it follows from Proposition 3.18 that | X,, — X,,| = 0
as m,n — oo, and therefore Y, ,, := |X,, — X,|¢ = 0. Since u +— |u|9 is a convex
function, it holds that (%|u| + %|v|)‘1 < %|u|‘1 + %|v|‘1. Hence,

Y < (1Xn] +1X)7 < 2971 (1X,0 17 + X, |9).
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It follows that the collection {Y,, ,} is UI, because (|X;,|? + |X,|?) is the sum
of two UI sequences. Theorem 3.38 then implies that Y,,, , = |X,,, — X,,|4 L
or, equivalently, that (X,,) is a Cauchy sequence in L9. Therefore, X, £> X by
Proposition 3.28.

4. Proposition 3.17 established that if X, % X, thena subsequence X, *> X.

5. Finally, we show that if X,, *> X and (X)) are pairwise independent, then
X, 5 X. Since X, 3 X = X, > X, Exercise 30 shows that under these

assumptions P(X = ¢) = 1 for some constant ¢. Thus, we can define the events

HkZ:{|Xk—C|>8}, k=1,2,...,

and we then need to prove that the pairwise independence of Hi, Hs, ... and
P(>,1m, < o) = 1 implies that },, P(Hx) =: s < co. To prove this, we
argue by contradiction. Suppose that s = oo and Hy, H,, ... are pairwise in-

dependent, then the second part of the Borel-Cantelli Lemma 3.14 tells us
that P(3,, 1y, < o0) =0, which is in contradiction with P(},, 1y, < o0) = 1.

Therefore, s < co, which by definition means that X, o x.

3.7 Law of Large Numbers and Central Limit The-
orem

Two main results in probability are the Law of Large Numbers and the Central
Limit Theorem. Both are limit theorems involving sums of independent random
variables. In particular, consider a sequence Xi, X», ... of iid random variables
with finite expectation u and finite variance o-2. For each n define

X, = X1+ +X,)/n.

What can we say about the (random) sequence of averages X1, X», X3, ...? By the
properties of the expectation and variance we have EX,, = y and Var X,, = o2/n.
Hence, as n increases, the variance of the (random) average X, goes to 0. This
means that, by Definition 3.5, the average X, converges to x4 in L% norm as n — oo;
that is, Yn i u.

In fact, to obtain convergence in probability the variance need not be finite — it
is sufficient to assume that y := EX < oo.
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Theorem 3.42: Weak Law of Large Numbers

If X1, Xp, ... are iid with finite expectation y, then for all € > 0

lim P(|X, — u| > &) = 0.
n—oo

In other words, X, = u.

The theorem has a natural generalization for random vectors. Namely, if g :=
EX < oo, then P(||X, — u|| > &) — 0, where || - || is the Euclidean norm. We give
a proof in the scalar case and leave the multivariate case for Exercise 37.

Broof. Let Zy := Xy — u for all k, so that EZ; = 0. We thus need to show that
Z, = 0. We use the properties of the characteristic function of Z ~ Z; denoted by
Yz. Due to the iid assumption, we have

(343) vz () =B P =E[ [ B = [yz(r/n) = [wz(r/m)]".
k=1 i=1

An application of Taylor’s theorem (see Proposition 2.61) in the neighborhood of
r =0 yields

w2 (r/n) = z(0) + -y (0) + o(1/n).
Since ¥z(0) = 1 and ¢/, (0) =i EZ = 0, we have:

Uz, (r) = [Yz(r/m]" = [1+o(1/n)]" > 1, n— eco.

The characteristic function of a random variable that always equals O is 1. There-
fore, Theorem 3.24 implies that Z, <% 0. However, according to Theorem 3.41,
convergence in distribution to a constant implies convergence in probability. Hence,
Z, 5 0. o

There is also a stronger version of the Law of Large Numbers, given in The-
orem 3.44. Tt is stated and proved here under the condition that EX? < co. We will
give a martingale-based proof in Section 5.5.2 that does away with this condition.
The mildest condition known today is that the variables X, X3, ... are pairwise
independent and identically distributed with E | X;| < co. The corresponding proof,
however, is significantly more difficult; see Exercise 35.
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Theorem 3.44: Strong Law of Large Numbers

If X1, X5, . .. are iid with expectation u and EX? < oo, then for all & > 0

lim IP( sup | X, — u| > 8) =0.

nzm

In other words, X, &5 .

.

Proof. Because X can be written as the difference of its positive and negative part,
X = X* — X, we may assume without loss of generality that the {X,,} are positive.

Next, from the sequence Yl,yz,ym ... we can pick the subsequence X1, X4, Xo,

Xi6,... = (X,2). From Chebyshev’s inequality (3.10) and the iid condition, we
have

o Var X 1

ZP(|an—u|>s)s 5 Z;<oo

n=1 n=1

Therefore, X 2% u and from Theorem 3.40 we conclude that X2 5 .
For any arbitrary n, we can find a k, say k = W/, such that k? < n < (k +1).
For such a k and positive X1, X», .. ., it holds that

K2 —

oI X, (k + 1)2.

2 < Yn < Y(k+1)2T
Since X ;> and Y( k+1)2 converge almost surely to y as k (and hence ) goes to infinity,

we conclude that X,, 5 p. |

The Central Limit Theorem describes the approximate distribution of X,,.
Loosely, it states that the average of a large number of iid random variables ap-
proximately has a normal distribution. Specifically, the random variable X,, has a
distribution that is approximately normal, with expectation u and variance o2 /n.

Theorem 3.45: Central Limit Theorem

If X1, X5, . .. are iid with finite expectation u and finite variance o2, then for
allx e R,

Jlim P| 2L < x| = o),

wher_e ® is the cdf of the standard normal distribution. In other words,
V(X — ) /o 5 N, 1).

T —
1mP("“<x

Proof. LetZ := (X —w)/o forall k, so that EZ; = 0 and EZ,% = 1. We thus need
to show that vn Z, -5 N(0,1). We again use the properties of the characteristic
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function. Let ¢z be the characteristic function of a generic Z ~ Z;. A similar
calculation to the one in (3.43) yields:

W iz, (r) = Bel Vi = [y (r )",

An application of Taylor’s theorem (see Proposition 2.61) in the neighborhood of
r =0 yields

2
W2r N =1+ 20 (0) + 2 0 0) + 0 ).

Since Y4, (0) =B £ei"?| _ =iEZ =0and y(0) = i EZ* = -1, we have:
2

n
+o(1/n)] Se? no .
2n

Uz, (1) = [Wz(r/\/ﬁ)]" = [1 _

From Example 3.23, we recognize e~""/2 as the characteristic function of the standard

normal distribution. Thus, from Theorem 3.24 we conclude that \/n Z, S N(0,1).
O

B Example 3.46 (CLT and Sums of Random Variables) Figure 3.47 shows the
Central Limit Theorem in action. The left part shows the pdfs of S, = X1 +---+ X,
forn =1,...,4, where X1, ..., X4 ~jig U(O, 1). The right part shows the same for
the case where X, ..., X4 ~iig Exp(1), so that S,, ~ Gamma(n, 1). In both cases,
we clearly see convergence to a bell-shaped curve, characteristic of the normal
distribution.

1

0.8

0.6

0.4

027

0 ! 0
0 1 2 3 4 0 2 4 6 8

Figure 3.47: Illustration of the Central Limit Theorem for (left) the uniform distri-
bution and (right) the exponential distribution.
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Exercises

1. Let (x¢) and (yx) be two sequences of real numbers such that lim,—c X, /vy, = [.
Prove the Stolz—Cesaro limit:

(3.48) lim uzl
n_)ooyl+...+yn

under either one of the following conditions:

(@) lim,—e0 25— Y& = o0 and y; > 0 for all kK > n; and some integer 71;

(b) lim, 0 25—y Xk = limyeo 25 Y& = 0 and y; < O for all k& > n; and some
integer nj.

2. Suppose that x, — x as n — oo, and that f : R — R is a continuous function.
Further, let (w,) be positive weights such that 3} _, wy — oo.

(a) Use the Stolz—Cesaro limit (3.48) to prove the convergence of the Cesaro
average as n — oo:

wi f(x1) +- -+ wpf(x,)

Wi+ -+ wy

(3.49) — £(x).

(b) Suppose that 0 < by < by < b3 < --- with b, T 0o and lim,, e 2}_; ar =X <
oo. Use the Cesaro average (3.49) to prove the Kronecker lemma

1 n
(3.50) lim — Z bray = 0.

n—oo bn =

3. Modify the proof of Proposition 3.2 to demonstrate that the results also hold for
any convergent sequence (x,) in a Banach space equipped with a norm || - ||.

4* To prove Kolmogorov’s inequality (3.12) from first principles, we define for a
fixed a > 0 and a fixed n > 1 the random variable

N :=inf{k > 1:|S¢| > a}.

(a) Show that {N < n} is the same event as {maxy<, |Sk| > a}.

(b) For k < n, the random variable S 1y-¢} depends only on Xi, ..., Xy, and the
random variable S, — S; depends only on Xj41, ..., X},. Prove this.

(c) Show that ESy (S, — Si)Lin=x) = 0 forall k < n.
(d) Using S > S7 +25(S, — Sk), show that

E[S21y=t}] = a*P(N = k).
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() Summing the previous inequality over k < n, finish the proof of Kolmogorov’s
inequality.

5. Let X1, X, ... be a sequence of random variables (not necessarily independent),
with

X, =

n* — 1 with probability 1/n?
-1 with probability 1 — 1/n?.

Let S, be the sum of the first n of the {X;}.

(a) Show that EX,, =0foralln=1,2,....

(b) Prove that, almost surely,

Z Tix,>-1) < oo.
n=1

(c) Prove that (S, /n) converges to —1 almost surely.

6. Suppose X, X3, ... 1is a sequence of pairwise independent random variables with

1
P(X;=0):=1-——, k>2

2kInk’

Show that X,, = 0, but not almost surely (that is, it is not true that X,, %% 0).

7. Let X1, X», . .. be independent random variables with means w1, uz, . . ..

(a) If 5%, k! Var X; < oo, show that Z, := 1 37 (Xy — ) 5 0.

(b) If 372, b;z Var X < oo, for some 0 < by < by < --- and b, T oo, show that
Sn = 24—y (Xk — px) /by converges almost surely. Hence, using the Kronecker
lemma (3.50), deduce that Z, := b—ln 2y (X — i) 25 0.

8. Let M be the space of all real-valued random variables that are defined on a
probability space (Q,H,P), where random variables that are almost surely equal
are considered to be one and the same. On M we can introduce a metric d, by
defining

d(X,Y) =E(X-Y|A1).

(a) Prove thatd is indeed a metric (see Definition B.1 for the properties of a metric).

(b) Show that a sequence (X)) converges to X in probability if and only if the
sequence (d(X,, X)) converges to 0 as n — co. Hint: show that for € € (0, 1),

el S AT S e+ 15y

forall z > O.
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9. Let X, X1, X, ... be random variables that take values in a metric space E with
metric r. We say that (X)) converges in probability to X if for every € > 0.

(3.51) limP(r(X,, X) > &) =0.
On the space of random variables taking values in E, define the metric
d(X,Y) =E(r(X,Y)A 1),

where X and Y are identified if P(X = Y) = 1. Show that (3.51) holds if and only if
limd(X,,X) =0.

10. Below Xi, X3, ... are assumed to be independent random variables. Use The-
orem 3.24 to prove the following results:

(a) If X,, ~ Bin(n, 4/n), then, as n — oo, X, converges in distribution to a Poi(1)
random variable.

(by If X,, ~ Geom(A/n), then, as n — oo, %Xn converges in distribution to an
Exp(A1) random variable.

(¢c) If X,, ~ U(0, 1) and M,, = max{Xy, X»,...,X,}, then, as n — oo, n(1 — M,)
converges in distribution to an Exp(1) random variable. Can you also find a
proof without using characteristic functions?

11F Let Xy, X5, ... be an iid sequence of random variables. Define Sy := 0 and
Sy =21, Xiforn=1,2,.... Suppose that each X; has a Cauchy distribution; i.e.,
it has probability density function f (with respect to the Lebesgue measure) given
by

1

1
= e R.
fx) ml+x2 o

(a) Using characteristic functions, show that (S,/n) converges in distribution.
Identify the limiting distribution.

(b) Find the limiting distribution of M, := m max{Xj,...,X,}/nasn — oo.
12. Let X1, X», ... be iid random variables with pdf

f(x):= LOZS(X), x €R.
X

Define S, := 27 X;forn=1,2,....

(a) Show that the characteristic function of each X; is:

=] it frl <1,
Vi) = {0 i > 1.
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(b) Prove that (S,/n) converges in distribution to a Cauchy random variable as
n— oo,

(c) Show that
3
lim P(S, <n) = T

13. Suppose that Xi, X, ... are iid with EX? =: y, < oo for p = 1,2,3,4, and
characteristic function ¢ x. Using the fact that w;k) (0) = i* EX*, find an explicit
formula for E(X, — u;)* in terms of 1, o, u3, t4, and n.

14. Prove Proposition 3.30 using the Dominated Convergence Theorem 2.36.

15. Suppose that the random variables X,Y, (X,,n € N), and (¥,;,n € N) satisfy
the following conditions:

Cl. X, = X.

C2. |X,| £Y,.

C3. Y, Y and EY,, —» EY < co.

Using Fatou’s Lemma 2.35 on Y, + X,,, prove that EX,, — EX. We refer to this
result as the extended dominated convergence theorem.

16. Suppose that X, L 0 and Y, L 0, but that the sum X, +Y,, =: Z is independent
of n. Show that Z must be almost surely 0.

17. Suppose X,, =» X, where || X||, < co and || X,||, < co forall n and p € [1, c0).
Prove that ||X,, — X||, — 0if and only if || X[, — [|X]|,.

18. Let &1, &7, ... be a sequence of iid zero-mean random variables. Let («,) be
a sequence of positive constants such that 3}, @, = 1. Define the sequence of
random variables Xy, X1, X», . .. via the recursion

Xo:=0, Xy, =(-a)Xp-1+a,é&,, n=12,...

(a) Show that the sequence (&,) is uniformly integrable.

(b) Use Proposition 3.34 to show that (X,) is uniformly integrable. Hint: For a
convex function f : R - Rand @ € (0,1), f(ax+ (1 —a)y) <af(x)+ (1 -

@) f(y).

19. Let (X,) be a sequence of uncorrelated random variables (i.e., Cov(X;, X;) =0
for i # j) with expectation O and variance 1. Prove that for any bounded random
variable Y, we have lim E[ X,,Y] = 0. Hint: With «,, := E[X,,Y], first consider

n
E (Y - Z i Xi
k=1

2
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20. Show that a collection K of random variables X is Ul if

sup P(|X| = x) < P(]Y]| = x)
XeK

for all x € R, where Y is an integrable random variable (E|Y| < o0).

21F Show that a collection of random variables K is U, provided there exists a
function f such that f(x)/x T co asx T co and supyc Ef (|1X]) = ¢1 < o0.

22. Suppose C; and C; are two uniformly integrable families of random variables.
Define C :={X +Y : X € C,Y € C,}. Show that C is uniformly integrable.

23. If X, 5 X and (X,, — Y,) = 0 as m,n — oo, show that ¥, % X.
24. If g : R — R is a continuous function, show that:

(@) Xn > X = g(X,) > g(X).
(b) X, > X = g(X,) > g(X).
(©) X, = X = g(X,) = g(X).

25. Suppose that (X,,) is Ul and X,, > X. Show that E|X,,| — E|X]| < c.

26. Suppose X, - X and sup, E|X,|% < oo for @ > 1. Show that E|X,,|# — E|X|?
for any g € [1, @).

27. Consider Y, := 1 — cos(2anU), where U ~ U(0,x) for x € [0,1]. Verify
Fatou’s Lemma 2.35 by showing that

EliminfY, =0 < 1 =liminf EY,,.

You may use Dirichlet’s approximation theorem, which states that for any real
numbers r and 0 < & < 1, we can find integers n and k such that n € [1,&7!] and
|nr — k| < &.

28. Show that if sup, X,, <Y and EY < oo, then the reverse Fatou inequality holds:

limsup EX,, < E limsup X,.

n n

29. Consider the following two statements:

(a) x"P(|X| >x) > O0forr >0,asx T oo.
(b) E|X|® < oo fors > 0.

Show that (a) implies (b), provided that s < r. Then, show that (b) implies (a),
provided that s = r.
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30. If X, > X and X;, X, ... are pairwise independent, show that X is almost
surely constant.

31F Let g(x,y) be a continuous real-valued function of x and y. Suppose that
X, 5 X and Y, = c for some finite constant c. Then,

§(Xn, ) = g(X,0).
This is Slutsky’s theorem. We can prove it as follows. Let
Ux,y, (r) == BelXn42l) and gy (r) := e Ee"X,  Vr e R?
be the characteristic functions of Z, := [X,,Y,]" and Z := [X,c]". We wish to
show that yx, y, converges to ¢x . which, by Theorem 3.24, implies that Z,, % Z.
(a) First, show that
(352) x5, (1) = Uxe ()] < Wox, (r1) = Yx (r)| +E 2079 — 1),
(b) Second, show that for any € > 0,
Ele20n=¢) — 1| < 2P[|Y, — c| > &] + |ra]e.

(c) Third, using (a) and (b) prove that Z,, < Z and consequently, that g(X,,, Y;) N
g(X,c).

32. Suppose that Z, < X, <Y, for all n, X, 4% X, and Y, L Y, Z, Ly 7. Show
that E|X,,| — E|X| < oo.

33. Suppose that f : [0, 1] — R is a continuous function on [0, 1] and define the
n-degree polynomial function:

fult) = ) f(k/n) (Z) F(1-n"k, e o,1].
k=0

(a) Show that f,(f) = Ef(Y,), where Y, is the average of n iid Bernoulli variables
with success probability 7.

(b) Use the Bolzano—Weierstrass theorem to prove that there exists a constant
¢ < oo such that sup,¢po 47 [f(1)| < c.

(c) Show that f,(t) — f(¢) foreveryt € [0, 1].

(d) Use the Heine—Cantor theorem (see Example B.6) to prove that

P [fu(®) = ()] = 0.

te[0,1

This proves the Weierstrass approximation theorem — any continuous function
on [0, 1] can be approximated arbitrarily well (in the supremum norm) by a
polynomial function.
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34. Suppose that X, X», ... are iid with finite mean y := EX < oo, and let Y} :=
X1 x, <k} be a truncated version of X; for all k.

(a) Show thatY, — X, 3 0.
(b) Using the identity EYk2 = /000 dr 2t <, P(| Xk | > t), show that

Z EY} <4
.
2
o K
(c) Define the variable S, := 27} _, @. Use the result in Example 3.13 to prove

that S, converges with probability 1.
(d) Use Ele Kronecker lemma (3.50) to show that Y,, — EY,, %5 0. Hence, deduce
that X, = u.

35. Let X, X», ... be a sequence of positive pairwise independent and identically
distributed random variables with mean EX =: u < oo. The following exercises
culminate in a proof that X,, 5 u. We may drop the positivity requirement by
considering the positive and negative parts of the random variables separately.

(a) LetY, := X, 1(x,<n) be a truncated version of each X,,. Show that X, Y, *5 0.

(b) Use the fact that Zle Lij—i<vi<jy = 1 and {X; < k} = {X; = Y)} to show
that

k 00
EY? < > PP(j-1<Xi<j) and Y jP(-1<Xi<j)<l+p
J=1 j=1

(c) Let By := [ozk] for @ > 1 be a subsequence of k = 1,2, .... Show that

1
Z ES%’

n:Bn=k

where ¢, < oo is some constant depending on a.

(d) By changing the order of summation, deduce the following bounds:

2

00 Bn
ZﬁiZ Sy ok <214 ).
=1 k=1 k>1

(e) Using the previous result to deduce that Y5, — EY g, 3 0.

() I_Jse the Cesaro average in (3.49) to show that EYﬁk — u. Hence, deduce that
Yﬁk Lt M.
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(g) Show that for 8y < n < Bi+1, we have:

?ﬁk& < ?n < @?ﬁkﬂ'
ﬁk+1 ,Bk

Hence, using all of the previous results deduce that X,, %5 p.

36" Suppose X1, X», ... are independent random variables with

P(Xi = k) = B(X; = —k) := #
P(Xk = 1) :P(Xk = —1) = % (1 - %) .

Show that, while EX,, = O and Var(y/n X,,) — 2, itis not true that vn(X,—0)/V2 %
N0, 1).

37. Prove that if X, X5, X3, ... are iid d-dimensional random vectors with finite
expectation p := EX < oo (or equivalently ||u|| < oo), then for all £ € (0,1) we
have P(||X,, — u|| > &) - 0asn — oo.



CHAPTER 4

CONDITIONING

The concept of conditioning in the theory of probability and stochastic
processes aims to model in a precise way the (additional) information that
we have about a random experiment. In this chapter, we define the concepts of
conditional expectation and conditional probability and explore their properties.
A main application is in the study of Markov processes.

4.1 A Basic Example

Let (2, H, P) be a probability space for a random experiment. Think of the random
experiment of drawing a uniform point in Q := (0, 1] and let H be the Borel o-
algebra on (0, 1] and P the (restriction of the) Lebesgue measure to (0, 1]. Let X
be a numerical random variable that describes a measurement on this experiment.
In particular, suppose that X represents the squared value of the point drawn; so
X(w) = w? weQ.

What would be your “best guess” for X if you had to guess a number between 0
and 1? It would have to be the expectation EX = fo1 dxx?=1/3.

Now, let F be the o-algebra generated by the sets (0, 1/3], (1/3,2/3],(2/3,1].
Suppose we have extra information that w € (2/3, 1]. What is now your best guess
for X? It would be 3 f21/3 dxx? = 57/81. Similarly, if we knew that w € (0, 1/3]
our guess would be 3/81, and knowing w € (1/3,2/3] would give the guess 21/81.

In terms of o-algebras of information, our initial guess of 1/3 was based on the
trivial o--algebra {Q, 0}; i.e., no information where the outcome of the experiment
will lie other than that it lies somewhere in (0, 1]. However, we can “refine” our
initial guess of 1/3 based on the information in the o-algebra 7, to give the set of
guesses {3/81,21/81,57/81}. Or, equivalently, we can define a function X via:

~ 3 21 57
X(w) = 51(0,1/3] (w) + 51(1/3,2/3](60) + 8—111(2/3,1](0))»
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Figure 4.1: The conditional expectation is a random variable.

This will be our definition for the conditional expectation of X given # in this
case. Written E#X. Note that X is # -measurable.

4.2 Conditional Expectation

In elementary probability, we define the conditional expectation after defining con-
ditional probability. In advanced probability, it is more convenient to reverse the
order, as we often want to condition on o-algebras. In what follows, (Q, H,P) is
a probability space, X a random variable, and ¥ a sub-c-algebra of H; that is a
o-algebra whose every member (i.e., set) belongs to H as well. Recall the notation
V € ¥, to mean that V > 0 and is ¥ -measurable.

Definition 4.2: Conditional Expectation

The conditional expectation of X given ¥, denoted E#X, is defined in two
steps:

1. For X > 0, EfX is defined as any random variable X with
(a) X € Fs.
(b) EVX =EVX forevery V € ¥,  (projection property).

2. For arbitrary X, if EX exists (possibly +o0), ExX := E X' —E#X".
Otherwise, the conditional expectation is left undefined.

Note that the conditional expectation is defined almost surely. That is, there are
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in general many functions X that satisfy the conditions in the definition above. How-
ever, fortunately all these versions are equal to each other up to a set of probability
0. This is a consequence of the following theorem:

Theorem 4.3: Existence and Uniqueness of the Conditional Expectation

Let X > 0 be a random variable and let ¥ be a sub-o--algebra of . Then,
E# X exists and is unique up to equivalence.

Proof. This is an application of the Radon—Nikodym Theorem 1.59. For each event
H € 7, define

P(H) :=P(H) and Q(H) ::EILHX:/XdP.
H

Both P and Q define measures on (Q, ¥) and Q < P (i.e., Q is absolutely continu-
ous with respect to P). Hence, by Theorem 1.59 there exists up to equivalence a
unique density X = dQ/dP such that

/VdQ:/v;?dP

forevery V € #,. Thatis, EVX = EVX. m]

The properties of conditional expectation, such as monotonicity and linearity,
derive directly from the properties of the expectation in Theorem 2.34. To illustrate,
suppose that X <Y. Let X and Y be versions of the conditional expectation of X and
Y with respect to ¥. Take any V € .. Then, EVX < EVY, by the monotonicity
of the (ordinary) expectation. Hence, by the definition of conditional expectation,
we have EVX <EVY;ie., EV(X -Y) <0forall V € %. This can only be true
if X <Y almost surely; that is, Ex X < E#Y. In a similar way, we can show that
the other properties of the ordinary expectation in Theorem 2.34 also hold for the
conditional expectation.

Two important new properties emerge as well, as given in the following theorem:

Theorem 4.4: Additional Properties of the Conditional Expectation

Let ¥ and G be sub-c-algebras of H. Let W and X be random variables
such that EX and EW X exist. Then, the following hold:

1. (Taking out what is known): If W € ¥, then EgWX = WE#X.
2. (Repeated conditioning): If ¥ C G, then

(4.5) EfEgX = EgErX = B#X.
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Proof. It suffices to consider only positive W and X.
1. Suppose W € #,. Let X = E#X. By definition, X € F, and for all V € F;:
EV(WX) = EVWX = EV(WX).

In other words, WX = WE#X is a version of E#(WX).

2. Let¥ C G. Define W := E¢X. We have W € ¥, and hence also W € G,. So by
part 1 (taking out what is known) we have EgW = W; that is, EgEF X = E#X.

To prove the first equality in (4.5), define Y := EgX and X = EfX € 7. Take
any V € ¥, (andhenceV € G, as well). By definition of X , we have EVX = EVX
and by the definition of ¥, we have EVY = EVX. Hence, EVX = EVY ; that is,
EFEgX = Ef X.

O

There is an amusing way to remember the repeated conditioning: The o-algebras
¥ and G represent the information about the measurement on a random experiment
by a fool and a genius. The fool has no use for the genius’ information: EFEgX =
E#X, and, sadly, the genius cannot further improve on the poor information of the
fool: EgE#X = E#X.

In many applications of conditioning, we wish to take the expectation of a
random variable X conditional on one or more random variables or, in general, on
a stochastic process Y := {Y;,t € T}, in which case ¥ = oY = o {Y;,t € T}. In this
case we often write

EsX =E[X|Y,.r € T] = E[X|Y].

When conditioning on a random variable Y, we can use the fact (see Theorem 2.65)
that any random variable in oY, in particular E[X | Y], must be a deterministic
measurable function of Y; that is, E[X | Y] = h(Y) for some measurable function
h. This is in accordance with our use of conditional expectations in elementary
probability: We first determine A(y) := E[X |Y = y] and then use E[X | Y] = h(Y)
in computations. Here are some examples.

B Example 4.6 (Bernoulli Process) Let Xi, X3, ... be a Bernoulli process with
success parameter p. Let, S := X;and §;, ;= X1 +---+ X, forn =2,3.... Given
the event {X; = x1,...,X, = x,}, the only values that S,;; can take are s, :=
X1+ +x, and s, + 1, with probability 1 — p and p, respectively. Consequently,

4.7 E[Sn1 | X1, s Xp]l =S (1=p)+(Su+ 1) p=S,+p.
In a similar way, we can derive that

(4.8) E[Su1|S1,...,8:] =Sy, +p.
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Intuitively, we know that (4.7) and (4.8) should be the same because the amount of

information that X1, ..., X;, and Sy, . . ., S, carry is exactly the same. In particular, if
we know the outcomes of X, . .., X,, then we can deduce the outcomes of Sy, ..., S,
and vice versa. [ |

B Example 4.9 (Poisson Count of Exponential Interarrivals) Suppose that
Ay, Ay, ... 1is aniid sequence of Exp(1) random variables. Think of A; as the time
interval between the arrival of the ith and (i — 1)st customer to a post office; thus,
T, := A;, T, := A1 + Ay, and so on, are the actual arrival times. Let N; be the
number of customers that arrive during the interval [0, 7]. Note that N; is a random
variable with values in N. What is the distribution of N,?

Let us solve this using generating functions and conditioning. First, consider
the probability generating function of N;; in particular, let g(¢) := E s". By condi-
tioning on 77, the time the first customer arrives, we have

g(t) =EsM =E E[s" | T1] :/ dx E[sV | Ty =x] 1e7,
——— 0 ————
h(T}) h(x)

where we have defined the function 4 implicitly above. For x > ¢, we have h(x) =
E[sV' | T; = x] = s = 1, because in that case there are no arrivals in [0,¢]. For
x < t, the conditional distribution of N; given T1 = x is the same as the distribution
of the number of arrivals in (x, 7] plus 1, which in turn has the same distribution as
N,_, + 1. Hence, in this case h(x) = s E sV~ = 5 g(t — x). Combining these cases,
we have

(o) t
g(t):/ dx/le'ﬂx+/ drsg(t—x)de™
t 0
t
:e_h+e_ﬁ’/ dysg(y)deV.
0

Differentiating g with respect to ¢ thus gives

t
—de M —pet / dysg(y) e +eYg(r) Aets
0

= —Ag(t) +sAg(t) = -A(1 —s5) g(1).

g’ (1)

Since g(0) = 1, by definition, it follows that

g(f) — e—/l(l—s)t'

In other words, N, ~ Poi(At). [ |
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For random variables in an L? Hilbert space (see Section 2.5), the conditional
expectation can be defined as a projection, in which case the “projection property”
in Definition 4.2 becomes evident. Recall that the inner product of X and Y in L?
is (X,Y) = EXY, and hence || X - Y||3 = E(X - ).

Theorem 4.10: Conditional Expectation in L?

For X € L?, the conditional expectation E#X is the orthogonal projection of
X onto the subspace V of ¥ -measurable random variables in L.

Proof. Let X be the orthogonal projection of X onto the subspace V. That is,

X = argmin || X — V||».
VeV

Then, X can be written as X = X + X+, where X+ := X — X is perpendicular to any
V € V, meaning that
V, X5 =0.

But this is just another way of saying that EV (X — 5(\): 0. This shows that the
projection property in Definition 4.2 holds. Since X € V, we have that X =
EsX. O

4.3 Conditional Probability and Distribution

A basic treatment of conditional probability starts with the following definition:

Definition 4.11: Conditional Probability for Events

Let A and B be two events with P(B) > 0. The conditional probability that
A occurs given that B occurs is denoted by

P(A N B)

4.12) B(A|B) = —3 B

Definition 4.11 is sufficient to derive a slew of useful results, summarized in
Theorem 4.13. The proofs are elementary; see Exercise 1.
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Theorem 4.13: Properties Involving Conditional Probabilities

Let (Q, H, P) be a probability space and A, A1, A», ..., A, B1, B, ... events
such thatP(A;N---NA,) > 0and {B;} form a partition of Q, with P(B;) > 0
for all i. Then, the following hold:

1. Law of total probability: P(A) = Y, P(A| B;) P(B;).

P(B;)P(A|B))
Y P(B)P(A|B)

2. Bayes’ rule: P(B; | A) =

3. Chain or product rule:

P(NL, A;)) =P(A))P(A2]| Ay) - P(A, | A1 N - - N Apy).

B Example 4.14 (Memoryless Property) The single most important property of
the exponential distribution is that it is memoryless. By this we mean the following.
Let X ~ Exp(A). Then, for any x,y > 0,

P(X>x+y,X>x) P(X>x+Yy)

PIX>x+y|X>x)=

P(X > x) ~ P(X > x)
e—/l(x+y) ~
= =V =B(X >y).

For example, if X denotes the lifetime of a machine, then, knowing that the machine
at time x is still operating, the remaining lifetime of the machine is the same as that
of a brand new machine.

We can view the exponential distribution as a continuous version of the geometric
distribution. The latter also has the memoryless property: in a coin flip experiment,
knowing that the first n tosses yielded tails, does not give you extra information
about the remaining number of tosses that you have to throw until heads appears;
the coin does not have a “memory”. [ |

How do we define the conditional probability of an event A given the information
contained in a o-algebra ¥, denoted P(A | ) or P#(A)? The answer is both simple
and complicated. It is simple, because we can define

(4.15) Pr(A) :=Esly.

When ¥ is the o-algebra generated by an event B, i.e., ¥ = {B, B¢,Q, 0}, and
0 < P(B) < 1, then P#(A) is the random variable

P(A|B)1p +P(A|B)1ge,

using Definition 4.11. This agrees with our intuitive notion of a conditional probab-
ility: if we know that the outcome lies in B, then our best guess for the probability
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that it (also) lies in A is P(A N B) /P(B). If on the other hand, we know the outcome
does not lie in B, then our best guess is P(A N B¢)/P(B°).

Things get complicated when conditioning on events that have O probability.
We can still use (4.15), as this is well-defined. However, the definition specifies the
conditional probability up fo equivalence. Hence, in general there may be many
versions of P#(A) = E#14 that are equal to each other with probability 1. Take
one such version and call it Q(-, A). By definition, it is an ¥ -measurable random
variable taking values in [0, 1]; denote its value at w by Q(w, A). We can take
0(-,Q) =1and Q(-,0) = 0. It appears that Q is a probability transition kernel
from (Q, F) into (Q, H), as defined in Definition 1.63; in particular, a mapping
from Q X H to [0, 1] such that:

1. Q(-, A) is ¥ -measurable for every event A € H.
2. O(w, ) is a probability measure on (Q, H) for every w € Q.

Unfortunately, most versions Q are not transition kernels, due to the “up to equival-
ence” definition. Nevertheless, and fortunately, most measurable spaces (Q, H) of
practical interest admit a version of the conditional probability that are regular, in
the sense that Q is a proper probability transition kernel. We will prove this after
we discuss the concepts of conditional distribution and standard measurable space.

Definition 4.16: Conditional Distribution

Let Y be a random variable on the probability space (2, H,P) taking values
in the measurable space (E,&). Let ¥ be a sub-c-algebra of H. The

conditional distribution of Y given ¥ is any probability transition kernel L
from (Q, ) to (E, &) such that

P#(Y e B)=L(-,B), Beé&.

J

A measurable space (E, &) is said to be standard, if there exists a Borel subset
R C [0, 1] and a bijection g : E — R with inverse & : R — E such that g is &/R-
measurable and 4 is R/&E-measurable, where R is the restriction of the Borel
o-algebra to R.

Theorem 4.17: Existence of the Conditional Distribution

For every standard measurable space (E, &) there exists a version of the
conditional distribution of Y given ¥ .

Proof. Let g, h, and R be as defined above. If Y takes values in (E, &), then the
random variable ¥ := g oY is real-valued; it takes values in (R, R). Suppose ¥ has



Chapter 4. Conditioning 131

conditional distribution L. Define,
L(w,A) :=L(w,h"'A), weQ, Acé&.
Then, L(-, A) is a positive random variable for every A € &; and for every H € ¥,

Elplyeay = Blal gg 10 = ElyL(-,h™'A) = E14L(-, A).

{Yeh-
Consequently, L is a transition probability kernel from (Q, ¥) to (E, &), with
L(-,A) =Eglyeay =P (Y € A), Ac&.

In other words, L is a conditional distribution of ¥ given ¥ .

Thus, to prove the theorem, it remains to show the existence of Z; that is, to
prove the theorem for the case E := R and & := B. To this end, for each rational
number g € Q define

Cq = PgL'(Y < Q)

and
Qe ={Cy<C}, qreQ, g<r.

Obviously, Q,<, € ¥ and P(Q,,) = 1. Let Qg be the intersection of all the ,,.
Then, Qp € F and P(€) = 1. For a fixed w € Q consider the function Cy(w) :
Q — [0, 1]. Itis increasing and so for each ¢ € R the limit C;(w) exists, resulting

ina cdf_aLw),t € R. Corresponding to this cdf is a unique probability measure
L., on (R, B). Define

L(w, B) = 1gy(w) Lu(B) + La\g,(w) 60(B), w€Q, Be B,

where 0 is the Dirac measure at 0. We show that L is a probability transition kernel
from (Q, ) to (R, B). Obviously, for each w € Q, L(w, -) is a probability measure
on (R, B). To show that L(-, B) is B/F -measurable, we invoke the Monotone Class
Theorem. Let

D:={BeB:L(-,B) € F}.

This is a monotone class (check this yourself). Hence, by the Monotone Class
Theorem 1.12, O = B if intervals of the form [—oo, ¢] belong to D. Let (r,) be a
sequence of rationals strictly decreasing to ¢. Then,

L(w, [=00,1]) = 1gy(w) lim Cy, (w) + Tava, (w) So([~e0, 7]).

Both 1, and 1\, are in ¥, asare C,, € ¥ forall n, and hence also their monotone
limit C,. It follows that L(-, [—co, f]) is also in 7. Consequently, L(-, B) € ¥ for
any B € B. Thus, L is a genuine probability transition kernel.

The only thing that remains to be verified is that L is the conditional distribution
of Y given 7 ; in other words, that

Elyliyepy =E1yL(-,B), BeB, HeF,.
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By the same monotone class argument as above, it suffices to check this for B :=
[—o0, t], in which case we have indeed

E ﬂH]l{Yst} = li;nE ﬂH]l{YSrn} = lirrlnE ILHCrn
=ELung,L(- [=e0,1]) = ELpL(:, [—00,1]),

where the third equality follows from the facts that 15 = 1yng, with probability 1
and that C,, (w) converges pointwise to L(w, [—oo,1]) for w € Q. O

We are now in the position to prove that regular conditional probabilities exist.

Theorem 4.18: Regular Version of a Conditional Probability

Let (Q,H) be a standard measurable space and F a sub-c-algebra of .
Then, there exists a regular version of the conditional probability P#.

Proof. Consider the random variable Y (w) := w, w € Q. Theorem 4.17, with
E := Q and & := H, guarantees the existence of the conditional distribution of Y
given ¥ in the form of a probability transition kernel L. In particular,

P#(B) =P#(Y € B)=L(-,B), BeH.
This shows that L is a regular version of the conditional probability. O

We now consider the situation where we have two random variables X and
Y, taking values in measurable spaces (D, D) and (E, E), respectively. We can
think of the random point (X,Y) as the result of two random experiments: first
draw X according to some distribution ¢ on (D, D) and then, given X = x, draw
Y according to the distribution K (x,dy) on (E, &) for some probability transition
kernel K. The joint distribution 7 of X and Y is then given (see (1.65)) by

n(AXB) = /,u(dx)K(x,B), AeD,Beé&
A
or in terms of integrals:

nf = [ n@nanfen = [ uan [Keansen, fepee.
Recall from (1.66) that we can also write
(4.19) m(dx,dy) = u(dx)K(x,dy).

Using u and K in this way is a convenient method for constructing joint distribu-
tions on product spaces. Moreover, the probability kernel (w, B) — K(X(w), B) is
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the obvious candidate for the conditional distribution of Y given X (more precisely,
given o0 X), as confirmed by the following theorem:

Theorem 4.20: Conditional Distribution

If 7 1s of the form (4.19), then the kernel L defined by

L(w,B) :=K(X(w),B), weQ,Be&

is a version of the conditional distribution of ¥ given X.

Proof. Since K is a kernel, L is one as well, and hence L has the two defining
properties of a kernel. Moreover, for every B € & the random variable L(-, B) is a
D-measurable function of X and hence it belongs to o-X. It remains to verify that
forall g € D, and B € &:

Eg(X)1(yepy = Eg(X)L(:, B).

But this follows from
B¢ (X)L yen) = / u(dx) g(x) / K (x, dy)
D B

- [ W@gK . B) = Eg(XOK(X.B).
O

Conversely, if we are given a general joint probability measure m, we can
“disintegrate” it into the form (4.19) by finding the marginal distribution of X and
the conditional distribution of ¥ given X. Here is the precise statement:

Theorem 4.21: Disintegration

Let 7 be a probability measure on the product space (D X E, D ® &), where
(E, &) is a standard measurable space. Then, there exists a probability
measure ¢ on (D, D) and a transition kernel K from (D, D) to (E, &) such
that

n(dx,dy) = u(dx) K(x,dy), xe€ D, y€E.

Proof. This is in essence a corollary of Theorem 4.17. On the probability space
(DX E,D ® &, n) define random variables X and Y via X (w) :=x and Y (w) =y,
where w = (x,y). Let u be the distribution of X; that is u(A) = n(A X E),
A € D. Since Y takes values in a standard measurable space, by Theorem 4.17
there exists a regular version L of the conditional distribution of Y given X. A
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random variable V that takes values in the product space belongs to (o X), if and
only if V((x,y)) = v(x) for some function v € D,. It follows that L(w, B) must
be of the form K(X(w), B). Writing E for the integration under the probability
measure 7, we have by the projection property in Definition 4.2:

7(AxB) =E1,(X) 15(Y) =E14(X) K(X, B) = A[,t(dx) K(x,B).

projection property
As this holds for any A € O and B € &, the theorem is proved. O

In Theorem 4.21, we viewed 7 as the distribution of a random vector (X,Y),
u as the distribution of X, and K (X, -) as the conditional distribution of Y given
X. When (X,Y) has a density p with respect to some product measure py ® vy on
(DXE,D®E),ie., n(dx,dy) = p(x,y) uo(dx) vo(dy), then the distribution u of
X has density

m(x) = /E vo(dy) px.y), x €D

with respect to . Moreover, K is the kernel

K(X, dy) = k('x’ y) VO(d)’)
with

p(x,y)/m(x) if m(x) > 0,

(422 Ko { [ @) p(x'.y) i m(x) =0.

The function y — k(x, y) is called the conditional density (with respect to vo) of Y
given X = x. This includes the case where the distribution of (X, Y) is discrete and
the case where it is absolutely continuous with respect to the Lebesgue measure.

Note that for x where m(x) = 0, k(x, -) is simply the marginal density of Y. This
ensures that k(x, y) is defined for every (x,y) € D X E.

B Example 4.23 (Density of a Product of Random Variables) Let (X,Y) have a
density p with respect to the Lebesgue measure on (R?, 82). What is the density
of the product Z := XY?

Let k(x, -) be the conditional density of ¥ given X = x and let m be the density
of X. The conditional density of Z at z, given X = x, is the same as the conditional
density of x ¥ given X = x, which is k(x, £)/|x|, using the transformation rule (The-
orem 2.38). The density of (X, Z) at (x, z) is thus m(x)k(x, 2)/|x|] = p(x, 3)/lx|.
By integrating out x, we obtain that Z has density f, given by

f(2) ::/Rdxp(x’l;‘ )

|x
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An alternative approach to derive this is to apply Theorem 2.38 to the transformation
Z1 = X1 X, and Z, = X, writing (X, X») for (X,Y). Let fz,.2, be the density of
(Z1,Z3). The matrix of partial derivatives for the mapping x +— z is
0z
ox

X2 X1
1 0f’

which gives the Jacobian |x;| (= |z2]). It follows that for (z1, z0) € R?:
p(z2,21/22)

2o
The probability density function of Z; is obtained by integrating out z;. [ |

fz.2,(z1,22) =

We finally mention the important notion of conditional independence.

Definition 4.24: Conditional Independence

Let ,F1, ..., F, be sub-c-algebras of H. The {¥;} are said to be condi-
tionally independent given F if

EgVi---Vy =E#Vi---E¢Viy

for all positive random variables Vi, ..., V, in ¥, ..., F,, respectively.

For example, if ¥ = o0 X, 1 = oY, and F, = 0Z, the meaning is that, as far
as predicting the value of any function of Y is concerned, the extra knowledge
provided by Z loses all its significance once the value of X is known. The following
proposition puts this in mathematical terms:

Proposition 4.25: Conditional Independence

%1 and %> are conditionally independent given ¥ if and only if

EgFvg Vo = EFV,  for all positive V; € %,.

Proof. By Definition 4.24, ¥ and %> are conditionally independent given ¥ if and
only if for all positive V| € ¥ and V; € %,

Er[ViVa] = (E&V1) (EFV2) = EF[VIEF V2],

where the second equality follows from the “taking out what is known” property of
the conditional expectation (see Theorem 4.4). Using the definition of conditional
expectation (see Definition 4.2), the above equation holds if and only if

E[VViV2] = E[VV E# V2]
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for all positive V € ¥. Since random variables of the form VV; generate the o-
algebra ¥ V ¥, this is equivalent to

Ervs Vo = E#FVa.

4.4 Existence of Probability Spaces

Consider a random experiment modelled via a random variable X that takes values
in some measurable space (E, &) with distribution u. Given (E, &) and u, does
there indeed exist a probability space (L2, H,P) and random variable X such that X
has distribution u? The answer is affirmative: take Q := E, P := y and X (w) := w,
w € Q.

What if we specify the random experiment in terms of the following “chained”
simulation experiment?

1. Draw X, from pu, which is a probability measure on (Ey, &).

2. Given Xy = xq, draw X; from K (xo, -), where K is a probability transition
kernel from (Eg, &g) to (E, Eq).

3. Given (X, X1) = (x0,x1), draw X, from K>((xg, x1), -), where K> is a prob-
ability transition kernel from (Eg X E1, &y ® &1) to (E3, E2).

4. And so on.

Does there exist a probability space (Q, H, P) and arandom process ( Xy, X1, . . .)
that models this experiment? Motivated by our “trivial” construction at the begin-
ning of this section, we take Q as the space of all possible sequences (xg, X1, .. .),
with each x,, in E,,. Thus, Q := E| X E3 X ---. On Q we put the product o-algebra,
SOH :=Ey® E; ® ---. We define the random variables Xy, X;, . .. as coordinate
functions: for w := (xg,x1,...), let X;,(w) :=x,, n € N,

The main thing now is to construct a probability measure P on (Q, ) that
matches our experiment. Let

X}’Z = (XO’ Xl’ L ’Xn)

be the random vector obtained after the nth step of the simulation experiment. The
probability measure P should be such that the distribution of X = Xy is u, and the
distribution of X, is

(4.26) 7, (dxy,) = p(dxo)Ki(xo,dxq) - - - Ky (xp-1,dx,).
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Let 7, := 0 X,. Every set in ¥, is of the form

4.27) {X,€B}=BXE,;1X---, Be&® --Q6E,.

Thus, P must be such that

(4.28) P(BoX - XB,XE 1 X---)=m,(BopX---XBy,), Bi€&,i=0,...,n.

The following theorem shows that such a P exists and is unique:

Theorem 4.29: Ionescu—Tulcea’s Existence Theorem

There exists a unique probability measure P on (L, #) such that (4.28) holds.

Proof. The goal is to use Carathéordory’s extension Theorem 1.40. First, note
that the union A := U, ¥, is an algebra that generates 9. Consider the mapping
Py : A — [0, 1] defined by (4.28). This mapping is finitely additive on (A, as each
7, is a probability measure. If we can show that this mapping Py is countably
additive on (A, then Carathéordory’s extension theorem applies to conclude that
Py can be extended to a probability measure P on the o-algebra H. Since finite
additivity already holds, showing that Py is countably additive is equivalent (see
Exercise 1.11) to showing that for every sequence of sets (Hy) in (A it holds that

(Hy) L 0 implies Py(Hy) | 0.

Take x := (xg,x1,...) € Qand H € A. Note that each H € ‘A is of the form (4.27)
for some n € N. For this n and H, define

Qm(xm’H) = lH(x) = ﬂB(xn)a m = n,

where x,, and x, are the truncated versions of x. Then, define recursively for
m=n-1,...,0:

(4.30) Om(xp, H) ::/ K1 (X, dxms1) Qmat (X1, H).
Em+

We can think of Q,,(x,,, H) as the probability that the outcome x € Q lies in H,
after specifying the first m + 1 coordinates xo, ..., x,. In fact, (4.30) holds for
all m € N. This is by definition true for m < n, but it holds also for m > n. For
example,

Qn(xna H) = / Kn+l(xn’ d~xrz+l) Qn+1(xn+1aH) = / K (xn’ dxn+1)1H(x)
Eni1 E

n+l
= n+1(xn,H) = ]lH(X)-
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Moreover, by expanding all the recursive integrals, we have

/Mo(dxo)Qo(xo,H)=//Mo(dxo)Kl(xo,dxl)Ql(xl,H)="'
Eo Ey JE,

=/E . Ho(dxo) Ky (xo, dxy) Kz (x1,dx2) - - - Ky (x,-1,dx,) L (x) = Po(H).

Let (Hy) | 0. Then, (Po(Hy)) is a decreasing sequence, as Py is a finitely
additive set function on A. Suppose that this last sequence does not converge to 0.
We want to show that this leads to a contradiction where Ny Hj is not empty.

The function f; : xo — Qo(xo, Hy) is bounded by 1 and so, by the Bounded
Convergence Theorem 2.36,

lim Po(Hy) = lim / 10(dx0) Qo (o, Hi) = Tim pro fe
Ey

:,Uolimfk=/ o (dxo) lim Qo (xo, Hy).
Ey

Since limPy(Hy) > 0 by our assumption (which we hope to prove wrong), there
must exist xg € Ej such that lim Qo(xg, Hj) > 0. Similarly, because

Qo(xo, Hy) = / K (xo,dx1) Q1 (x1, Hy),
E;
we deduce, following the same line of reasoning, that there must be a xj such that

lim Q ((x;, x7), Hx) > 0, and by induction we conclude that there is a x* € € such
that lim 14, (x*) > 0; that is, lim 1, (x*) = 1. That means that x* € N Hy, which

contradicts the assumption that Hy | 0. O

Theorem 4.29 pertains only to stochastic processes with countable index sets.
The next theorem extends this to arbitrary index sets. Below I, J, and K are index
sets, with / € J C K — mimicking their alphabetic order. Let proj;; denote the
natural projection from E’ to E'.

Theorem 4.31: Kolmogorov’s Extension Theorem

Let (E, &) be a standard measurable space and K an index set. For each finite
subset J of K, let r; be a probability measure on the product space (E”, &7).
If the (7)) are consistent in the sense that

7T]:7T]Opr0j;ll, ICJ, |J|< oo,

then there exists a unique probability measure P on (€2, H) and a stochastic
process X taking values in (E, &)X such that, with X; := (X)) jeu:

P(X; € A) =n;(A), Ae&’, |J|<co.
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Proof. As usual, we take Q = EX, H = &K, and let X; by the rth coordinate
variable, i.e., X;(w) := w(t) for all r and w. Obviously, H = o{X;,t € K} and each
X, is H /E-measurable.

Take any countably infinite set of indexes J := {fo, t1, .. .}. LetJ, :={to, ..., 14}
By the disintegration Theorem 4.21, 7, is of the form (4.26), and so Theorem 4.29
guarantees the existence of a unique probability measure P; on (E, &)’ such that
for all n:

ny, =Pjyo proj;}n.
Moreover, for any countably infinite subset of indexes I C J, it holds that P; =
Pjo proj}ll.

Now consider any H € EK. By Theorem 2.66, the indicator 1y must be a
function of X, j € J for some countably infinite set of indexes J. In other words,
H = {X; € A} for some A € &'. Now define

P(H) = PJ(A)

The consistency requirements ensure that this definition is without ambiguity. It
remains to show that P is a probability measure. Countable additivity is shown
as follows. Take (H,) disjoint with union H, with H, = {X; € A,} for some J,
and A, € &. We may assume that the J, are all the same, by replacing J,, with
J :=U,J,. Then, H = U,H, = U, {X; € A,,} = {X; € A}, with A := U,A,, the
(A,) being disjoint. Hence, by countable additivity of P;:

P(H) = P;(A) = > Pj(Ay) = ) P(H,).

Since P(Q2) = 1, P is a probability measure. Uniqueness follows from the fact that
events {X; € A} form a p-system that generates H. O

B Example 4.32 (Existence of Gaussian Processes) We show that for any given
covariance function y on R, X R, there exists a probability space (Q, H,P) and a
zero-mean Gaussian process X := (X;,t > 0) that has this covariance function.
Let Q := R®+ be the set of all mappings from R, to R, let H := 8+ be the Borel
o-algebra thereon, and let (X;) be the coordinate mappings; that is, X;(w) := w(r)
for w € Q. For each finite subset J C R, let 7; be the |J|-dimensional Gaussian
distribution on R’/ with mean vector 0 and covariance matrix induced by y. To
apply Kolmogorov’s extension Theorem 4.31, we need to verify that the (7;) form
a consistent family, but this is immediate by the properties of the multidimensional
Gaussian distribution. Thus, there exists a probability measure P on (Q, H) such
that X is a zero-mean Gaussian process with covariance function 7. [ |

The above example holds in particular for the covariance function ys; = s A ¢
of the Wiener process. However, Kolmogorov’s extension theorem does not say
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anything about the path properties of the Gaussian process. Fortunately, path
continuity can be established without too much difficulty using the concept of
Holder continuous modifications.

Definition 4.33: Holder Continuity

A function f : Ry — R is said to be Holder continuous of order @ > 0 on
B C R, if there is a constant k& such that

f@) = f()l <klt—s|* s,1,€B.

A Holder continuous function is evidently continuous. It is even uniformly
continuous; that is, for every &€ > 0 there is a 6 > 0 such that for every x it holds
that if y satisfies |y — x| < ¢, then | f(y) — f(x)| < &.

A stochastic process X := {X;,7 € T} is said to be a modification of X :=
{X,,t e TYif P(X, = X,) = 1 forall r € T. The following theorem gives sufficient
moment conditions for a stochastic process to have a modification that is Holder
continuous:

Theorem 4.34: Holder Continuous Modification

Let X := (X;,t € [0, 1]) be a stochastic process with state space R. If there
exist constants ¢, p, g in (0, oo) such that

(4.35) E|X, - X,|P <clt—s|", s,1€]0,1],

then for every @ € (0,¢/p) there is a modification X of X that is almost
surely Holder continuous of order @ on [0, 1].

Proof. Let D be the set of dyadic numbers:

k
(4.36) D:=U%,D, with D,:= {z—n,k:O,l,...,Z”}.

Define, for @ € [0, ¢/p], the random variable K by

K = |Xl B Xs|
= sup o -
s,t €D |t - Sl

SFEL

Then, by the definition of K,

(4.37) X, - Xs| <K |t-s|% s,t€D.
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In particular, if K(w) < oo, then the path X(w) is Holder continuous of order «
on D. We want to show that K is almost surely finite. We do this by proving that
E K? < oo. Consider
M, = max |X; - X;|.

s,teD,

t—s=27"
Note that the maximum is taken here over 2" variables. We now want to bound
EM? using the elementary bound for the expectation of the maximum of positive

random variables {U;},
EmaxU; <E ) U= ) BU,
and the assumption (4.35). This gives:
M |lh =EM) <2"c(27)!* =c27.

Next, take s, € D with s < t. Let s, := inf D, N [s, 1], so that s, | s. Similarly,
lett, :=sup D, N [0,¢], so thatt, T . Since s,¢ € D, we have s,, = s and ¢, = ¢ for
all n large enough. Thus, for every m, we can write

X = Xo= > (X = Xp,) + Xp, = X + (X, = X)),
nzm nzm

Now consider an arbitrary pair (s,7) in D with O <t —s < 27, Then, t,,, — s, is
either O or 27™. Hence,

X = Xo| < Y My + My + Y Myu1 $2 3 M,

nzm nxzm nxzm

By the definition of K, we have

X -X X, -X
K = sup ll—;' < sup sup q < sup (2™ 2 Z M,
seep |t =] m s.t €D |t = 5| m sm
S#L 27l |r—s|<27™ B

= su 21+a mya g < 21+a nae pr
up 21 ) (2")" M, > 2 M,

nxm n>0

We now prove that E K” < oo for all p > 0. For p > 1, we have

(EKp)l/p — ||K||p < 21+a22na”Mn”p < 21+022nacl/p 2—nq/p < oo,

n>0 n>0

since @ < g/p < 1. For p < 1, we use the fact that (3, 8,)? < 3., B for positive
{B,}. Hence,
BKP < 27 370100 < o,

n>0
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since @ < q/p.

Since E K? < oo, the event Q := {K < oo} is almost sure. Outside € define
X(w) :=0. For w € Q, X(w) satisfies (4.37) and is thus Holder continuous of
order @ on D. For w € Qg put

X (w) := lim X, (w), 7 €[0,1].
seD

Then, for those w, the path X (w) is Holder continuous of order @ on [O,lL and the
same holdi trivially for w ¢ Q. Finally, for each ¢ € [0, 1] we have X; = X, almost
surely, so X is the sought modification. O

B Example 4.38 (Existence of the Wiener Process) For the Gaussian process
(X;,t € [0,1]) in Example 4.32 with y,; := s A t, the conditions of Theorem 4.34
apply with, for instance, p := 4, g := 1, and ¢ := 3. Thus, there exists a continuous
modification (W;,t € [0, 1]) of (X;,t € [0, 1]). Doing the same for (X;,7 € [n,n +
1]), we obtain a process W := (W,, ¢t > 0) that is continuous and has the same finite-
dimensional distribution as X. This is the Wiener process whose existence had to
be shown. [ |

4.5 Markov Property

One of the most studied stochastic processes is the Markov process. In a way it
can be viewed as the probabilistic analogue of a difference or differential equation,
in the sense that, conditional on the past history, future increments depend only on
the present state. The concepts of conditional probability and expectation are thus
essential to the analysis.

Throughout this section, T is some subsetof Rand X := (X}, € T) is a stochastic
process on some probability space (Q,H,P), taking values in some measurable
space (E, &).

Definition 4.39: Adaptedness

A stochastic process X := (X;, t € T) taking values in some measurable space
(E, &) is said to be adapted to a filtration F := (¥;,t € T) if forall ¢ € T, X;
is ;/E-measurable.

In what follows, we assume that the process X is adapted to some filtration
F = (F;,t € T) — for example, the natural filtration of X, in which case 7 :=
o(Xy,u <t,ueT). Let G; := o(Xy,u > t,u € T) be the future o--algebra of X
for time ¢.
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Definition 4.40: Markov Property

X is said to be Markovian relative to ¥ if for every ¢, the past #; and the
future G, are conditionally independent, given the present state X;.

This means, by Proposition 4.25, that for every ¢ and positive V € G, it holds
that E[V | ] = E[V | X;], which in turn can be shown (e.g., see Cinlar (2011,
Section IX.1)) to be equivalent to the requirement that for every time u > t and
f € 8+7

(4.41) E[f(X) [F1] = ELf (Xu) | X;].

Markov processes are often associated with a family of probability transition
kernels; see Definition 1.63 for the meaning of the latter.

Definition 4.42: Markovian Transition Function

A Markovian transition function on (E, &) is a family (P;,,t,u € T,t < u)
of probability transition kernels on (E,&) that satisfy the Chapman—
Kolmogorov equations:

(443) PS,I‘PI‘,M = Ps’u, s <t=<u.

A Markovian process X is said to admit (P, ) as a transition function if
E[f(Xu) | Xi] = (Pruf)(Xi), t<u,fe€&s.
For f = 14, A € &, this means
P(X, € A|X; =x) =P, u(x,A),

giving an intuitive meaning to the transition functions. Define P; := Py,. If
P;, = P, for all t < u, the associated Markovian process X is said to be time-

homogeneous and P; satisfies the semi-group property
Pl+S:PSPl7 S,IZO.

Markov processes can be classified according to the nature (discrete or continuous)
of their state space E and time set T. We call a Markovian process a Markov chain'
if T is discrete.

The Markov process par excellence in continuous time is the Lévy process; this
includes the Wiener, Poisson, compound Poisson, and pure-jump Lévy processes

IThere is no consensus on this nomenclature. Some call a Markovian process a Markov chain
if E is discrete.
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discussed in Section 2.8. If (X;,t > 0) is a d-dimensional Lévy process, then,
writing X, = X; + (X, — X;) for 0 <t < u, we have that X, is the sum of X; € 7,
and a random increment that is independent of ;. Hence, (4.41) holds, and by
combining this with the stationarity of increments, we conclude that a Lévy process
is a time-homogeneous Markov process. Indeed, if X, has a probability distribution
7, on R, then it admits the transition function

Pi(x,A) =m(A-x), xeR% AecB

where A — x denotes the set {y —x : y € A}. For example, for a Poisson process
with rate ¢, we have

P,(x,A) = Z m_

|
YEA—X Yy

In Section 4.5.2 we generalize the pure-jump Lévy processes to pure-jump Markov
processes.

4.5.1 Time-homogeneous Markov Chains

We defined a Markov chain as a Markovian process with a discrete, i.e., countable,
time set. Without loss of generality, we may take T = N for the time set. The state
space E may be countable or uncountable. Let u be a probability distribution on
E and let K be a probability transition kernel on (E,&). Consider the following
random experiment:

1. Draw Xy from u.

2. Given X( = xg, draw X, from K (x, -).

3. Given (Xo, X1) = (x0,x1), draw X, from K (x, -).

4. Given (X(), Xl, Xz) = (.X(),Xl,xz), draw X3 from K(Xz, )

5. And so on.

The first part of Section 4.4 proves the existence of the resulting stochastic process
(Xu,n € N), which, by construction, is a Markov chain. Starting with an initial

distribution u, each X, is drawn from the conditional distribution of X,,;; given
X, which is K(Xj,, -). The Markov chain admits the Markovian transition function

Pun,=K"", m<n, mneN,
where K"~ is the (n — m)-fold product of K. Thus, X is time-homogeneous and
P(X, € A|Xp=x) =K"(x,A).

In typical applications, the conditional distribution of X,,; given X, can be
specified in two common ways as follows:
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* An explicit expression for K(x,dy) is known, and it is easy to sample from
K(x,-) forallx € E.

* The process (X,,, n € N) satisfies a recurrence relation
(4.44) Xn+1 = 8(Xn,Un), né€N,

where g is an easily evaluated function and U, is an easily generated random
variable whose distribution may depend on X,,.

An important instance of the first case occurs when the Markov chain X has a
discrete state space E. Its distribution is then completely specified by the distribution
of Xy (the initial distribution) and the matrix of one-step transition probabilities
P = [p;;], where

pij =P(Xun1 =j | Xp=1i), i,jEE.

The conditional distribution of X,,,| given X,, = i is therefore the discrete distribution
given by the ith row of P. This leads to the following algorithm:

B Algorithm 4.45 (Simulating a Markov Chain on a Discrete State Space)
1. Draw X, from the initial distribution. Set n := 0.
2. Draw X, from the discrete distribution corresponding to the X, th row of P.

3. Setn :=n+1 and go to Step 2.

B Example 4.46 (A Markov Chain Maze) At time n = 0 a robot is placed in
compartment 3 of the maze in Figure 4.47. At each time n = 1,2, ... the robot
chooses one of the adjacent compartments with equal probability. Let X, be the
robot’s compartment at time n. Then, (X) is a time-homogeneous Markov chain
with transition matrix P given in Figure 4.47.

: 3 A 01000000
2 start %(1)%(1)00(1)0
og(l)g(l)ogo

7 5 000110410

8 000O0T1O0O00O0
6 0041041001
0000O0O0T1DO

Figure 4.47: A maze and the corresponding transition matrix.
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The following MATLAB program implements Algorithm 4.45. The first 101
states of the process are given in Figure 4.48.
nmax = 101; a = 0.5; b = 1/3;
p=100, 1, 0, 0, 0, 0, 0, 0; a, 0, a, 0, 0, 0, 0, 0;
®, b, 0, b, 0, 0, b, 0; 0, 0, a, 0, a, 0, 0, 0;
o, ®, 0, b, ®, b, b, 8; 0, 0, 0, 0, 1, 0, 0, 0;
0, ®, b, 0, b, 0, 0, b; 0, 0, 0, 0, 0, 0, 1, 0 ]
X = zeros(l,nmax); x(1)= 3;
for n=1:nmax-1
x(n+1) = min(find(cumsum(P(x(n),:))> rand));
end
hold on, plot(®:nmax-1,x,'."'), plot(0®:nmax-1,x), hold off
XX eeee ]
sese essesee e ecae .
o it il e EEOED A e esd
sese i o ¢e. & cessesssas
sss o : i : s e o @ .
° ég 66 ° ® ° ° Qﬁi
5@? boooooooo .
° ¢ eos o6
20 30 40 50 60 70 80 90 100
n
Figure 4.48: Realization of the maze process.
|
Next is a typical example of a Markov chain that is specified by a recurrence
relation such as (4.44).
B Example 4.49 (Random Walk) In a random walk process (X,,,n € N), the
recurrence is
Xn+l .:Xn+Un, I’ZEN,
where Xy := 0 and Uy, Uy, . .. is a sequence of iid random variables. The following
MATLAB program simulates a random walk where the {U;} are standard normal. A
typical path is given in Figure 4.50.
n=200;
U = randn(n,1);
X = cumsum(U);
plot(l:n,X)
o
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Figure 4.50: Realization of a random walk with standard normal increments.

4.5.2 Markov Jump Processes

The easiest way to create a Markov jump process is to “subordinate” a Markov chain,
in the following sense. Let X := (X,,,n € N) be a Markov chain with probability
transition kernel K, asin Section4.5.1, and let (N;, ¢t > 0) be ahomogeneous Poisson
process with rate 0 < ¢ < oo, independent of X. Then, the process Y := (Y;,1 > 0)
defined by

(4.51) Y, =Xy, 120,

is a pure-jump Markov process. We say that (N;) is subordinated to X. Think of N,
as the time on a clock which moves 1 unit forward at each jump time of the Poisson
process. The transition function of Y is given by

o e_Ct(Ct)n
Pi(x,A) = ) —— K" (x.A),
n=0 )

where K" is the nth power of the Markov kernel K.

B Example 4.52 (Markov Jump Process) Let X be a Markov chain with state
space {1, 2,3} and one-step transition matrix P = [p;;], given by

1/3 1/3 1/3
P=|1/2 1/2 0],
3/4 0 1/4

and let (N;,t > 0) be a Poisson process with rate ¢ := 1. Figure 4.53 shows a
typical realization of the Markov jump process (Y;,¢ > 0) := (Xy,,t > 0).
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Figure 4.53: Realization of a Markov jump process.

When the process is in state i, the holding or sojourn time S; at i is distributed
according to the random sum Zfz 1 Vi, where the {V;} are iid Exp(c) distributed and
M ~ Geom(1 — p;;), independently. Consequently, S; ~ Exp(c(1 — p;;)). When
the process leaves state i at the end of the sojourn time S;, it jumps to state j # i
with probability p;; /(1 — pi;). [ |

A time-homogeneous Markov jump process (X;, t > 0) taking values in a count-
able set E := {1, 2, ...} is often defined via its Q-matrix,

—q1 J12 413
q21 —492 423 ...
(4.54) Q:= q31 4932 —q3 ...|°

where g;; is the transition rate fromi to j:

P(Xon = j1 X =i
gy = tim D =TI =D ek

hl0 h ’

and g; is the holding rate in i:

A h ’

1€ E.

In Example 4.52, we have ¢; = ¢(1 - p;;) and g;; = q; pij /(1 — pii) = cpij.
Subordination, as in (4.51), provides the simplest way to create and study Markov
jump processes, but the most general way uses stochastic integrals with respect to
Poisson random measures, in a similar way as in the construction of pure-jump
Lévy processes in Section 2.8.4.
In contrast to the Lévy process construction, we will employ a homogeneous
Poisson random measure N on R, X R, rather than a Poisson random measure on
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R, x R? with mean measure Leb ® v. In particular, the mean measure of N is the
Lebesgue measure on R, XR,. We construct a d-dimensional Markov jump process
X := (X;,t > 0) based on N by imposing that any atom (¢, «) of N creates a jump
of X at time ¢ of magnitude j(X;, u), where j : R? x R, — R is a jump function.
Specifically,

(4.55) X, = / N(ds,du)j(Xs_,u), t>0,
[0,7]xR4

where X := lim,q; X,. This is a stochastic integral equation, which is pathwise
defined; i.e., for every realization of N. Define the corresponding Lévy kernel by

(4.56) L(x,B) :=Leb{u >0: j(x,u) #0,x + j(x,u) € B}, Be B9

The Lévy kernel is a transition kernel from (R?, 89) into (R4, 8¢). Think of it
as a generalization of a Lévy measure that depends on x. For a pure-jump Lévy
process X with Lévy measure v, we have j(x,u) = j(u), and L(x, B) = v(B —x).
Heuristically, L(x, B) represents the rate at which X jumps from x into B, in
the sense that in a small time interval [¢,¢ + ¢] this probability is approximately
6 L(x, B). In particular, k(x) := L(x,R?) is the rate at which X leaves state x —
also called the killing rate. This rate can be finite or infinite. If k(x) < oo, then
we can write L(x,B) = k(x)K(x, B), where K is a probability transition Kernel,
and K (x, B) denotes the probability that the killed particle at state x is reborn in set
B e 8¢

The behavior of the process is similar to what was discussed in Example 4.52.
When at state x, the process stays there an exponential amount of time with parameter
k(x) and then jumps to a new state y with probability K (x, dy), independent of the
sojourn time in x. If the process hits a state x for which k(x) = 0, it will stay there
forever. Such a state is called an absorbing state.

Similar to the construction of pure-jump Lévy processes, some restriction must
be placed on the size of the jumps. The least restrictive condition is

/ du (J|j(x,u)|| A1) < oo forall x.
0

4.5.3 Infinitesimal Generator

We conclude this chapter with the derivation of the infinitesimal generator of the
Markov jump process X defined by (4.55). Suppose X has transition function P;.
This can be viewed as an operator which acts on a function f via

(P.f)(x) =E* f(X)),

where E* denotes the expectation under which the process starts from state x. By
the right-continuity of the paths, as ¢ | 0, P; tends to the identity operator /, with
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I f = f. It makes sense to consider the operator P; — I for small ¢, scaled by ¢. This
gives the infinitesimal generator (or simply generator) G of the Markov process:

PP =) _ e /XD )

B t

(GH(x) = lzlfg

provided the limit exists. The following specifies the generator:

Theorem 4.57: Generator of a Markov Jump Process

The infinitesimal generator of a Markov jump process with Lévy kernel L is
given by

(Gf)(x) = /Rd L(x,dy)[f(y) = f(x)], f € B (bounded).

The proof is given after we have introduced some new concepts and a useful
result on Poisson integration. Let N be a Poisson random measure on R; X E with
mean measure y. The o-algebra on E is & We think of an atom (z,x) of N as
representing the time r where a “mark” x enters. Define ¥ := (¥t > 0) as the
“natural” filtration associated with N, in the sense that

Fi:=0c(N((a,b]xB):0<a<b<t,Be&), tekR,.

Thus, ¥; contains all the information about N up to time ¢, specifically with regard
to the positions of its atoms that arrive before or at time ¢.

Suppose Y := (Y (z),t > 0) is some real-valued stochastic process associated
with N. The process Y is said to be ¥ -predictable if for any interval (a, b] the
information about (Y (¢),t € (a, b]) is already contained in ¥,. More precisely, Y
is F-predictable if it is FP /B-measurable?, where 7 is the o--algebra on R, X Q
defined by

(4.58) FP:=oc((a,b] xH :a,be R, He F,)Vo({0} xH : H € F),

where V signifies that we take the smallest o-algebra that contains the union — as
the union of two o -algebras is not usually a o-algebra itself.

The following proposition says that, under suitable predictability conditions, the
expected value of the stochastic integral

NR ::/N(dt,dz)R(t,z)

only depends on the mean measure of N:

2Recall that this is the same as saying that the process lies in 7.
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Proposition 4.59: Poisson Integrals

Let N be a Poisson random measure on R, X E with mean measure y satisfying
u({0} x E) =0. Let R := (R(t,z),t > 0,z € E) be a positive stochastic
process in ¥7 ® &. Then,

(4.60) ENR=EuR.

Proof. The collection of all functions R : @ x R, x E — R, that are (F” ® E)-
measurable and satisfy (4.60) forms a monotone class, and so by the Monotone
Class Theorem 1.33 it suffices to show (4.60) only for indicators of sets H X A X B,
where either

1. He ¥,,A=(a,b],and B € &, or
2. He Fy,A={0},and B € &.
In the first case, we have

ENR=ElyN(AxB)=ElyE,N(AX B)
=E1yEN(AXB)=Elyu(AxB) =EuR,

where E, denotes the conditional expectation given ¥,. In the second case, u(A X
E) =0, which implies N(A x E) = 0 almost surely, so that both sides of (4.60) are
0. m]

Proof of Theorem 4.57. Let g be a bounded positive Borel function on R x R¢.
Consider the stochastic process

R(s,u) := 1104 (s) g(Xoo, Xoo + j(Xyo,u0)) Ljx, w20y, S-u > 0.

Verify that it satisfies the predictability conditions of Proposition 4.59. Thus, we
have

Eng(Xs—’Xs)ﬂ{Xs_;tXS} =Ex/ N(ds,du)R(s, u)
s<t RiXR4

:Ex/ dsdu R(s,u).
RyXR,

Writing out R(s, u) in the expected integral on the right-hand side gives

EX /[0 ]dS/R du g(Xs_’XS_+j(XS—’u))]l{j(Xs_,u)¢0}
t N

t
:Ex‘/o ds/RdL(Xs_,y)g(Xs_,y),
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where the equality follows from the definition of L in (4.56). In the last integral we
may replace s— with s, as X = X_ for all but a countable set of times s. Now, as
a special case, take g(x,y) := f(y) — f(x) and apply the previous to find

BX(f(X)) - f(X0)) =B ) (F(X,) - f(X,))

s<t

_E /O ds /R LXe»)(f0) - F(X)
:Ex/tdst(Xs) :/tdsEfo(Xs),
0 0

assuming we can swap the integral and expectation (by Fubini). Consequently,

. (P f)x)-f(x) d ox _
1;%1 . = aPtf(x) 7 E*G f(Xo) =G f(x).
O
Exercises

1. Prove Theorem 4.13, using the properties of the probability measure P and the
definition of a conditional probability given an event in (4.12).

2. Let X1, X5, ... be a Bernoulli process with success parameter p. Let, S, =
Xi+---+X,and Z, := S, —np,forn=1,2,.... Find the following:

(@ E[Spe1 | X1,. .., Xl

(®) E[Sn+11S1,- ., 8]

(C) E[Zn+l | XI’ LR ,Xn]
[

d) E[Zw1|Zy,...,2Z,]

3. Let X be a positive random variable and Y a random variable that takes values
in a countable set D. Show that E,y X = h(Y), where h is defined by

h(y)::]E,[Xley]:‘/0 dxP(X >x|Y=y), yeD.

4¥ If X ~ Poi(2) and Y ~ Poi(u) are independent, show that, conditional on X+Y =
z, the distribution of X is Bin(z,1/(u + 1)).

5. Suppose that (X,Y) has a density fxy with respect to the Lebesgue measure
on (R?, 82). The (marginal) densities of X and ¥ with respect to the Lebesgue
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measure of (R, ) are denoted by fx and fy, respectively. Show that Z = X +Y has
density f7 given by

461) F2(2) = /R dek(xz -0 fx(), zeR,

where k(x,-) is the conditional density of ¥ given X = x. When X and Y are
positive and independent, show that

f2(2) = /Ozdxfy(z—x)fx(x), LeR.

6. Let (X1, X») have density fx with respect to the Lebesgue measure on (R?, 82).
Using conditioning and/or transformation arguments, express the pdf of X;/X; in
terms of fx.

7% Let X1, X»,... be an iid sequence of random variables. Define Sy := 0 and
Sy =21, Xiforn=1,2,.... Suppose that each X; has a Ber(p) distribution. For
k e N, let

Ny :=inf{n: S, = k}

be the first time that the process {S,,n € N} hits level k. By conditioning on S;_1,
derive P(Ny =j),j =k, k+1,....

8. Let X1, X»,... be an iid sequence of random variables. Define Sy := 0 and
Sy = 2 X; forn = 1,2,.... Suppose that each X; takes the value 1 or -1,
with probability p and ¢ = 1 — p, respectively. Let N :=inf{n:S,=1}. By
conditioning on Xj, determine the probability generating function z +— Ez" of
N. From this, find P(N =n), n € N. Hint: you may use Newton’s formula:
(1+0)* =32, ()¢, where @ € R and () is the generalized binomial coefficient;
ie, (}) =a(e-1)---(@—i+1)/ilfori=1,2,...and () := 1.

9. Let Y and Z be independent, with Y ~ Gamma(a, c) and Z ~ Gamma(b, c).
Define X := Y +Z. Find the kernel K such that the conditional distribution of Y given
X is K(X, -). For the case where a = b = 1, show that K(x,dy) = )l—cdy, y € (0,x).

10. Let X ~ Gamma(n, p/(1 — p)) for some p € (0,1) and integer n. Suppose
that, conditionally on X = x, the random variable Z has a Poi(x) distribution. What
is the distribution of Z? Hint: use the MGF Tables 2.4 and 2.5 and the repeated
conditioning property of conditional expectations.

117 Using MGFs and repeated conditioning, show that Z := (X; +X»X3)//1 + X2,
where X1, X», X3 are iid N(O0, 1) distributed, has a standard normal distribution.

12. Let Z := X/Y, where X ~ U[—%, %] and Y ~ UJO, 1] independently. What is
the distribution of Z conditional on X2 + Y2 < 1?
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13. LetZ := X/(X+Y), where X ~ Beta(a, 1) and Y ~ Beta(g, 1) independently.
What is the conditional distribution of Z given X +Y < 1?

14. Let Uy, ..., U, ~jig U[0, 1]. Sorting these in ascending order, gives the order
statistics U(yy < -+ < U,. Show that Uy ~ Beta(k,n — k +1).

15. Suppose that Uy, Us, ... ~jiq U[0, 1] and N ~ Poi(1), independently. Denote
the order statistics of Uy, ...,Uy as U1y < U < --+ < U(y) and let r be a fixed
integer. Conditional on N > r, find the distribution of U,).

16* Suppose that {X;,t € Z} is a Gaussian process. Show that the following two
statements are equivalent:

(@) (Markov Property): B[ f(Xi+1) | X;,Vj < t] = E[f(X:41) | X;] for any positive
measurable function f.

(b) E[Xi1| X,V <t] =E[Xi1 | X;] forall t € Z.
17. Suppose that {X;,t € Z} is a Gaussian process satisfying:

(@ E[Xi11X;,j <t] =E[Xi1 | X¢].

(b) (Stationarity): For all integers ¢, s, there holds EX; = u and Cov(X;, X;) =
o(t — s) for some even function o(x) = o(—x) with o(0) = 1.

Show that o must satisfy the recursion o(7) = o(1)p(t — 1) fort =1,2,3,....

18. Show that a Markov jump process that is defined by a Q-matrix (4.54) has the
form (4.51) provided that sup; g; < oo.



CHAPTER 5

MARTINGALES

Martingales form a mainstay of modern probability. In this chapter, we
introduce (sub)martingales and show their use. Stopping times, filtrations, and
uniform integrability play important roles in the analysis. The key results are
Doob’s stopping theorem and the martingale convergence theorem. Example
applications include proofs for the Law of Large Numbers and the Radon—
Nikodym theorem.

Martingales are real-valued stochastic processes in continuous or discrete time that
model “fair” betting games, in which at any time the expected future profit is
always 0, irrespective of any information about the past of the game. Many proofs
in probability theory are facilitated by the use of martingales. In the analysis of
martingales, it will be useful to consider the process at certain random times, called
stopping times (also referred to as optional times). We introduce these next.

5.1 Stopping Times

In what follows, (€2, H, P) is a probability space, T a subset of R, and ¥ := (¥;,t €
T) a filtration of sub o-algebras of H. We add a point of infinity to T to define
T := T U {oo}. Recall that each 7; is a sub o-algebra of  that models all the
information on a random experiment (described by the probability space) that is
available at time 7. If X describes our measurements on the random experiment,
then the information we have available at time ¢ is given by o (X, s < t). However,
¥; could have more information than o (X;, s < f); that is, F could be “finer” than
the natural filtration of X.
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Definition 5.1: Stopping Time

A random time 7 : Q — T is called a stopping time of F if

{T <t} e¥;, foreachreT.

Consider the stochastic process (Z;) := (1r<;,t € T). Imagine that T is the
time when a “catastrophe” happens in the random experiment, at which time the
process (Z;) jumps from O to 1. If 7 is the available information at time ¢, then T
is a stopping time if and only if we can tell, at time ¢, using only the information
available in #;, whether the catastrophe has occurred yet or not. In other words,
for a stopping time 7" we are able to construct an alarm system that uses only the
information in F and that for every w € € sounds exactly at the time of catastrophe
T(w).

B Example 5.2 (Hitting Time for a Symmetric Random Walk) Let {B,,n =
1,2, ...} be acollection of iid Ber(1/2) random variables. Consider the symmetric
random walk on the integers X := (X),,n € N), defined by X+ := X,, + 2B, — 1 for
n=1,2,...and Xy := 0; see also Example 2.31 and Figure 2.32. Define the hitting
time of state 1 by

T :=inf{n: X, =1}.

Then, T is a stopping time with respect to the natural filtration of X. At each time
n we are able to tell, based on the history of X up to and including time n, whether
the process has hit state 1 at or before time n or not.
An example of a random time that is not a stopping time is:
R :=min{n : X, = max X},
b X 0<i<100 i)
that is, the first time that the maximum of X up to time 100 is reached. For
example, to assess whether the event {R < 50} occurs or not, we have to take into
consideration the whole history of X up to time 100. [ |

Let F be a filtration on T. Because we typically extend T to T_by including the
point oo, it makes sense to extend ¥ to a filtration with index set T. The way to do

this is to define
Foo 1= v .

teT

That is, the o-algebra generated by the union of all the 7. Then, (7;,¢ € T) is a
filtration on T. We may use the same notation, ¥, for this extended filtration, as
it carries the same information as the original ¥. The advantage, however, is that
we can extend any adapted process X := (X;,7 € T) to a process (X, € T) by
appending a random variable X, to X. Moreover, every stopping time 7" of the
extended ¥ is a stopping time of the original ¥, and vice versa.
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Definition 5.3: Past until 7

Let ¥ be a filtration on T, and let T be a stopping time of it. The o-algebra
of past information until T is defined as

Fr={HeH: HN{T <t} € F; foreveryt € T}.

We can think of #7 as the information on a random experiment that is available
at a random stopping time 7'. If T is constant, T = ¢, then 7 is simply ;. As usual,
we will use the notation 7 also for the collection of numerical random variables
that are ¥7/B-measurable.

Theorem 5.4: ¥ Random Variables

A random variable V belongs to 7 if and only if

X: =V 1<) €F foreveryt e T.

Proof. Without loss of generality we may assume that V > 0. For all v > 0 and
t € T, we have:
{V>uv}n{T <t} ={X; > v}.

Hence, {V > v} € F7 forall v > 0 if and only if X, € F; for every ¢ € T. o

Intuitively, V € ¥ means that for every w, the value V(w) can be discovered at
time 7T'(w).

5.2 Martingales

We have already mentioned that a martingale can be thought of as a process that
models a fair game. We now make this more precise. Let (X;,t € T) be a stochastic
process that describes the profit X; at each time ¢ in a betting game that is ruled
by chance. Suppose that the information available to us at time ¢ is given by the
o-algebra 7;. If for any s < ¢ the expected incremental profit X; — X is 0 given 7,
then the game is “fair”, in the sense that we cannot win, whatever betting strategy we
devise. The process is then a martingale. As martingale analysis heavily relies on
conditional expectations given a filtration ¥ = (¥;,t € T), we will use the following
notation convention:
E,V =ErV =E[V|F].

the first notation being the most economical and elegant. If we do not specify the
filtration, the natural filtration is assumed.
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Definition 5.5: (Sub/Super)Martingale

Let X := (X;,t € T) be a real-valued stochastic process that is adapted to a
filtration ¥, and for which each X; is integrable. The process X is called an
¥ -(sub/super)martingale if for all > s:

Ei[X; — X;] =0 (submartingale),
(5.6) Es[X; — X;] =0 (martingale),
Es[X; — X;] <0 (supermartingale).

When specifying (sub/super)martingales, we will often drop the quantifier “%-"
if the corresponding filtration is obvious; for example, when it is the natural filtration
of the process.

Using the betting game analogy, for submartingales the expected incremental
profit is positive and for supermartingales it is negative. Think of a sub martingale
as a process that starts low and has the tendency to increase. You want your
betting game to be a submartingale! It suffices to only consider submartingales
and martingales for further analysis, as the negative of a supermartingale is a
submartingale. Note that in the definition we may replace B[ X, — X, | with E; X; — X,
as E;X; = X, by the “taking out what is known” property of the conditional
expectation; see Theorem 4.4. From the same theorem we will frequently use
the “repeated conditioning” property of the conditional expectation. In particular,
taking the expectation of E; X; — X shows that a martingale has constant expectations:

EX; = EX;

Here are some more easy properties of (sub)martingales.

Theorem 5.7: Properties of (Sub)Martingales

1. When T = N, the martingale equality E;[X; — X;] = 0 holds if and only if
Ei[Xk41 — Xik] =0,k € N.

2. If X and Y are ¥ -submartingales, then so is aX + bY fora, b > 0.
3. If X and Y are ¥ -submartingales, then sois X VY.

4. Let f be a convex function on R and X an ¥ -martingale. If f(X;) is
integrable for all ¢, then f(X) := (f(X;)) is an ¥ -submartingale.
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Proof.

1. Necessity is obvious. For sufficiency, suppose that E; [ X+ — Xix] = 0 for all
k € N. Take any m,n € N with n > m. Then,

En [Xn - Xm] = Em[(Xn - Xn—l) +---F (Xm+1 - Xm)]
=EnE,—1 [Xn - Xn—l] +--+E,E, [Xm+l - Xm] =0,

where we have used the repeated conditioning rule E,,E; = E,, for k > m, as well
as the linearity of the conditional expectation.

2. This follows from the linearity of the conditional expectation and the submartin-
gale properties of X and Y: for any ¢ > s, Ej[aX; + bY;] = a E;X, + bEY;, >
aX, + bY,.

3. This is immediate from E;[ X, V Y;] > (EX,) V (E;Y;) > X, V Y;.

4. This is a consequence of Jensen’s inequality (Lemma 2.45). Namely, for z > s,
we have

Eof (X)) = f(EsXi) = f(Xy). O

B Example 5.8 (Random Walk) Consider the random walk X := (X,,n € N)
defined by X := 0 and
Xl’l+1 = X}’l + Un, ne N,

where {U,,,n € N} is a collection of iid random variables. If EU,, = 0, then X is a
martingale (with respect to its natural filtration). Namely, each EX,, = 0, so every
X, is integrable, and

EnXnt1 = By [ Xy + Uy = X, + E Uy, = X,

More generally, if EU,, = c is finite, then (X, — nc, n € N) is a martingale.
|

B Example 5.9 (Sum of Bernoullis) Let By, B,,... be a Bernoulli process
with success parameter p, and define S, ;= B;+---+ B, and Z, := S, — np, for
n=1,2,..., with Sy := 0. From the previous example, we see that (Z,) is a mar-
tingale. However, there are more martingales that can be constructed from the
Bernoulli process. For example, with g := 1 — p, define

Sn
M, =P
(29)"
Then, M, is obviously integrable, and
Bn+1
B M. =M, E, 4Py @ lpp)
2q 2q

so that (M) is a martingale. [ ]
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B Example 5.10 (Poisson Process) Let (N;,t > 0) be a Poisson (counting) process
with rate ¢. Then,
Mt ::Nt—ct, tZO,

is a martingale. Adaptedness and integrability are evident, and the martingale
property follows from the stationarity and independence of the increments of the
Poisson process:

Es[M; — Ms] = Es[N;y — Ng] —c(t —5) =E[N; = Ns] —c(t —5) =0.
|

A stochastic process X := (X;,t € T) is said to be a uniformly integrable mar-
tingale with respect to a filtration # if X is both a martingale and is uniformly
integrable (UI). See Definition 3.32 for the definition and Proposition 3.34 for suf-
ficient and necessary conditions for uniform integrability. The main example of a
UI martingale is given next.

B Example 5.11 (Standard UI Martingale) Let Z be an integrable random
variable. Then, the stochastic process X := (X;, t € T) defined by

(5.12) X[ = ]EtZ
is an Ul martingale. We can check this as follows:

1. X; € ¥, by the definition of conditional expectation. So X is adapted to the
filtration ¥ .

2. Using Jensen’s inequality (see Lemma 2.45) and repeated conditioning, we have
E|X;| =E|EZ| < EE/|Z| =E|Z] < oo,
which shows that X; is integrable for every ¢.
3. Again using repeated conditioning, we have for s < #:
EsX; = EsE.Z =EZ = Xj,
so that X is a martingale.

4. Proving uniform integrability is a bit more involved and requires Proposition 3.34,
Point 3; that is, (X;) is Ul if and only if there is an increasing convex function f
such that f(x)/x — oo and

supEf (|Xi]) < co.
1
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Since the random variable Z is Ul (since Z is integrable), there exists an f with
the above property such that

Ef(1Z]) < co.
Since X; = E;Z, we have by Jensen’s inequality (Lemma 2.45):
|X:| = |E.Z| < E/|Z],
and since f is increasing and convex,

FAXl) < fEANZD) < B f(1Z)).

N——
Jensen

Taking the supremum of the expectations on both sides (unconditioning) gives:

sup Bf (|1X;]) < oo,
t

so that (X;) is uniformly integrable by Proposition 3.34, Point 3.

5.3 Optional Stopping

(3

The main result of this section is Doob’s “optional” stopping theorem, which, under
certain conditions, extends the martingale property (5.6) to stopping times S < T,
to give

(5.13) Es[Xr - Xs] =0,
and consequently (assuming 0 € T):
(5.14) EXr = EXp.

This is certainly not true for all stopping times, as the following example illustrates:

B Example 5.15 (Symmetric Random Walk Continued) Let X be a symmetric
random walk on the integers, as in Example 5.2 and, as in that example, let 7" be the
first time that X hits level 1; this is a stopping time. Then,

I =EXr # EXo =0.

Note that T is not bounded, because P(T > a) > 0 for all a > 0. Exercise 10 shows
that, interestingly, P(7 < c0o) = 1 but ET = oo. [ |

The question is under what conditions (5.13) and (5.14) do hold. For this it will
be convenient to first study certain integral transformations of martingales. Indeed,
such stochastic integration techniques underpin many elegant proofs in probability.
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5.3.1 Stochastic Integration

Stochastic analysis often involves the evaluation of a stochastic integral; that is, an
integral of the form

t
(5.16) / Fs dXj,
0

where the integrator X := (X;) and integrand F := (F;) are real-valued stochastic
processes on some probability space (Q, H,P). Let f; := F;(w) be the realization
of F; for a specific w € ©Q — and similarly let x; := X;(w), but with the additional
assumption that x := (x;) is right-continuous and left-limited.

If for each w € Q the real-valued function x is increasing, and if the function
f := (f;) is measurable, then the integral (5.16) can be defined pathwise; that is, for
each w the integral

(5.17) / S5 dx;
0

is well-defined. Namely, since there corresponds to the increasing function x a
unique measure u, we can define (5.17) as the Lebesgue integral fot u(ds) fs. An
example of such a stochastic integral is (2.81) in Section 2.8.2, where the integrator
is the Poisson random measure.

The arguments above can be extended to the case when the function x can be
written as the difference of two increasing functions, say x = y — z. Then, (5.16)
can again be defined pathwise as

t t
/ fsdys_/ fs dzs.
0 0

The corresponding pathwise integral is called the Lebesgue—Stieltjes integral.
It is not too difficult to show that such functions x are of bounded variation on
[0, t], meaning that their total variation on [0, t] is finite. The latter is defined as

n—1
(5.18) Ve(r) i=sup ) Jgy,, = X,
(Hn) k=0

where the supremum is taken over any segmentation' I, of the interval [0, 7],
(5.19) Il, :={so,...,$, :0=s0<s1<---<s,=t}, neN,

such that the mesh of I1,,, defined as ||I1,|| := maxXg<g<u—1(Sk+1 — Sk), goes to 0 as
n — oo. Any right-continuous function of bounded variation can be written as a
difference of two increasing functions; see Exercise 11 for a proof.

The upshot of this is that for a process X that does not “wiggle” too much, the
stochastic integral can be defined pathwise as a Lebesgue—Stieltjes integral.

1Also called partition. However, note that in our usage a partition is a collection of sets, whereas
a segmentation is a collection of points.
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B Example 5.20 (Integral With Respect to a Poisson Process) As an example of
a stochastic integral that can be evaluated pathwise like (5.17), consider the integral

t
/ N,_dN;,
0

where (Nt > 0) is a Poisson counting process with rate 1 and N,_ denotes
the left limit lim,; N,. For each w € £, the integral is readily evaluated as
a Lebesgue integral. In particular, denoting the arrival times during [0, ¢] by
Ti(w), Tr(w), ..., Tn,(w)(w), let u be the corresponding counting measure. At
these N, arrival times, the integrand (N,-) takes the values 0, 1, ..., N; — 1, respect-
ively. Hence, the integral isO+ 1+ ---+ N; — 1 = N;(N; — 1)/2. In the same way,
fot NydN; = (N; + 1)N,/2, so the two integrals are not the same. In particular, we
see that the elementary “change of variable” rule fot g(s)dg(s) = g2(t)/2 does not
hold here. Next, consider the integral

t t t
Z = / N;_dM; = / N;_dN; - / Ns-ds, 120,
0 0 0

where M, := Ny —s. We have already evaluated the first integral on the right-
hand side. Likewise, the second integral can be evaluated pathwise as a Lebesgue
integral. Due to the insensitivity of the integral (Proposition 1.54), we may replace
s— with s in the second integral. In terms of the {7},}, the integral can be expressed
as the area below the graph of (Ny,0 < 5 < ¢):

N;
Dk = (T = Ticr) + (1 = TNy,
k=1

where the sum is assumed to be empty if N; < 1. A typical path of the integral-
transform process (Z;) is given in Figure 5.21.
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Figure 5.21: The integral-transform process (Z;) is a martingale.
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We saw in Example 5.10 that (M;,t > 0) is a martingale with respect to the nat-
ural filtration (7;) of (N;). It turns out that the process (Z;,t > 0) is also a martingale
with respect to (#;). To prove the martingale property (that is, E,(Z; — Z,) = 0 for
every 0 < r < t, where E, denotes the conditional expectation given %), we need
to show that . .

Er/ Ns_dN; = E,/ [N, + (N5 — N,)] ds.
r r
Since Z; = (N? — N;)/2, the left-hand side yields E,[(N? — N;) — (N?> = N,)]/2 =
N.(t —r) + (t — r)?/2, where we used the independence and stationarity of the
Poisson process increments. Similarly, for the right-hand side we have N, (t — r) +
[T B (Ng =N ds = No(t =) + [[(s =) ds = No(t = ) + (t = 1)?/2, 50 the two
expected integrals are equal given ¥, and hence the martingale property holds. This
example illustrates an important recurring theme in stochastic integration: if the
integrator process is a martingale, and the integrand is adapted and left-continuous,
then the resulting integral forms again a martingale. [ |

When X has infinite variation, such as the Wiener process, then the pathwise
definition of stochastic integration is no longer applicable. In this case, the most
used stochastic integral is the /10 integral, which we will discuss in more detail in
Chapter 7; a brief mention suffices at this point. For the Wiener process (W;,t > 0),
the Itd integral on the interval [0, ¢] can be defined as the limit

n—1

t
/ FedW, := lim > Fy, (Wi, = W),
0 n—oo k:O

where (I1,,) is again of the form (5.19) with ||II,|| — 0. For this integral to be
well-defined, some conditions must be placed on the integrand. In particular, if F
is adapted and left-continuous on (0, 7], then it can be shown to be a predictable
process in the following sense; see also (4.58).

Definition 5.22: Predictable Process

Let F := (F;,t > 0) be a filtration. A real-valued stochastic process F is said
to be F-predictable (or simply predictable) if it is measurable with respect
to the o-algebra

FP.=0(Hx(a,b] :a,beR,HeF,)Vo(HXx{0}:HEe%F).

Loosely speaking, this means that we are able to predict the value of F; from all
the information available before 7.
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For discrete processes X := (X,,n € N) and F := (F,,n € N), the treatment of
stochastic integration becomes much easier. We simply define

(5.23)/ Fi dX; 3=F0X0+F1(X1—X0)+---+Fn(Xn—Xn_1), n=1,2,....
0

For n = 0, the integral is defined as FpXo. The justification is as follows. If X is
an increasing process, then for any w € Q, there corresponds to X (w) a discrete
measure with mass m (k) := Xy (w) —Xi—1(w),atk =1,...,n,and m(0) := Xp(w).
The corresponding Lebesgue integral with respect to F'(w) is then given by (5.23), as
a function of w. If X is arbitrary, we can write X as the difference of two increasing
processes and then take the integral as the difference between the positive and
negative part. This is equivalent to associating with X (w) a signed measure (i.e.,
the difference of two measures) with the same masses m(k),k = 0,...,n, given
above. This thus defines the Lebesgue—Stieltjes integral in the discrete case; i.e.,
the Stieltjes integral interpreted as a Lebesgue integral.
Note that (5.23) defines a new stochastic process

n
(5.24) Z, ::/ FrdXy, neN.
0

Think of F, as the number of shares owned at period n — say the time interval
(n—1,n] in years — and X, as the price at the end of period n. Then, (X, — X,,—1) F,
is the profit made during period n. Moreover, Z, is the total capital at the end of
period n, starting with an initial capital of XyFy. If (X)) is a martingale, then, by
definition, conditional on the past until time n — 1, the expected increase in share
price is 0; that is, E,_; (X, — X;,-1) = 0. We shall see that if F is a predictable
process, then the expected profit during period 7, given the information up to period
n — 1 is also 0. Here is the precise definition of predictability for the discrete case.

Definition 5.25: Discrete Predictable Process

Given a filtration ¥ := (%,,n € N), a process F := (F,,n € N) is said to be
predictable if Fy € Fopand F,, € F—1,n=1,2,....

Continuing the financial analogy, if the shares process F is predictable with
respect to the natural filtration of the share price — that is, if the number of shares
owned at period n is completely determined by the evolution of the share price
in the preceding periods, then E,_(X,, — X;,—1)F, = F, E,—1 (X, — X,-1) = 0, as
reported. The total capital process (Z,) defined in (5.24) is in fact a martingale, as
the following theorem shows:
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Theorem 5.26: Integral Transform of a Martingale

Let F be a bounded predictable process and X a martingale adapted to a
filtration ¥. Then, the integral transform Z, := fon FrdX;,n € Nis an F-
martingale as well.

Proof. Obviously, the process Z := (Z,) is adapted to ¥, as both F and X are. The
boundedness assumption on F ensures that Z is integrable. Finally, Z satisfies the
martingale property:

En(ZnH - Zn) = En[(XnH - Xn)FnH] = Fu41 En(XnH - Xn) =0
for all n € N. O

®m Example 5.27 (Isometry Property) Let X := (X,,n € N) be an L?>-martingale
and let F := (F,,n € N) be a bounded predictable process, both with respect to
some filtration (7, n € N). Consider the integral process

n n
Z, ::/ deXk:Z()+ZFk(Xk—Xk—l), n €N,
0 k=1

with Zy := FyXo. By Theorem 5.26, the expectation of Z, is EZy = EFy X, for all
n. What is the variance of Z,? Expanding Z2, we have

n n
Zy-75 = Z FZ (X — Xxo1)? + 220 Z Fr(Xe — Xi-1)
k=1 =1

n-1 n
+ 22 Z FiF(X; — X;_1)(Xe — Xi1).
=1 k=g
For j < k,
E[FiFi(X; — X;-1)(Xk = Xk—1)] = EEx 1 Fj Fr(X; — X;-1) (Xi — Xi-1)
= FiFi(X; — X;-1)Ei-1 (X — Xi-1) =0,

where we used repeated conditioning in the first equality, “taking out what is known”
in the second equality, and the martingale property of X in the final equality. A
similar argument shows E[Zy(X; — Xx—1)] = 0 for all k > 1. Therefore,

(5.28) B[Z7 - 23] = ) E[F}(Xk - Xe1)] .
k=1

This is the isometry property of the discrete integral (Z,). We will encounter its
continuous-time equivalent for Itd integrals in Theorem 7.6.
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For the special case Fy = 1,k € N, we have Z, = X,,,n € N, and

(5.29) E[x2-X2] = Z E(X; — Xp_1)>
k=1

If, in addition, EX( = 0, then (5.29) simply states that the variance of X, is the sum
of the variances of its increments:

n
Var X,, = Var Xj + Z Var(Xy — Xi-1),
k=1

even though the increments are not necessarily independent. [ |

It is sometimes useful to consider a stochastic process that is stopped at some
random time 7.

Definition 5.30: Stopped Stochastic Process

Let X := (X;,t € T) be a stochastic process and 7 a random time with values
in T. By the process X stopped at time T we mean the process (Xf ,t €T)
defined by

X (w) ift < T(w),

Teoy o =
X, (w) = Xr(wyn(w) = {XT(w)(w) ift > T(w).

Stopping a martingale at a random stopping time, gives again a martingale.

Theorem 5.31: Stopped Martingale

Let M := (My,n € N) be a martingale and 7" a stopping time with values in
N. Then, the process M stopped at time 7 is again a martingale.

Proof. We can write the stopped process M as a stochastic integral M" := f Fdm
with respect to the predictable process F, := 175}, n € N. That (F},) is predictable
follows from the fact that each F;, is a Bernoulli random variable with {F,, = 0} =
{T <n-1} € F,—1. Now apply Theorem 5.26 to complete the proof. m]

B Example 5.32 (Symmetric Random Walk Continued) We continue Ex-
ample 5.15, and consider the stopped martingale (X7,,7 € N). Since this is a
martingale, we have

EXran = EXrao = EXp = 0.
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We mentioned that 7' can be shown to be almost surely finite. Hence, almost surely
X7An converges to X7. However,

0 = limEX7,, # Elim X7p, = EX7 = 1.
n n

So, we may not swap the limit and expectation. Although X7,, converges to Xr, it
does so in a non-monotone way; otherwise, we would have been able to invoke the
Monotone Convergence Theorem 2.34. [ |

B Example 5.33 (Asymmetric Random Walk) Let X := (X, n € N) be an asym-
metric random walk on the integers, defined by Xy := a for some a € N, and

X1 =X, +2B, -1, neN,
where By, By, ... ~iiq Ber(p). Defining g := 1 — p, let
M, = (q/p)*, neN.
This is a martingale, since each M,, is integrable and

EyMus1 = My Ba(q/p)*2 " = My [(p/q)q + (q/p)p] = M.

Suppose a 1is strictly positive and let 7' be the first time at which either O or b is
reached, for some b € N with b > a; that is,

T := min{n : X,, = b or 0}.

We can think of X, as the fortune of a gambler after n bets in a game of chance
that will either increase or decrease his/her earnings by 1 dollar, with probability p
and g := 1 — p, respectively. The gambler plays until time 7'; that is, when she/he
goes bankrupt or reaches the level b. The gambler’s ruin problem is to calculate the
probability that level b is reached before bankruptcy occurs.

Consider the stopped martingale M := (Mynr,n € N). By the martingale prop-
erty of M , we have

EM,=EMy=EM,=(q/p), neN.

Moreover, lim 1\2,, = My, almost surely, provided that P(T < o0) = 1. Since M is
bounded, the Bounded Convergence Theorem 2.36 lets us conclude that

EMr = (q/p)“.

In particular,

a b
(2) —EMy =P(Xy = b) (1)
p p

0
+ (1 =P(Xg = b)) (1) .
p
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Rearranging gives

- (o)

_\PJ

(o)
P

for p # ¢q. For the symmetric case p = ¢, applying the same arguments to the
martingale (X, n € N), we obtain P(X7 = b) = a/b by rearranging:

(5.34) P(Xr=b) =

GZEXTZP(XT:b)b+P(XT=a)0.

The only “loose end” in this derivation is that we have not shown that 7" is almost
surely finite. We can prove it as follows. Consider the first nb Bernoulli random
variables that are used in the construction of X, divided into n batches of size b.
Define the events A, := {T > nb}, n =1,2,.... If the event A,, occurs, then none
of the n batches contain only successes or only failures — otherwise, 7 would be
less than or equal to nb. Thus,

P(A,) < (1 -pb —qb)n.
Consequently, we have by the continuity from above property of P (see (2.5)), that
B(T = ) = P (05, A) = lim P(A,) < lim (1= p" - qb)" 0,
since Ay 2 Ay 2 ---. [ |

For certain martingales in continuous time — for example, Poisson martingales
as in Example 5.10 — we can construct martingale transforms similar to (5.23).
Specifically, let N := (N, t € R;) be an increasing right-continuous process adapted
to a filtration . Suppose that v; := EN; is finite, and that

N; ::N[—V[, tZO,

is an F-martingale. The following is closely related to Proposition 4.59. We use
the predictability Definition 5.22.

Proposition 5.35: Stochastic Integral for Predictable Integrands

Let N be defined as above. Then, for any positive ¥ -predictable process
(Ft)9

(536) E/ F[dN[:E/ F[dV[.
Ry R4
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Proof. As in the proof of Proposition 4.59, it suffices to prove (5.36) only for
indicators of sets H X A, where either H € ¥, and A := (a, b], or H € ¥y and
A = {0}. In the first case, we have

B / Ly dN, = Bl g(Np = No) = ElLy Ea (Np — No)
(a,b]

=Elg(vy —vy) :E/ 1y dv;.
(a,b]
In the second case, E1yNy = E1gEqNg = Elgvg. O

The following is a continuous version of Theorem 5.26. Note that we already
saw an illustration of the theorem in Example 5.20.

Theorem 5.37: Integral Transform of a Continuous Martingale

Let N be an ¥ -martingale, as defined above. For any bounded 7 -predictable
process F, the integral transform

t
Zl‘ ::‘/ FSdNS5 r 2 0,
0

is a martingale.

J

Proof. Adaptedness and integrability are straightforward. For the martingale prop-
erty, write

E,[Z: — Z] = Ey /

(s,t

| Fy dﬁu = Es/ IL(s,t](u)Fu dn, - Es/ ]l(s,t](u)Fu dv,.

+

To show that Es[Z, — Z] = 0, it thus suffices to show that for any positive V € F;
we have

EV / 1(s(#)F, dN, =EV / Ly (1) Fy dv,
R,

+

which is equivalent to showing that
E/ G,F,dN, = E/ G,F,dv,,

where G, := V1,,)(u). The process G is positive and predictable and so are GF*
and GF~. The result now follows from Proposition 5.35. O

B Example 5.38 (Arrival Times of a Poisson Process) Let N := (N;,t > 0)
be a Poisson process with rate c. Denote the arrival times by 77,73, ... and set
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Tp := 0. Let ¥ := (F,t = 0) be the natural filtration of N. We want to prove that
the interarrival times are iid and Exp(c) distributed; thus, that for each n € N,
Tn+1 — T, is independent of F7, and is Exp(c) distributed. Consider thereto the
martingale N; = N; — ct,t > 0 and stopping times S := T, and T := Tj,,;. For an
arbitrary positive V € Fs and r > 0, define

Fr=V ]l(S,T](t) re”, t>0.

The process (F;) is positive and ¥ -predictable. Thus, by Proposition 5.35,

E/F[le :E/F;Cdl,
which is equivalent to

ES/ re " dN, = ]ES/ re "cdt.
(S.T] (8.T]

Evaluating both integrals (for the left-hand side, use the fact that (V;) only has one
jump of size 1 at time 7 in the interval (S, T]) gives

rEse™ T = cEg(e™S —e7).

Multiplying both sides by " and passing the latter inside the conditional expecta-
tion, we obtain after rearranging:

EgeT-9) = <

, r>0,
c+r

showing that T — § = T,,41 — T, is independent of ¥7, and is Exp(c) distributed. M

5.3.2 Doob’s Stopping Theorem

The following treatment of Doob’s stopping theorem is restricted to the discrete
case and relies on the integral transformation technique of the previous section.
The stopping times involved are required to be bounded. For uniformly integrable
martingales this boundedness requirement is no longer necessary; see Theorem 5.59.

Theorem 5.39: Doob’s Stopping Theorem

A stochastic process M := (M,, n € N) is a martingale if and only if for every
pair of bounded stopping times S and 7 with § < T the random variables M
and M7 are integrable, and

(5.40) Es(Mr — Ms) = 0.
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Proof. Let M be a martingale. Take two bounded stopping times S and 7', with
S < T < nfor some fixed n. We want to show that (5.40) holds. Let V be a bounded
random variable in ¥g. Consider the predictable process (Fy, k € N) defined by

V ifS<k<T,
Fk = .
0 otherwise.

Its integral with respect to M is the process X := (X,) = (J Fx dMy), with

Xn— Xo =(Msy1 —Ms)V +---+ (Mr — Mr—1)V = (Mr — Ms)V.
——
MoFo

Since F is predictable and bounded, X is a martingale, by Theorem 5.26. By taking
V:i=1and S := 0, we see that M7 is integrable, and V := 1 and T := n shows My is
integrable. Finally, since V € g, we have

EVEs(Mr - Ms) = EV(Mp— M) =E(X, - Xo) =0.
——

projection
property

Since V is an arbitrary bounded random variable in g, (5.40) must hold.

Conversely, suppose that (5.40) holds for every pair of bounded stopping times
S and T with S < T and that Mg and Mr are integrable. We want to show
that M := (M,,,n € N) is a martingale; i.e., an adapted process, where each M, is
integrable and satisfying the martingale property. Adaptedness is by assumption
and integrability follows from the integrability assumption of My, by taking T := n.
To check the martingale property, take a pair (m,n) with m < n and an event
H € F,,. We want to show

E 14E, (M, — M,,) = 0.

Take S :=m,and T := n 1y + m Lg\y. Obviously, S is a stopping time. To see that
T is also a stopping time, apply the alarm test: For every w we are able to construct
an alarm that sounds at 7'(w), because T (w) > m and at time m we will be able
to determine whether T (w) = n (when H occurs) or T (w) = m (when H does not
occur). So, we have a pair of stopping times (S, 7) such that S < T < n and, by
construction, My — Mg = 1y (M, — M,,). Applying (5.40), we have

E ILHEm(]Mn - Mm) = EEm]lH(Mn -My) =0

for all H € ¥,,, and m < n, which can only be true if E,,(M,, - M,,) =0, i.e., if M
has the martingale property. O
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B Remark 5.41 (Submartingale Inequality) When M is instead a submartingale,
we can repeat the above proof almost verbatim to conclude that

Es(Mp — Mg) > 0
for bounded stopping times S < 7. [ |

Akin to Markov’s inequality (3.9), the next lemma bounds the tail probability
of the running maximum of a positive submartingale in terms of the expected value
of its final member.

Lemma 5.42: Maximum Inequality for Positive Submartingales

Let (Y, k € N) be a positive submartingale and define Y, := maxy<, Y.
Then, for any b > 0,

(5.43) bP(Y, > b) <E[Y,1{y->p] <EY,.

Proof. Define T := inf{n > 0 : Y, > b}. It holds that {Y;; > b} = {T < n} and
hence

blir<ny < Yran Yr<ny < Lir<ny EranYn = BEranYalir<nyl,
where the second inequality is due to Doob’s stopping theorem for submartingales;
see Remark 5.41. Taking expectations, yields (5.43). O

Recall Kolmogorov’s inequality in Theorem 3.11: If X, X», . . . are independent
with zero mean, and S, := ;.’:1 X;, then

Var S,

P(r}{1§$|5k| > b) < 2

The following extends this result to the maximum of a martingale:

Theorem 5.44: Doob—Kolmogorov Inequality

Let M := (M}) be a martingale in L? for some p € [1, o). Then, for b > 0,

E|M,|?
4 P M < .
(5.45) (max|Mi| > b) < — 2

Proof. If M is a martingale in L?, then Y := |M|? is a positive submartingale. Let
a := bP?. By Lemma 5.42, a P(max;<, Yy > a) < EY,. Translated back, using M
and b, this gives (5.45). O
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To show that Kolmogorov’s inequality in Theorem 3.11 follows directly from
Theorem 5.44, note that (S, n € N) is a martingale. In particular, if ES2 = oo, then
the result holds trivially. And if ES? < co then S is a square-integrable martingale,
so (5.45) holds with p = 2.

5.4 (Sub)Martingale Convergence

The second major use of martingales is in proofs of convergence for stochastic
processes. A first step in the analysis is to characterize the number of times a
stochastic process “upcrosses” an interval.

5.4.1 Upcrossings

Let X := (X, k € N) be an adapted process with respect to some filtration and
consider the integral transformation Z,, := fon FrdXy,n € N, where (Fy) is a pre-
dictable process. Continuing the financial analogy in Section 5.3.1, think of X} as
the share price at time k and Fj as the number of shares owned at period k. It is
completely determined by the share price history before period k. That is, the share
buying strategy is determined by the information available before the kth period.
For example, the strategy could have the following rules: (1) we are allowed at most
one share, (2) when the share price drops to level a or lower, we buy one share (if
our portfolio is empty), and (3) when the share price reaches b or higher, for some
fixed b > a, we sell the share, if we own one. The total profit at period n is Z,, — Zj.
If the share price at n (if any) is higher than what it was bought for, then the total
profit Z,, — Zy is at least (b — a)U,, where U, is the number of times the process X
has upcrossed the interval (a, b) during the periods 0, 1, ..., n.

As a special case, suppose that X > 0 is a positive submartingale and that a = 0.
Thus, if at any time k when the price drops to 0, we buy a share (if we have no
share), and we sell a share (if we own one) when the price hits b or any price higher.
Again, we are allowed at most one share. We thus have

(5.46) Z,—Zp 2 bU,,

where U, is the number of upcrossings of (0, b); i.e., the total number of shares
sold up to period n. Now observe that for each k =0, 1,2, . . ., we have:

Bk [Zis1 = Zi] = Bi [ (X1 = Xi) Frv1] = Fre1 B[ Xer1 — Xi] < B[ Xie1 — Xi].
<1 >0

Summing the above terms from k = 0 to n — 1 and taking expectations gives

E[Z, - Zy] < E[X, — Xol.
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Combining this with (5.46) gives:
(5.47) bEU, < E[X, — Xo].

For a general interval (a, b) and a submartingale X, the above result is general-
ized as follows. Recall that for a random variable V, V* := V v 0 = max{V, 0}.

Theorem 5.48: Expected Upcrossings of a Submartingale

Suppose that X is a submartingale. Then, the expected number of upcrossings
U,(a,b) of (a, b) satisfies:

(5.49) (b—a)EU,(a,b) <E[(X,—a)" = (Xo—a)"].

Proof. The number of upcrossings of (a,b) for X is the same as the number
of upcrossings of (0,b — a) for the process (X — a)*. The latter is a positive
submartingale, for which, by (5.47), we have (5.49). O

The upcrossing theorem will be useful for proving convergence results for
(sub)martingales. Recall that submartingale has a tendency to increase. If this
increase is constrained in some way, it is reasonable that the process would con-
verge. The following theorem restrains the growth of the submartingale by means
of a finiteness condition on the supremum of the EX}:

Theorem 5.50: (Sub)Martingale Convergence

Let X := (X,,n € N) be asubmartingale. Suppose thatsup, EX;; < co. Then,
X converges almost surely to an integrable random variable X.

Proof. Suppose that the sequence (X, (w)) does not converge for some w. Then,
there exist a, b € Q with liminf X,,(w) < a < b < limsup X, (w) such that the
total number of upcrossings of (a, b) by (X, (w)) is co. The corresponding random
variable is defined as U(a, b) := lim U,(a, b). Consider the event

|J {U(a, b) = o}
a,beQ
a<b
We need to show that the probability of this event is in fact 0. Or, equivalently, that
P(U(a, b) < o) =1 for every a,b € Q with a < b. Thus, it suffices to show that
EU(a, b) < oo for any such a pair (a, b). For this, we apply Theorem 5.48 and take
the supremum over n on both sides of (5.49) to get

(b —a)supEU,(a,b) < supE(X, —a)".
n n
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Since (U,(a, b)) is increasing, we have sup, EU,(a, b) = EU(a, b) by the Mono-
tone Convergence Theorem 2.34. Also, (X, —a)* < X +|al, sosup, E(X,, —a)* <
sup, EX; + |a| < oo by the theorem assumption. Consequently, EU(a, b) < oo, so
that X, := lim X, exists almost surely. It remains to show that X is integrable.
This follows from Fatou’s Lemma 2.35:

(5.51) E|Xe| = Eliminf | X,,| < liminf E|X,,| < 2supEX! - EX; < co.
pEX,

The second-last inequality follows from the facts that
E|X,| = EX, + EX, = 2EX, — EX,
and that EX,, > EX), since X is a submartingale. O

A uniformly integrable submartingale satisfies the condition of Theorem 5.50.
This is because EX; < E|X,|, and hence sup, EX; < sup, E|X,| < oo, by the
property of uniform integrability (see Proposition 3.34, Point 5). The following
affirms the central role of uniform integrability in connection with (sub)martingales.
We already saw in Theorem 3.38 that a sequence of real-valued random variables

converges in L' if and only if it converges in probability and is uniformly integrable.

Theorem 5.52: (Sub)Martingale Convergence and Uniform Integrability

Let X := (X,,n € N) be a submartingale. Then, X converges almost surely
and in L' if and only if it is uniformly integrable. Moreover, if X converges,
setting X := lim X,, extends X to a submartingale X := (X,,,n € N).

Proof. If X converges almost surely (and hence in probability) and in L!, it must
be uniformly integrable by Theorem 3.38.

Conversely, suppose that X is a Ul submartingale. Then, as mentioned above, it
satisfies the condition of Theorem 5.50 and hence it converges almost surely to an
integrable random variable X,. Again by Theorem 3.38, X also converges to X, in
L' sense. To show that the extended process X is a submartingale over N, we need
to show that:

l. Xoo € Foos
2. E|Xo| < o0,
3. En(Xeo — Xpn) = 0 forall m € N.

The first point follows from the fact that X, is the limit of the X,,, all of whom
belong to ¥. The second point was already shown in (5.51). For the final point,
take H € ¥, for some arbitrary m. By conditioning on ¥, we have for every n > m:

Ely(Xy — Xm) = ELyEm (X, — X)) > O,
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where the last inequality follows from the submartingale property of X. Since
X,, — X, converges in L! to X, — X,, as n — oo and 1 is bounded, we have

(5.53) EIxE,(Xeo—Xn) = Elyg(Xe—Xp) =limEly(X, - X,) > 0.
~—— n
cond.exp.

If the random variable E,, (X, — X)) were strictly negative on some set A € ¥, with
P(A) > 0, then taking H = A would give E14E,, (X — X;;) < 0, which contradicts
(5.53). Hence, E,,(Xo — X;;;) = 0 almost surely. O

We have seen in Example 5.11 that if Z is an integrable random variable, then
M, =E,Z,n=0,1,2,...defines a uniformly integrable martingale. We can think
of Z as some kind of ultimate truth that is revealed at the end of time. For any finite
time n, M, conveys what we know about Z based on the history up to time n. Any
UI martingale is actually of this form, as detailed in the following theorem:

Theorem 5.54: Uniformly Integrable Martingale

A process M := (M, n € N) is a Ul martingale if and only if there exists an
integrable random variable Z such that

(5.55) M, =E,Z, neN.

Moreover, then M converges almost surely and in L' to an integrable random
variable

(5.56) My :=ExZ,

and (M,,n € N) is again a Ul martingale. If Z € ¥, then M, = Z.

Proof. To prove sufficiency, suppose that M satisfies (5.55). Then, it is a Ul
martingale, as shown in Example 5.11. Hence, by Theorem 5.52, M converges
almost surely and in L; to a random variable M., and M := (M, n € N) is again a
martingale. It is in fact UI, because M is Ul and M, is integrable. We still need to
show that M, = EZ, but we leave this to the end.

For the necessity part, suppose M is an arbitrary UI martingale. Again, by
Theorem 5.52, M converges almost surely and in L; to a random variable M, and
M = (M, n € N) is a Ul martingale. In particular, by the martingale property,

EMo=M, n=012,...,

80 (5.55) holds with Z = M.
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It remains to show that (5.56) holds if M,, = E,Z, n € N. Take an arbitrary
H € .. We want to show

(5.57) ElyMe = ElyZ,

using a monotone class argument. Let D be the collection of all H € %, for which
(5.57) holds. This is a d-system (check yourself). Moreover, it contains ¥, for each
n, because for any H € 7, it holds that

ElgMs =E1gE,M, =Ely E,Z =ElgxZ.
—— ——
M, M,

Thus, D is a d-system that contains the p-system U, 7. It follows by the Monotone
Class Theorem 1.12 that D contains the o-algebra generated by U, 7, i.e., Fo. SO
(5.57) holds for all H € ¥. Consequently, for all H € ¥,

ElpEwZ = ElyZ =ElyM,
——
cond.exp.

which can only be true if Mo, = EwZ. Finally, if Z € ¥, then Ec,Z = Z, in which
case M, = Z. O

If the time set T = N and the martingale (M,, € N) is UI, then we can think
of M, as our best estimate at time »n of the final truth M., that will be revealed at
the end of time. As time proceeds, more and more information becomes available
about this final truth.

What if the martingale has been going since time immemorial and we observe
it today at time n = 0, using all the information of the past? To explore this,
consider the following martingale in reversed time. This is simply a martingale
M = (M,,n € T)withtimesetT := {..., -2, —1,0}. Asbefore, we have a filtration
F := (F,) thatis increasing in n; that is, as time increases more information becomes
available.

Theorem 5.58: Convergence for Martingales in Reversed Time

ForT={...,-2,-1,0},let M := (M,,n € T) be a martingale with respect
to the filtration (,,n € T). Then, M is UI and, moreover, as n | —oo it
converges almost surely and in L' to the integrable random variable M_,, :=
E_oMy, where F_o := NyetFa-

Proof. From the martingale property, we have

M, =E,My, neT.
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In Example 5.11 we saw that martingales of such form are uniformly integrable. So
M, is the “ground truth” that is revealed more and more as we go forward in time,
starting from the “beginning of time”. To show that the value of the martingale at
the beginning of time, say M_,, has meaning, we repeat the proof of Theorem 5.54,
using the upcrossing theorem. In particular, by Theorem 5.48 the expected num-
ber of upcrossings of an interval (a, b) by the martingale (M,, M,41, ..., M) is
bounded by

ﬁE [(M()—a)+— (M, —a)+] < bia

E(My—a)* < .

This holds for any n € T. Thus, the number of upcrossings of (a, b) by M over T
is almost surely finite for any interval (a, b), with a < b. Just as in the proof of
Theorem 5.50, this implies that M converges almost surely to a random variable
M_,, as n | —co. By uniform integrability of M, the convergence is in L' as well.
Finally, as M,, € Fx,k = n,n+ 1,...,0, the random variable M_., belongs to all
Fn,n € T, and hence it belongss to the intersection of these o-algebras. O

We now have gathered enough results to extend Doob’s stopping theorem for
UI martingales to arbitrary (not only bounded) stopping times.

Theorem 5.59: Stopping for Uniformly Integrable Martingales

If M := (M,, n € N) is a uniformly integrable martingale, then for every pair
of stopping times S and 7 with S < T it holds that

EsMy = M.

In particular,

EM; = EMj.

Proof. Since M is a Ul martingale, we have
M,=E,Z, neN

for some integrable random variable Z. From Doob’s Stopping Theorem 5.39
applied to the bounded stopping times 7" A n and n, we have

MT/\n = ET/\n Mn = ET/\n En Z= En ET Z’ ne Na

where we have used the repeated conditioning property of conditional expectations.
Since M is Ul on N, M7 is integrable, even if T can take the value co. By
Theorem 5.54, the random variable E, Er Z converges to ErZ almost surely. But
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M7, = E, Er Z also converges almost surely to M. Hence, M7 = Er Z. For any
stopping time S < T we have by repeated conditioning:

EsMr=Es¢ErZ =EgZ = Mg,

as had to be shown. Finally, by taking expectations (i.e., unconditioning) with § = 0,
we have
E Mr = E M.

O

B Example 5.60 (Asymmetric Random Walk Continued) Let (X,,n € N) be the
asymmetric random walk on the integers from Example 5.33, to which corresponds

the martingale
M, = (q/p)*", neN.

Let T be the first time that (X,,), starting at some strictly positive integer a, reaches
either O or b > a. The stopped martingale (M,,7,n € N) is uniformly integrable,
as all its values lie between 1 and (¢/p)”. So, we can immediately conclude from
Theorem 5.59 that E My = E Mj. In particular, there is no need to ascertain the
almost sure finiteness of 7', as we did in Example 5.33. [ |

5.5 Applications

In this section, we discuss a number of beautiful applications of martingale theory.

5.5.1 Kolmogorov’s 0-1 Law

Let X1, X», ... be asequence of independent random variables, with natural filtration
F = (F,), where ¥, := o(Xq,...,X,). Recall the notation E,Z = E[Z|F,] =
E[Z| Xy, ..., X,]. Define 7, := 0 (X1, Xn+2,...) and 7 := N, 7,,. The o-algebra
7 is called the tail o-algebra of X1, X, . . .. It consists of events that are not affected
by a finite number of the {X;}; for example, the event

1
{limsup—(Xl +---+X,) >x}
n

belongs to 7.

Theorem 5.61: Kolmogorov’s 0-1 Law

If H € 7, then P(H) is either 0 or 1. Consequently, a numerical random
variable Z that is 7 -measurable must be almost surely constant.
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Proof. For every event H,

by Theorem 5.54. Suppose H € 7. Since 7 is independent of 7, we have
E, 1y =Ely =P(H).
On the other hand, since 7,, C ¥ for all n, we have 7~ C ¥, which implies that
Eoly = 1g.
Combining the three displayed results gives
P(H) =1y, almost surely.

This means that P(H) is either O or 1. Finally, suppose that Z is a numerical
random variable in 7 (i.e., Zis 7/ B—measurakle). Then, {Z = z} € 7 has either
probability O or 1. Hence, there mustbe a ¢ € R such that P(Z =¢) = 1. O

5.5.2 Strong Law of Large Numbers

We give a proof of the Law of Large Numbers (Theorem 3.44), under the condition
that X1, Xo, . . . is an iid sequence of random variables with finite expectation c. We
thus want to prove that the sample mean process X,,n =1,2,..., with

i X1+ + X,

n - k)
n

converges almost surely to ¢ as n — oo. We consider thereto the filtration ¥ :=
(Fop,n = 1,2,...), where F_,, := 0(X,, Xps1,...). Thus, 7, contains present
and future information of the sample means at time n. Because the (X1,..., X,) is
independent of X1, X,+2, . . ., we have for each k € {1,...,n}:

E_n X =E[Xik | F-n] = 8k (Yn)

for certain measurable numerical functions gz, k = 1,...,n. In fact, since the
distribution of (Xj,..., X)) is invariant under permutations, all {g;} must be the
same. Moreover, as E_,(X; +-- - + X},) = n X,,, we must have

E_nXk:Xn, kzl,...,l’l

and, in particular,

E_”X1=Xn, l’l:1,2,....

This shows that (X,,n = 1,2,...) is a uniformly integrable martingale. By The-
orem 5.58 it converges almost surely and in L' to an integrable random variable X o,
as n — oo. To show that X = ¢ almost surely, note that

— 1
Xoo =lim —(Xpq1 + -+ + Xian),
n n
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which shows that X, belongs to the tail o-algebra o-(Xis1, Xis2,...) for every
k =0,1,...and hence it belongs to the intersection of these. By Kolmogorov’s 0-1
law, X, must be almost surely constant. Finally, by L' convergence, this constant
must be ¢, as EXo = imEX,, = c.

5.5.3 Radon-Nikodym Theorem

Recall that the Radon—Nikodym Theorem 1.59 is closely connected to the concept
of conditional expectation; see Section 4.2. We provide a proof of the theorem using
martingale techniques, under the condition of separability of the related o--algebra.

Definition 5.62: Separable o-Algebra

A o-algebra on Q is said to be separable if it is generated by a sequence (H},)
of subsets of Q.

B Example 5.63 (The Borel o-Algebrais Separable) Let€Q := (0, 1] and consider
the following sequence of partitions that become increasingly finer:

Py := (0, 1]
P :=(0,1/2],(1/2,1]

P, :=(0,1/2"],(1/2",2/2"],..., (1 =27",1]

Let (H,) be the sequence of intervals (0, 1], (0,1/2], (1/2,1], ..., in the order in
which these sets appear above. Then, every interval (a, b] C (0, 1] can be written
as a countable union of elements in (H,), and hence o (H1, H>,...) = B(o,1]; that
is, the Borel o-algebra on (0, 1] is separable. [ |

The above example proffers the idea that the appropriate way to look at a
separable o-algebra G is through a sequence of ever-finer partitions $g, Py, . . ..
Given the sequence (H,), it is always possible to construct such a sequence of
partitions. Namely, for every n, the o-algebra ¥, defined as o (Hy, ..., H,) has
only a finite number of elements, and so we can find a finite partition %, such that
every element of , can be written as a finite union of elements in #,. In particular,
o (Pn) = Fn. Now, (F,) is a filtration and oo = limF, = V,, 5, = G.

The following is a slightly restricted version — applied to a probability space
(Q, H,P) — of the Radon—-Nikodym Theorem 1.59, which we can prove rigorously
using martingale theory:
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Theorem 5.64: Radon-Nikodym

Let (2, H,P) be a probability space, where H is separable, and let Q be a
finite measure on (Q, H) with Q < P. Then, there exists a positive random
variable Z € H, written Z = dQ/dP, such that Q = Z P; that is,

(5.65) Q(H):/Zd]P:EILHZ, HeH.
H

Proof. The proof is mostly by construction, apart from a few technical points. Since
‘H is separable, we can find a sequence of ever-finer finite partitions (#,) and a
filtration ¥ := (F,) with 7, := 0 (P,), as discussed after Example 5.63. We first
construct a stochastic process X := (X},) as follows:

Q(H)
Xn = ]]_H, ne N,
H;,n P(H)

with the convention that 0/0 := 0. Since P, is a partition, there exists for each
specific w € Q a unique set H, € $, that contains w. The above definition thus
implies that X,,(w) = Q(H,,)/P(H,). Obviously, X,, > Oforalln € N;and X, € 7,
since X, only takes finitely many values and the inverse image of each of these values
isasetin $,. Since any H € ¥, can be written as a finite union H = Uy Hy, of disjoint
sets in #,,, we have

0 Q(Hy) 3 3
(5.66) ElyX, = ; S P = Zk: Q(Hy) = Q(H).

We want to show that X is a positive martingale with respect to the filtration
¥ and that it converges almost surely to a random variable Z € H. Positivity
and adaptedness have already been shown, and taking H = Q in (5.66) shows
integrability, since EX,, = Q(Q) < co. The martingale property follows from

ElgX, =Q(H) =ElyX,+1, H e Ty,

where we have used the fact that also H € 7,4+1. Since X is a positive martingale,
—X is a negative submartingale with sup, E(—X;") < 0 < oo, and we can apply The-
orem 5.52 immediately to conclude that X converges almost surely to an integrable
random variable Z € H.

In fact, X is a uniformly integrable martingale, and thus the convergence to Z is
in L' sense as well. To prove uniform integrability, we need to show that for every
g > 0 there is a b such that

supEX, 1(x,>p) < €.
n



184 5.6. Martingales in Continuous Time

By (5.66) we have
EXy1(x,>p) = Q(Xn > b).

So it suffices to show that for all & > O there exists a b such that Q(X,, > b) < &
for all n. Since Q is absolutely continuous with respect to P (i.e., P(H) = 0 implies
Q(H) = 0), a small value of P(H) ought to imply a small value of Q(H). This
suggests that for every £ > 0 we seek a 6 > 0 such that

(5.67) P(H) <6 =>Q(H) <e¢ forallH e H.

If for every & > 0 (5.67) holds for some ¢ > 0, then take b := Q(Q)/6 and H :=
{X, > b}, so that by Markov’s inequality (3.9) and (5.66):

1 1
B(X, > b) < 7EX, = 20(Q) =6

and hence Q(H) < . To prove (5.67), take an &£ > 0 and suppose that (5.67) does
not hold. Thus, there exists H, € H such that

P(H,) <27 while Q(H,) > &.

Define H such that 15 = limsup 1,. By the Borel-Cantelli Lemma 3.14, we have
limsup 1y, = 0, almost surely, which means that P(H) = 0. But also, by Fatou’s
Lemma 2.35,

/limsup 1p,dQ = —/ liminf(-1g,)dQ > —liminf/(—llHn)dQ
= lim sup/ 1p,dQ = limsup Q(H,) > ¢.

This is in contradiction to the absolute continuity of Q with respect to P, so there
does exist a ¢ such that (5.67) holds.

Thus, we have established that X is uniformly integrable and that it converges
to Z in both almost sure and L' sense. It remains to show (5.65). Define for every
event H:

Q(H) := / ZdP =ElyZ = limElyX,,
H
where the last equality follows from L! convergence of X. But for H € ¥, we
have Q(H) = Q(H), by (5.66). Since Q and Q coincide on the p-system U, %, that
generates H, they must coincide on H. O

5.6 Martingales in Continuous Time

We conclude this chapter with a preparatory discussion of martingales in continuous
time. We already encountered an important example in the form of the process (N, —
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ct,t > 0), where (I,) is a Poisson counting process with rate c¢; see Example 5.10.
In a similar way, we can obtain martingales from other Lévy processes by subtracting
their mean.

Chapters 6 and 7 will showcase many continuous-time martingales related to
the Wiener process. The Wiener process itself provides the main example of a
continuous-time martingale.

B Example 5.68 (Wiener Process is a Martingale) Let (W;,r > 0) be the Wiener
process, as previously examined in Examples 2.77 and 2.96. It is adapted to its
natural filtration, integrable (as E|W;| < oo for all f) and satisfies the martingale
property
EsW; = Eg[Wy + Wy — W] = Wy + Es[W; — W] = W
————
=0

forall s < ¢. ]

The objective of this section is to extend the results for discrete-time martingales
to the continuous-time case. To that end, recall the main findings for a martingale
M := (M,,n € T) with time set T = N or N:

1. Doob’s Stopping Theorem: For every pair of bounded stopping times S < T,
(5.69) EsMr = M,
provided Mg and My are integrable; see Theorem 5.39.

2. Doob’s Stopping Theorem for Ul Martingales: For a Ul martingale M on T = N,
(5.69) holds for every pair of stopping times S < T'; see Theorem 5.59.

3. Martingale Convergence for Ul martingales: A Ul martingale M on N is of the
form
M,=E,Z, neN.

It converges almost surely and in L' to ) an integrable random variable Mo and
can be extended to a UI martingale on N; see Theorem 5.54.

5.6.1 Local Martingales and Doob Martingales

When analysing a stochastic process M := (M, t € T) with T = R, or R, for some
filtration  on a probability space (L2, H, P), it is often convenient (and sometimes
necessary) to impose various regularity conditions on the process itself, the underly-
ing probability space, and/or the filtration that is used. Typical regularity conditions
are:

1. The probability space (L2, H,P) be complete, meaning that H contains every
negligible set; that is, if A ¢ H with P(H) =0, then A € H.
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2. The filtration ¥ be augmented, meaning that (Q, H,P) is complete and all the
negligible events in H are also in Fy (and hence in all 7).

3. The paths of M be right-continuous and have left-limits.

Even when these regularity assumptions are in place, it is sometimes necessary
to extend the notion of the natural filtration of a process ever so slightly, as illustrated
by the following example:

B Example 5.70 (Not a Stopping Time) Let X; be the position of a particle that
starts at position 0 and moves with velocity 1. At a random time 7 it stops. A
typical trajectory is shown in Figure 5.71. As we cannot say at any time ¢ whether
the particle has actually stopped, T is not a stopping time for the natural filtration
of (X;). However, if we were able to look an infinitesimal amount of time ahead at
every ¢, then we would be able to discern whether the particle has stopped at time 7.

0 T
Figure 5.71: T is not a stopping time.

The previous example suggests that we use filtrations for which the information
at time ¢ is exactly the same as the information at time ¢ if we can also “peek ahead”
an infinitesimal amount of time. This leads to the following definition:

Definition 5.72: Right-continuous Filtration

A filtration ¥ := (%) is said to be right-continuous if for all ¢,

It is easy to construct a right-continuous filtration, ¥* from a natural filtration
¥, by defining

(5.73) 7= ) Fu

u>t
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In Example 5.70, T is a stopping time of ¥, but not of the natural filtration ¥ of
the process (X;).

From Theorem 5.83 we have seen that a martingale (M;, t > 0) that is stopped at
a random stopping time 7, i.e., (M;x7,t > 0), is again a martingale. The converse
is generally not true: a stopped process that is a martingale may itself not be a
martingale.

Definition 5.74: Local Martingale

A process (Z;,t > 0) is called a local martingale if there exists a sequence of
stopping times (7,,,n € N), called a localizing sequence, such that T,, — oo
almost surely and each stopped process (Z;ar,,t > 0) is a martingale.

Similarly, a process (Z;,t > 0) is said to be of locally bounded variation if each
(Zia1,,t = 0) is of bounded variation.

B Example 5.75 (Local Martingale) Suppose that X ~ t; has a Cauchy distribution
and is independent of the Wiener process (W;,t > 0). Then, the process Z :=
(X W;,t > 0) is not a martingale, because E|X W;| = co. Nevertheless, Z is a local
martingale with respect to the filtration (%;,¢ > 0) with 7; := o{Wy,s <t} V o X.
A particular localizing sequence is T, := inf{r > 0 : |[X W,| > n},n € N. [ |

Theorem 5.76: Properties of Local Martingales

Let Z := (Z;,t > 0) be a local martingale with localizing sequence (7,,n €
N). Then, the following hold:

1. If Z > 0and EZjy < oo, then Z is a supermartingale.

2. If for each ¢ > O the sequence (Z;7,, n € N) is uniformly integrable, then
Z is a martingale.

Proof. Define Z") := Z;ur., t > 0,n € N. By the martingale property of (Z", 1 >
(n) a.s,

0), we have E,Z"” = Z for s < 1. Since T;, %5 o, we also have Z!
n — oo. Hence, applying Fatou’s Lemma 2.35 with regard to E;, we find

= Z; as

EsZ; = Egliminf Z™ < liminf E,Z" = liminf Z{" = Z,,
n n n

so the supermartingale property holds for Z. In addition, the process is adapted to
its natural filtration, and integrability follows from E|Z;| < E Ey|Z;| = E Zj < oo,
so Z is a supermartingale. This proves property 1.

For property 2, almost sure convergence Zt(") %5 Z; (and thus Zt(") = Z;) com-

(n) L!

bined with the uniform integrability of (Zl("),n € N) imply that Z;/ = Z,, by
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Theorem 3.38. In other words, E|Z;A7, — Z;| — 0, which shows that the limit
of ESZ,(") exists and is equal to E;Z,. However, taking limits on both sides of
the martingale equality ]ESZtW = 7" also shows that lim,, ESZ,(") = Z,. Thus,
EsZ; = Zg, so that Z has the martingale property. Adaptedness is again automatic,
and integrability follows from Fatou and the uniform integrability of (Zt(”), n € N):

E|Zi| = Eliminf |Z"| < liminf B|Z"| < supE|Z{"] < eo.
n n "
O

B Example 5.77 (Continuous Local Martingale) If Z := (Z;,t > 0) is a con-
tinuous local martingale with Zp = 0, then we can always choose the localizing
sequence (7,,n € N) to be:

T, =inf{t >0:|Z;| >n}, neN.

To see this, let (7,,) be the localizing sequence for Z. Since (Zizr,,t > 0) is a
continuous martingale, the stopped process (Z;ar,A7,,t = 0) is also a martingale by
Theorem 5.83. The bound E|Z;r, r1,| < n implies that (Z;ar, a1, 7 € N) is UI for
each fixed n. Therefore, the second part of Theorem 5.76 implies that (Z;7,, ¢t > 0)
is a martingale for each n. [ ]

Below, T = R, or R,. For simplicity, we assume that M := (M;,t € T) is a
martingale with respect to an augmented and right-continuous filtration, and has
right-continuous and left-limited paths.

Definition 5.78: Doob Martingale

Let £ be a stopping time. A process M := (M;,t € T) is called a Doob
martingale on [0, ] if for all stopping times 0 < § < T < £ it holds that

(5.79) EsM7 = Mg,

where Mg and M7 are integrable.

The following provides an equivalent description of a Doob martingale:

Theorem 5.80: Characterization of a Doob Martingale

Let £ be a stopping time. A process M := (M,,t € T) is a Doob martingale
on [0, £] if and only if for every stopping time 7 < £,

(5.81) EMr = EM,.
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Proof. Suppose M is a Doob martingale on [0, {]. From (5.79), with (S,7T) :=
(T, ), we have

(5.82) ErM; = My.

This holds true for any 7 < . Taking expectations in (5.82) with (7, ) := (0,7)
then gives (5.81).

To show necessity, suppose that (5.81) is true for any stopping time 7 < . We
want to show that (5.82) holds. Take an event H € 7 and define

U:=Tlyg+{(1-1p).
Then, U is a stopping time with 7 < U < ¢, and
M; - My =(M; - Mr)ly.
It follows, using the assumed property (5.81), that
0=EM; -EMy =E[M; - My] =E(M; — M7)1y

for any H € ¥r; that is, (5.82) holds. By applying the latter property to stopping
times S and 7 with S < T < £, we find

EsMr = EsErM; = EsM; = Ms.
That is, M is a Doob martingale on [0, {]. O

The following is the continuous-time version of Doob’s Stopping Theorem 5.39:

Theorem 5.83: Doob’s Stopping Theorem for Continuous Martingales

A martingale M := (M;,t € R,) is a Doob martingale on [0, b] for every
b € R, and satisfies

(5.84) EsM7 = Mg

for every pair (S, T) of bounded stopping times with S < T.

Proof. Let M be a martingale and take b € R;. To show that it is a Doob martingale
on [0, b], we need to show (using Theorem 5.80) that EM; = EM, for every stopping
time 7 < b. We do this by applying Doob’s Stopping Theorem 5.39 to a discrete-
time martingale (M7, ), where (7,,) is a sequence of stopping times decreasing to
T, as defined in Exercise 26. For each n, define T, as the countable time set
{k/2",k € N,n € N}U{b+1} and note that 7, is bounded by b + 1 and takes values



190 5.6. Martingales in Continuous Time

in a finite subset of T,. Now, consider the discrete-time martingale (M,,t € T},).
By Theorem 5.39, with (S,7T) := (T, b + 1), we have

(5.85) Mz, =Bz, My,

Defining X_,, := Mr,,n € N, (5.85) shows that (X_,, n € N) is a reversed-time (and
hence uniformly integrable) martingale with respect to the filtration (¥7,) — noting
that ... < T, < Ty < Tj. It follows from Theorem 5.58 that M7, converges almost
surely and in L' to an integrable random variable. But since (7},) decreases to T
and M is (assumed to be) right-continuous, this limiting random variable must be
M. Finally, by L! convergence, we have, in view of (5.85),

EMT = limEMTn = EMb+1 = EM().

Thus, M is a Doob martingale on [0, b] for any b € R, and, by definition, (5.84)
holds for any pair (S, T) of bounded stopping times with § < 7. O

As in the discrete case (see Remark 5.41), when M is instead a submartingale,
the above theorem and proof can be modified slightly to yield the inequality:

Es(M7p — Mg) > 0.

5.6.2 Martingale Inequalities

It is possible to formulate inequalities for the maxima of continuous submartin-
gales, similar to the Doob—Kolmogorov inequality in Theorem 5.44. The following
inequality is of particular use:

Proposition 5.86: Doob’s Maximal Inequality

Let X := (X;,t > 0) be a submartingale that is positive and continuous.
Then, for p > 1 and b > 0,

EX?
(5.87) P( max X, > b) < o

0<s<t p

Proof. First, note that by the Extreme Value Theorem the continuous process X
attains its maximum on the closed bounded set [0, f], so that here supy ., Xy =
maxop<s<; Xs. Second, since X is a submartingale, X” is also a submartingale for any
p = 1, provided that ]EX,p < co; see Theorem 5.7. Third, let D, := {tk27", k =
0,1,...,2"} and M,; := maxsp,, X;. Applying Lemma 5.42 to the positive
discrete-time submartingale (X7, s € D, ), we obtain the inequality:

P(M,; > b) = P(max X! > bP?) < EX"/bP.

SEDy ¢+
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Next, if A, := {M,;, > b}, then (A,) is an increasing sequence of events, so that
limP(A,) = P(UZAx) = P(lim M,,, > b) < EX!/b".
n n
Finally, the continuity of X implies that lim, M,,; = maxo<s<; Xs, giving (5.87). O

Sometimes we want to bound the L? norm of the maximum of a continuous
martingale. The following inequality then becomes useful. Note that it can be easily
modified to the discrete-time case.

Proposition 5.88: Doob’s Norm Inequality

Let M := (M;,t > 0) be a continuous martingale in L” for some p > 1 and
let Z, := max,<, |M,|. Then,

(5.89) EZ < q”E|M,|?, withq :=p/(p - 1).

Proof. To simplify the notation, let Z := Z,. Because |M| is a positive submartin-
gale, we can apply the inequality (5.43) (which obviously holds for the continuous-
time case as well) to conclude that for all x > 0,

Exl(zzyy < E[M|1 {75y

Using this inequality, we have
EZP = / dx pxP2Ex1 75y
0
< E|M;| / dxpxp_zll{ZZx} =E|M,|qZzP~".
0

Finally, with X := |M,| and Y := ZP~!, we have by Holder’s inequality || XY||; <
IX1[p1IYlg, with 1/p +1/g = 1:

E|MilqZ"" < q(E|M,|")!P (BZP)'V4,

where we have used that (p — 1)g = p. Since the left-hand side is greater than or
equal to a := EZ?, we have a < q(E|M;|P)!/Pal/?; that is, a < q” E|M,|?. O

As an application of Doob’s norm inequality, the following lemma shows that
the only interesting continuous-time martingales with continuous sample paths are
the ones whose paths have infinite total variation:

Lemma 5.90: Continuous Martingales with Finite Variation

Let X := (X;,t > 0) be a martingale with continuous paths and total variation
V; < oo on each interval [0, 7]. Then, X is almost surely constant.
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Proof. Without loss of generality, we assume that EXy = 0, and so EX; = 0 for all
t > 0, by the martingale property. Take anm € N, and let T := inf{t > 0 : V, > m}.
Note that the function ¢ — V; is continuous. Take a sequence (I1,,) of segmentations
of [0,¢], whose mesh goes to 0 as n — oo; as in (5.19). Applying (5.89) to the
martingale (X;x7), with p = 2 (and hence ¢g = 2), gives E max<; XSZ/\T < 4EX12AT,
so that

1

S
|

1 n—1
ZEmax Xir <E Z [Xs2k+1AT B stk/\T] =E ) (Xsunr = XSkAT)Z
k=0

s<t

1M

<E[Vr max | Xsiint = Xspnr|| < mEZ,,

=Zn

where we have used (5.29) in the equality above. Since the paths of X are continuous,
they are uniformly continuous on [0, 7], and hence Z, — 0 almost surely as n — co.
Since Z,, < Viar < m, the Bounded Convergence Theorem 2.36 implies that EZ,, —
0 as n — oo, and hence that E max;; XSZAT = 0. It follows that X; = 0,5 € [0,1 AT]
for an arbitrary z. Since T — oo as m — oo, almost surely X = O for all s. m]

5.6.3 Martingale Extensions

In various applications of continuous-time martingales, we are given a martingale
M on R and a stopping time 7 that is allowed to take the value oo; for example, T
could be the time that M enters some set, which may never happen. The question is
then whether the Doob’s stopping theorem still holds for 7. The following shows
that indeed it does, as long as M is a martingale on R,:

Proposition 5.91: Doob Martingale on R,

A process M is a Doob martingale on R, if and only if it is a martingale on
R,. If so, then
EsMr = Mg

for arbitrary stopping times with § < 7.

Proof. Necessity is obvious. To prove sufficiency, suppose that M is a martingale
on R,. We shall show that

(5.92) Mr =Er My

for every stopping time 7. The characterization Theorem 5.80 then shows that M
is a Doob martingale on R,. Also, for any S < T, taking expectations with respect
to Eg in (5.92) gives Es M7 = Mg, which then completes the proof.
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To show (5.92), first observe that for any n € N:
(593) MT/\n = ET/\n]Mn-

This follows irom Theorem 5.83, with g, T) := (T A n,n). Next, because M is
a martingale on R,, the process (M, n € N) is a martingale. In particular, by the
martingale property,

(5.94) M, =E, M.
Combining (5.93) and (5.94) and using the rules for repeated conditioning, we

conclude that
MT/\n = ET/\nEnMoo = EnET]‘/Ioo-

Taking n — oo, M7, converges almost surely to M7, whereas E, Er M, converges
to EwErM; that is, the conditional expectation of the random variable Er M,
given o = Vyuen¥y. The latter is the same as Foo := Vier T, 0 that B Er Mo, =
Er M, which establishes (5.92). O

The following is the continuous-time version of Theorem 5.54:

Theorem 5.95: Extension of UI Martingales

A martingale M on R, can be extended to a Doob martingale M on R, if and
only if it is uniformly integrable; that is, if and only if

M[ = ]EtZ, t e R+

for some integrable random variable Z. Moreover, then, it converges almost
surely and in L' to an integrable random variable M., and can be extended
to a UI martingale on R;.

Proof._Suppose that the martingale M on R, can be extended to a Doob martingale
M on R,. In particular, there exists a random variable M, in #o such that

M, = E,M,

for every t € R,. Thus, by Example 5.11, M is a uniformly integrable martingale.

Conversely, suppose that M is Ul on R,, then also (M,,n € N) is Ul on N and
by Theorem 5.54 this sequence converges almost surely and in L' to an integrable
random variable M., € ¥, and M,, = E, M., for all n. To show that the same holds
in continuous time, pick any ¢ € R, and n > ¢. Then, by the martingale property of
M, and using the properties of repeated conditioning, we have for t € R;:

Ml‘ = EZ‘M}’[ = ElEnMoo = EZMOO,

which shows that (M_t,t € @Jr) i1s a martingale and, in view of Proposition 5.91, a
Doob martingale on R,. O
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Proposition 5.96: Sufficient Condition for Being Doob

Let M be a martingale on R, and ¢ a stopping time. If, almost surely,

sup |M;| < Z,
te[0,L]NR,

where EZ < oo (i.e., M is dominated by an integrable random variable Z),
then M, = lim M, ,; exists and is integrable. Moreover, M is a Doob martin-
gale on [0, £].

Proof. Let M = (Mrz,t € R,) be the process M stopped at time ¢. Then, Misa
martingale on R, — we leave the proof as Exercise 27.

By assumption, M < Z, almost surely, so that M is uniformly integrable and
hence it converges almost surely and in L! to lim M, = lim Myp; = My, which must

be integrable. By Theorem 5.95, M can be extended to a Doob martingale on R, by
defining Mo, := M;. Then, for every stopping time 7" < {, we have M7 = M7 and

EMy = EMy; = EMy = EM,.

Theorem 5.80 then implies that M is a Doob martingale on [0, {]. O

Exercises

1. Show that 7 in Definition 5.3 is a o-algebra on  that is contained in . Show
also that the stopping time 7 itself is #7-measurable.

2. Let T be a stopping time of a filtration ¥ := (¥,,n € N). We say that the
stochastic process X := (X,,,n € N) belongs to ¥ if X,, € ¥, for all n; we write
X € ¥F. Show that

Fr={Xr: X eF}.

3 Let X be the asymmetric random walk starting at a and 7 the hitting time of 0
or b, as defined in Example 5.33. Assume again that p # ¢g and that a, b € N, with
0 < a < b. Consider the process Z, := X, —n(p — q),n € N.

(a) Prove that (Z,) is a martingale.

(b) Show that EZy = EZj, and use this together with (5.34) to find an explicit
expression for E7 in terms of p, g, a, and b.

4 Let X be a symmetric random walk, as in Example 5.2, and define T := inf{n :
| X,,| = a} for some positive integer a.

(a) Show that (X? — n,n € N) is a martingale.
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(b) Prove that ET = a?.

5 The stochastic process X := (X,,n € N) is such that (X1 | Xo,...,X,) ~
U(X,, 1), n € N, with Xy := 0. Show that Y := (Y,), with Y¥,, := 2"(1 — X,,), is a
martingale with respect to the natural filtration of X.

6. Let £1,&5, ... be a sequence of independent Exp(1) random variables. Define
Sn = 2ieq €k (with So :=0) and T :=inf{n : & > 1}. Show that T is a stopping
time with respect to the natural filtration of the {£,} and use martingale arguments
to compute E S7.

7. Let &1,&5,... be a sequence of independent random variables with P(&;, =
1) = P(éx = —1) = 1/2 for all k. Define S, := X}_, & (with Sp := 0) and
T:=inf{n:S, e {-1,9}}.

(a) Use martingale arguments to compute the distribution of S7.
(b) Use martingale arguments to compute the expected value of 7. Hint: (S2 — n)
is also a martingale.

8. Let M := (M,,n € N) be a martingale for which EM> < co for every n € N,
Show that sup, EM? < oo if and only if ey B(My - M;_1)? < co. Hint: write
M, = Mo+ 3, | (My — Mi_1).

9. Building upon Example 5.10, let X be a real-valued compound Poisson process
with Lévy measure v, satisfying / v(dx)|x| < co. Show that

M; ::Xt—t/v(dx)x, t >0,

is a martingale.

10¥ In Example 5.15, denote the probability generating function of 7 by G; in
particular, G(z) = Ez! for |z] < 1.

(a) By conditioning on X, show that

1-VI1-2z2
G()=—1—"%
Z
(b) Expanding G(z) via Newton’s formula (see Exercise 4.8) deduce that T < oo
with probability 1, but that ET = oo.

11. This is to show that a right-continuous function f is of bounded variation on
an interval [0, ] if and only if f = g — h, where g and h are real-valued positive
functions that are increasing on [0, #]. Let V() be the total variation of f on [0, 7],
as defined in (5.18).
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(a) Show that if f is increasing, then V¢(¢) = f(t) — £(0).

(b) Prove thatif f and g are of bounded variation, then f — g and f + g are also of
bounded variation.

(c) Suppose that f is of bounded variation on [0, ¢]. Consider the functions g and
h, defined for r € [0, ¢] by

g(r):=Ve(r) and h(r):=Ve(r)- f(r).
Show that g and A are increasing and that f = g — A.

12. Let (Zy,k =1,2,...) be a sequence of iid random variables with P(Z; = 1) =
p > % and P(Zy =-1)=1-p. LetF, :=0(Zy,...,Z,) and F := (F,). Define
Xo := 1 and

Xn+1 = X+ Cpy1Zpy1, n€EN,

where C := (C,) is an ¥ -predictable process such that C, € [0, (1 — &) X,,—;] for
some & > 0. Show that the process M := (In X;, — na, n € N), where

a:=plnp+(1-p)ln(1 -—p)+1n2
is an ¥ -supermartingale. For which predictable process C is M an ¥ -martingale?

13* Let M := (M) be a martingale with My = 0 and such that, for some sequence
of constants ¢, |M,, — M,_1| < ¢, for all n. Then, for x > 0:

2
P(maka Zx) < exp % .
k<n 2301 ¢

This is the Azuma—Hoeffding inequality. We can prove it using the following steps:

(a) Show that the process (Y;,) with ¥;, := e is a positive submartingale for any
0 eR.

(b) Apply (a) and (5.43) to conclude that

P(max My > x) < e ™ EefMn,
k<n

(c) Write M,, = Mo + 23} _; (M — My_1) and use the condition |M,, — M,,_1| < ¢,
and the exponential bound in Exercise 2.17 to show that

122
EofMi < | ofMa-1 ¢30°¢h

(d) Complete the proof.
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14. Let X1, X», ... be a sequence of independent binomial random variables such
that X; ~ Bin(k, 1/k). Define M,, := [1;_, Xy forn=1,2,....

(a) Show that M := (M,,,n > 1) is martingale with respect to the natural filtration
F = (Fu,n > 1) of the process (X, n > 1).

(b) Show that M,, converges almost surely and find its limit.

(c) Show that (M,,n > 1) is not an UI martingale.

15¥ In Example 5.60, because (M1, n € N) is uniformly integrable, it converges
almost surely and in L' to some integrable random variable. What is the probability
distribution of this random variable?

16. Assume C is a family of uniformly integrable random variables on some prob-
ability space (Q, H,P). Let D be the family of random variables where Y € D if
there exists an X € C and sub o-algebra G C ‘H such thatY = EgX. Show that the
family D is uniformly integrable.

17. Suppose Q and P are finite measures, with Q <« P and P <« Q. Such measures
P and Q are said to be equivalent. Show that the Radon—Nikodym derivative
Z = dQ/dP satisfies P(Z < 0) = 0.

18. Consider the measure space ((0,1], B}, Leb,1]). Let ¥, be the sub-o-
algebra of H that is generated by the partition #,, given in Example 5.63, and let
¥ = (F,) be the corresponding filtration. Let F be a bounded increasing function

on (0, 1]. Define
o [2"x1) . (12"x]

where [a] rounds a up to the nearest integer and | @ | rounds a down to the nearest
integer.

(a) Show that (f,,) is a martingale with respect to # and show that it converges
almost surely.
(b) Show that ( f,,) converges in L' when F(x) := x'/2. Hint: It may be useful to

recall Vb — va = (b — a)/ (Vb + Va).

19. Let M := (M,) be a martingale with EM? < oo for each n. Prove that if
sup, E M2 < co, then M,, — M, almost surely and in L. Hint: use Exercise 8.

20. Show that if (&,) is a martingale and &, L, g for some a € R , then &, =a
almost surely for each n.
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21. Let {X,x,n =1,2,...,k =1,2,...} be a collection of iid random variables
taking values in N. Assume that EX,, y = u < coand Var X, ; = 02 < ocoforalln, k.
Define the process (Z,) such that Z, := 1 and

Zn
Znps1 = Z Xn+1,k» n€N.
k=1

If Z, =0, then Z,, = 0 for all m > n. The process (Z,) is called a branching

process, as illustrated in Figure 5.97.

0o 1 2 3 4 0o 1 2 3 4 5

generation generation

Figure 5.97: Left: population grows exponentially. Right: population dies out.

It can be used to model population dynamics: Z, is the total number of indi-
viduals in the nth generation. At each generation, each individual of that generation
creates offspring according to a common offspring distribution, with expectation
u and variance o2, independently of the other individuals in the present and past
generations. The number of offspring of the kth individual in the nth genera-
tion is X,+1 . Depending on the offspring distribution, the population can grow
exponentially or can become extinct.

(a) Show that the process (M,) defined by M, := Z,/u" is a martingale with
respect to the natural filtration of (Z,).

(b) Show that E,Z2 | = p*Z3 + 02 Z,.
(c) Prove that if 4 > 1, then supEM? < oo .
(d) Prove that if u > 1, then M, L5 My and Var My = o (u(pu—1))7L

22. Let (X, n € N) be a sequence of positive integrable random variables on some
probability space (Q, H,P) with filtration 7, := o (Xo, ..., X,),n € N. Suppose
that B, X,,11 < X, + y,, where (y,,n € N) is a sequence of positive constants such
that 3> ) v, < co. Show that X, *5 X, where X, is some integrable random
variable.
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23F Let (X,,n = 1,2,...) be a sequence of independent random variables such
that P(X, =-1) =P(X,, = 1) = % Show that the sequence of random variables
M, = Z;zl X;Jj ~I n=1,2,... converges almost surely and in L! to an integrable

random variable M.

24. Let &1, &2, . .. be a sequence of independent random variables with

P(ﬁn:n+1)=l—P(§n: n ) n

n n+l)  2n+l

Define a,, := Eg}/z, No =1, and

1/2
_nfk/

N, :
k=1 9k

(a) Show that (N,) is a martingale with respect to the natural filtration, satisfying
E N2 < oo for all n.

(b) Use N, and the discrete version of Doob’s norm inequality (5.89) to show that
the martingale (M,,) defined by

My:=1, M, ::ﬂgk, n=12...,
k=1

converges almost surely and in L' to a random variable M., with E M, = 1.

25. Check that ¥ defined by (5.73) is indeed a right-continuous filtration.

26. Let T be a stopping time with respect to some filtration (7;). Define for each

n € N:

k+1 " k<t<
l —_—
n n

Define T, := d,(T), n € N. Show that 7,, € ¥7 and that (7},) is a sequence of
stopping times decreasing to 7.

d,(t) := for some k € N.

27. Let M be a martingale on R, and ¢ a stopping time. Let M = (Mipg,t € Ry).
Complete the proof of Proposition 5.96 by showing that M is a martingale on R,.






CHAPTER 6

WIENER AND BROWNIAN MOTION
PROCESSES

In this chapter, we further explore the Wiener and Brownian motion pro-
cesses. We prove the existence of the Wiener process via Lévy’s construction,
and discuss many of its features, including its Gaussian, martingale, Markov,
and path properties. We discuss the close relation between Brownian motions
and the Laplace operator. We also show that the maximum and hitting time
processes have intimate connections with Lévy processes and Poisson random
measures.

6.1 Wiener Process

We already encountered the Wiener process in Chapters 2 and 4. In Example 2.77,
we defined the Wiener process as a Gaussian process as follows:

Definition 6.1: Wiener Process

The Wiener process (W;,t > 0) is a zero-mean Gaussian process with con-
tinuous sample paths and covariance function

Ysa =min{s,t} =1 s At, s,t20.

In Example 2.96 we recognized that the Wiener process belongs to the family
of Lévy processes — Markov processes that have independent and identically dis-
tributed increments, and right-continuous and left-limited sample paths that start
from 0; see Sections 2.8.4 and 4.5. The compound Poisson process is an example
of a pure-jump Lévy process. In contrast, a Wiener process is a Lévy process with
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continuous sample paths, as shown in the following result, which can also serve as
an equivalent definition of the Wiener process:

Theorem 6.2: Wiener Process as a Lévy Process

W := (W,;,t > 0) is a Wiener process if and only if the three properties hold:

1. (Independent increments): Forany t; <t < --- < t,,, the increments W;, —
Wi .., W, — W, | are independent.

2. (Gaussian stationarity): For all t,u > 0, Wiy, — Wy ~ N(O, u).

3. (Continuity of paths): W has continuous paths, with Wy = 0.

Proof. The continuity of paths is already part of Definition 6.1 and therefore does
not need to be discussed further here.

Assuming that W is a Wiener process, we now demonstrate the Gaussian sta-
tionarity and independent increments properties in a slightly different way from
Example 2.96, again only for the case of two increments. The general case, with
arbitrary many increments, can be shown in a similar way. Since the Wiener process
is a Gaussian process, any increment W;,, — W; has a Gaussian distribution. Its
expectation is 0 and its variance follows from:

COV(WH.M - Wt, Wt+u - Wt) = COV(WH.M, Wt+u) + COV(W;, Wt) -2 COV(WH.M, Wt)
=t+u+t—-2t=u.
This proves the Gaussian stationarity. To show the independence of the increments,

take 1] < f, < t3 < 4. The distribution of W := [W,,,..., W, ]T is multivariate
normal with mean vector 0 and covariance matrix

nh o n

1 1 1t t
y.— |t 2 2 b

I I 13 13

1 1 13 I

We can easily verify that £ = LDLT, with

1000 no 0 0 0
1100 o -1 o0 0
L=ty 1 1o ™ D=1y "o - o0

1111 0 0 0 14—t

This means, from the theory of Gaussian random vectors, that W has the same
distribution as LD'/2Z, where Z := [Z1,Z>,Z3, Z4]" is a vector of independent
standard Gaussians. Consequently, the increments W;, — W;, and W, — W, have
the same distribution as \/#, — t; Z, and +/t4 — 13 Z4, which are independent of each
other.
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Next, assuming that the three properties hold, we prove that W is a zero-mean
Gaussian process with covariance Cov(Wy, W;) = s A t. This is equivalent to prov-
ing that for an arbitrary n and t; < 1, < --- < 1, the vector W = [W,,..., W, |7
has the characteristic function: Yw(r) := exp(—r"Xr/2), where X is the n X n
covariance matrix with (i, j)-th entry #; A ;. To this end, let L € R™" be a lower
triangular matrix with all entries equal to 1 and D € R™" be a diagonal matrix with
entries t1,f) — t1,...,t, — t,—; down the main diagonal. Then, £ = LDLT and the
Gaussian stationarity and the independence of increments imply that

X = L_1W = [th, le - Wll’ ey Wln - th_l]'l' ~ N(O, D)
The proof is then complete by the following calculation:
Yw(r) =yx(L7r) = exp(—(L'r)"D(L'r)/2) = exp(-r'Er/2).
O

The following algorithm uses the same ideas as in the previous proof to simulate
the Wiener process at specific time points #1, . . ., ,:

B Algorithm 6.3 (Simulating a Wiener Process)
1. Let 0 =19 < t; < --- < t, be the times at which the process needs to be
simulated.
2. Simulate Zi, . . ., Z, 4 N(O, 1).

3. Return Wy := 0 and W,, := Zl’.‘:l ZiNty —ti—1, k=1,...,n.

The Wiener process plays a central role in probability and forms the basis
of many other stochastic processes. The Wiener process can also be viewed as a
continuous version of arandom walk process. Two typical sample paths are depicted
in Figure 6.4.

057 ’

|
J) il w

W,
o
W

1F M/‘

_1'5 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

t

Figure 6.4: Two realizations of the Wiener process on the interval [0,1].
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B Example 6.5 (Brownian Bridge) Suppose the values of a Wiener process at
times #; and #, > t; are W;, :=a and W,, := b. We can then easily simulate W;
at some t € [t1,1,], conditional on W, = a and W,, = b, because the conditional
distribution of W; is Gaussian with mean a + (b — a)(t — t1)/(t> — t1) and variance
(t—n) (2 —1)/(t2 — 11).

To see this, consider the vector [W,,, W,,, W;]T. It is jointly Gaussian, with
mean vector 0 and covariance matrix

n ot n
=ty o t
t ot ot

Its Cholesky factor is
Vi 0 0
B = \/E Vi — 11 0

\/t— -t (t-t)(r—1)
1 Vi —t =1

so that W has the same distribution as B[ Z, Z,, Z3] ", where Z;, Z», Z5 ~iia N(0, 1).
In other words, we can write

WZ‘] = \/EZI
W, =Vt Zi+Vta—11 Z»

t—1 (t—1t)(t2—1)
W=+t 2721+ Zz+\/—Z3

h—1 Ih—1h

t—t (1-t)(2—1)
:Wl‘] +(W12 _Wl1) +\/ Z3’
thy—t Hh—1

which implies that, given W;, = aand W,, = b, W, hasmean a+(b—a)(t—t1)/(t2—t1)
and variance (r —t1)(tp — t)/(t2 — t1). [ |

In Example 2.77, we defined a Brownian motion as an affine transformation of
a Wiener process.

Definition 6.6: Brownian Motion

A stochastic process (By, t > 0) satisfying
B;=Bo+ut+oW, t=>0,

where (W;) is a Wiener process independent of By, is called a Brownian
motion with drift u and diffusion coefficient o .

J

A standard Brownian motion is one where ¢ = 0 and o = 1. The only difference
with a Wiener process is thus its (random) starting position.
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Many properties of the Brownian motion process follow directly from those of
the Wiener process. The generation of a Brownian motion at times ¢4, . . . , #,, follows
directly from its definition.

B Algorithm 6.7 (Simulating a Brownian Motion)
1. Simulate the starting position By.
2. Simulate outcomes W;,, ..., W, of a Wiener process at times t1, .. ., t,.

3. Return By, :== Bo+ut;+o W,,i=1,...,n as the outcomes of the Brownian
motion at times #1, ..., .

Multidimensional Brownian motions are likewise obtained from an affine trans-
formation B; = By + ut + oW, of a multidimensional Wiener process, where o is
a matrix.

Definition 6.8: Multidimensional Wiener Process

Let (W;;,t > 0),i = 1,...,d be independent Wiener processes and let
W, = [W.1,...,W,4]". The process (W,,t > 0) is called a d-dimensional
Wiener process.

If (W,) is a d-dimensional Wiener process, then W, has a N(0, tI;) multivariate
normal distribution, where I; denotes the d-dimensional identity matrix.

B Example 6.9 (Three-dimensional Wiener Process) The following MATLAB

program generates a realization of the three-dimensional Wiener process at times
0,1/N,2/N,...,1,for N = 104, Figure 6.10 shows a typical realization.

0.8
0.6
0.4
n 0.2

-0.2

Figure 6.10: Three-dimensional Wiener process. The arrow points to the origin.
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N=1044; T=1; dt=T/N; %step size
X=cumsum([0,0,0;randn(N,3)*sqrt(dt)],1);
plot3(X(:,1),X(:,2),X(:,3))

We next prove a number of properties of the Wiener process W := (W, t > 0);
there are many more to follow!

Theorem 6.11: Time-reversal and Time-shifting

If (W, s € [0,¢]) is a Wiener process on [0, ¢], then so is the time-reversed
process (Ws, s € [0,¢]) defined by W, = W,_—W,. Similarly, if (W, s > 0)
is a Wiener process, then for any # > 0 the process (Ws, s > 0) defined by
Ws := Wiy — Wy is also a Wiener process.

Proof. Obviously, (WS, s € [0,t]) is a Gaussian process with zero mean and con-
tinuous sample paths, as these properties are inherited from W. It remains to check
that EW,W, = s forall 0 < s < u < t. This follows from

EWSWM = E(Wt—s - Wt)(Wt—u - Wt)
= EW,—sWi—y + EW] — EW,W,_, — EW,_,W,
=(t-u)+t—(t—u)—(t—ys)

=3S.

A similar argument shows that (VT/S, s > 0) is a Wiener process. |

Theorem 6.12: Scaling

If (W,) is a Wiener process, then so is (X;), with X, := W,,/+/a, t > 0 for
any a > 0.

Proof. That the scaled process is continuous, Gaussian, and has zero-mean is
obvious. For s < ¢, the covariance function satisfies

Ex.x, = gasWar _as _ o

Va Va a

and so is the same as for the Wiener process. O
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Lemma 6.13: Probability Bound on the Supremum

For a Wiener process (W;), it holds for every & > 0 that

P( sup |W;| > 8) <2e 2,

0<r<1

Proof. Letqo, q1, . ..be an enumeration of the rational numbers in [0, 1] and let D,,
be the first n of these numbers, with {1} appended if not already in D,,. For some
fixed parameter r > 0, let ¥; := e"Wi 5o that the process (Y;,t € D,) is a positive
discrete-time submartingale. Then, an application of Lemma 5.42 immediately
yields the upper bound:

EY: 1,2
P( sup Y; > em) < =e2" 7",
teD, e
. . e . .. .. _g2 . .
which is minimized at r = &, giving the minimum e~¢/2. Since ¢ — ¢’ is con-

tinuous, sup,cp Yy T sup,e(o,1 ¥:- Thus, using the continuity from below property
(2.3):

P( sup Y; > e’s) = limP( sup ¥; > er‘g).
te[0,1] n teDy

Hence, for r := & we obtain:

P( sup W, > 8) = P( sup Y; > e’g) <e /2,
te[0,1] te[0,1]

and the proof is complete by noting that P(sup, [W;| > €) < 2P(sup, W; > &). O

Theorem 6.14: Reciprocal Time

If (W;) is a Wiener process, then so is (X;), with X; := t Wy, t > 0, Xp := 0.

Proof. Evidently, (X;,t > 0) is azero-mean Gaussian process with continuous paths
and with EX;X; = s for all 0 < s < . The only thing to check is that (X;,¢ > 0) —
that is, including t = 0 — has the same properties; in particular, that the process is
almost surely continuous at 0. In other words, we need to show that as t — oo:

(6.15) — 0.

Take any ¢ > 0 and let n := [¢]. Then, we can write

Wt = ZZk + (W[ - Wn),
k=1
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where the increments Z; := Wy — Wi_1 ~iig N(0, 1) are independent of W, — W,,.
This leads to the bound

4
t

<_

sz+(Wt W,)| < + L sup W,

n o<s<1

where VT/S := Wyes — Wy. By the strong Law of Large numbers (Theorem 3.44),
=1 Zi [n converges almost surely to 0. Since (Wy, s > 0) is a Wiener process by
Theorem 6.11, we have by Lemma 6.13 that for any € > O:

n o<s<1

1
P(— sup |W|>8) < 2eEN2,

Since ), e -n’e?/2 o0, it follows that 1 - SUPp< <] IW,| <5 0. Hence, Theorem 3.40
implies that £ ~ SUPp< <] |W,| %5 0 and consequently that (6.15) holds. ]

B Remark 6.16 (Starting Position) Since the Wiener process starts at position 0
by definition, it is sometimes useful to consider instead a standard Brownian motion
process starting from some arbitrary state x under a probability measure P*. The
corresponding expectation operator is then denoted by E*. [ |

6.2 Existence

In Example 4.32 and Theorem 4.34 we showed that there indeed exists a Wiener
process with the above properties. In this section, we show existence in a more
direct way, constructing the Wiener process on [0, 1] from a linear combination of
random variables Zy, Z1, ... ~ijig N(0, 1). Suppose that

n—1

Wt(n) = Z cr(t) Zy
k=0
for some sequence (cy) of continuous deterministic functions on [0, 1]. Then, each
sample path of the process W) := (W,(n), t € [0,1]) is continuous by construc-
tion and the random variable Wt(") is normally distributed, because it is a linear

combination of Gaussian random variables. Further, W(") . c (ryx0=0
and

._

-1 n— n—1

5

Cov(W!™, W) = ¢;(s) e (t) Cov(Z;, Zy) = Z cr(8) e (2).
k=0 j=0 —_— =0
=11y

In other words, the approximation process W) is a zero- mean Gaussian process
with continuous sample paths and covariance function y = ck(s)ck (1).
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This meets all the requirements in Definition 6.1, except that the covariance function
does not necessarily equal y,, := s At forall 5,7 € [0, 1]. This requirement can be
met if we choose the functions {cy } such that ygf? — s Atasn — oo, so that W
will have the correct covariance function as n — oo. However, since the continuity
of W does not necessarily imply the continuity of the limiting process, we will
have to demonstrate that the limit W := lim,, W™ not only exists, but also retains the
continuity of its sample paths. This is the essence of the sought after construction,

and all that is needed is to make the argument rigorous.

B Example 6.17 (Construction using Trigonometric Functions) The trigono-
metric expansion in (B.26) suggests that we can use the functions co(#) := ¢ and
cx(t) := V2sin(knr)/(kn), t € [0,1] for k = 1,2, ... to represent the covariance
function as the limit of

) . oy nz_i V2 sin(kns) V2 sin(kxt)

’}/s,l‘ T k7T kﬂ' _>S/\t:')’s,t-
k=1
This suggests that the sine series representation :
n—1 .
) _ V2 sin(knt)
w = zoz+sz - telo

k=1

converges to a Wiener process on [0, 1]. Similarly, the representation of the co-
variance function s A ¢ in (B.27) suggests the use of c(¢) := 0 for even k£ and
cx (1) == 2V2sin(knt/2)/(kn), t € [0,1] for odd k. This choice of ¢g, ¢y, ...
yields the Karhunen—Loéve expansion of the Wiener process on [0, 1]:

2V2sin(knt/2)
Z ,
km

_1; (n) _
W[ = llrl'ln Wl = k_%

t € [0,1].

While the trigonometric expansions in the above example can be shown to
provide a valid construction of the Wiener process, the theoretical arguments are
much simpler if we instead work with the so-called Haar basis expansion.

Recall from Appendix B that we can choose the inner product (B.20) and an
orthonormal basis {u;} for the Hilbert space L>[0, 1], so that any f in this space
can be approximated arbitrarily well via £ (x) := Z?:_ol (f,u;)u;(x) in the sense
that || f — f®||» — 0 for n — oo, where || - ||» is the L? norm. Since the constant 1
and the Haar functions,

. nk/2
i j(x) =2 (ﬂ[j/zk, Gahy29 ) = Lty ox (anyang (x))’
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where j = 0, 1,....,2k—1and k = 0,1,2,..., are a basis for L2[0,1], we can
approximate the indicator function 1o, via

n—12k-1
1 () = (Lo, 1)+ D D en (@) b j(x), x € [0,1],
k=0 j=0
where
(6.18) cr (1) i= (Lo, bijy = 272711 — |28 — 25 — 1|17

are the tent-shaped Schauder functions depicted on Figure B.30. Observe that here
the notation uses a double index, rather than the single index as in the trigonometric
expansions in Example 6.17. The expansion of ILEO)] shows that the covariance
function s A t can be written as the limit

hm(]l%)s 1}31 Y= (Lo Los) =S AL, s,t€[0,1],
and hence s At has the representation: sA? = st+3 ; ¢k j(s) g ;(7) for s, € [0, 1].
The foregoing discussion then suggests that the limit as n — oo of

n—12%-1

(6.19) W=t Zo+ )0 Y ek j(t) Zpae, 1€ [0,1]

k=0 j=0

will yield the desired Wiener process.
Let D be the countable set of dyadic numbers as in (4.36):

D :=U Dy with Dy := {%1 =0, 1,...,2"}.

The set D is dense in [0, 1]; that is, every point in [0, 1] can be approximated
arbitrarily well by a point in D.

The Haar basis construction W matches the properties of the Wiener process at
allt € D,,. In particular, (W(") t € D,) is azero-mean Gaussian process; and, since
W("+k) W(”) te€ D, for k =1,2,..., the process (W,("),t € D,) has covariance

function E WS(") Wt(n) =s Atforall s,t € D,; see Exercise 3.

The Haar basis expansion (6.19) can be used to construct the Wiener process on
t € D by simply taking n — oco. This construction is usually referred to as Lévy’s
construction of the Wiener process on the set D. One way to visualize Lévy’s
construction is to consecutively generate the process at points in Do = {0, 1}, then
D\Dg = {1/2}, followed by Dz\U}(:ODk = {1/4,3/4}, and so on. More precisely,
from the Brownian bridge in Example 6.5, if t; — g = 27%landd = (ty+11)/2 € D,
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then conditional on W;, = a and W;, = b, we have W; ~ N((a + b)/2, 2751, s0
that Lévy’s construction on D proceeds as:

W() = 0,
W] = Z(),
WQ + W1 Zl
Wip =

2 + 2(1+1)/2°
Wo + W1/2 + V4

2 2(2+1)/2°
Wip+ W N Z3

2 2(2+1)/2°

Wi =

W34 =

After completing the construction on D\ Uz;(l) Dy, we can linearly interpolate the

set of points (Wy, d € U;_,Dy) to obtain the stochastic process w .= (W,("), t e
[0, 1]) which, by construction, has continuous sample paths. In fact, this linear in-
terpolation can be represented via (6.19). Figure 6.20 shows a particular realization
of the paths of the processes W(!) (dotted) and W2,

Wt( n)

Sl 4

I
1
2

(@)
N

Figure 6.20: Lévy’s construction for step n = 1 (dotted) and n = 2 (solid).

All that remains to validate the construction is to show that as n — oo the
sequence of processes (W) converges almost surely in an appropriate norm to a
zero-mean Gaussian process on [0, 1] with continuous sample paths and covariance
function s Az. Such a norm is the supremum or uniform norm || f || := sup,ejo.17 1f (1)
on [0, 1], because if a continuous function f” converges in the uniform norm,
then the limit f(¢) :=lim, f"(¢), t € [0,1] is also a continuous function; see
Example B.13. The details are summarized in the following theorem:
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Theorem 6.21: Existence of the Wiener Process

There exists a probability space (2, H, P) and a zero-mean Gaussian process
W = (Wy,t € [0, 1]) with covariance function E W W, = s A ¢t and uniformly
continuous sample paths.

Proof. Let u be the standard Gaussian distribution on (R, 8) and take (Q, H,P) :=
(R, B, )™ with Zy, Z1, . . . being the coordinate variables. Thus, on the probability
space (Q, H,P) the Zy, Zy,... are iid N(0, 1) random variables that are used to
define the processes W n=0,1,2,...via (6.19). Our goal is to show that (W(”))
is almost surely a Cauchy sequence in the uniform norm: lim,, , e [|W™ -W® || =
0. This implies that (W,(")) is a Cauchy sequence for every ¢ € [0, 1], which in turn,
due to the completeness of R, implies the existence of its limit W, forevery ¢ € [0, 1],
and hence the existence of a process W to which (W) converges almost surely in
the uniform norm.

First, let us show that for n large enough, ||W
relation between W and W*D for n > 1 is:

(n+1) _ W) is small. The precise

|
W =W+ " e (1) Zismn, 1€ [0, 1.
=0
The function ¢, ; has its maximum at ¢ = (2j + 1)/ 21 with maximum value
271271 < 2712 Thus,

||W(n+1) _ W(l’l)” < 2—’1/2 max |Zj+2”| .
0<j<2n-1

N— e’
= M,

The random variable M,, is thus the maximum of the absolute values of 2" iid
N(0, 1) random variables. It is not difficult to show (see Exercise 6) that
P(|Z] > z) < e"zz/z/z,
sothat P(M,, > z) < 2"P(|Z| > z) < e=7'/2-Inztnn2 Hence, for any &, > 0,
P(”W(n+l) _ W(n)” > &) < P(Z‘%Mn > &) < e—(znsﬁﬂnag—nlnz)/;

If we choose &2 := ¢ n 27" for some constant ¢ > 21n2, then 3., &x = O(¥n2772),
because:

o X 0 n 2
/ drvi2 = [ de2a?e TF < e Tn.
n \/ﬁ In2
Moreover,

SRAWED — WO 5 5,) < 3 e <o
n

n
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Consequently, by the Borel-Cantelli Lemma 3.14, there exists an almost sure event
Q) such that for every w € Q there is a n,, such that:

WD (w) = W(w)|| <&, foralln > ng,.

As in part 3 of Proposition 3.2, it follows that for w € Qo and i, j > n > ny,:

o

(6.22) WO (w) - WD) < e =0(Vn27h),

k=n

where the right-hand side vanishes as n — co. Hence, for w € €, the sequence
(W™ (w)) is Cauchy convergent in the uniform norm, and hence has a limit W (w)
in this norm. By setting W(w) := 0 for w ¢ Qp, we have defined the process
W = (W;,t € [0,1]) for all w € Q. Since the process W is the limit (in the uniform
norm) of a continuous process W, its sample paths are continuous. Moreover,
since [0, 1] is a closed and bounded set, the continuity is uniform; see Example B.13
in the Appendix. To conclude that W is a Wiener process, it remains to show that
for any choice of d and 0 < 1] < £, < --- < tgy < 1, the d-dimensional vector

X =[W,,....,W,] T is multivariate Gaussian with mean vector 0 and a covariance
matrix with (i, j)th element ¢;, ;. We leave the proof to Exercise 4. m|

Theorem 6.21 tells us how to construct a Wiener processes only on [0, 1]. Given
a sequence (W, x,t € [0,1]), k = 0,1,2,... of independent Wiener processes on
[0, 1], we can combine them to construct a Wiener process W on [0, c0) via:

L]-1
(6.23) Wi = Wi+ >, Wik forallz >0,
k=0

where Z;O Wik = 0. Clearly, the process (W;,t > 0) has continuous sample
paths and it is not difficult to verify (see Exercise 5) that it is a zero-mean Gaussian
process with covariance function EW,W; = s A t.

6.3 Strong Markov Property

At the beginning of Section 5.6 we mentioned that for continuous-time processes
it is useful to complete the underlying probability space and to have an augmented
and right-continuous filtration. Let us briefly discuss how this is relevant for the
Wiener process W on some probability space (Q,H,P). Let F := (F;) be the
natural filtration of W. We can complete the probability space by (1) extending H
to ﬁ, where the latter includes all negligible sets of H, and (2) extending P to P,
where P(H) = P(H) for all H € H and P(H) = 0 for all negligible sets in H € H.
This gives the probability space (Q, H,P). Let N be the o-algebra generated by
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the negligible sets in H; that is, all events in the extended probability space that
have probability 0. Define the augmentation, ¥ := (¥,) of F, by

(6.24) F,=F VN.

The next theorem shows that this is a right-continuous filtration. That is, by peeking
ahead an infinitesimal amount of time at time ¢, we cannot learn more than we
already know at time ¢.

Theorem 6.25: Right-continuous Filtration

For the Wiener process, the augmentation (F,) of the natural filtration is
right-continuous; that is,

Fo=F = (P

>0

Proof. If W is a Wiener process over (L, H,P), it is also a Wiener process over
(Q, W, @), since P coincides with P on H. In particular, it has independent incre-
ments and continuous sample paths under this probability model. Let (&,) be a
strictly decreasing sequence to 0. Define

H, = O'{W;—Ws53n <s <t§8n—1}§

that is, the history of the increment process during the time interval [&,, €,-1]. By
the independence of the increments, the o-algebras H, Hs, . .. are independent.
By Kolmogorov’s 0—1 law, see Section 5.5.1, the tail o--algebra N,H,, is trivial, i.e.,
contains only events H with P(H) = 0 or P(H) = 1. In other words, N, H, C N.
But also, Hy+1 V Hyso V- -+ = F, , SO

mﬂn:ﬂgn:mfa:: ()+,
n n >0

showing that
Fo SN.

For general ¢, let % be the filtration of the Wiener process Wu = Wiy = Wy,u > 0.
In particular, as we have just shown, 9‘"0+ C N. It follows that

ﬂ?mszm(ﬁ\//\(v%s):7-7\//\{\/;*:%\/}\/:?1'

>0 >0
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The statement 7, € N in the proof above is referred to as Blumenthal’s 0 — 1
law. 1t states that any information that can be gleaned from peeking ahead is trivial
— it is either certain to happen or impossible. The following example gives a
striking application:

B Example 6.26 (Set of Zeros of a Wiener Process) Let
T :=inf{r > 0: W, =0}

and H,, := {W; = 0 for some 0 < t < 1/n} € Fy/,. Then, {T =0} =N H, € F
and hence it has probability O or 1. Suppose that P(T = 0) = 0. Then, almost
surely, there is an € > 0 such that the Wiener process never hits 0 during the time
interval (0, &). But this is a contradiction, as P({W,, > 0} N {W,; < 0}) > 0, and
thus, by the continuity of the paths, W hits O with positive probability during (0, €).
Consequently,

(6.27) P(T =0) = 1.

Let C be the (random) set of points where W; = 0. By the path-continuity of W,
if W, # 0, then there will be points in an arbitrary neighborhood of ¢ for which the
process is not 0 either. Thus, the complement of C is an open set, and hence, per
definition, C is a closed' set. Moreover, by (6.27), for any ¢ with W; = 0 and any
g > 0, there exists another s < & with W = 0; that is, no points of C are isolated.
The fractal-like properties of C make it similar to the Cantor set in Example 1.1. It
can be shown that it is uncountable, and can be mapped 1-to-1 to the real line. M

For the rest of the discussions in this chapter, we assume that the Wiener
process W := (W;, t > 0) has the right-continuous filtration ¥ := (7", ¢ > 0), with
F," := Ne>0Fi+e- As Theorem 6.25 shows, 7+ is contained in F, defined in (6.24).

Take any time ¢ > 0 and define the process W= (Wiew —Wi,u > 0). Then, W is
again a Wiener process, as it is a zero-mean Gaussian process with EW, W, = uAs.
Moreover, by the independence of increments, W is independent of 7;. This shows
that W is Markovian with respect to its natural filtration ¥. More importantly, we

have the following:

Theorem 6.28: Wiener Process is Markov w.r.t #*

Let W be a Wiener process. For every ¢ > 0, the process (W4, — Wy, u > 0)
is independent of 7,*. Consequently, W is Markovian with respect to 7 ™.

Proof. Take a strictly decreasing sequence t, | r. By the continuity of the paths,
Wisu — W, = lim, (W, 4, — W;,). For any selection uj, . .., u,, > 0 and n, the vector

! Another way to see that C is closed, is that it is the pre-image of the closed set {0} under the
continuous function W;, t > 0.
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Wi vu, =Wi ooy Wy 1, — W, ) is independent of 7,*, and so is its limit as n — oo.
In other words, the process Wy, — Wy, u > 0 is independent of 7,*. O

As a matter of fact, in the theorem above, we can replace ¢ with any (almost
surely) finite stopping time 7. This is the strong Markov property of the Wiener
process.

Theorem 6.29: Strong Markov Property

For any finite stopping time 7 with respect to *, the process (Wr4, —Wr, u >
0) is a Wiener process independent of 7.

Proof. Let T be a stopping time with respect to F*. As in the proof of Doob’s
stopping theorem for continuous martingales, Theorem 5.83, we first consider a
sequence of stopping times (7},) decreasing to T, by defining for each n € N:

1 1
kel K kL come k €N,

T n n

Note that 7, takes values in the countable set {k/2",k =1,2,...} and that T, € 7-"T+
for all n. Fix n and consider the processes X (k) = (W, j2r4u — Wi o, u > 0) for
k=1,2,...and X" := (Wr,4u —Wr,,u > 0). Each XK is a Wiener process and
is independent of 7—7:'/2,, In particular, the probability of each event {X K € A}
does not depend on k and is the same as the probability of the event {X"”) € A}.
We want to show that for any n, every event E € ¥ T is independent of every

event {X(" € A}. Using the properties of X"%) and X (”) mentioned above, this
independence follows from

P{X™ € AYNE) = ZP({X(" K e AYNEN{T, = k/2})
k=1

= S P(X"™K) € A)P(E N {T, = k/2"})
k=1

—P(X™ € A) i P(E N {T, = k/2"})
=P(X" € A) P_(E).

As T, € 7'? this shows that for each n, X is a Wiener process independent of
F7 . Hence, the increments

(630) WT+u+u - WT+u = lilgn(WTn+u+v - WTn+u) = ll};rl(XLSig) ,En))
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of the process (Wry, — Wr,u > 0) are independent and normally distributed with
mean 0 and variance v. As this process has continuous paths, it must be a Wiener
process. Moreover, all increments (6.30) are independent of ;" as they are the limit
of random variables independent of 7. O

A neat corollary of the strong Markov process property is the reflection principle
for the Wiener process.

Theorem 6.31: Reflection Principle

Let T be a stopping time. Then, (W;, 7 > 0), defined by
(6.32) Wi =W, Ly<ry + @QWr = W) Lpy, 120,

is a Wiener process.

Proof. The proof is illustrated in Figure 6.33, where T is the time that (W;) hits
the level x = 0.4 for the first time. If 7 < oo, then by the strong Markov property,
(Wrye — Wr, t > 0) is a Wiener process, and so is —(Wry, — Wp, t > 0). Moreover,
both processes are independent of 7—}* . By concatenating (W,,t < T) and —(Wry, —
Wr,t > 0), we obtain a Wiener process, and this process is (I/T/,,t > 0). O

0.8

0.6

Wi

0.4 === o T et H=1-1
l

0.2

_0‘2 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1

t

Figure 6.33: The reflected Wiener process is again a Wiener process.

The following is immediate by the independence and Gaussianity of increments
of the Wiener process:
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Theorem 6.34: Transition Kernel of the Wiener Process

The Wiener process W admits the transition function

Pru(x, A) = B(W, € A|W; = x) = / e
A

where the transition density p;(y | x) is given by

4 P = ) ’ .

(6.35) pi(y|x) =

J

Think of dy p;(y|x) as the infinitesimally small probability that the process
goes from x to a point in the interval (y, y + dy) during an interval of length 7. For
d-dimensional Wiener processes we have, similarly, the transition density

(6.36) pi(y|x) = 2n1)~ t>0, x,yeR%

Define the Laplace operator in the Cartesian coordinates x € R¢:

< &
(6.37) A= 0= Z—z

i=1 i=1

We sometimes write A, for A to emphasize that the partial derivatives are taken
with respect to x. Then, direct substitution shows that the transition density (6.36)
satisfies the heat equation on R¢:

9 1
(6.38) 5010 =350py1x),  ye RY, 1> 0.

We can interpret p,(y | x) as the amount of heat at position y at time ¢ > 0, if a heat
impulse is released at position x at time ¢ = 0 and is then allowed to freely diffuse
through the medium.

6.4 Martingale Properties

Let W := (W;,t > 0) be a Wiener process adapted to the filtration F*, and recall
that E; denotes the conditional expectation with respect to 7,".

We can associate many martingales with the Wiener process. For a start, the
Wiener process itself is a martingale; see Example 5.68.
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A second martingale associated with W is the process (W? —¢,¢ > 0). Adap-
tedness and integrability are again trivial. The martingale property follows from:
E, (W = 1) = Eg(Wy + W, = Wy)* — 1
= B [W] +2W, (W, = W) + (W, = Wy)> — 1]
= W2+ 2W,E (W, — W) + Bg(W, — W)? — ¢
=W24+0+(1—5)—1=W?—5s.

Another useful martingale is the exponential martingale (e’W"’Z’/ 2,t > 0) for
any r € R. The exponential martingale characterizes the Wiener process.

Theorem 6.39: Exponential Martingale

A continuous process X := (X;,t > 0) is a Wiener process if and only if for
each r € R the process S := (S;) defined by

(6.40) S, =Xt >0,

1s a martingale.

Proof. Suppose X = W is a Wiener process. We have for all s < ¢:

Esi - Eser(Wr—Ws)—%rz(l—S) - e—%rz(f—S)Eser(Wr—Wv) — e—%rz(f—s)e+%r2(l—s) =1,

N

since conditionally on W, u < s, the increment W; — W has a N(0, ¢ —s) distribution
and its MGF is e%’z(’_s), r € R. Consequently, since ES; < oo for all 7, and

(6.41) EsS; = S EsS:/Ss = S,

it follows that § is a martingale.
Conversely, suppose that S is a martingale. Then, taking t = s + u in (6.41), we
have that

(6.42) EyerXom=Xs) —e2ru 4 > 0,

which shows that X has stationary and independent increments and X, — X5 ~
N(0, u), so that it must be a Wiener process. O

Next, we give a typical example of how Wiener martingales can be employed.
B Example 6.43 (Hitting Time) For some x > 0, let

T, :=inf{t >0: W, > x}
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be the hitting time of the open set (x, c0). Recall that this is a stopping time of the
right-continuous filtration ¥, but not a stopping time of the natural filtration .
Consider the exponential martingale (6.40):

_1,2
S, =it >0,

Note that (S;) is bounded by e’ on [0, 7] N R,. Thus, by Proposition 5.96, St,
exists and is integrable, and (S;) is a Doob martingale on [0, 7;]. Consequently,
EoSt, = So and after taking expectations:

ES7, =ESo = 1.
Written out, this means

E erx—%rszﬂ{Tx«)o} +0 ﬂ{szoo} =1,

which shows that, with s := r2 /2,
(6.44) Ee™Tx =™ =™V 550,

yielding the Laplace transform of 7. It is straightforward to check that this is the
Laplace transform corresponding to the pdf

—x2/(2)
(6.45) )= 120
2113

and that the corresponding expectation is co. Finally,

1 = lim Be*" = lim Ee ™ 17, <o) + lim Ee ™17 _oy = P(T; < 00) +0,
s—0 s—0 s—0

which shows that 7 is almost surely finite. Hence, starting from 0, the Wiener

process hits any point x > 0 (and, by symmetry, any point x < 0) almost surely, but

the expected hitting time is infinite. [ |

Finally, many martingales can be constructed from the Wiener process via the
following theorem, involving the Laplace operator (6.37). In Chapter 7 we will
recognize this as a consequence of 1td’s formula. We formulate it in terms of a
standard Brownian motion (B;) rather than a Wiener process (W;), to be able to
start the process from different states. Recall that E* is the expectation operator
under which the process starts at x.
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Theorem 6.46: Martingales from Functions of a Brownian Motion

Let f:RY — R be twice continuously differentiable and let B be a d-
dimensional standard Brownian motion. If for all # > 0 and x € R?,

t
E*|f(B;)| < o and Ex/o |Af(By)|ds < oo,

then the process (X;, 7 > 0) defined by

(6.47) X, = f(B:) - %/OtAf(Bs) ds

is a martingale.

Proof. Take 0 < s <t. The conditional expectation of X; given ' is, by the
Markov property,

B BS _l s ~ 1—s le
EX, =% f(Bi) - 5 /0 Af(B.) du /0 E% ZAF(B.) du.

The integrand of the second integral can be written as

1 1 1
EP AP =5 [ pue1 BT e =5 [ apute B s d,

where we have used the fact that [(pAf — fAp)dx = [V - (pVf - fVp)dx =0
because (pVf — fVp) vanishes at infinity. Next, since p satisfies (6.38), we can
write

0
BB A (B,) = / 9 (x| By f(x) dr.

R4 8”

Consequently, its integral from O to ¢ — s is

/0_ (/Rd ;—upu(xlBs)f(x)dx) du:lgiig/Rd (/_ ;—upu(x|Bs)du f(x)dx
:/ p’_S(xlBS)f(x)dx_hm/pa(x|Bs)f(x)dx=]EB‘f(B,_s)—f(BS),
R4 el0

so that E;X; = X, showing that (X;) has the martingale property. Integrability of
each X; follows from the two conditions stated in the theorem, and adaptedness is
obvious. O

As an example of this theorem, taking f(x) = x* in the one-dimensional case
gives the martingale (B? — ).
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6.5 Maximum and Hitting Time

For x € R,, let T} be the hitting time of the open set (x, o0); see Example 6.43. In
other words, we have

(6.48) T, =inf{r >0: W, >x}, x=>0.

Also, for ¢ € Ry, let M, be the running maximum of the Wiener process; that is,

(6.49) M, .= max W;.

0<s<t
The two are related via
(6.50) {M; > x} ={T, <t}.
Indeed, we have
(6.51) T, =inf{t >0: M, >x} and M;=inf{x > 0:T, > t},

so the processes T := (T, x > 0) and M := (M,,t > 0) are functional inverses of
each other. To obtain the path of one, just swap the axes of the other, as illustrated
in Figure 6.52. Both processes are increasing and right-continuous. In fact, we will
see that T is strictly increasing, whereas M has continuous sample paths that can
remain constant in certain time intervals.

St 8

&)
w
N

0 5 10 0 1
t

Figure 6.52: Processes M and T are functional inverses of each other.

By the continuity of W, we have Wz, = x, and therefore, similar to (6.50), the
event {7, < t} is equivalent to the event {M, > x}. Consequently,

P(Mt > X) :P(Tx < t) = P(Tx <t, W[ < X) +P(Tx < t,W[ >X)
= ZP(Tx <t, W[ > X) = ZP(Wt > X)
X

6.53 =2-20
(0:3) (\fr

), x>0,
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where @ is the cdf of the standard normal distribution. The third equality above
is due to the reflection principle, as from 7, onwards the Wiener process and its
reflection around x have the same distribution. As 2P(W; > x) = P(W; > x) +
P(-W; < —x) = P(|W;] > x), we have the following result:

Theorem 6.54: Distribution of M, and |W;|

For each fixed t, M; and |W;| have the same distribution.

By differentiating (6.53) with respect to x, it follows that M, has pdf

2
o=y e (55

That is, M; has a N(0, r) distribution truncated to [0, c0). Similarly, by differenti-
ating (6.53) with respect to ¢, we find that the pdf of 7} is

\%

X

2
X exp (——), t >0,

(6.55) fr () = =

1
V27113
which is in agreement with (6.45). Thus, T, ~ InvGamma(1/2,x%/2). As, con-
sequently, 1/7 ~ Gamma(1/2,x?/2), this means that 1/7, has the same distribu-
tionas Z2/x? forx > 0, where Z ~ N(0, 1), so that T is distributed as x>/ Z?. Either
from Example 6.43, or Exercise 12, we know that P(7 < o0) = 1 and ETy = oo for
all x > 0.

Finally, M; and W, have joint cdf

2x -y —y)
6.56 P(M; <x,W;<y)=00 - dl—=], x>0, x>y,
650 runom a2 a[2). cxocs,

which can again be derived from the reflection principle, as

P(M; > x,W; <y)=P(M; >x,W; >2x—y)

2 —
:P(W,ZZx—y):l—d)( al y).

Vit
To further explore the behavior of the maximum process, consider Figure 6.57.

The difference between the maximum process M and the Wiener process W — a
positive process — is depicted in the lower panel.
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_ N W

LLQ alld.]%@

Figure 6.57: The difference between the maximum and Wiener process is a reflected
Wiener process.

It turns out that this difference process has the same distribution as the process
|W| — called a reflected Wiener process.

Theorem 6.58: Difference Between M and W is Reflected Wiener Process

LetY; := M, — W;. The process Y := (¥;,¢ > 0) has the same distribution as
a reflected Wiener process |W| := (|W,|,t > 0).

Proof. Obviously Y has continuous sample paths. Define
Wi =Wy =Wy, 120

and _ _
M; = max W,, t>0.

O<u<t

We want to show that, conditional on 7, the random variable Y, has the same
distribution as |Yy + W;| for all ¢. This implies that Y is a Markov process with the
same transition density as |W|, and so must have the same probability distribution
as the latter. Fix s, ¢ > 0 and write

Yoo = max{M,, Wy + M} — W, — W,
= maX{Ys, Mt} — Wt.
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Thus, the cond1t10na1 distribution of Y, given T *is that of max{Y;, M,} W,,
where Mt and W, are independent of 7.*. Since M, and W, are distributed as M;
and W,, it therefore remains to be shown that for every vy,

P(max{y, M;} =W, >a) =P(ly+W,| >a), a>0.
Write the first probability as the sum
Ply-W;>a)+P(y-W;, <a, M;— W, >a) =: p| +p>.
We want to show:
(6.59) p1=P(y+W;>a) and p,=P(y+W; < -a),

sothatthen p1+p, = P(|y+W;| > a), asrequired. The first equality in (6.59) is easy,
since W; has the same distribution as —W;. To prove the second equality in (6.59),
consider the time-reversed Wiener process R := (R,) := (W,_, — W,;,0 < u < 1).
Denote its maximum in [0, ¢] by MtR = maXg<y<: R,. Then, MtR = M, — W,. Since
R, = —W,, we have

p2=P(y+R; <a, M,R > a).

Proceeding in the same way as in the proof of Theorem 6.54, we now apply the
reflection principle to (R;) at the first time that the process hits a, to find (with R
the reflected Wiener process) that

P2 :P(ﬁt >a+y),

which, by the Wiener properties of R, is equal to P(-W; > a+y) = P(y+ W, < —a),
which needed to be shown. O

We briefly touch on an interesting connection between the set of zeros of a
Wiener process and the local time at 0. Think of a clock which only moves when
the process is at 0 and stops every time when it is not. Consider the set of zeros for
a reflected Wiener process in the lower panel of Figure 6.57. This is also the set of
zeros for some Wiener process. Note that the path of the maximum process (M;)
in the upper panel increases every time (and only then) when the reflected Wiener
process hits 0. In this way we can think of M, as the time showing on the local
clock when the standard clock shows time ¢. The functional inverse of M, i.e., T,
then describes the time intervals when the local clock is not moving forward.

We now turn our attention to the process T = (Ty,x > 0). The right panel of
Figure 6.52 shows a typical path. This indicates that 7" is a pure-jump process,
with a few large jumps and many very small jumps. We have already derived the
pdf of 7 in (6.55). The process T turns out to be an increasing pure-jump Lévy
process. In particular, 7" is time-homogeneous Markov processes with stationary
and independent increments.
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Theorem 6.60: T is a Lévy Subordinator

The process (7, x > 0) is a strictly increasing pure-jump Lévy process with
transition density

x2

X
- [5-9

Proof. Take any y > x > 0. To hit (x + y, 00) the process W has to hit (x, o) first,
and then starting from x at time 7}, the process has to hit (x +y, c0), which takes an
amount of time 7. Hence,

(6.61) pi(t]s) = ), O<s<t, x>0.

J

Tery = T + Ty

By the strong Markov property for W, T; is independent of 7—}1 and, by the sta-
tionarity of increments of W, it has the same distribution as 7,. Thus, T itself
has stationary and independent increments. As the paths are right-continuous and
left-limited and 7p = 0, 7' 1s a Lévy process. In particular, 7 is a time-homogeneous
Markov process. Its transition density to go from s to ¢ in an interval of length x is
exactly the pdf of T, at ¢t — s, so that (6.55) implies (6.61). O

The distribution of 77 is also called the Lévy distribution or Stable(1/2, 1) dis-
tribution. We mentioned before that distribution of 7 is the same as the distribution
of x>/ Z?, where Z ~ N(0, 1). This implies that (7,../c?, x > 0) has the same distri-
bution as (7, x > 0) for all ¢ > 0. A Lévy process (X;,t > 0) is said to be a-stable
or stable with index « if (c_l/ X, t > 0) has the same distribution as X;, ¢t > O for
all ¢ > 0. The process (Ty,x > 0) is thus stable with index @ = 1/2 and the Wiener
process is stable with index a = 2.

There is a fundamental association between pure-jump Lévy processes and
Poisson random measures, as explained in Section 2.8.4. In particular, the increasing
pure jump Lévy process (7y,x > 0) is of the form

T, ::/ N(du,dy)y=:Nf,
[0,x] xR,

where N is a Poisson random measure on R, X R, and f is the function f(u,y) :=
y1jo.x (u) for u,y > O; the corresponding integral is N f. The mean measure of N
is 4 := Leb ® v, where v is the Lévy measure of N, which satisfies

‘/0 v(dy) (y A l) < oo,

The Laplace transform of 7} can thus be written as

EesTx = Be N/ = o A(1-e™F) _ o= [ du [7 v(dy) (1—e™s/ () _ —x ¥ v(dy) (1-e™)
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In (6.44), we found that the Laplace transform of 7} is e‘x‘m, s > 0. This shows
that the Lévy measure is
v(dy) =dy ! .
2my3

Figure 6.62 shows a typical realization of the atoms of N. There are a few atoms
(u, y) where y is large, say of the order 1, but an infinity of atoms where y is small
(close to 0). In fact, the atoms are accumulating near the horizontal axis. There is
a one-to-one correspondence between the atoms in Figure 6.62 and the realization
of T := (Ty,x > 0) in Figure 6.52. Going from left to right (increasing x), every
time u we hit an atom (u, y), we increase the process 7 by an amount y. Most of
the time these increases are minuscule, but sometimes they are large.

3 : :
N (du,dy) large atoms

2, i

0.02 : ‘
0.015F . . .
= 001 . , T

0.005- T ; B

Figure 6.62: The hitting time process (7;) can be constructed from the atoms of a
Poisson random measure.

6.6 Brownian Motion and the Laplacian Operator

There is a fundamental connection between the d-dimensional standard Brownian
motion process B := (B;,t > 0) = By + W, where W := (W, t > 0) is a Wiener
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process, and the Laplacian operator A in (6.37). The key to this connection is
Theorem 6.46, which states that (under mild conditions stated in the theorem) the
process (X;,t > 0) defined by

6.63) X, = f(B,) - /0 t SAS(B,)ds

is a martingale. Let E* denote the expectation operator under which B starts at state
x. Also, for ease of notation, define L := %A. Because of the martingale property
of (X;), we have E* X, = E* X, = f(x), which implies that

t
(6.64) B S(B) = f(0)+ [ ELIB) ds
0
where the interchange of expectation and integral is allowed by Fubini’s theorem.

B Example 6.65 (Exit Probability) For any g > 0, let 7, be the first time that a
d-dimensional standard Brownian motion hits the sphere centered at 0 with radius
q. We are interested in the probability

p =P (T <T,),

whenx € D := {x e R¢ : [ < ||x|| < r}, where 0 < [ < r. That is, the probability
that the Brownian motion hits the inner sphere before it hits the outer sphere. We
can calculate p via (6.64), by selecting a function f for which Af = 0 for all
x (here, on the annulus D). Such functions are said to be harmonic; they have
been widely studied in mathematical analysis and have many interesting properties.
If £ is harmonic on D and twice differentiable and bounded on R¢, then (6.64)
implies that E* f(B;) = f(x). In particular, for spherically symmetric functions f
(that is, f(x) = g(]|x]|) for some function g), we then have E*g(||B;||) = g(||x]|])-
Moreover, if the martingale (6.63) is uniformly integrable, we may, by Doob’s
stopping theorem, replace the fixed time ¢ with any stopping time 7. Taking
T :=T; AN T,, now gives

E*g(I1Brll) = g(Dp +g(r)(1 = p) = g(llxID),
whence,
_ g(n) - g(llxl)
g(r)—g(l)
In particular, the following functions:

| x| ford =1,
(6.66) f(x):=qIn|jx|| ford=2,
lx]|>~¢ ford > 3,
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are spherically symmetric and harmonic on D. We can extend f outside D in such a
way that the function satisfies the conditions of Theorem 6.46. Moreover, (f(B;))
is uniformly integrable; see Exercise 10. Thus, we have found explicit expressions
for the exit probability p for each dimension d. [ ]

In Section 6.3 we established that B is a time-homogeneous Markov process
with transition function P; = Py, whose transition density is given in (6.36). The
left of (6.64) is exactly (P,f)(x); that is, the value at x of the function P,f. It
follows that

- (Pf)(x) - f(x) _
m =
0 t

6.67) i B/ (B) - f(x)
tl

li

i ; =E*Lf(Bo) = Lf(x).

The limit in (6.67) defines the infinitesimal generator of the Markov process. Its
domain consists of all bounded measurable functions for which the limit exists —
this includes the domain of L, hence the infinitesimal generator extends the latter
operator.

By (6.64), (P;f)(x) as a function of ¢ has derivative E¥*L f(B;) = (P;Lf)(x),
which gives the Kolmogorov forward equations:

(6.68) P/ f=P.Lf.
Also, by the Chapman—Kolmogorov equations (4.43), we have
Prsf(x) = PP, f(x) = E*P. f(By),

and therefore

1 1

35 {Prasf(x) = Prf(x)} = 35 {E*P,f(Bs) — P f(x)}.
Letting s | 0, we obtain the Kolmogorov backward equations:
(6.69) P/ f=LPf.

In terms of the transition density p,(y|x) this gives the partial differential
equations

0 1 0 1
Py |%) = 38,p(y 1¥) and iy |%) = 3A:pi(y | ).

which we recognize as Laplace’s heat equation (6.38) in y (with fixed x) and x
(with fixed y), respectively.

The last point illustrates the important relation between partial differential equa-
tions of the form u; = Lu, and the standard Brownian motion. Indeed, given the
operator L, the pdf of B; gives the fundamental solution (Green’s function) of
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the differential operator 9r — L. This idea can be extended to solve more general
elliptical and higher-dimensional PDEs via It6 diffusion processes; see Section 7.3.

Another type of partial differential equation that can be solved via the Brownian
motion process is the boundary value or Dirichlet problem. A typical application
is found in electrostatics. Suppose a charge g(x) is placed at every point x of the
boundary AU of a bounded domain (open set) U < R¢. This creates an electric field
with potential (i.e., voltage) v(x) for every x in the closure U of U, with

Av(x) =0, xeU,
v(x) =g(x), xeodlU.

To solve the above problem (i.e., finding v) via simulation, we can employ once
again the martingale (6.63), with f = v. Starting a Brownian motion from x € U,
let 7' be the first time that dU is hit. Using the same reasoning as in Example 6.65,
we may use Doob’s stopping theorem to conclude that

v(x) = E*v(Bo) = E'v(Br) = E"¢(Br).

To estimate v(x), simply run many standard Brownian motions starting at x until
they hit the boundary, and take the average of their values at the boundary. It should
be mentioned that some regularity conditions should be put on the domain U and on
the function g. It suffices that g is continuous on U and that U satisfies an “exterior
sphere” condition, meaning that it should be possible to roll a small enough sphere
along the boundary such that sphere touches all the points at the boundary.

6.7 Path Properties

Recall the definition of a segmentation I1,, = {sx,k = 0,...,n} of [0,7] given in
(5.19), and that its mesh ||I1,]|| is the maximum distance between consecutive points
in the segmentation. We will frequently consider sequences of nested segmenta-
tions; thatis, II; € Il C ---. Forexample, the following sequence of segmentations
of [0, 1] is nested: II; := {0, 1},1I, := {0,1/2,1},113 := {0,1/4,1/2,1},.... In
this case, we say that I1, is a refinement of I1;, and I3 is a refinement of I1,.

We begin with a fundamental property of the quadratic variation of W on [0, t]
defined as the limit (in L? norm) of:

n—1
(WY, 1= 3" Wy, — Wy )%, nel.
k=0

Theorem 6.70: Quadratic Variation of the Wiener Process on [0, 7]

For any (I1,,) such that ||IL,|| — 0, we have that (W ™), . If, additionally,
the sequence of segmentations is nested, then (W), &5 ¢,
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Proof. To simplify notation, write V,, := <W(”))t for a fixed ¢. The random variable
V,, has expectation ¢ and variance

n—1
VarV, = Z Var (W,

st — Wy )? < 3t ||TL,]| — 0.
k=0

= 3(sks1—5k)2

Hence, E(V,, — t)2 =VarV, — 0 as n — oo, showing L?-norm convergence.
Assume further that (I1,,) is nested and, without loss of generality, that IT,, and
I1,,—; differ only by the addition of one point in the interval [0, t], say r € (s, Sk+1)
for some k. Then,
Vo=V =X +Y2 - (X +Y)?%,

where X := W, — Wy, and Y := W, ,, — W, are independent zero-mean Gaussian

random variables. Let G, be the o-algebra generated by the sequence of random
variables (Vi, k > n), and note that

G12G22 - 2N 1Gk = Goo.
Then, for n > 2 we have that
E[V, - Va1 |G =E[X?>+Y?> - (X +Y)?| X?>+Y?] = 2E[XY | X*> + Y?].

Since (X, Y) has the same distribution as (X, ¥Y), and (+X)? + (¥Y)? = X?> +Y?,
it must be true that

E[XY|X?+Y?] = -E[XY | X?>+Y?] =0.

In other words, if Z, :=V_,and ¥, .= G_, foralln € T = {...,-2,—1}, then
the process Z := (Z,,n € T) is a square-integrable reversed-time martingale with
respect to the filtration (%,,n € T). By Theorem 5.58 the reversed-time martingale
converges almost surely to

E[Z_1 | ] = BV} = E(W, — Wy)? = 1.
O

Recall from Section 5.3.1 that a function x : R, — R is said to be of bounded
variation over an interval [0, ¢] if its fotal variation is finite. When the function x
is right-continuous and the sequence (I1,) is nested with ||IT,|| — 0, then the total
variation can be written as

n—1

n—1
sup Z s — Xl = n]l_)n;lo Z [Xsier = Xsil-
() %=0 k=0
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This is because by adding a segmentation point to I1,,, the triangle inequality yields:

—_

3

n
|xsk+1 _-xskl < Z |xsk+1 - xsk|-
k=0

T
o

If x; represents the position of a particle at time s, then the total variation over
[0, 7] represents the total amount of vertical distance that the particle has traveled
over the time interval [0, ¢]. Recall from Section 5.3.1 that for such functions we

can define integrals
t
J
0

in the Lebesgue—Stieltjes sense. Our aim in Section 7.1 is to define stochastic

integrals of the form
t
0

with respect to a Wiener process. If the paths of W had bounded variation, we
would be able to define these integrals pathwise, i.e., for (almost) every function
w:=W(-,w), w € Q. But, in fact, we have the following result:

Theorem 6.71: Infinite Variation of the Wiener Process

Suppose that the sequence (I1,) of segmentations of [0,¢] is nested and
|ITL,|| — 0. Then, for the Wiener process W,

n—1
lim Z |Ws,,, — Wy, | = co  almost surely.
k=0

n—oo

That is, the sample paths of W do not have bounded variation on [0, 7].

Proof. From Theorem 6.70 we know that there is an almost certain event g such
that (W (w)); — t for all w € Q. Now, consider a path w := W (w) of the Wiener
process, where w € Q. Let its total variation on [0, 7] be v*. We have

n—1 n—1
2 s
Z(wsk+1 — Ws,)" < sup |wg,,, — wy, | Z |Wspyy — Ws | < SUP [Wyye, — wy| V7,
k=0 k k=0 s€ [O,t]
where g, := ||IT,]| — 0. Letting n — oo, the left-most term goes to #, and in the
right-most term, the supremum goes to 0, by the uniform continuity of each path w;
see Theorem 6.21. It follows that v* cannot be finite. |

While the total and quadratic variation of the Wiener process on [0, ¢] are oo
and ¢, respectively, these can be random variables for other stochastic processes.
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For example, the total and quadratic variation of the Poisson counting process
(Ny, s = 0) on the interval [0, 7] are both equal to N;; see Exercise 26.

By the existence constructions in Sections 6.2, the Wiener process has almost
surely uniformly continuous paths on any interval [0,7]. In fact, the following
stronger result holds; see also Theorem 4.34.

Theorem 6.72: Lévy’s Modulus of Continuity

There exists a constant ¢ > 0 such that with probability 1:

Wivs — W,
limsup sup M<l.

510 0st<l-s AfcsIn(1/8)

The function § +— +/c §In(1/6) is called the modulus of continuity of the
Wiener process.

Proof. We recycle the arguments in the proof of Theorem 6.21. First, applying the
mean-value theorem to the Schauder functions in (6.18), we have that

ek j(t+6) —cr (D] < 5s1[1p i (D] < 82K L o a1y 2y (1)

It follows from the Haar basis expansion (6.19) that

n—12¢-1
|Wl(_:_15) - Wl(n)l <o |Z()| + Z Z |Ck,j(t+6) — Ck,j(t)l |Zj+2k| < 252}1/2 Mn,
k=0 j=0

where M, is the maximum of the absolute value of 2" iid N(0, 1) random variables.
Second, define the event A, := {M,, > 2+/n}. Since (see Exercise 6)

ZP(An) < Ze—(4n+ln(4n))/2+nln2 < oo,
n

n

the Borel-Cantelli Lemma 3.14 implies that with probability 1 only finitely many
of the events (A,) occur. In other words, there exists a finite (random) N such that
almost surely M,, < 2+/nforalln > N.

Third, using the triangle inequality (B.14) and the bound (6.22), we obtain:

Wivs = Wil < 2IW — W+ W) — W)

< yiVm2™? 42622 M,

where y; > Oisaconstant. By settingn := [—1n ¢/In 2] and dividing by /6 In(1/6),

we obtain:
|Wt+<5 - Wt| Mn
sup ——— <

varsrs oo 2 in(i/e)
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for some positive constants y; and y3. The proof is completed by observing that a
sufficiently small ¢ ensures that n = [—In§/In2] > N, so that with probability 1:

Mo |22
Jin(i70) - \In(1/6) = \Imn2 " n(1/6) = 7%

where y4 > 0 is some constant. i

Lévy’s result above suggests that the maximum amount of “smoothness” of a
Wiener path is Holder continuity with an exponent @ < 1/2; see Definition 4.33.
For any @ > 1/2 Holder continuity does not hold. In particular, differentiability
(a = 1) does not hold.

Theorem 6.73: Nowhere Differentiability of Wiener Paths

Almost surely, for @ > 1/2 the Wiener process is not Holder continuous at
any point. In particular, almost surely every path of a Wiener process is
nowhere differentiable.

Proof. We argue by contradiction: assume that there is a point, say so € [0, 1], at
which the Wiener process is Holder continuous with @ > 1/2. In other words, we
assume that there exists a constant ¢ < oo and an @ > 1/2 such that almost surely:

Wyre — W,
(6.74) sup Wopre = Woo| <c.
£€[0,1] o

We now proceed to show that if Qg is the event that there exists an so € [0, 1]
satisfying (6.74), then P(Qp) = 0.

First, note that there exists a large enough integer m such that 1 /m € (0, a—1/2).
For a given integer n, there existsa k € {1,...,2"} suchthatsy € [(k—1)/2", k/2"],
and we can choose n large enough so that 2" — k > m.

Second, by assumption (6.74) and the inequality |x|* +|y|* < 20=)" (x| +y])?,
we havefor[ =1,2,...,m:

IWikstyj2r = Wik=141) 22| < IWianyjon = Weol + IWsg = Wik—141) /27|
<c([I+1]/2H +c(1/2M)”

< 202U+ 1) 27 < 027

=! Cla

Third, if

A = 2 Wiy jon = Wi—izy 20 < €27},
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then the event Qy implies that H, := U;_ ™A, occurs for infinitely many n. In
other words,

P(Q) < P(Z 1y, = oo),

and the proof will be complete if we can show that P(}, 15, = o) = 0. By the
independence of nonoverlapping increments of the Wiener process, we have

P(Akn) = [P(Wijz| < cna2 ™))" = [P(Wi]| < cma2”" V2]

Since f_|a|£|l| %exp(—xz/Z) < lal, it follows that P(Ay,) < ¢ 27"m@=1/2) P

nally, by the countable subadditivity property in Theorem 2.2:
Z P(H,) = Z P(Ui';_lmAk,n) < C%,a Z 2—nm(a—1/2—1/m) < oo,
n n 7

where the finiteness of the sum follows from 1/m € (0, @ — 1/2). Therefore, from
the Borel-Cantelli Lemma 3.14, the probability that the events (H,) occur infinitely
many times is 0. This implies that there is no point in [0, 1] such that the Wiener
process is almost surely Holder continuous with @ > 1/2. The nondifferentiability
follows as the special case with @ = 1. m|

Exercises

1. Simulate a two-dimensional Wiener process (W,,t > 0) and show a typical
realization.

2. Let (W;,t > 0) be a d-dimensional Wiener process. Derive the probability
distribution of ||W,||?/t. The process (||W,||, > 0) is called the d-dimensional
Bessel process. Show that

r(4h

()

E||W,|| = V2t

3. Let W be defined as in (6.19). Show that W,("+k) = W,("),t e D, for k =
1,2,..,and EWW™ = s At forall 5,7 € D,

4 To finish the proof of Theorem 6.21, show that for any choice of d and 0 <
1| < tp <--- <tg < 1, the d-dimensional vector [W,,,...,W,,]T is multivariate
Gaussian with EW;, = 0 and Cov(W;,, Wt_/) = tipj forall i and j.

5. Given a sequence (W, x,t € [0,1]), k =0,1,2,... of independent Wiener pro-
cesses on [0, 1], show that W defined via (6.23) is a Wiener process on [0, co).
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6. For Z ~ N(0, 1) and z > 0, show that

P(|Z| > 2) < e 7/?/z.

7. Explain how the construction of the Wiener process on [0, 1] implies the exist-
ence of a Wiener process on R.

8. Verify, using the transformation rule (2.39), that (6.45) is the pdf of x2/Z?, where
Z ~N(0,1).

9F Consider a standard Brownian motion (B;) starting from x € (/,r). Using the
fact that (B;) is a martingale, show that the process exits through r rather than [
with probability (x — )/(r — ). Use the fact that (B? — ¢) is a martingale to show
that the expected time to exit the interval [/, r] is (x — [)(b —r).

10. Show that the functions f in (6.66) are harmonic on the annulus D and that the
process ( f(B;)) is uniformly integrable.

11. Example 6.65 gives a simple expression for the probability that a d-dimensional
standard Brownian motion (B;), starting at x, with [ < ||x|| < r, hits the 0-centered
sphere with radius [ before it hits the 0-centered sphere with radius r, where
O<l<r.Forl>0,letT; :=inf{t > 0: ||B;|| =1}.

(a) Show that ford =2 and any [ > 0,
P*(T) < ) =1 forall ||x|| > [.
Show that, however, for the case d = 2 and [ = 0, we have
P*(Ty < o0) =0 forall ||x]| > 0.

Thus, starting from anywhere outside a 0-centered sphere of any radius / > 0,
the process (B;) will hit the sphere with certainty, but will never exactly hit
the origin 0.

(b) For the case d > 3, show that
;42
P*(T; < ) = (n) for all ||x|| > L.
x

Thus, any standard Brownian motion in dimension 3 or greater is transient,
meaning that there is a strictly positive probability that the process will never
hit a sphere of radius /, starting outside it, no matter how large / is.

12F With the hitting time 7, distributed according to (6.55), show that P(7,, < o0) =
1 and ET, = oo for all x > 0.
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13. Let Tx( D and Tx(z) be independent copies of the hitting time 7, as defined in

(6.48). Show that for any a, b > 0 the random variable aTx(l) + bTx(z) has the same
distribution as c¢7; for some c.

14. Let U := {(x1,x2) € R?: x% +x% < 1}. On the unit circle U, let
g(x) :=sin(4xy) cos(xz).

Solve the Dirichlet problem Av(x) = 0,x € U, v(x) = g(x),x € dU via simulation,
and make a density plot of v.

15. Let (W;,t > 0) be a Wiener process and let ¥ be the right-continuous filtration
defined by

Fr o= mﬁ, where F, =0 (W, :0<s <u).

u>t

Let T, := min{z : W, = ¢} and define

T* —— mln{Tl(), T—]} lf mln{T]O, T_]} S 1’
= min{TZO’T—l} if mil’l{Tlo,T_l} > 1.

(a) Show that 7" is a stopping time with respect to the filtration F*.
(b) Show P(Wr- =10) < 0.04.
(c) Show P(Wr: =20) > 0.026.

16. Let W) and W® be two independent Wiener processes. Define

(W(l)_W(l) )(W@ w® )

My = max i = WGnm ) \Wim = WGt m

1<k<n

k
J=1

Show that M, E 0asn — oo.

17. Let W be a Wiener process. Define T := inf{t > 0 : W? = 1 — ¢t}. Compute
ET.

18. Let (B;) be a standard Brownian motion. Show that, for any x > 0 and meas-
urable set A C [0, c0),

P*(By >0forall0 <s <rand B, € A) =P"(B, € A) - P (B, € A).

19. Define g(w,r,t) = exp(rw — %rzt) forw e R,r e R,and r > 0. Let (W;) be
a Wiener process and let g(W;,r,),t > 0 be the exponential martingale defined in
(6.40). Show that the process

— 6ng(W[,l", t)

X;:
[ or” r=0
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is a martingale with respect to the natural filtration of (W) forevery n € {1,2,...}.
Show, in particular, that each of the processes

W2—1, >0,

W3 —3tW,, >0,

WH—6tW?+31%, >0,
is a martingale.

20. Find ET? for T := min{t > 0 : W, ¢ [-a,b]} and —a < 0 < b, using the
martingales in Exercise 19. You may assume that ET? < co.

21. (a) Use the optional stopping theorem for the exponential martingale to show
that, with 7, := inf{r > 0 : W, = x},

Ee$Tx = e_x\/z_s, for all s,x > 0.

(b) Show that, with T_, = inf{¢r > 0 : W, = —x}, we have
Ee™Tr = Ble 1 (T, < T_y)] + E[e T 1(T, < T,)] e V%,
(c) Deduce that T =T, A T_, satisfies
Ee*7 = sech(xV2s).

22F Let W be a Wiener process and define 7, := inf{r : W, = z} where z € R. For
any three constants —a < 0 < b < ¢, determine P(7T}, < T_, < T,).

23. Show that with probability 1 for every & > O there is a t € (0, &) with W, = 0.
24. Show that with probability 1 for every N < oo there is at > N with W, = 0.

25. A continuous function f is said to have a local maximum at t* if there exists an
€ > 0 such that

f(t*) > f(s) forallse (" —eg,t" +¢).
We know that with probability 1 the Wiener process W := (W, ¢ > 0) is not mono-
tone on any interval [a, b]. Use this fact to show that the set of local maxima of W
is dense in [0, co) almost surely.

26 The quadratic variation of the Poisson counting process (Ng, s > 0) on the
interval [0, 7] is defined as the almost sure limit

n—1
<N>[ = nh—>n;>10 kZ;)(NSkH - Nsk)zs

where {sy,k =0,...,n} =: I, is a segmentation of [0, ¢] such that its mesh size
|ITT,]| — 0 as n — oco. Show that the total and quadratic variation of the Poisson
counting process (Ny, s > 0) on the interval [0, ¢] are both equal to N;.
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27. Let W := (W,,t > 0) be a Wiener process, and let f : R — [0, 1] be a Holder
continuous function of order @ = 1; see Definition 4.33. Define X; := W, + f;,t €
[0, 1] and define the quadratic variation of (X;, ¢ € [0, 1]) as the almost sure limit

n—1
(X1 := lim D (X, = X5
k=0
where {sx,k =0, ...,n} =: I, is a nested segmentation of [0, 1] such that its mesh
size ||IT,|| — 0 as n — oo. Prove that (X); = 1.

28. Let T := min{t : W; € {1, 1}}. By considering the sequence of events
Woe1 =W, > 2};0:0,
show that P(T" > n) < CA" for some C > 0 and A € (0, 1).

29. Let W be a Wiener process and define 7 := min{r : W, = 1 —t}. Use the
exponential martingale (6.40) to determine the Laplace transform of the distribution
of T.






CHAPTER 7

ITO CALCULUS

In this chapter we introduce the framework for stochastic integration with re-
spect to the Wiener process. The resulting /6 integral provides the fundamental
example for stochastic integration with respect to integrators with unbounded
variation. We then prove If0’s formula — the stochastic analogue of the chain
rule in calculus. The important class of It6 processes, which are constructed
from It6 integrals, forms the basis for the theory of diffusion processes and
stochastic differential equations.

An important class of stochastic processes — that of 1t0 processes — is constructed
from the Wiener process via the notion of the It6 integral. The It6 integral provides
the mathematical justification of integrals of the form

t
/ FydX;,
0

where the integrator X = (X;) and integrand F := (F;) are stochastic processes.
The most important case is where X is a Wiener process — we will then use W
instead of X. We already encountered stochastic integration in Section 5.3.1 and
saw that integrals of the form above can be well-defined if suitable restrictions are
placed on X and F. In particular, when X is of bounded variation, the integral can
be defined pathwise. Unfortunately, for processes of unbounded variation, like the
Wiener process, this is not possible in general, and a different approach is needed.
The clue as to what to do in this case is provided by the discrete integral in (5.23),
where F is a predictable process. In that case, the integral-transformed process
(Z,) in (5.24) is a martingale; see Theorem 5.26. Recall that, in this setting, X, can
be thought of as a share price and F;, as the number of shares owned at time 7, so
that Z,, represents the total capital at time n.

For consistency of the notation, in this chapter we will use the notation fJ F ds
for Lebesgue integrals, rather than fj ds Fj.
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7.1 1i6 Integral
Throughout the rest of this chapter we will work with a Wiener process W on

a complete probability space (€, H,P) with a right-continuous filtration ¥ :=
(Fs,s = 0) and such that W is adapted to . We also use the following definition:

Definition 7.1: Simple Processes

A process F := (Fy, s € [0,1]) is called simple if it is of the form:

n—1
(7.2) Fy = €Ly (5) + D &kl (st (5), s € [0,7],
k=0
where {sg,...,8,:0=s50<---<s,=t}=:1I,, n € N, is a segmentation

of [0,¢] and &; € F;, forall k.

Note that the simple process in (7.2) is right-continuous at s = 0 and is left-
continuous at s € (0, 7]. Figure 7.3 shows a realization of a simple process on [0, 1]
for the segmentation

{s0,...,s10} = {0,0.07,0.13,0.19,0.41,0.49,0.52,0.67,0.71,0.76, 1 }.

=
[\
T

F.
o
o
d
®
¢

1 2 | | | | |
"0 0.2 0.4 0.6 0.8 1

S

Figure 7.3: A realization of a simple process.

7.1.1 It6 Integral for Simple Processes

To introduce the It integral with respect to the Wiener process W, we need to
revisit the generalization of predictability to continuous-time processes. Recall that



Chapter 7. It6 Calculus 243

a real-valued stochastic process is said to be ¥ -predictable, if it is measurable with
respect to the o-algebra in Definition 5.22, namely,

FP:=0((a,b]xH:a,beR,,He F,)Vo({0} xH : H € %).

B Example 7.4 (Simple Processes are Predictable) We now argue that for each
t > 0 the stochastic process F : [0,7] x Q — R in (7.2) is not only ¥ -adapted,
but also ¥”-measurable. Since the sum of measurable functions is measurable,
it is enough to show that an arbitrarily chosen summand of (7.2), say &olygy, is
FP-measurable. To this end, recall from Theorems 1.27 and 1.31 that &y € ¥ can
be viewed as the pointwise limit of linear combinations of indicator functions. In
other words,

f()((x)) = linr1n Z a,-]lHl.(w)
i=1

for some real sequence (a;) and subsets Hy, H,, ... € F. As aresult, we can write
m
Loy (5) €0(@) = lim ) ail o) () Ly (),
i=1

and since the limits of measurable functions are themselves measurable (see Pro-
position 1.26), we only need to show that for an arbitrary i:

L0y (8)1g,(w) = Lioyxm, (s, w) € FP.

Since {0} x H; € FP, the indicator function of this set is #”-measurable (see
Example 1.23), and therefore we can conclude that the process F defined in (7.2) is
¥ -predictable.

Note that the measurability of the mapping F : [0,¢] X Q — R with respect
to the product o -algebra 8o, ® ¥; confirms that F; is indeed a random variable
for each ¢, or equivalently (see Theorem 2.17) that (F;,s € [0,¢]) is a stochastic
process. If, in addition to & € ¥,, we also have that

n—1
ZE&%(SJM — 5k) < oo,
k=0

then F is square-integrable with respect to the product measure Lebyg;; ® P. In that
case, Fubini’s Theorem 1.67 allows us to write

t t n—1
E/ Fszds:/ EFfds=ZE§,%(sk+1—sk) < o0,
0 0 k=0
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We are now ready to define the Itd Integral for simple processes.

Definition 7.5: It6 Integral For Simple Processes

Suppose that F is a simple process of the form (7.2), with [} EF, 2ds < oo.
Then, the It6 integral of F with respect to W over [0, r] is defined as

n—1

/ FS dWS = Zé:k(wskﬂ/\r - Wsk/\r)’ r e [0, t]
. k=0

The It6 integral from r to ¢ is naturally defined as the difference of two integrals:

t t r
/ F,dW; ::/ FdeS—/ F,dW;.
r 0 0

The 1t6 integral has the important isometry property:

t 2 t
E[/ Fdes] :/ E F2ds,
0 0

which allows us to compute the variance of the 1t6 integral. In fact, the It6 integral
satisfies the following four important properties:

Theorem 7.6: Properties of the It6 Integral

Assume that the It0 integral is well-defined. Then, for @, 8 € Randr € [0, ]:
1. (Linearity): [y[aFs+BG,] AW, = « [j FsdW + B [; G dW.

2. (Zero mean): E [; FydW; = 0.

3. (Isometry): E [for FydWy x [5Gy dWs] = [y B[FsG,lds.

4. (Martingale): (f§ FsdWy,r € [0, t]) is an L?-martingale.

We provide a proof for simple processes first. A proof for more general processes
is given on page 253 after we establish a relevant existence result in Theorem 7.20.

Proof for Simple Processes. Let F be a simple process as in (7.2) and let G be the
simple process:

n—1

Gy =yl (s) + Z Yelispsia1 (), s €[0,1],
=0
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where y, € ¥, for all k. Linearity follows directly from Definition 7.5. Define
AWy, = Wy, ar — Wyar, so that [§ FedW, = Z;(l) &AWy, By the martingale
property of the Wiener process, combined with the fact that & € #;,, we have for
eachk=0,...,n-1:

E&rAWs, = EEg kAW, = E&y By, AWy, =0,

which implies the zero-mean property. For the isometry property, write the expect-
ation E [ Jo Fs AWy X [5 G dWs] as the double sum:

n—1
(1.7) B Y &AW,y AWy, = > BEY (AW, 12+ > E(Exy; +£€;7) AW, AW
k.j k=0 j<k

The double sum on the right-hand side in (7.7) is 0, since for each j < k,
E [(éxy; + €ivi) AW, AW, | = E [(Ekyj + 7)) AW, Eg AW, | =0,

by the martingale property of W. Moreover, for the first sum on the right-hand side
in (7.7) we have, again by conditioning on ¥, , that

n—1 n-1 n-1
ZEkak[AWsk]z = Z E[écyr By, [AW,,]?] = Z E&eyk(Sks1 AF =Sk AT).
=0 =0 =0

The latter sum is exactly fg E[F;Gy] ds, as Fy = & and G = 7y on each interval

(Sk ” Sk+1 ] .
Finally, to show the martingale property, note that for » € [0, ) we can write:

¢ n—1
/ FydWy = Z é:k(vaH - va+1/\r + va/\r - va)
(7.8) g k=0

= Z ‘fk(WskH - Wser)a

k:Sge1>r

where we used the fact that for any r € [0, ¢):

Ws - W S > 7
k+1 SkVrs k+1 ’
”Sk+l ”Sk+l/\r I ”Sk/\r “Sk {

0, Sks1 ST

By the repeated conditioning property in (4.5), we have:

t
Er/ FydWy = Z Eré:k Eser [Wsk+1 - Wser] =0.

k:sk+1>r

=0

By construction, f; Fy dW; is #,-measurable for any arbitrary r € [0, ¢]. In addition,
it is square-integrable due to the isometry: E (/] Fy dWs)2 = [JEF?ds < . O
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B Example 7.9 (Deterministic Integrands and Gaussian Processes) Suppose
that f is a simple process of the form (7.2) such that &, &1, . . . are all deterministic.
Then, the random variable .
Z, = / fs AWy
0

has a Gaussian distribution for each r € [0, ¢], because it is a linear combination
of the independent Gaussian random variables Wy, nr — Wy nr, k =0,1,...,n—1.
From Theorem 7.6 we deduce that EZ, = 0 and

r n—1
VarZ,:/ fszds:zgi(skﬂ/\r—sk/\r).
0 k=0

In fact, we can go further and show that Z := (Z;,t > 0) is a zero-mean Gaussian
process with independent increments. Namely, for any 0 < f) <t <13 <14 <,
the increment Z;, — Z;, = ftg“ fs AW is determined completely by the process (W —
Wi, t3 < s < t4), whereas Z,, — Z;, = ff fs dW; is determined by the process
(Wy =W, t1 < s < 1tp). Since these two processes are independent of each other,
so are Z;, — Z;, and Z;, — Z;,. A similar argument can be used for the case with any
finite number of increments. This establishes the independence of the increments
of the process Z. This property of the increments combined with the fact that
Z, ~ N(O, [y f2ds) for each r € [0,¢] implies that Z is a Gaussian process with
covariance function

ti At

EZ, Z;, = ({ fids, t1,62>0.

The main utility of simple processes of the form (7.2) is in approximating more
general processes. In this regard, we have the following definition:

Definition 7.10: Canonical Approximation

For any ¥ -adapted process F := (Fs,s € [0,t]), we define its canonical
approximation as

n—1

(7.11) F" = Fy 1oy (s) + Z Fyl(ssu(s), s €[0,1].
k=0

Clearly, the canonical approximation is of the form (7.2), where & := F;, for
k=0,...,n— 1. Figure 7.12 shows the path of a Wiener process (W, s € [0, 1])
and a canonical approximation with n = 10, which coincides with the simple process
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on Figure 7.3. Further to this, Figure 7.12 depicts the path of the corresponding It
integral process Z\" = (fJ F™ dw,, r € [0, 1]).

0.5 I (n)
(Zs S € [0’1])\)
0Oe
» I‘
w
051 ™ “ “ @ o o
& 4 1 A N
! piaRowel
-1.5¢
_2 | | | | |
0 0.2 0.4 0.6 0.8 1

S

Figure 7.12: A Wiener process F := (W, s € [0, 1]), its canonical approximation
F" and the It6 integral process Z") = (Jo FS(") dWs,r € [0, 1]).

Having defined the It6 integral for simple processes, we are now ready to extend
the definition to more general predictable processes.

7.1.2 It6 Integral for Predictable Processes

While simple processes of the form (7.2) are F -predictable, it is not immediately
clear if more general processes are also # -predictable. The following result shows
that any process F := (Fy, s € [0,¢]) adapted to F and left-continuous on (0, ] is
not only ¥ -predictable, but also indistinguishable from any other left-continuous
modification F of F; that is, if P(F; = F,) = 1 for all s € [0, ], then P(F; = F for
all s € [0,7]) = 1. Moreover, F is progressively measurable; that is, the mapping
F : [0,1] x Q — R is measurable with respect to the product o--algebra B ;; ® F;.
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Theorem 7.13: Properties of Left-continuous Adapted Processes

Suppose that F' := (Fy, s € [0,7]) is a process on (Q, H,P) that is adapted
to the filtration ¥ and is left-continuous on (0, z]. Then, the following hold:

1. (Predictable): The process F is F -predictable (i.e., ¥ ”-measurable).

2. (Progressively Measurable): For each ¢, the mapping F : [0,7] X Q —» R
is jointly measurable with respect to Bjo;} ® 7.

3. (Indistinguishable): 1f Fisa modification of F* and almost surely left-
continuous, then P(Ny<,{Fs = Fy}) = 1.

Proof. Consider the canonical approximation F™ of F, given in (7.11), where
the segmentation IT,, is such that mesh(Il,,) — 0. For s =0 and w € Q, we have
Fo(w) = Fén) (w) by construction. For any s € (0,7], we can always find a k
(depending on n and s) such that sy < s < s¢4+1. For these k and s, define g, 5 :=
§ — S, so that 0 < g, ¢ < mesh(II,). Importantly,

Fo-F" =F —Fy +F, -F" =F, - F_,,_,
—_—
=0

where the last difference Fy—F_, vanishes asn T oo, because F is left-continuous.
In other words, the simple process approximates F arbitrarily well, in the sense that
Fs(n) (w) — Fs(w)foralls € [0, 7] and w € Q. Since F is adapted to 7, Example 7.4
implies that the simple process F") is 7 -predictable. As a consequence, for each ,
the mapping F : [0, 7] x Q — R is jointly measurable with respect to Bio. ® Fi.
Since the limit of measurable functions is measurable, the same properties carry
through to the limit F of F. This establishes the properties of ¥ -predictability
and progressive measurability for F.

Next, assume that F is a modification of F ; that is, P(Fs # F) =0 for all
s € [0,7]. Let B be the event that both F and F are left-continuous, so that
P(B) = 1. Let Q; := [0,¢] N Q and define A := ﬂsth{Fs = F} as the event that
F and F coincide on Qy. Since the set Q; is countable, the countable subadditivity
property in Theorem 2.2 yields

P(A) = P(Useq, {Fs # Fy}) < ) B(F, # F;) = 0.
s€Q;
In other words, P(A) = 1. An important property of the set of rational numbers Qy,
called denseness, is that any s € [0, ¢] can be approximated arbitrarily well with a
sequence of rational numbers sy, s7,... € Q;. We can choose this sequence such
that s, < s for all n; that is, s,, T s as n T oo. Therefore, for all w € A N B:

Fy(w) — Fy(w) = liTm(an(a)) — F,,(w)) =0 foralls e [0,1].
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Since P(ANB) = 1-P(A°UB®) = 1, we conclude that F and F are indistinguishable.
m]

We have so far considered stochastic processes that are left-continuous and
adapted to the filtration #. However, in order to define the Itd integral for these
more general processes, additional regularity conditions are needed.

Definition 7.14: The Class of Processes %;

Let P, be the class of stochastic processes F := (F, s € [0,7]) that are left-
continuous on (0, 7], ¥ -adapted, and satisfy the norm condition:

t
IF|l, = E/O F2ds < 0.

Note that the progressively measurable property in Theorem 7.13 and Fubini’s
Theorem 1.67 together justify swapping the integral and expectation:

t t
(7.15) IF I3, :E/O Ffds:/O EF?2ds < co.

In addition, the processes in #; are not only #”-measurable (by Theorem 7.13), but
also belong to the Hilbert space L>([0, ] x Q, F7, Lebjo,] ® P) equipped with the
inner product that is induced by the norm || - ||¢,, namely,

IF +GI2, ~ IFI2, - IIGI2,

<F’ G>p[ = 2

We are now ready to begin extending the definition of the It6 integral to the class
P;. A key step in this direction is to note that processes in $; can be approximated
arbitrarily well in the norm || - ||, via the simple processes in Definition 7.1.

Theorem 7.16: Approximating the Class #; via Simple Processes

Suppose that F € P;. Then, there exists a sequence (F ") of simple processes
of the form (7.2) such that mesh(I1,) — O implies that F, s(") = F for all
€ [0,7] and

(7.17) lim ||[F™ - F||p, = 0.

Proof. LetP := Leb [0, ®P/t be a probability measure on ([0, 1] X, B(o ®H ) and
let X, with X(s,w) := Fy(w), be a numerical random variable on this probability
space. With E the expectation corresponding to P, and || X ||2 = EX? the squared
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L? norm of X, we have | X||» = ||F||lp, < co. Let X,, := X1{x|<m} form € N be a
truncated version of X. Then,

1Xm = X2 = E(Xpn = X)? = EX?T(jxpom) = X3 = EX*1{x)<m) < o0.

Since X21{|X|Sm} 7 X% as m — oo, the Monotone Convergence Theorem 2.34
yields EXZIL{|X|Sm} T ||X||% < oo and hence lim,, .« || X, — X||» = 0.
Next, we define the random variable

X (s, w) = Fy (@) LyF,, (w)<m}y> 5 € (Sks Ske1]s

where 0 = 5¢ < --- < 5, = tis a segmentation of [0, ¢] such that maxy (sg+1 — k) —
0 as n — oo. In other words, X, , 1s a simple process of the form (7.2):

n—1

Xm,n(sa a)) = Xm(o» w)]l{O}(s) + Z Xm(sk’ a))]l(skaH](S), s € [0’ l]-
k=0

By the same arguments as in Theorem 7.13, the condition max (sg+; — sxg) — 0
implies that X, ,(s,w) = X, (s,w) as n — oo for (s,w) € [0,¢] x Q. Since
| Xon.n| < m for each m € N, the Bounded Convergence Theorem 2.36 yields

nh_)rl;lo ”Xm,n - Xm||2 =0.

For each m, let n,, be the smallest integer such that || X, ,,, — Xu|l2 < 1/m and
define
Fs(m)(a)) =X, (s, w), meN,

Then, (F™,m e N) corresponds to a sequence of simple processes of the form
(7.2) that converges almost surely to X as m — oo and satisfies

IF®™ = Xl < [1Xn = Xll2 + 1/m — 0.
This completes the proof. O

B Example 7.18 (Uniform Integrability and Canonical Approximations) The-
orem 7.16 asserts that there exists a sequence of simple processes that can approx-
imate any F' € #; in the norm on %, but it does not tell us how to construct such a
sequence explicitly. An explicit approximating sequence for n € N is the canonical
approximation (7.11), provided that (F2, s € [0,]) is uniformly integrable, in the
sense that

(7.19) lim sup EF;1 .

M= s10,¢]

0.

>m}) =

For example, this condition is met when (Fg, s € [0,¢]) = (W,,s € [0,¢]) is the
Wiener process, because IEWS2 = s < t < oo is bounded.



Chapter 7. It6 Calculus 251

To prove that, under condition (7.19), the canonical approximation F " satisfies
|F™ — F llp, — 0, we can modify the proof in Theorem 7.16 as follows. For each
n > 1, define the random variable

n—1
Ya(s,0) = Fo() 10y () + ) Fyu (@) L(5011(5), 5 € [0,1].
k=0

Then, as in the proof in Theorem 7.16, we have that Y, (s, w) = Fy(w) =: Y (s, w)
as n — oo for (5, w) € [0,¢] X Q. Using the triangle inequality, we have:

1Y, = Yll2
<Y =YLgyi<mllz + 1Y Lgvi<my = Yalgy,i<mll2 + 1YLy, 1<my = Yall2
<Y Lgysmyllz + 1Y Lgyi<my = Yalgy,j<mill2 + sup 1Ya Ly, jsmy 2.
n

Since (Y L{jy|<m} —Ynﬂ{|Yn|gm})2 < 4m?, the Dominated Convergence Theorem 2.36
gives:
Tim [[YLgyimy = Yalgr,j<mll2 = 0.

Hence, taking a limit as n — oo, we obtain

1i,{n 1Y, = Yll2 < 1Y Lyyismyll2 +sup [|YaLqy,|smyll2-
n

The first term ||Y 1{jy|>m}|l2 vanishes by the Monotone Convergence Theorem 2.34
as m — oo. For the second term we have, by the isometry property:

n—1
1Y Ly, jsm 113 = Z(Skﬂ — s)BF; 15, |sm) <1 s1[1p] EFL(F,[>m)-
k=0 se[0,t

Therefore, sup,, [|Y, 1y, |>m}ll2 — Oasm — oo, and since ||F(”)—F||go[ = t|Y,=Y||2,
it follows that ||F" — F llp, — 0, as desired. [ |

Theorem 7.16 permits us to define the It6 integral for any process in the class
P, as the limit of a suitable sequence of integrals of simple processes. For this
definition to make sense, we need to ensure that such a limit exists.

Theorem 7.20: Existence of the It6 Integral with Integrand F € %,

Suppose that F € P, and (F™) is a sequence of simple processes satisfying
(7.17). Then, the following limit exists in L? norm:

—00
Z r

t t
/ F.dW, := lim [ F™dw,, re]lo0,1],
;

and it defines the 116 integral of F with respect to W on [r, 1].
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Proof. Since [! F™ dw, = IS F ) qw, — I F™ dw,, it suffices to consider the
existence of the limit of the integral J () .— for F s(") dW;. Consider the Hilbert space
L2(Q,H, P), equipped with the L norm: || X||> = VEX2. We will show that (J)
is a Cauchy sequence in L2, so that, by the completeness of L2, there exists a random
variable J € L? such that E(J® — J)?> — 0. Thus, setting Jo Fs dW = J, justifies
the definition of the Itd integral.

That (J®) is a Cauchy sequence in L? follows from the following bound:

2
7 = 1)y = \/E (™ = Fyaw,)
= |F™ -~ F™|p, < |[F™ — Fllp, + |[F™ - Fllp,,

where in the last line we used the linearity and isometry for the simple process
F® — F0m a5 well as the triangle inequality applied to the norm || - || ..
Finally, from (7.17) and || F||p, < ||F||p, we have that as m,n — oo:

17 =7l < |[F™ = Fllp, + |F™ = Fllp, — 0.

Hence, (J™) is a Cauchy sequence in L?, guaranteeing that the Itd integral Jo Fs dW;
is well-defined as the limit J of (J) in L2. O

B Example 7.21 (Itdo Integral as a Riemann Sum) Recall that if the process
F? is uniformly integrable, see (7.19), then an explicit approximating sequence
(F™, n € N) of Fis (7.11). For such uniformly integrable F2, the It6 integral over
[0, 7] can be defined as the limit in L? norm of a Riemann sum:

n—1

/0 FydW, := lim Z (W, = Wy,).

For example, since EW? = ¢ < oo, the Wiener process satisfies (7.19) and we can
define [} W, dW, = lim,—,e0 X120 Wy, Wy, = Wy,) = (W2 = 1) /2.

Tosee the latter equality, consider the telescoping sum Z”‘l (W, +Ws, ) (W, —
W) = 25z ( Sk+l - WZ) = W2, and note that by Theorem 6.70 the quadratlc
variation of the Wiener process over [0, 7] is f; that is, (W), = ( Skl —
Wy, )? 3 ¢, Hence,

- Wsk)2
2

Sk+1 Sk+1

Wz—t ”Z‘l‘ Wz) (W,

k=0
—1

Il

5

;—s
=

- Ws,).

Sk+1

3
!
8

=~
Il
o
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Figure 7.22: The Itd integral process (Jj Wy dW,, € [0, 1]) and its corresponding
Wiener process W.

Figure 7.22 shows a realization of the process ( fé W, dWy, t € [0, 1]) together with
the corresponding Wiener process W := (W, s € [0, 1]) — the Wiener path from
Figure 7.12. Observe that here the Riemann sum Z;(l) Wi, (Ws,,, — W, ) not only
converges in L2, but also almost surely, because (W), %5 ¢ by Theorem 6.70.
Similar calculations also show (see Exercise 1) that Z;(l) Woo We, = Wy,) &
(W? +t)/2. However, the limit of this latter Riemann sum does not define an Ito
integral, because the simple process ZZ;(I) Wi Liseosesr) 1 not F-adapted (W, ,, ¢
Foo). O

Next, we provide the proof of Theorem 7.6 for the more general class of integ-
rands in P;.

Proof of Theorem 7.6 for Processes in ;. That the Itd integral for any F' € $; has
the same four properties as for simple processes follows by taking limits. In particu-
lar, let (F™)) and (G™) be the approximating sequences of simple processes for F
and G, respectively. Then, H" := o« F"" + BG™ is a simple process approximating
H := aF + G, in the sense that

IH™ — H|lp, < a||F™ ~ F|lp, + BIG™ - Gllp, — 0.

Hence, the limit of f; Hﬁ”) dW;, exists in L2. By the linearity property of the integral
for simple functions, we have:

/ H™ AW, = o / F' aw, + B / G dw;.
0 0 0

By taking limits on both sides, we find [j H;dW, = a [; FydW + B [j Fs dW;,
showing the linearity property.



254 7.1. 1t6 Integral

Next, let J = Jo F s(") dW, and denote its limit in L? by J := Jo Fs dW;. Recall
that J™ satisfies the isometry ||J™||, = | F (n)”gor. By the monotonicity property
in Theorem 2.47, |EJ| = |EJ —EJ™| < E[J = J®| < ||J = J™||, — 0, proving the
zero-mean property. Further, by the triangle inequality, we have |||J"]|> — ||J]|2] <
170 = Jll2 = O and [|[F™|lp, = |Fllp,| < [|F™ = Fllp, — 0. Hence,

W1l = lim [lJ]|2 = lim [|F™|lp, = [|Fllg,.

proving the isometry for the special case where G = F. The more general isometry
property follows by applying the linearity and isometry (in the special case of
G = F) to the right-hand side of the polarization identity:

. 2 . 2
, , E[/O(FS+Gs)dWS] —E[fO(FS—GS)dWs
E[/Fdesx/Gdes]: y

0 0

_IF+ Gll3, ~IIF - Gliz,
- 4

= <F > G)Pr .
Finally, for the martingale property, we show that E, [/ Fy dW, = 0, where

t 1t
/ F,dW, := lim [ F™ dw,,
;

r

and [ F s(n) dW; is the integral of a simple process and hence of the form (7.8), but
with r assumed to be a point in the segmentation of [0, ¢]; that is, r € II,,. Define
W, o= Wyay — W,, F = Fs(fz and F := (Far, s > 0). We know that (W,, s > 0)
is a Wiener process (see Theorem 6.11) and that by construction F* is F -adapted.
Hence, [{™" F™ dW, converges to a limit in L? norm, which is the Itd integral
fot_r F, dW, with 0 mean. From the construction, )5 FM dw, = JUF, ) qW, and

so we can conclude that
t—r _ t
/ Foyr AW, = / FydW;.
0 r

Hence, E, [} FydW, = Eq [~ F,dW, = 0, proving the martingale property. The
square-integrability follows from the isometry:

t t—r
([ raw) =mo( [ o)
r 0

t—r t
= EO/ F2, ds= E,/ Flds < ||F|lp, < .
0 r

2 2
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If we view the Itd integral Jjo ;) (F) := f(; Fy;dW; of F € $; on [0, ] as a linear
mapping Jio, : [0,7] x Q — Q from the Hilbert space L*([0, 1] xQ, 7, Lebjo 1 ®
P) to the Hilbert space L?(Q, H,P), then the isometry property in Theorem 7.6
shows that this mapping is a linear isometry; see Example B.3.

B Example 7.23 (Quadratic Martingale Process) Let J|, ;) := J! Fy dW; be the
It6 integral of F on [r,?] and define

,
72 2
Z, = Th - /O F2ds.

Then, the process Z := (Z,,r € [0,¢]) is a martingale. Indeed, for any r € [0, 7],
the martingale property in Theorem 7.6 yields:

E.[J [20,,] -J [20,,]] =E, (1041 = J10..1) 10,1 + J[0.r])
=EJ 1 Upra) + 2J[0.7)

=B, J7. ; + 2710.1Br )

t
:E,/ F2ds +0.

Finally, by the isometry and triangle inequality E|Z;| < 2||F||p, < co, and so Z is a
martingale. [ |

B Example 7.24 (Stopping Times and Isometry) Suppose that we are given two
bounded stopping times R < T < t adapted to the filtration (¥, s € [0,¢]). Then,
an extension of the isometry property in Theorem 7.6 is the following:

T T T
Eg U Fdesx/ Gdes] :ER/ F,G,ds.
R R R

To prove this, we again first establish the identity for the special case of G = F. Using
the notation in Example 7.23, recall that both (Jj 1,7 € [0,¢]) and (Z,,r € [0,1])
are martingales, so that by Theorem 5.83 we have Er[Jjor] — Jjo,g]] = O and
Er[Zr — Zg] = 0. In other words, we have EgJ[g 7] = 0 and Eg [J?, .. —J?

[0.T] [O,R]] =
Eg /. 1{ F sz ds. Hence, we obtain
ErJ [2R,T] =Er(Ji0,11 = J10.8) 10,1 + J10.8]1 — 2J[0,R])
=ErlJ{ 7~ Jom] — 2/10.01 BRI [R.T)

T
:]ER/ F2ds—-0.
R

The general isometry identity follows by applying the linearity and isometry (in the
case of G = F) to the right-hand side of the polarization identity:

T T ! N s d sz_ ! s~ Ys d S2
ER[/ /Gdes]:ER[/R (Fy+Gy) dW,|" - Eg| [, (Fs — Gy) dW,] |
R R

F,dW, x 7
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We next generalize the results in Example 7.9 to the wider class of left-
continuous deterministic integrands.

Proposition 7.25: Deterministic Integrands and Gaussian Processes

Let f : Ry X Ry — R be left-continuous in the first argument and such that
IF D5 = fo f2(s,1) ds < co. Then, the stochastic integral process

1t
Z; ::/ f(s,t)dW,, >0,
0

is a zero-mean Gaussian process with covariance function

11N\
Cov(Z;,, Zs,) = / f(s,t1) f(s,t2)ds, 11,1 > 0.
0

J

Proof. Take a sequence of segmentations of [0, 7] whose mesh is going to O as
n — oco. Let f" (-, r) be the corresponding canonical approximation of f(-,r) for
r € [0,t], and define

r n—1
z\" = / FO () dWy = > F (517 (Waanr = Wegar)-
0 k=0

This is a zero-mean Gaussian random variable, with variance
n—1 r
D P Gskr) (sea AT = s Ar) = /0 LA (s, P ds = 11 o)l -
k=0

since [l /" ¢ r)lle, = 1£CoP)lle, | < IF™@Cr) = £ r)llp, = 0, we have that

Va2 = 17Ol = 1l = [P ds

Moreover, Zr(") < Z,. By Theorem 3.24, the characteristic function of Z, is

given by the limit of the characteristic function of Z,(”) as n — oo. Therefore,
Z, ~ N, | f(, r)||§)r). More generally, for any choice ¢1,...,t, € [0,¢] and real
numbers a1, .. ., @, the linear combination

m m n-—1
Dz =30 i f st Wepins = Waenr,)
i=1

i=1 k=0
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is a Gaussian random variable, showing that (Z s(n), s € [0,1]) is a zero-mean Gaus-

sian process for any n and, by taking the limit as n — oo, that (Z;,s € [0,7]) is
a zero-mean Gaussian process as well. As 7 is arbitrary, the process (Z;,t > 0) is
Gaussian. The covariance formula for ¢; < t, follows from

Var (2" +20") - var 2! - Var 7))

2

E(Z, +7,)*>-EZ* —EZ?
— ( f IZ) > dl 2 ZEZnth

EZ"Z\" =

and an application of the isometry property in Theorem 7.6 gives:

EZ[] ZIZ = E

/ " s, dW, x / " fs) dws]
0 t

1

+E /011 f(s,tl)dst'/Otl f(s, 1) dWS]

:O+‘/Olf(s,t1)f(s,tz)ds.
O

B Example 7.26 (Time-changed Wiener Process) Suppose that in Proposi-
tion 7.25 there is no dependence of f on t; that is, f(s,7) = f;. Then, for
th >t

1A I3
Cov(Zs,, Zsy — Zy,) = Cov(Zy,, Zy,) — Var Z;, = / f2ds - / f2ds =0,
0 0

and therefore the Gaussian process Z := ([; fy dWy, 1 > 0) has independent incre-
ments, just like in Example 7.9. The variance of Z; is in this case the continuous
increasing function

t
(7.27) C(t) = VarZ,:||f||got:/ fds, t>0.
0

This increasing function can thus serve as a “clock” with which to measure time:
showing the clock time C () when ¢ units of natural time have passed. In Exercise 2
we prove that the process (Wc¢(;),t > 0), which can be viewed as a time change of
the Wiener process W, has the same statistical properties as Z. In other words, both
Z and (W¢(;),t > 0) are Gaussian processes with the same mean and covariance
functions. [ |
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We finish with a result that generalizes the quadratic variation of the Wiener
process in Section 6.7 and that will be used many times in Section 7.2.

Lemma 7.28: Quadratic Variation Integral

Suppose that F' € P, satisfies the condition (7.19). Then, as mesh(I1,) — O:

n—1 t

2
D Fy (W, =Wy )? 5 / F,ds.
k=0 0

Proof. Since F € P, and F? satisfies the uniform integrability condition, we can
use the canonical approximation F' () of the form (7.11). Set J~n = ZZ;(l) Fs, Asy =
/Ot FS(”) ds, and note that it converges almost surely and in mean squared error
to the Lebesgue integral J := fé Fyds, defined in (5.17). In addition, if J, :=
S Fy (AWy,)?, then E[J, — J,] = Y02 E[F,, By, [(AW,,)? — Asg]] = 0, and
hence

n-1 n—1

1, = T2 = ZE[F@ B, [(AW,,)? — As¢]?] < 2 max Asy ZEkaAsk :
k=0 k=0

= 2Asi —————

= |IFlI7, <o

Therefore, by the triangle inequality: |[J, — J|| < ||/, — Ll + 19, = JI| = 0,
completing the proof. |

7.1.3 Further Extensions of the It6 Integral

Recall that the Wiener process has continuous sample paths; see Definition 6.1
and Theorem 6.21. As a result of this, whenever the integrand F' is a piecewise
constant process of the form (7.2), the corresponding It6 integral in Definition 7.5
has continuous sample paths. A natural question then arises as to whether this
continuity holds for a more general process F' € $;. While Theorem 7.20 ensures
the existence of a unique L2-norm limit when F € P,, there is no guarantee that the
Itd integral defined as this L?-norm limit has almost surely continuous paths.

Fortunately, Theorem 7.29 below asserts that the Itd integral as defined by an L?-
norm limit in Theorem 7.20 has a continuous modification. Recall that a stochastic
process Z = (Z.,r € [0,1]) is called a modification of Z := (Z,,r € [0,7]) if
P(Z, = Z,) = 1 forall r € [0,1].
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Theorem 7.29: Continuous Modification of the It6 Integral

Suppose that F € P, and (F™) is a sequence of simple processes satisfying
(7.17). Denote the limit f; Fs(") dw, =: Z,(") L Z, as the It6 integral on [0, r]
for r < 1. Then, there exists a modification Z of (Z,, r € [0,¢]) such that the
mapping r > Z, is almost surely continuous. Moreover, this modification is
unique up to indistinguishability.

.

Proof. In what follows, we use similar arguments to the ones employed in the proof
of the existence of the Wiener process; see Theorem 6.21. The condition (7.17)
implies the existence of a subsequence (F)) of (F™) such that (ny, k € N) is
strictly increasing and ||F+) — F (”k)llpt < 272k Define the processes ZWm =

(Zr("") ,r € [0,1]) and the sequence of events with g; := 27:

Hk = { Sup |Z£k+l) _Z;gk)l > 8/{}, k = 1’29' LY

0<r<t

Recall from Theorem 7.6 that Z(") := (Z,("), r € [0,¢]) is an L?-martingale with
respect to ¥ and, by construction, Z(" has continuous sample paths, because
r— F,(") (w) is piecewise constant. It follows that the process |ZK+D) — Z(B)| §s
a positive continuous # -submartingale, and hence by Doob’s maximal inequality
(Proposition 5.86), we have

P(Hk) < 8;2 E|Zt(k+l) _ Zt(k)lz — 22k||F(nk+1) — F(nk)”%t < 2_2k’

where we used the isometry property in the last equality. Since } ; P(Hy) < oo,
the Borel-Cantelli Lemma 3.14 implies that the event Qg := {>}; 1y, < oo} occurs
with probability 1. From Proposition 3.2 the sequence (ZX)(w)), w € Qq is
Cauchy convergent in the uniform norm and its limit Z defines the Itd integral for
allw € Qpand every r € [0, 7]. Since Z (the Itd integral) is the almost sure limit (in
the uniform norm) of the continuous process Z® its sample paths are almost surely
continuous on [0, 7] and, in fact, uniformly continuous, because [0, ¢] is a closed
and bounded set; see Example B.13. Finally, since both Z,(”") E5 Z and Z,(k) L5 Z,
converge to the same L?-norm limit for each r € [0, 7] (thatis, E(Z, — Z,)? = 0), we
conclude that P(Z, = Z,) = 1 for each r € [0, ¢]. This shows that Z is a continuous
modification of Z. If Z* is another continuous modification of Z, then part 3 of
Theorem 7.13 implies that Z* is indistinguishable from Z. O

For the rest of this chapter we will assume that we are working with the con-
tinuous modification of every Itd integral, which, as the proof of Theorem 7.29
demonstrates, is defined as an almost sure limit. As a result of this, henceforth all
equations and identities involving the It6 integrals are assumed to hold not only in
L? norm, but also almost surely.
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B Example 7.30 (Time-changed Wiener Process Continued) In Example 7.26,
we can go one step further and construct a time-changed Wiener process that
is almost surely identical to the continuous modification of the process Z =
( fé fsdWs,t > 0). Since the time-change clock C in (7.27) is a continuous and

increasing function, it has an inverse C~! such that C(C~'(¢)) = t. Define the
process W as

(7.31) W, = Zegy, 1 20.

Then, WO = Zy = 0 and the continuity of C~! and Z implies that W has almost
surely continuous paths. Moreover, its increments are stationary and Gaussian:

Wtz - th = ZC‘I(lg) - ZC‘I(tl) ~ N(O, th — t]).

Finally, for any #; < t, < t3 < t4, the increments VT/M - W,3 = and Wtz - VT/,I are
independent, because Z has independent increments. Hence, W is a Wiener process
by Theorem 6.2. Note that W is not the same Wiener process as W, but when
time-changed by the clock C, it is (almost surely) identical to Z:

WC(I) =7, t>0.

Let Z; := fé F;dW; for t > 0. For a positive stopping time 7 < t, we can define
fOT F;dWj as the random variable Z7. An important consequence of working with

continuous modifications of 1t6 integrals is that the following intuitive relationship
holds:

Proposition 7.32: Continuous Modification and Stopping Times

If Fe®P,andT < tis a stopping time with respect to ¥, then almost surely:

T t
/ F,dW, = / Lo.71(s) Fs dW;.
0 0

Proof. Consider a segmentation I, of [0, ¢] such that maxy<,(s¢+1 — sx) — 0 and

[

n—

T, = Sk+11[sk,sk+1)(T)
k

I
o

is an approximation of 7 from above; that is, 7, > T for each n and 7, =5 T as
n — co. We now write for every t > T

T t
(7.33) / F, dw, — / Tjor)(s) Fs dWy = J" + 2 4+ 7,
0 0
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where we have defined the quantities:

) T T,
J\" ::/ Fdes—/ Fy dW;,
0 0

T t
7" = / Fy dW, — / Lis<r,y Fy W,
0 0
t
J3(n) = /0 (Lgs<ry — Lys<ry) Fy dWs.
Since we are using the continuous modification of the Ito integral, we have J f") = 0.

The second quantity, Jz("), is 0 almost surely forall n > 1, because 3} _; Li7,=5,} = 1
implies that:

T, n
/ FedWy = > r,-,) /

t n t
:/ D Litimsiy Lssy Fo AW, =/ Lis<r,) Fs W
0 0

N

k
FydW,

For Jén), define D™ := (Fslir<s<t,}> s € [0,2]), which is left-continuous, ¥ -
adapted, and such thathn) = Oforalls € [0,¢]. Since Dﬁ”) < Fyand ||F||p, < oo,
the Dominated Convergence Theorem 2.36 implies that || D) llp, — 0. Therefore,
by the isometry property, Jé") =/} D™ dw, 5 0. Since the left-hand side of
(7.33) does not depend on n, we conclude that it must be almost surely 0; see
Exercise 3.16. ]

In the general theory of stochastic integration, the aim is to define integrators
and integrands in as wide a sense as possible. For example, in Section 7.2 we show
how integration with respect to the Wiener process can be extended to integration
with respect to It0 processes; see Definition 7.39. We mention that the most general
integrators in stochastic integration are the semimartingale processes, which are
defined as the sum of a local martingale and a process of locally bounded variation;
see Definition 5.74.

As indicated above, we can not only extend the type of integrators used in
stochastic integration, but also the type of integrands. There are two possible
extensions of the class of integrands %#; in Definition 7.14. The first extension,
which we do not pursue in this book, is to relax the requirement that F is left-
continuous with the less stringent requirement that F is progressively measurable.
The second extension, which is our focus for the rest of this section, is to relax the
L?-norm condition || F||p, < oo to the less restrictive condition:

t
(7.34) P(/ Fszds<oo):1, vt > 0.
0
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This relaxation is accomplished using a localization argument — rather than defin-
ing a property of a stochastic process on [0, ¢] (or R), we instead define it locally
on a (random) interval [0, 7,], where (7},) is a sequence of increasing bounded
stopping times called a localizing sequence.

Theorem 7.35: Enlarging the Class #; via Localization

Let F := (Fy, s € [0,t]) be an F-adapted process, left-continuous on (0, ],
and such that (7.34) holds. Then, there exists a localizing sequence (7,)
such that the stopped process ( for Mo FodW,, r € [0,1]) s a square-integrable
martingale. In addition, the It6 integral of F with respect to W on [0, ¢] is
defined as the almost sure limit:

AT,

t
/ FydWs = lim FydW;.
0

—00
n 0

Proof. First, let T,, := n A inf {r o F 2ds > n} be a stopping time for each n =
1,2,.... Then, the condition (7.34) implies that (7},) is an increasing sequence of
stopping times such that 7;, = oo.

Second, consider the truncated process F () where F, s(") := Lio.1,1(s) F; for all
s. Since ||F (”)ll(pl < n (that is, F" € P,), the continuous modification of the Ito
integral [§ F, S(") dW; is well-defined by Theorem 7.29.

Third, since 7,, = oo, there exists an almost surely finite N such that A T, = ¢
for n > N, and from Proposition 7.32 we have for any m > n and ¢ € [0, T,,] that:

t tA\T, tA\T, t
/ F™ dw, = / Fy dW, = / Fy dW, = / F" aw,.
0 0 0 0

The last consistency relation implies that lim,, (;AT" FydWy = [j F s(m) dW; for each
m and all t € [0,T,,]. In addition, if (7,,) is another strictly increasing sequence of
stopping times such that fOMT" F; dW; is well-defined as an L?-norm limit, then al-

most surely lim,, féAT" F,dW, = lim,, f(;”" F; dWg; that is, the It integral definition

is independent of the choice of localizing sequence. m|

The Itd integral process Z := ( fé FydWg,t > 0) defined in Theorem 7.35 is a
continuous local martingale, because there exists a localizing sequence of stopping
times (7,) such that 7,, =5 oo. This extended definition of the It6 integral does
not necessarily satisfy the isometry property in Theorem 7.6, as illustrated in the
following example:

B Example 7.36 (Enlarging the Class ;) Although W" € #; for any n € N,
the process exp(W?) ¢ P, for all ¢, because féEeXp(ZWsz) ds = oo for r > 1/4.
Therefore, fort > 1/4 the process (/3 exp(W?) dW;, ¢ > 0) is not a square-integrable
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martingale and the isometry property does not hold. However, exp(W?) satisfies
the relaxed condition (7.34), because almost surely:

t
/ exp(ZWsz) ds < texp(2M,2) < oo,
0

where M is the running maximum process (6.49), which satisfies P(M; = o) =
limy, P(M; > x) = 0; see (6.53). Hence, (fjexp(W2)dW,,t > 0) is a local
martingale according to Theorem 5.74. [ |

7.2 It6 Calculus

Let f be a differentiable real-valued function and a a function of bounded variation
(forexample, an increasing function). For ordinary (Lebesgue—Stieltjes) integration,
application of Theorem 1.62 gives the change of variable formula

/O F/(as) das = f(ar) - f(av).

This formula no longer holds when the integrator is the Wiener process, motivating
the study of stochastic calculus and one of its most celebrated formulas.

7.2.1 It6’s Formula

It6’s formula is the correct generalization of the change of variable formula for
stochastic integrals and has a wide variety of applications in mathematical finance
and the theory of stochastic differential equations; see Section 7.3.

Theorem 7.37: It6’s Formula for the Wiener Process

Let W be a Wiener process and f : R — R be twice continuously differenti-
able with derivatives f” and f”. Then, almost surely

FOW) = F(Wo) = /O FW) dW, + 2 /O £7(W,) ds.

Proof. We first prove the result under the assumption that £2, (")2, and (f”)? are
uniformly integrable as in condition (7.19), which ensures that the canonical ap-
proximations of the form (7.11) satisfy the crucial condition (7.17). In addition, we
assume that f” is uniformly continuous; thatis, sup, sup,eg . |/ (y)—=f"(x)| = 0
asr | 0, where B(x,r) = {u : |u — x| < r} is the Euclidean ball centered at x with
radius r.
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By the fundamental theorem of calculus, f(y) — f(x) = [{ f'(s)ds. Let
Ax := y — x and apply integration by parts to obtain f(y) — f(x) = f’(s)s|j:)yc -
[ sf"(s)ds = f'(x) Ax+ [ (y—s) f”(s) ds. Using the change of variable y—s — s
gives a suitable version of Taylor’s theorem:

Ax
PO =) = 70 s [ 7= 955 = /0 x4 31 WA (1, 3),

where r(x, y) := fOAx [f”(y—s)— f"(x)]sds is an integral with magnitude

[Ax]?

sup [ f"(u) = f7(x)].

ueB(x,Ax)

Ir(x, y)| <

Next, we take the sequence of simple processes (7.11), and then apply the Taylor
expansion on each term in the telescoping sum with increments AW, := W, . —W;,:

n—1
FOW) = £0) = > (f (W) = F (W)
k=0

n—1 n—1 n-l1
74 1 74
= D o) AW 3 > (We) [AW 14 ) r(We W)
k=0 k=0 k=0

_ gm o) _ g
=t J =t J =t Jj

Asn — oo, the first term J f”) converges in L? norm to the Itd integral fé (W) dWg

by Theorem 7.20. Further, Jé") L J§ f”(Wy) ds from Lemma 7.28. As for the third
term, its magnitude is at most

n—1 n—1
|J3(,n)| < Z lr(Wy,, Wy,,,)| < sup sup I (w) = " (Wy,)] XZ(AWSk)2-
k=0 k ueB(W;, ,AWs,) =0
=: Vng 0 L_2> /

By Theorem 6.70, the second term converges in mean squared error to ¢ as &, :=
maxy As; — 0. By Theorem 6.72, we know that there exists a finite constant ¢ > 0
such that, almost surely, for every sufficiently small As; we have:

|AW,, | < Ve AsiIn(1/Asy) < \ee,In(1/g,) = r  forall k.

Since f” is uniformly continuous, it follows that for a small enough r the follow-
ing bound holds almost surely: V,, < sup,, sup,epy,, [f” (1) — f”(w)|. The bound
vanishes, because r — 0 as &, — 0. Thus, the bounded random variable V,, con-
verges to 0 almost surely, and hence in mean squared error, implying that J3(") 50
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as n — oo, and completing the proof under the restriction that £2, ("), and (f”)?
are uniformly integrable, and f” is uniformly continuous.
We can drop the latter restrictions on f, f/, and f” in the following way. Define
the stopping time
T, :=inf{s > 0 : |W| > m},

where m is a large positive integer and t A T,, > t as m — oo. Then, the
range of the process W™ := (Wiat,,» s € [0,¢]) is restricted to the closed and
bounded set [—-m,m]. The continuity of f, f’, f” implies that the processes
FWmy 1wy, £7(W™) are almost surely bounded on the range of W™ see
Exercise 3.33(b). Hence, f2, (f')?, and (f”)? are uniformly integrable. Moreover,
by the Heine—Cantor theorem in Example B.6 the f” is uniformly continuous on
the range of W™, Therefore, Itd’s formula holds with W replaced by W™, or
equivalently, with 7 replaced by ¢ A T}, in all integrals. We can now take m — oo as
in Theorem 7.35 to remove any reference to the localizing sequence (75;,). m|

B Example 7.38 (Enlarging the Class #; Continued) An application of The-
orem 7.37 to the function x > exp(x?) yields:

t t
exp(Wtz) =1+ 2/0 Wy exp(Wsz) dW; + /0 [1+ ZWE] exp(Wsz) ds,

where we recall from Example 7.36 that exp(W?) does not belong to #; for all z.
As another example, we can apply Theorem 7.37 to the function x — x" to obtain:

t -1 t
Wi = n/ Wit aw, + M= / w2 ds,
0 2 0
which for n = 2 confirms the result in Example 7.21, namely, W,2 =2 fot W dW, +1.
[ |

The It6 integral defines a new process Z := (Z, s € [0,¢]) via the integral
transform Z; := fé FydW,. This motivates our definition of the [t process as
follows:

Definition 7.39: Ito Process

An It process is a stochastic process X := (X;,t > 0) that can be written in

the form . l
X,:X0+/ usds+/ o, dWs,
0 0

where (ugs, s > 0) and (o, s > 0) are left-continuous 7 -adapted processes
such that almost surely [ (|| + 02) ds < oo for all 7.
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Note that in Definition 7.39 f] u, ds is a Lebesgue integral as defined in Sec-
tion 1.4.1, and fé oy dW; is an Itd integral such that the corresponding process
( fé oy dWy, t > 0) is a local martingale like the one in Theorem 7.35.

The integral equation in Definition 7.39 is usually written in the shorthand
differential form

dX; = usds + oy dWy,

where u is commonly referred to as the drift process and o as the dispersion process.
We denote an Itd process with drift 4 and dispersion o by [t6(u, o).

If X is the It0 process in Definition 7.39 and F is a simple process of the form
(7.2), then, similar to Definition 7.5, we can define the stochastic integral of F with
respect to X as:

/ F dX ka(xskﬂ/\r - sk/\r)’ re [O’I]

As in Theorem 7.20, we can extend this definition to a more general process F by
using sequences of simple processes (F™), (u™), (c™) approximating F, u, o,
respectively, and with jumps on a common segmentation) = 59 < s; < --- < 5, =¢
of [0, ¢]. If, for simplicity of exposition, all approximations are of the form (7.11),
and we define Xl(") = Xo + [} uMds + I o™ dW,, then:

t n—1
/ Fs(n) dXs(”) = Z Fy, [,usk(skH —sk) + oy, (W, — Wsk)]
k=0

0
t
_ / FO 00 g / FO o g
0 0

_. gm o
= J! = J

The first integral J f”) converges almost surely to the Lebesgue integral fé Fyugds,
under the assumption that fé |Fsuslds < oo; see Section 1.4.1. Additionally, if
Fo € P, and |[FWo™ — Fo||lp, — 0, then by Theorem 7.20 the sequence (Jén))
has an L2-norm limit — the 1td integral fo’ Fsoy dWs.

As in Theorem 7.35, the condition that Fo € %, can be relaxed to the less
restrictive (7.34) (that is, fé(FSO'S)ZdS < oo for all #), whilst still ensuring the
existence of the Itd integral as an almost sure limit. We can conclude that the almost
sure limit of fj F s(") dXs(") is again an It6 process, but with drift Fu and dispersion
Fo. In other words, we can define the integral fé F;dX; as follows:
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Definition 7.40: Integral with Respect to an It6 Process

Let X be an It6(u, o) process and F a left-continuous ¥ -adapted process
such that almost surely [§(|Fsps| + (Fyo5)?) ds < oo for all 7. Then, the
integral of F with respect to X is defined as the It6(F u, Fo) process with:

13 t t
/ F,dX; = / Fsusds + / F, oy dW,.
0 0 0

Recall from Theorem 6.70 that we define the quadratic variation of the Wiener
process as the limit of (W), in L? norm. Similarly, we can define the quadratic
variation over [0, ¢] of any ¥ -adapted process X, as follows:

Definition 7.41: Quadratic Variation on [0, 7]

Let IT, := {sx,k = 0,...,n} be a segmentation of [0, ¢] and let (X)) be a
sequence of simple processes with almost sure limit X := lim, X s(") for all
s € [0, ¢] as mesh(IT,) — 0. The quadratic variation of X := (X, s € [0,¢])
over [0, 7], denoted as (X),, is defined as the limit in probability of

(X Z(Xéffl Xy

Note that the limit in the definition of quadratic variation can often be in a
stronger mode of convergence, such as in almost sure or L?-norm convergence.
In particular, we have L?-norm convergence for the quadratic variation of an Ito
process.

Theorem 7.42: Quadratic Variation of an Ito Process

If X is an It6(u, o) process, then

t
<X(n)>z LS (X): = /0 O's2 ds.

Furthermore, if F' € P, satisfies the condition (7.19) and mesh(I1,) — 0,
then:

—_

n—

t
2
Fsk(XskH_XSk)zL)/ FsO'szdS-
0

==
I

0

Proof. Suppose that ™, o™ and F" are simple processes with jumps on the
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same segmentation 0 = 59 < 57 < --- < s, =t of [0,¢], and approximating yu, o,
and F. Without loss of generality we may assume that u, o, and F are bounded, so
that ,u(”), o™ and F™ are canonical approximations of the form (7.11). Then,

r r
X, (), = Xo+ / ,ugn) ds + / O'S(") dWg
0 0

converges almost surely to a limit which we can take to be the Itd process X in
Definition 7.39. Denoting G := Fu0y, it follows that

n—1 n—1
Z Fy, ( XS(I:?I Xs(:))2 = Z Fy (ps, Asg + 0, AWSk)2

n—1 n—1
2
= N Fo2 (Asy) +Z W [AWL 242> Gy Asg AW, .
k=0 k=0
_. g(m) _. g _. g
=J" = J," =J"

If &, := maxy Asy, then |Jf")| < &y /Ot F™ ()2 ds — 0. Furthermore, J3(") is a
zero-mean [t6 integral, so that, by the isometry property,

n—1
Var(J{") :]EZG (Asp) < e E/ (FM Mo M2 g5 — 0,
k=0

proving that Jé") 5 0. Finally, we also have that J;n) & J§ Fyo? ds by Lemma 7.28.
O

B Example 7.43 (Quadratic Variation of the Wiener Process) Since the Wiener
process W, = 0 + /Ol Ods + fot 1 dW; is a special case of the Itd process with u = 0
and o = 1, we have that (W), = [j 1ds =, in agreement with Theorem 6.70. ®

B Example 7.44 (Quadratic Variation and the Integral fé X, dX;) Itis possible
to define the meaning of the integral [ X, dX; using the quadratic variation of X,

namely,
t X2 -X2—(X
/Xsts:: r_70 <>‘.
0 2

That this definition makes sense follows from the corresponding telescoping sum:

n—1
- X02 = Z(X8k+| - Sk)2 +22 Sk+1 _XSk)'
k=0
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Using the shorthand notation d{X), = O't2 dr for the result in Theorem 7.42, we
can now generalize It6’s formula in Theorem 7.37.

Theorem 7.45: 1to’s Formula for Ito Processes

Let X be an It6 process and let f be twice continuously differentiable. Then,

t 1 t
a0 F0 =00+ [ FEIXes [ e,

Proof. Repeating the arguments in Theorem 7.37, we obtain from Taylor’s expan-
sion:

n—1 1 n—1 n—1
FOX) = F(X0) = 3 F (X)) Ay 5 3 f (X [AX ]+ ) (X X))
k=0 k=0 k=0

. n —. n )
=" =" = J{
As in the proof of Theorem 7.37, the function f and its derivatives are assumed to

be bounded and continuous. Therefore, the first term Jl(") 5 fé f'(Xy) dXs, and

by Theorem 7.42, the second term Jé”) AN fé f”(X;) d(X),. Finally, similar to the
proof in Theorem 7.37, we have:

n—1
T <sup sup[f7() = f7 (X )Ix (AKX
k uEB(Xsk ,AXsk) k=0

. a.s, 2
= Va0 (X, < o0

Here V,, is bounded and converges to O (almost surely and in L? norm), because:
[AX, | < s, Ask| + |os, AWy, | < €, max us ++ce, In(1/g,) max oy — 0.
s€[0,1] s€[0.1]

As in Theorem 7.37, the assumption that f and its derivatives are bounded can be
removed by using a suitably chosen localizing sequence of stopping times. O

In differential form, (7.46) reads:
74 1 144
df (Xy) = f/(X;) dX; + Ef (Xp) d{X);
4 1 44 ’
= | F Xp+ 5" (X)o7 | ds + £ (X) o dW,.

Compare this with the corresponding chain rule of ordinary calculus:

df (x(0)) = f'(x(1)) dx(2).
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If X is an It6(u, o) process, then an immediate consequence of (7.46) is that f(X)
is also an Itd process:

16 (f’(X)ﬂ + %f”(X)crz, (X)),

Another consequence of 1t6’s formula and Theorem 7.42 is that

(FX)), = /0 L/ (X012 d(X)s.

7.2.2 Multivariate It6’s Formula
In this section we extend the Itd calculus to multivariate Itd processes. Suppose that
Ms.1 Os1,1 *°° Os1,4d
=1 and oy := :
Ms.d Osdl " Osdd
are processes such that y;, oy ; € F for all i, j, and both [§ || ds and fj o2, ds
are almost surely finite for all i. If W is a d-dimensional Wiener process, see

Definition 6.8, then in analogy to dX = u, ds + oy dW, we define the It6 process
in R? via:

d
(7.47) dXpi = pidt+ Y o dW,y, i=1,....d,
j=1
or in matrix differential notation:

dXt :”tdt+0-tth-

Further, we denote a d-dimensional Itd process with drift g and dispersion o by
[t6(u, o). The results of Theorem 7.42 can be extended (see Exercise 8) to evaluate
the quadratic variation of X.; for a given i:

t
Xi)=) /0 o2 ds.
:

Using the above formula, we can extend the concept of a quadratic variation to the
covariation of two processes.

Definition 7.48: Covariation of Two Ito Processes

Let X and Y be two Itd processes adapted to the same filtration . Then, the
covariation between X and Y is defined as the quantity:

(X,Y), = (X+Y), _2<X>t - <Y>t'
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The special case (X, X),; simplifies to (X);, so that the covariation of X with
respect to itself is the quadratic variation of X. Note that the covariation satis-
fies the same properties as the inner product in Definition B.17. In particular,
the covariation satisfies the symmetry property (X,Y), = (Y, X); and the bilin-
earity property (aX + BY,Z), = a(X,Z); + B{Y,Z), for any a, 8 € R. Finally, if
X™ Y™ are simple processes with jumps on the same segmentation II,, of [0, 7]
and approximating X, Y, then (see Exercise 6) the covariation (X, Y), is the limiting
value of:

)

Sk+1

n—1
X,y = 3 (X - X))
k=0

B Example 7.49 (Covariation and Dispersion Matrix) Let dX; = u, dt + oy dW;
and dY; = v, dr + o; dW; define two It6 processes with respect to the same Wiener
process W. Then, from the definition of the covariation, we have:

t
(X,Y),:/ o 05 ds,
0

or in shorthand differential form: d(X,Y), = o; 0, More generally, for a d-
dimensional It6 process dX; = u, dt + o, dW;, we obtain:

d
(7.50) d(X.r, X b= D Grikojucdt, Vi, J,
k=1
or in shorthand matrix notation: d(X, X), = o-,07] dr. [ |

Note that all the results so far suggest the following heuristic Itd calculus rules
for manipulating a multivariate [t6 process X:

d
X, xdX,; = > oyixorjeds, dexdX,; =0, (dr)?=0.
k=1

In particular, we have the following It6 calculus rule for the increments of the
d-dimensional Wiener process:

W it
Wi x AW :{o 1f§¢j

The utility of the covariation concept in Definition 7.48 is that it permits us to
state the multivariate version of Itd’s formula in compact and intuitive notation.
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Theorem 7.51: It6’s Formula in R?

Let (X;) be an d-dimensional Itd process, and let f : R? — R be twice
continuously differentiable in all variables. Then,

1
32 0 f (X)) d(X.;, X j):-

1

d
:1]

d
=1

d
df (X)) = Y aif (X,)dX,; +
i=1

Proof. We repeat the arguments in the proof of Theorem 7.45, assuming that
X is an It6(u, o) process. The main difference is that we combine a version
of the multivariate Taylor theorem with the covariation identity (7.50). Below,
df and 8%f denote the gradient and Hessian matrix of f. Let Ax :=y —x and
g(t) := f(x +t Ax) for some ¢ € R, and note that by the one-dimensional Taylor
expansion in Theorem 7.37:

1
8(1) = g(0) =0+ 38"0)+ [ slg"(1-9) - g"(O)] ds.
0

Using the chain rule, the last identity is equivalent to

F) = £ = (AR)TBF(x) + 5 (A) T8 (x) Ax +r(x, ),

where the residual is given by

1
r(x,y) ::/0 (1-5)(Ax)T[3f(x + sAx) — d°f(x)] Ax ds.

It follows that

n—1
FX) = f(Xo) = ) (f(Xy)) = F(Xy))
k=0

1
- Z Z;:‘ Oif (X)) AXgpi+ 5 Z;‘ Zk: 8 f (Xg) AXy i AX, j + ; F( X Xg)s

where AX;, ; = X;,,,.i — Xs..i- For a given i, let Gg? = 0;f(Xy) for s € [s, Sk+1)
andall k =0,1...,n— 1. Then, we have

t t
D0 (X)) AXyy = / G\ dx,; 5 / O f(X,) dX,,.
T o 0

Therefore, 3; 34 0 f (Xy,) AX i 5 3 [ 8:£(X,)dX,,, dealing with the first
term in the Taylor expansion. Next, we use the fact that for any bounded F € $:

2 ) Fo AXy i AXyy = ) Fo(AXg i+ AXy, )
k k

= > Fy (AX ) = ) Fy(AX, )%
k k
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Since (X;; + X;,;, s € [0,1]) is an It6 process with drift (u,; + s, ;) and dispersion
(2x(0g,ik +05,j.k)), Theorem 7.42 yields

t
2
E Fsk(AXsk,i"‘AXsk,j)ZL_)‘/ F E (O's,i,k+0's,j,k)2ds~
k 0 3

In addition, 3 Fy, (AXj,.)? EES JSFs Xk (Tfl. , ds. Therefore,

2ZF AXsklAXskj / Z (O-Szk+0's]k) élk éjk) ds.

In other words, for the second term in the Taylor approximation, (7.50) yields:

Zazjf(Xsk)AXsszXskj L_2> Z/ at]f(Xs) d<X l’X ]>s

i,j.k

Finally, denote h;;(u,x) := 0;; f () — 0;; f (x), and note that the matrix H = [A;;]
is a symmetric matrix, implying that its eigenvalues A, (u, x), . .., 14(u, x) are real.
Thus, the spectral radius of H(u, x):

o(u,x) = max lo " H(u, x)v| = max |4 (u, %)]
vl||=

can be bounded as:

o(u.x) < \/Z a0 =[5 0) 12 < a0,

iJ

Hence, we have the following bound on the residual:

1
)] < lAx]? /0 (1- 5)o(x + sAx.x) ds

d || Ax|?
< IAx] sup  max |h; j(u,x)],
2 uemxax|) b

where B(x,7) = {u € R : ||u — x||» < r} is the Euclidean ball centered at x with
radius . Therefore,

Zv(Xsk,Xsan <sup  sup  max |y (u, Xsk>|xd2||Axsk||
ko ueB(X, 0K )

=V,

By Theorem 7.42, we have Y, (X;,, i — X5.i)° L IK O'SZ’Z. ds for all i, and hence
2k ||AX5,(||2 AN D fé a’ii ds. Further, if we define &, := maxy(s¢+1 — ), then
Theorem 6.72 implies the following almost sure inequalities:

|AX, || < de,max max ug; +vceyln(l/e,) max max oy; — 0.
i 0,¢] i s€[0,]

se
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Hence, the uniform continuity of (u,x) — max; ; |h; ;(u,x)| and the boundedness
of V,, together imply that the residual ; |r(Xj,, X;,.,)| converges to 0 (both in L?
norm and almost surely). Similarly to Theorem 7.37, one can lift any boundedness
restrictions on f and its derivatives using a localization argument. O

A consequence of 1t0’s formula in Theorem 7.51 is that the covariation satisfies:

(7.52) d(f(X),X. i) = Z 0if(X)d(X.;,X. ;) foralli.
J
Further, if X is an It6(u, o) process, then:

47X = (1876 Tk, + 3t 8 F(X)or) ) de + 17 (X)) T dW,

B Example 7.53 (Multivariate It6 Formula) A special case of Theorem 7.51 is
X; := [X;,t]", where ¢ (> 0) is deterministic and the process (X;) is governed by
dX[ = M dr + (o) dW[ Then,

2 02 f
2 dx?

af af

0
(71.54) df (X, 1) = (8_{(Xt) +#z (X,) (X,)) dr + O'tg(xz) dw;.
As an example, consider the exponential martingale S; := exp(rW, —tr2/2),t > 0
from (6.40), where (W;) is a Wiener process. An application of (7.54) with y; =0
and o; = 1 yields
2 2

dSt = (_%Sl‘ + 0 + %Sl) dt + I"Sl th = rSt dWl,

or equivalently S; — So = r [{ S, dW;.
|

B Example 7.55 (Theorem 6.46 Revisited) Recall that in Theorem 6.46 the
standard d-dimensional Brownian motion B is of the form B, = By + W,. In other
words, B is an Itd process with drift vector g = 0 and dispersion matrix o = I,
so that by (7.50) we have d(W.;, W_ ;); = 1(;—;, dt. An application of Theorem 7.51
yields:

d d
1
df (B)) = le 0if (Br) AWy + 5 Zl 0if (B)) d(W. ).
or in integral form we can write:
- f(B) -+ Z / 0. (B,)ds = f(Bo) + Z / 0.f (B,) dW,..
Since the sum of martingales adapted to the same filtration is another martingale,

the process (Z,il /0[ 0;f (Bs) dWs,;) is a martingale, which confirms the result of
Theorem 6.46, namely, that (X;) is a martingale. [ ]
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B Example 7.56 (Stochastic Product Rule and Integration by Parts) A notable
application of Theorem 7.51 on the function (x, y) + x X y yields the product rule
for Itd processes:

(757) d(Xth) = Yt dXt + Xt dYt + d(X, Y>[

The corresponding integral form,

t t
XY — XoYo = / Yo dX; + / Xy dYs + (X, Y ),
0 0

is the Itd integration by parts formula. [ |

B Example 7.58 (Integral of the Wiener Process) Consider the integral process
Y := (Y;,t > 0) of the Wiener process, defined as

t
E::/Wsds, t>0.
0

Using the It6 integration by parts formula for the process (t W;, ¢t > 0), we obtain

t t
Y[:tWt—/ SdWs:‘/.(t—S)dWs,
0 0

which shows, by Proposition 7.25, that Y is a zero-mean Gaussian process with
covariance function

t l3 t2
EYtYHu:/ (t=s)t+u—s)ds=—=+u—.
0 3 2

In addition, if we define
_ (30!
W[ = / SdWS,
0

then the time change in (7.31) with C(¢) := 3/3 shows that W is a Wiener process.
In other words, _

Figure 7.59 shows typical paths of the process (Y;). Note that both (z W;) and
( fé s dW) have paths of unbounded variation, but the difference between these two
processes, that is (Y;), has paths of bounded variation. In fact, its total variation on

[0, ] is [ W] ds.
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0 0.2 0.4 0.6 0.8 1
t
Figure 7.59: Typical paths of (f} Wds, > 0). The paths are of bounded variation.

We say that the Itd process (7.47) is a local martingale in R if the d components
of the process are each local martingales.

Theorem 7.60: Ito6 Processes and Martingales

An Itd process in R? is a local martingale if and only if its drift is 0.

Proof. Let the Itd process be X; = Xo+ [ p, ds+ [ oy dW. Sufficiency of g, = 0
follows from the fact that the d components of the process X; = X + fé o,dW; are
all It6 integrals and hence local martingales. To prove the necessity, we assume that
X is a local martingale. Then, (X; — Xo — fé oy,dWy) is also a local martingale.
However, the identity X; — Xo — fj o dW, = [ p, ds implies that (f] p,ds) is a
local martingale, which is continuous and of bounded variation, because

Sk+1 14
SUPZ / Ms,ids =/ |ps.il ds < oo,
O, Sk 0

It follows from Lemma 5.90 that ( fé Wsids) foreachi =1,...,d are almost surely
constant. In other words, p, is almost surely 0. O

B Example 7.61 (Lévy’s Characterization of the Wiener Process) Suppose that
X is an It6(u, o) process such that both (X;,¢ > 0) and (X? —1t,¢ > 0) are local
martingales. Then, X must be the Wiener process governing the It6 process. To see
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this, we apply Theorem 7.60. First, X being a local martingale implies that ¢ = 0.
Second, by 1t6’s formula: d(X? —¢) = (=1 + o?) dt + 207X, dW,, so that (X? - ¢)
is an It process with drift (-1 + o?). Hence, if (X? — ¢) is a martingale, then we
must have o> = 1. In other words, X is an Itd process with drift 0 and dispersion
oy = +1, implying that X is a Wiener process.

This example gives a characterization of the Wiener process in terms of two
martingales. We demonstrated it under the restriction that X is an Itd process.
However, the restriction that the process X must be an Itd process can be removed,
resulting in the celebrated Lévy’s characterization theorem (Karatzas and Shreve,
1998, page 157). [ |

B Example 7.62 (Quadratic Variation and Martingales) Let X := (X;) be an Itd
process that is also a local martingale, and let Z := (Z;) be an increasing process
with Zog = 0. Then, (X? — Z;) is a local martingale if and only if Z = (X). To see
this, use Itd’s formula to write

t
X? = 2/ X, dX; + (X),,
0

and note that by Theorem 7.60 the It6 process (X;) must be of the form X, =
Xo + /Ot oy dW,, because u; = 0 almost surely.
First, assume that Z = (X). Then,

t t
XE—Z,:/ Xsts:/ X 05 dW,.
0 0

Hence, (X,2 — Z;) is a local martingale, either because the integrator process (X;)
in [ X, dX; is a local martingale, or simply because fj X;0s dW; is an Itd integral.
Conversely, suppose that (X — Z;) =: (M,) is a local martingale. Then,

t
Zt_<X>l:2/ XSdXS_Ml
0

is a local martingale as well. Moreover, the process (Z; — (X),) is the difference
of two increasing processes, and so has bounded variation; see Exercise 6.11. It
follows from Lemma 5.90 that (Z; — (X),) is the O process. Hence, Z; = (X); almost
surely for all ¢+ > 0. [ |

7.3 Stochastic Differential Equations

Stochastic differential equations are based on the same principle as ordinary dif-
ferential equations, relating an unknown function to its derivatives, but with the
additional feature that part of the unknown function is driven by randomness.
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Definition 7.63: Stochastic Differential Equation

A stochastic differential equation (SDE) for a stochastic process (X;,7 > 0)
is an expression of the form

(764) dX[ = a(X[, t) dr + b(Xt, t) th,

where (W;,t > 0) is a Wiener process and a and b are deterministic functions,
called the drift and diffusion' functions. The resulting process (X;,t > 0) is
called an (1t6) diffusion.

Note that the stochastic process (b(X;,t)) in Definition 7.63 is a dispersion
process o := (o0y) (as used in Definition 7.39) for which o; only depends on the
values of X, and ¢, rather than on the whole path (X, s € [0,7]). Intuitively, (7.64)
expresses that the infinitesimal change, dX;, in X; at time ¢, is the sum of an
infinitesimal displacement a(X;, ¢) dt and an infinitesimal noise term b( X, t) dW;.
The precise mathematical meaning of (7.64) is that the stochastic process (X;, t > 0)
satisfies the integral equation

t t
(7.65) X = Xo+/ a(Xs,s) ds+/ b(Xs, s) dWy,
0 0

where the last integral is an [t0 integral. The definition of such integrals is discussed
in Section 7.1.

When a and b do not depend on ¢ explicitly (that is, a(x,?) = a(x), and
b(x,t) = b(x)), the corresponding SDE is referred to as being time-homogeneous
or autonomous. For simplicity, we will focus on such autonomous SDEs.

Multidimensional SDEs can be defined in a similar way as in (7.64). A stochastic
differential equation in R¢ is an expression of the form

(766) dX[ :a(Xt, t) dt+B(X[,t) th,

where (W,) is an m-dimensional Wiener process, a(x, ) is a d-dimensional vector
and B(x, 1) a d x m matrix, for each x € R? and ¢ > 0.

B Example 7.67 (Brownian Motion) The solution of the simplest SDE
dX; = adt + bdW,;
is the Brownian motion process
X, =Xo+at+bW,, t=>0,

as this satisfies (7.65) with a(x,t) = a and b(x,t) = b. [ ]

1Some authors refer to b2 as the diffusion function (or diffusion coefficient).
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B Example 7.68 (Geometric Brownian Motion) A fundamental stochastic process
in finance is defined as the solution to the SDE

(769) dS[ = /JS[ dr + O-St dW[,

which is called a geometric Brownian motion. In finance, S; typically models the
price of a risky financial asset at a time ¢, characterized by a drift parameter y and a
volatility parameter o-. If (B;) is the Brownian motion process with B; = ut+oW,,
then the SDE can also be written as

dS[ = Sl dBt,

which suggests an exponential/geometric growth of the process, hence the name.
When p = 0, we obtain the exponential martingale S; = exp(cW; — to2/2),t > 0;
see Theorem 6.39.

We can solve the SDE (7.69) via a “separation of variables” argument, similar
to the way certain ordinary differential equations are solved. The derivation below
also uses It6’s formula (7.46).

First, note that S; = /Ot uSsds + fot oS, dW;, which shows that the diffusion
function of (S;) is (oS;). Next, a separation of variables for the SDE (7.69) yields

ds
—= udt + o dWw,.
St

Taking the integral from O to ¢ on both sides results in
"1

(7.70) / —dS; = ut + oW,.

0 Ss
With f(x) :=Inx, f’(x) = 1/x, and f”(x) = —1/x2, 1t6’s formula (7.46) gives

1 L1 5, 1 1,
lnS,:InSO+/O S_SdS5_§‘/O‘ S_%O- Sst:‘A S_SdSb_EO- t.

Combining this with (7.70), we conclude that

S 1

lnS—; =ocW, + (,u — 5(72) t,

so that

1
(7.71) St = Soexp (O'W, + (,u - 50'2) t) , t>0.

Figure 7.72 shows typical trajectories for the case u = 1, 0 = 0.2, and Sp = 1.
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Figure 7.72: Typical paths of a geometric Brownian motion process with drift g = 1,
volatility oo = 0.2, and initial state So = 1.

B Example 7.73 (Ornstein—Uhlenbeck Process) Another prominent SDE is
(7.74) dX; =6(v — X;) dt + o dW,,

with o > 0, § > 0, and v € R. Its solution (X;) is called the Ornstein—Uhlenbeck
process or mean-reverting process. In finance, the process is used to describe price
fluctuations around a mean price v such that the process “reverts to the mean” —
that is, when X; > v the drift is negative, and when X; < v the drift is positive, so
that at all times the process tends to drift toward v. In physics, X; is used to describe
the velocity of a Brownian particle. The term v is then usually taken to be 0, and
the resulting SDE is said to be of Langevin type.
We show that the It6 diffusion

t
(7.75) X, =e"Xg+v(l —e ) + o™ / e dw,, >0
0

satisfies the SDE (7.74). Namely, define f(y,t) :== oce ¥y and Y, := /Ol e AWy, so
that X, = e %Xy + v(1 —e %) + £(Y;,1). Then, Ito’s formula (7.54) yields:
dX, = -0e %" Xy dt + v0e " dr — o0e7Y, dt + ¥ e~ aw,
=0e % (v — Xo) dt — 0f (Y, 1) dt + o-dW,
= H(V — Xt) dr + O‘dW[

Since the integrand in the Itd integral in (7.75) is deterministic (i.e., e?%), it follows
from Proposition 7.25 that (X;) is a Gaussian process, with mean

EX; = e " EXq+v(l —e™¥),
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variance Var X; = 02(1 — e72%)/(26), and covariance

2
Cov(X;, X;) = g_e e~ 0(s+0) (eze(s/\z) _ 1) '

Note that (X;) has independent increments, because the integrand in the Itd integral
in (7.75) does not depend on 7. This shows that X; converges in distribution to
an N(v, 02/(26)) random variable as t — co. Also, by the time-change property
(7.31) , we have that

_ c (1
W, = / e dw,, >0
0

is a Wiener process, where C (1) := (e*? — 1)/(260),t > 0. As a result of this, we
can write

Xl = e_elXO + V(l - e_et) + O-e_el WC(;), r > O,

where the Wiener process W is time-changed using the clock function C. This
provides a straightforward way to simulate the process from a realization of a
Wiener process. Typical realizations are depicted in Figure 7.76.

1.4r

1.2

S|

0.8

0.6 1 1 1 1 1 1 1 |
0 0.5 1 L5 2 2.5 3 35 4

Figure 7.76: Three realizations of an Ornstein—Uhlenbeck process with parameters
v=1,0 =0.2, and 6 = 2. The initial value Xy is drawn from the N(v, o%/(26))
distribution.

7.3.1 Existence of Solutions to SDEs

Consider the autonomous SDE

(777) dX[ = a(X[) dr + b(X[) dW[
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As already mentioned, the meaning of this SDE is that X is a stochastic process that
satisfies the integral equation

t t
(7.78) x,:x0+/ a(Xs)ds+/ b(X,) dW;.
0 0

However, it is not clear that such a process indeed exists. We show in this section
that under mild conditions on a and b we can obtain a unique solution X of the SDE
via a method of successive approximations, similar to Picard iteration for ordinary
differential equations.

The condition that is placed on a and b is that they be Lipschitz continuous; that
is, for all x € R there exists a constant ¢ such that

(1.79) la(y) —a(x)[+1b(y) = b(x)| < cly —x|.

The successive approximation idea is very simple. Suppose that Xy = x. Define
Xt(o) := x for all #, and let

t t
(7.80) XD = x4 / a(X™)ds + / b(X™) dW,
0 0

for n € N. The following is the main existence result for SDEs:

Theorem 7.81: Existence of SDE Solutions

For any ¢ € [0, v], the sequence (X)) in (7.80) converges almost surely in
the uniform norm on [0, ¢] to a process X that satisfies the integral equation
(7.78).

For the proof, we first need the following lemma. Recall also the definition of
the norm || - ||p, in Definition 7.14.

Lemma 7.82: Integral Bound

Let X n = 1,2,... be defined in (7.80), with X© = x. Then, for every
v > 0 there exists a constant « such that

2
E sup (X§”+” - Xs(")) <a|Xx™ - Xx"D2 0 r <o,

s<t

Proof.

t t
X _ x o /O [a(x§"))—a(x§"‘”)] ds + /0 [b(x§"))—b(x§"‘”) dw,

:At+Bt-
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By Jensen’s inequality r*(1/t f§ fyds)? < t [ fds, which implies that almost
surely

t 2 t )
A7 <t / [a(Xs(n))—a(Xs(”_l))] ds < 1c? / [XS(”) — x| ds,
0 0

using the Lipschitz continuity (7.79) of a in the last inequality. Taking expectations,
we find
EA} <t X" = X"=D)Z,

To bound ]EBtz, we use the fact that
v 2
B- [ [px) x| e ve o,
0

is a martingale; see Example 7.23. In particular,
EB; = |[b(X") = b(X" V)3, < A1x™ - x0 V)2,

again using Lipschitz continuity (7.79) in the last inequality. By combining the
latter result with Doob’s norm inequality (5.89), we obtain

supEB} < 22EB} <4c2|X™ - X" V|2, .

s<t
Putting everything together, gives

Esup(A; + By <2 {sup EA? + supEBf} < (2t + g)czllx(n) _ X(n—1)”;”

§<t §<t s<t
which proves the lemma for o := (2 + 8)c>. O

Proof of Theorem 7.81. The proof is similar to the existence result for the Wiener
process in Theorem 6.21. We will show that for almost all w, the sequence (X (w))
converges in the uniform norm sup,_, | f(s)|, and hence has a limit X (w) in this
norm. Take an arbitrary v > 0. For a fixed x and ¢ € [0, v], there exists the following
bound:

E(X" —0)? = E(a(0)t + b()W))? = a®(0) + b2 (x)1 < B,

where 8 > 0 is a constant that depends on x and v. Consequently, by applying
Lemma 7.82 iteratively, we have

t
Esup(Xs(z) - Xs(l))2 < a/ Bds = Bat,
0

s<t

so that

9
s<t 2

t 2.2
t
Esup(X§3) - Xs(z))2 < a/ afsds = pa
0
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and, in general, for every ¢ < v and n € N, we have

Esup(X,"" - x{")? <

pa’*t"
s<t n!
Hence, for the event A, := {sup,., |XS("+1) - Xs(")l > 27"} Markov’s inequality

yields:

B(4at)"
P(A,) < E

By the first part of Borel-Cantelli’s Lemma 3.14, we have that P(€y) = 1, where
Qpistheevent {3}, 14, < oo}. If xx := Xj(w) for an w € Qo, then (x) is a Cauchy
sequence by part three of Proposition 3.2, where &, := 27" and we use the result
with the uniform norm. Hence, the sequence (X" (w)) is Cauchy convergent in
the uniform norm for every w € €, and hence has a limit X (w) in this norm; see
Proposition 3.7. We can set X(w) = x for w ¢ Q. Since all X are continuous
processes and convergence is in uniform norm, X is a continuous process as well,
on any interval [0, #]. Moreover, taking limits on both sides of (7.80), we see that X
satisfies the integral equation (7.78) with X = x; soitis a solution of the SDE (7.77)
with this initial condition. That it is the only solution follows from an application
of Gronwall’s inequality; see Exercise 11. Namely, suppose X and X are solutions
to (7.78), with X = 550 = x. Then, duplicating the proof of Lemma 7.82, with X
and )7 we find for all 1 < v:

E(X; — X))? < (20+8)c?||X — X||p,.

Application of (7.115), with f(s) := E(X; —X,)?and g(¢) := 0, shows that f(r) = 0
forall 7 < v. Since v is arbitrary, X and X are modifications of each other and hence,
by their continuity, indistinguishable; see Theorem 7.13. O

7.3.2 Markov Property of Diffusion Processes

Let X be the unique solution to the SDE (7.77) obtained from the successive
substitution procedure in (7.80). This solution is called the strong solution of the
SDE, in the sense that almost surely every path of X is a deterministic function of
the starting value of X and the path of W; that is, for almost every w € € and all
t >0,

Xi(w) = ¢(Xo(w), (Ws(w), s € [0,1]),1)

for some function ¢. In contrast, a weak solution is one which satisfies the SDE
for some Wiener process W different from W. Weak solutions are solutions in
distribution, in the sense that while W and W may exist on different probability
spaces, they still have the same statistical properties. For a brief exploration of the
antipodal concept of a weak solution of an SDE; see Example 7.105, Exercise 22,
and Exercise 27.
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For a fixed t > 0, let W := (Wysu — Wy, u > 0) and X := (Xjsu — Xp, u > 0).
Then, from (7.78) we have

_ t+u t+u
XM:X,+/ a(Xs)ds+/ b(X;)dW,
_ e o
:XO+/ a(Xs)ds+/ b(X;) dWs.

0 0

Thus, if X = ¢(Xo, W), then X = ¢(Xo, W). Let (%) be the filtration to which W
is adapted, and assume that X is independent of #p and W. Then, X = </)(X0, W) =
o (X, W) is conditionally independent of #; given X;, showing that the Markov
property holds. Moreover, the conditional distribution of X given X; = x is the
same as the distribution of X starting at state x. Thus, the It6 diffusion X is a
(time-homogeneous) Markov process with continuous sample paths. We will show
that its infinitesimal generator is given by the differential operator L defined by

(7.8 L) = a0 /() + 3520 (),

for all twice continuously differentiable functions on compact sets.
First, by Itd’s formula,

£ - £ = [ roaxs [ a,

- / t[f'<xs>a<xs>+1f"<xs>b2<xs> ds + / (X)) b(X,) W,
0 2 0

t
= / Lf(Xy)ds+ M,,
0
where (M;,t > 0) is the martingale given by

(184) M= f(X) - f(Xo) - /0 LF(X,)ds = /0 F/(X,) b(X,) dW,.

Hence, denoting by E* the expectation operator under which the process starts at x,
we have for all # > 0:

(7.85) B f(X,) = f(x) +E* /0 9’ F(X,)ds.

Under mild conditions, we may also replace ¢ in (7.85) with a stopping time 7'; that
18,

T
(7.86) B*f(Xr) = f(x) + B /O Lf(X,)ds.
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This is Dynkin’s formula. A sufficient condition is that E*T < oo for all x. To prove
(7.86), we need to show that E*My = 0, with M the martingale in (7.84). Consider
the stopped martingale M = (M,,t > 0), with M, := Mrp;,,t > 0. Since f” and b
are continuous, f’b is bounded on [0, 7] by some constant c. From Proposition 7.32,
it follows that

t 2
E'M? = B ( / F/(Xy) b(Xs) 1gery AWy
0

t
=E" / (f (Xs) b(Xs)*1 521y ds < BT < oo,
0

Consequently, M is uniformly integrable, and thus it converges almost surely and
in L' to My. By Theorem 5.95, M can be extended to a Doob martingale on R, by
defining My = Mr. In particular,

EMy = EMy = EMy = EM, = 0,
which had to be shown.

B Example 7.87 (Exit Probability) We can generalize the methodology in Ex-
ample 6.65 to calculate exit probabilities for general diffusion processes. In this
example we consider the Brownian motion process B; = at + bW,,t > 0; but see
also Exercise 12. As in Example 6.65, we are interested in the probability

p = PX(TI < Tr)’

that the Brownian motion exits the interval [/,r] through [ rather than r, when
starting from x € [[,r]. We can calculate p by finding a function f such that
Lf=0on [l,r], where

4 1 4
Lf(x) = af' () + 362" ().
One particular solution (verify by differentiating the function twice) is
f(x) = e2ax/b?.

Application of Dynkin’s formula (7.86) with 7 = T; A T, now immediately gives:

2 2
e—Zar/b _ e—Zax/b

p= e—2ar/b? _ o=2al/b?’

assuming that E*7T" < co. We leave the proof of the latter as an exercise. [ |
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To show that L is the infinitesimal generator of the diffusion, we can reason in
the same way as for the infinitesimal generator of the Wiener process in Section 6.6.
Namely, from (7.85) it follows that

B (X) ~ ()

t

(7.88) Lf(x) = lim

The limit on the right in (7.88) defines the infinitesimal generator of the Markov
process X. Its domain consists of all bounded measurable functions for which
the limit exists — this includes the domain of L, hence the infinitesimal generator
extends L.

Let P, be the transition kernel of the Markov process and define the operator P;
by

P = [ Pirdn) s () =B (X
Then, by (7.85), we obtain the Kolmogorov forward equations:
(7.89) P,f =P,Lf.

Moreover, by the Chapman—Kolmogorov equations (4.43), we have P, f(x) =
PP, f(x) = E*P; f(Xy), and therefore

1 1

AP f () = Puf(0)} = - (BPLf(X;) = Puf ()}
Letting s | 0, we obtain the Kolmogorov backward equations:
(7.90) P/ f =LP,f.

If P; has a transition density p;, then we can write the last equation as

d

= [ pv10rody = / Lor(y |0£ () dy,

so that p,(y | x) for fixed y satisfies the Kolmogorov backward equations:

? N 1, 8
(7.91) 5 P10 1x) = a@) Z=pi(yx) + 2 b7(x) =5 pi(y | x).

Similarly, (7.89) can be written as % Ip:y|x)f(y)dy = [p,(y|x)Lf(y)dy =
[ fO)L*p:(y|x)dy, where L* (acting here on y) is the adjoint operator of L
defined by [g(y)Lh(y)dy = [h(y)L*g(y)dy. Hence, for fixed x the density
p:(y | x) satisfies the Kolmogorov forward equations:
2
19 P10 = @) pily )+ 5
y

2577 (PO P010).
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This illustrates the important connection between partial differential equations of

the form u; = Lu, and diffusion processes. Similarly, for multidimensional SDEs of

the form (7.66) one can show that the infinitesimal generator extends the operator
m

LIx) = ) ai(x) 3£ ) A3 ey 5

i=1 i=1 j=1

where {a;} are the components of @ and {c;;} the components of C := BBT.

7.3.3 Methods for Solving Simple SDEs

If a strong solution of the It6 diffusion SDE (7.64) exists, then it can be expressed as
X; = ¢(Xo, (Ws, s € [0,¢]),¢) for some function ¢. Finding an analytical formula
for ¢ is usually impossible, except in a few special cases.

7.3.3.1 Linear Stochastic Differential Equations

One setting where the strong solution of an SDE can be expressed as a simple
analytical formula is when both the drift and diffusion of the SDE (7.64) are linear
functions. In particular, suppose that

a(x,t) = a; + Bx,
b(x,t) = 0; + yx.
An SDE of the form
(7.93) dX; = (a; + B X;) dt + (67 + v+ X;) AW,
is said to be linear.
B Example 7.94 (Stochastic Exponential) LetY be an It6(, y) process. A special

case of (7.93) is
dX[ = Xl‘ dY[ = ﬁl‘Xl‘ dr + ')/tX[ th,

whose solution is called the stochastic exponential of Y. 1If we conjecture that
the strong solution is of the form X; = f(Y;,z;) for some twice continuously
differentiable deterministic functions f and z, then an application of Theorem 7.51
with Y, := (Y;,z,) " yields:

AF (o) = 91 F(V) Y, + B2 (F,) ey + 501 £ (F) (Y.

Since df (Y;) = X;dY; = f(Y,) dY;, matching terms yields the system of equations
for f(y) = f(y,2):

o)~ F0) =0
d
02 (0) 24+ 300 1(3) 3V =0
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The most general solution to the first equation is f(y,z) = c1(z) exp(y), where
c1(z) is an arbitrary function of z. Substituting this into the second equation and
solving yields Inci(z;) = —%(Y), + c;(t), where c; is an arbitrary function of 7.

Hence, we must have that f(y,z) = exp (y — %(Y), + ¢2(1)). In other words, from
Xo = f(Yp, z0) we obtain that the stochastic exponential of Y is:

1
Xl :Xoexp Y[—Y()— §<Y>[ .

The solution to the general linear SDE in (7.93) is given next.

Proposition 7.95: Solution to a Linear Diffusion SDE

The solution to the linear SDE (7.93) is given by

! s_(ss Ky tés
X,:Y,(X0+/ uds+/ —dWs),
0 Ys 0 Ys

where Y; = exp ( [§(Bs — v2/2) ds + [} y; dW,) is the stochastic exponential
of an 1t6(3, y) process.

.

Proof. Let Z be an t6((a — 0y)/Y,6/Y) process such that X, = Y; Z;. We verify
that this formula satisfies (7.93) via direct computation of the differential of Y; Z,.
Since Y is the stochastic exponential of an It6(83,y) process, it satisfies dY; =
Y;(B;dt + y,dW;). Using the stochastic product rule (7.57) and the covariation
formula (7.50), we obtain:
Xm = th dZt + Zl del‘ + d<Y, Z>l
= [(a’t — 6;')/1‘) dt + 6t th] + [Zth(ﬁt dt + Vi th)] + 6;')’; dt
= (a; + B X;) dt + (6 + v+ Xy) AW,

verifying that X; =Y; Z; satisfies (7.93). ]

B Example 7.96 (Brownian Bridge) Consider the SDE for ¢ € [0, 1):
b-X,
1-t¢
This SDE is linear with a; := b/(1 —t), B; :==—-1/(1 —1), é; :=1, v, :=0, and so
an application of Proposition 7.95 yields:

dX[ = dr + th, X() =da.

P1—1
X,:a+(b—a)t+/ 1—dWs, te[0,1).
0 — S

—————
=7
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Moreover, applying Proposition 7.25 to Z := (Z;,t € [0, 1)) shows that (X;,r €
[0, 1)) is a Gaussian process with mean a + (b — a)t and covariance function:

1
Cov(Xy,, Xsp) = (1 = 51)(1 = 52) [1— - 1] = 51 A= 518,
—S1 A8

Since VarX;_, = ¢(1 — &) — 0 as ¢ | 0, it is clear that X;_, 2 b In fact,
Exercise 16 shows that X;_, = b as ¢ | 0. Hence, if we define X; := b, then
X = (X;,t € [0, 1]) is a Gaussian process with continuous paths. As a matter of
fact, X is the Brownian bridge discussed in Example 6.5. [ |

7.3.3.2 It6-Stratonovich Method

Recall that the ordinary chain rule

d
df(x(0) = D 0if (x (1)) dxi(r)
i=1

is not in agreement with the multivariate It6’s formula in Theorem 7.51. Neverthe-
less, it is possible to recover the ordinary form of the chain rule in stochastic settings
by using the following modification of the It6 integral:

Definition 7.97: Ito—Stratonovich Integral

Let X and Y be It0 processes such that fot Y, dX; and fé X, dY; are well-defined
stochastic integrals. Then, the /to—Stratonovich integral of Y with respect to
X is defined as

t t
1
/YsodXs ::/ Y, dX, + = (X, Y),.
0 0 2

The differential form of the identity in Definition 7.97 is
1
Y, odX; =Y, dX; + §d<X’ Y.
With this differential identity we can write the stochastic product rule (7.57) as:
d(Xt YZ) = Xt o dYt + Y[ o) dY[.

More importantly, the corresponding chain rule in Theorem 7.51 is now formally
in agreement with the chain rule in ordinary calculus.
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Proposition 7.98: Ito—Stratonovich Formula

Let (X,) be a d-dimensional Itd process, and let f : RY — R be three times
continuously differentiable in all variables. Then,

d
df (X)) = > dif (X)) 0 dXy.
i=1

Proof. Define g;(x) := 0;f (x) for all i and note that each g; is twice continuously
differentiable. Since g;(X;) o dX;; = g;(X;) dX;, + %d(g,-(X), X. i)+, the proof will
be complete if we can show that for all i:

(i(X), X% = > 9;8i(X,) d(X.i, X j);.
J
To see this, apply Theorem 7.51 to obtain:

1
dgi(X)) = " 08i(X0) dXej+ 5 > 0ujgi(Xe) X X. ),
7 k.j

and then use formula (7.52) to conclude that the covariation is d{(g;(X), X.;); =
Zj ajgi(Xt) d<X-,i, X-,j)t-

Since the definition of the It6—Stratonovich integral is such that both the chain
rule and product rule of ordinary calculus are formally the same, this suggests yet
another method for solving diffusion SDEs. Namely, we convert all Itd integrals
to their Stratonovich equivalents, making it possible to use our experience with
(systems of ) ODEs to solve SDEs. An example will illustrate this point.

B Example 7.99 (Ito—Stratonovich Method) Consider solving the nonlinear SDE:

dX, = gxfn-l dt+X"dW,, Xo=a

for some constant ¢ > 0. By Itd’s formula d(X}') = nX,”‘ldXt + @X{“%(X},,
and therefore
d(X", W), = nX" ! X"dr = nX?"" dr.

Hence, X;'dW; = X' o dW,; — %thn_l dz, and the SDE can be written as in its
Ito—Stratonovich format:
dX[ = th o dW[

The differential equation dx(7) = [x(¢)]"dw(z) implies that

dx(r) _
/[x(t)]” —/dw(t)—w(t)+c
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for some constant c. Hence, the strong solution to the SDE is

= [(1-n) (W, +c)]77, c=a""/(1-n).

Note that this may not be a solution for all # > 0. For example, when n = 3, the
expression [-2(W; + ¢)]71/? is only well-defined until the exit time inf{r > O :
W; + ¢ > 0}.

|

7.3.3.3 Girsanov’s Method

Girsanov’s method explores how random variables and stochastic processes (e.g.,
determined by an SDE) behave when the underlying probability measure is changed.
Let (Q,H,P) be a probability space and let M be a real-valued random variable
with expectation 1. We can use M to construct a change of measure P on (Q, H)
by defining

P(A) ::/MdP:EMILA, AeH.
A

Thus, P is the indefinite integral of M with respect to IP; see Section 1.4.3. Itis a
probability measure, because P(Q) = EM = 1.

As an example, suppose X is a numerical random variable with pdf g. Let f be
another pdf, with f(x) = 0 whenever g(x) = 0. Define M := f(X)/g(X). Then,
EM = 1, and we have for any measurable function A:

f )
g(x)

Thus, under P, X has pdf f. More generally, we have by Theorem 1.58 that for any
random variable V:

Eh(X) =EMh(X) = | —=2h(x) g(x)dx = / h(x) f(x) dx.

EMV =EV.

We can generalize the change of measure idea to stochastic processes, as follows.
Suppose F := () is a filtration on the probability space (Q, H,P) and M := (M)
is an F —rLlartingale with EM; = 1 for all . Then, for each ¢+ we can define a new
measure P’ on (Q, 7)) by

(7.100) P'(A) :=EM,1,, Ac€%F,.

We say that P is the change of measure induced by M

We now come to the connection with Itd processes, because here a natural
way arises to create a mean-1 martingale, and hence a change of measure. Let
X be an It6(u, 1) process under probability measure P, with respect to a filtration
F = (¥4, t = 0). Suppose that (M,) is the solution to the SDE

dM; = M, u; dW;,
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ensuring that (M;) is a continuous local martingale. We can solve the SDE in the
same way as in Example 7.68. In particular, It6’s formula gives

1 1
din M, = M;' dM, - Eﬂf dr = p, dW, — Eﬂf dr,

so that

t 1 t
(7.101) M; = exp (/ s dWg — 5/ ,uf ds) = ezf_%@)f, t >0,
0 0

where Z := (Z,) is the martingale defined by Z; := fot us dWs. Exercises 19 and 20
show that a sufficient condition for (M;) to be a proper martingale (rather than a
local one) is that (Z) satisfies the Krylov condition:

(7.102) liﬁ)lslnEexp((l —-&){(Z)/2) =0.

Note that the Krylov condition is implied by the better known Novikov condition:
Eexp ((Z):/2) < oo;

see Exercises 19 and 20. Thus, assuming the Krylov condition (7.102), we have
EM;, = EMy = 1 for all t and (M,) is the stochastic exponential of Z. As a
consequence of this, we have the following important result:

Theorem 7.103: Girsanov’s Change of Measure

Suppose that u satisfies the Krylov condition (7.102) and M is the exponential
martingale (7.101). Then, under the change of measure (7.100) induced by
M, the Itd process

t
W[::—/ /.lst+W[, t>0
0

is a Wiener process.

Proof. We first show that Wis a martingale under P. Noting that
dM, = M, u, dW,,
AW, = —u, dt + dW,,
d(M, W), = M, i, dr,
we find, by using the product rule (7.57), that:
d(M,W,) = M, dW; + W, dM; + M, y, dt
= —u; M, dt + M; AW, + W, My 1, AW, + M, 1, de
= M, (1 + i, W;) dW,,
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which shows that (M; W,) is a martingale under P, and so (W,) is a martingale under
P. Similarly, applying the product rule to (M,(W? —t)) gives:
d(M,(W? = 1)) = M, d(W? — 1) + (W2 = t) AM, + 2M, 11, W, dt
= M2W, dW, + (W2 — 1) My j1; AW, + 2M, 1, W, dt
= M,(2W, + (W? = t)p,) AW,

which shows that (W,Z — t) is martingale under P. Lévy’s characterization theorem
then proves that W is a Wiener process under P; see Example 7.61. O

B Example 7.104 (Girsanov’s Method I) Suppose that W is a Wiener process
under P. Girsanov’s Theorem 7.103 can be used to solve SDEs of the form

dX[ = a(X[, t) dr + lel th,

where a and y are continuous functions. Suppose that u satisfies the condition
(7.102) and P is the change of measure (7.100) induced by the exponential martingale
(7.101). Then, Girsanov’s theorem states that W, which satisfies dVT/t = —u; dt+dW;
with Wo = 0, is a Wiener process under P. Hence, under the change of measure, the
SDE can be written as:

dX[ = (a(Xt, t) + /J[')/IX[) dt + ')/[Xl th

Taking u such that a(X;,t) + uyy;X; = 0, the solution under P is the stochastic
exponential X, = Xy exp ( 15 vs dw, — % % ds). Substituting with dW, = —p, dr +
dW;, yields X; = Y;Z,, where

t 1 t t
Y, = Xoexp (/ vs AWy — 3 / y? ds) and Z; :=exp (—/ HsYs ds) .
0 0 0

Since Y is uniquely determined by y, we only need to solve for Z to complete the

solution. This amounts to finding a function z that satisfies the ordinary differential

equation:

t% =0,
dt

As a particular example, suppose that we wish to find the strong solution of

a(yize,t) + meyiyize = a(yizi,t) =y z0=1.

dXt = th dr +')/Xt th, n<l.

Girsanov’s method calls for the solution of the differential equation: yz} = y,%.
The SDE solution is thus:

1
t T
Xt:Yt(1+(1—n)/ Ys”_lds) ,
0

where Y, = X exp (yW; — y*t/2). [ |
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B Example 7.105 (Girsanov’s Method II) Suppose we wish to solve SDEs of the
form
dX[ :a(X[,t) dt+6t th, X() = X.

Under the measure P, the SDE is written as: dX; = (a(X;,?) + u;) d + 6, dW,.
Taking u such that a(X;,t) + u, = 0, we obtain:

t t t
Xt—x:/ 5des:/ 0, dW; —/ Ospts ds .
0 0 0

_.Y _.Z

-4z —- &t

Hence, the solution is given by X, — x = Y; + Z;, where each realization (z;) of (Z;)
satisfies the nonlinear differential equation: dz;/dt = §; a(x + y, + z;,t) with zg = 0.
For instance, if Xo =x > 0, 6; := 1, and a(x, 1) := 1/x, then X; —x = W; + Z;, such
that each path (z;) satisfies the ODE:

dZ[ _ 1

7.106 —_ =
( ) dt  x+w +2z

z0 = 0.

This ODE can be easily solved numerically using standard methods; see Exercise 27.
When x =0, the process X := (W, + Z;,t > 0) is the strong solution to the d-
dimensional Bessel SDE

d
7.107 dX; =
(7.107) =

t

dt + dW[, X() = 0

for the case d = 3. In Exercise 22 we show that the Euclidean norm ||W|| of a d-
dimensional Wiener process W is a weak solution to the d-dimensional Bessel SDE.
In the next example we highlight an important link between Brownian excursions
and the three-dimensional Bessel SDE. [ |

B Example 7.108 (Brownian Excursions) This example deals with the continuous
version of the gambler’s ruin problem in Example 5.33; see also Example 7.87. Let
B := (B;,t > 0) be a standard Brownian motion, starting at some x with 0 < x < r
under probability measure P. Denote the natural filtration of B by ¥ := (¥;) and
define

T :=min{t : B; =r or 0}

as the first time that the process hits either » or 0. What do the trajectories of B look
like that hit r before 0? We are thus interested in the conditional distribution of B
given that the event { By = r} occurs. The corresponding probability measure, P, is
given by

P(AN{Br=r})

P(A) := BBy = 1)

:§P(Am{BT=r}>, A€ Fr,
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where we used the fact that P(Br = r) = x/r, by Example 7.87. It follows that the
Radon—Nikodym derivative dP/dP is equal to the random variable

r
Z = )_CIL{BT=V}'

Let P! be the restriction of P to (Q, Fiar). For A € F; a7, we have
P'(A) = EZ1, = EEar[Z14] = E[1aBnrZ] = E[Mirr14],

where M7 := E;arZ and E; 7 denotes the conditional expectation given a7. By
Example 5.11, we see that, under PP, the stopped process (M;,r) is a uniformly integ-
rable martingale. Moreover, M;ar = (r/x) Piar(Br = 1) = (r/x)Biar/r = Biar/X.
Writing

tAT 1 1 tAT 1
M7 = exp(In(Bsar/x)) = exp (/ — dW; - —/ — ds) ,
tA A 0 Bs N 2 0 B%

we see that (M, ,7) is of the form (7.101), with u; = Bs_l. Girsanov’s Theorem 7.103,
shows that the process

t
~ 1
B,::Bt—x—/ —ds, t<T
0 Bs

is a Wiener process under P. In other words, under P the process (B;) satisfies the
SDE

1 -
dB, = —dr+dB;, t<T,
B;

with By = x > 0. Hence, excursions of a standard Brownian motion from x to r
behave according to an It6 diffusion with drift function a : x — 1/x. While the
strong solution of this SDE can be readily computed numerically, as discussed
in Example 7.105 and Exercise 27, a weak solution to the SDE is the process
X := ||x + W||, where x € R? is a vector with Euclidean norm ||x|| = x and W is a
three-dimensional Wiener process; see Exercise 22. Recall from Example 7.105 that
in the special case of x = 0, the process X is a weak solution of the three-dimensional
Bessel SDE (7.107).

Figure 7.109 shows a typical excursion of a standard Brownian motion that starts
at a position x, arbitrarily close to 0, and reaches the maximal position » = 1 before
dropping back to x.
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Figure 7.109: A typical excursion of a standard Brownian motion starting arbitrarily
close to 0 and reaching a maximal position of 1.

The path of the excursion in Figure 7.109 consists of two parts. The first
(depicted in blue) corresponds to an Itd process with drift (B;!); i.e., the path that
the Brownian motion follows conditional on reaching 1 before returning to x. The
second part (depicted in red) corresponds to the path of a Brownian motion starting
at 1, conditional on hitting x before returning to 1. This has the same distribution as
1 minus the path of a Brownian motion starting at x and hitting 1 before returning
to x, and can be thus simulated in the same way as the first path. By concatenating
the two paths, we obtain the path of the excursion depicted in Figure 7.109. [ |

7.3.4 Euler’s Method for Numerically Solving SDEs

Let (X;,t > 0) be a diffusion process defined by the autonomous SDE
(7.110) dX; =a(X,)dt + b(X,)dW;, >0,

where X has a known distribution.

The Euler or Euler—-Maruyama method for solving SDEs is a simple generaliz-
ation of Euler’s method for solving ordinary differential equations. The idea is to
replace the SDE with the stochastic difference equation

(7.111) Yig1 =Y +a(Ye) h+ b(Yy) Vi,

where Vi, Va, ... ~ijia N(0, k) and Yy = X(. For a small step size &, the sequence
(Yx, k € N) approximates the process (X;, r > 0); thatis, Yy ~ Xy, k € N. The gen-
eralization to non-autonomous and multidimensional SDE:s is straightforward; see
Exercises 26 and 23. Milstein’s method is similar to Euler’s, but uses an additional
correction term, which gives slightly better approximations in low-dimensional
settings; see Exercise 25.
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B Example 7.112 (Euler Method for Geometric Brownian Motion) We illustrate
Euler’s method via the geometric Brownian motion SDE (7.69). The (strong)
solution is given by (7.71). To compare the Euler solution with the exact solution,
we use the same random variables Vi, Vs, ... ~ijig N(O, h) for a given step size h.
The exact solution at time k4 can be written as

2 k
Sin=S 2 \kn V)
kh OGXP((IJ 2) +0';

Euler’s method gives the approximation
(7.113) Yi=Yio1(l+uh+oVy), k=12,....

For values not at the approximation points, we use linear interpolation.

We compute the approximation for two different step sizes, while ensuring that
the appropriate common random numbers are used. In particular, we use step sizes
h:=28andh:=2"%= mh, with m := 2*. Then, set

m
Vii= Z Vi-ym+j -
=

The exact solution at time k/ on the / time scale is generated as

2

S = Soexp ((,u - %)k;{+ag\7}) = Sp exp ((,u - %z)k5+agvj).

Euler’s approximation on this time scale is computed as

m
Y =Y (1 +,uh+0'Vk) = Yk_l(l +,uh+O'ZV(k_1)m+j).
j=1
Figure 7.114 depicts the output of the exact and Euler schemes for the case

u =2,0 =1, initial value So = 1, and step sizes h and h. For the smaller step size,
we see that Euler’s approximation is very close to the exact solution.
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Figure 7.114: Approximation schemes and exact solution for a geometric Brownian
motion trajectory.

Exercises

1. Let W be a Wiener process on [0, ]. Show that

n—1

2
D W Wy, = W) 5 (W +1)/2,
k=0

where s, .. ., s, belong to a segmentation such that maxy (sz+; — sx) — O.

2 Suppose that W is a Wiener process and f : R, — R is a left-continuous
deterministic function. Prove that the process (W¢(;),t > 0), where the time change
C is defined in (7.27), has the same distribution as Z := ( fé fsdW,, t > 0).

3. Suppose we are given the It6 integral [;. F dW,, where T < 1 is a stopping time
with respect to the filtration . If X € 7 and EX 2 < o0, show that

t t
X/ Fdes:/ X174 (s)Fy dW.
T 0

4. Consider the martingale process S; = exp(rW, — tr?/2) from (6.40), where (W,)
is a Wiener process. Using the telescoping sum S; — So = 723 Sy, (S5, /S5, = 1)
and without calling upon It&’s formula, prove that

1
/ rSgdW =S, = So.
0

5. Show that the covariation process (X, Y); is of finite variation and is at least
right-continuous.
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6. Let X,Y be two Itd processes on the same probability space, adapted to the same
filtration, and with dispersion processes o,y € P;, respectively. If (X)), (yv()
are sequences of simple processes with jumps on the same segmentation IT,, of [0, ¢]
and approximating X, Y, then show that

Z(X§ZB. X0 = vy B (X, Y.

7. Suppose that X and Y are It6 processes and define the process Z := (Z;,t > 0),
with Z; := (X, Y);. Prove that

(Z)? < (X)(Y )y
Hence, deduce the Cauchy—Schwarz inequality:
(Vz(1))* < (X): (V)
where Vz(t) is the total variation of Z in [0, 7]; see (5.18).

8. Suppose that

X, = X0+/ ,Ust‘i‘Z/ oy, ;AW ;, 1€ [0,1]
0 [ 0

is a multivariate It6 process. Show that

d(X), = Z opdt.
J

9. Define
£k/2
Hi(x,t) := Fhk(x/\/;)’ k € N,

to be a scaled Hermite polynomial; see Section B.5 for the properties of these
polynomials. Show that

dHy (Wi, t) = Hi—1(Wy, t)dW,,

that is, Hy (x, t) is differentiated with respect to the Wiener process in the same way
that the monomial x* /k! is differentiated in ordinary calculus.

10. Prove or disprove: if X := (X,,v € [0,¢]) is a zero-mean It6 process and
(X)y =t,v € [0,1], then X is a Wiener process on [0, ¢].
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11 Suppose f and g are positive continuous functions on R;. Suppose that there
exists a constant ¢ € R such that

F() < g(1) +c /O £(s) ds.

Then,

(7.115) f(r) <g(t)+c / =g (s) ds.
0

This is Gronwall’s inequality. Prove this by first finding an upper bound for

t
h(t) = ce_C’/ f(s)ds,
0
in terms of the function g and the constant c.

12. For an Ito6 diffusion process of the form (7.77), show that the function
* Y . 2a(z)
h(x) ::/ dy exp (/ dz R(z)), with  R(z) :=—
| I [b(2)]?

satisfies Lh = 0. Use it to derive the probability that the process exits the interval
[1, r] through [ rather than r.

13. For an It6 diffusion process of the form (7.77), show that the expected exit time
s(x) := B*T of the interval [/, r] satisfies the differential equation Ls = —1 with
s(l) =0,s(r) =

14. Show that E*T < oo in Example 7.87.
15. Solve the SDE (7.74) via a separation of variables, similar to Example 7.68.

16. Using stochastic integration by parts (that is, the integral version of (7.57)),

show thatas ¢ T 1:
tl_t a.s,
dw; = 0.
0 1-5

17. Let X, Y be two Itd processes on the same probability space, adapted to the same
filtration, and with dispersion processes o,y € P;, respectively. If (X)), (Y()
are sequences of simple processes with jumps on the same segmentation IT,, of [0, ¢]
and approximating X, Y, then show that

t
2Z<Y<"> S - X S [reax,

In other words, the It6—Stratonovich integral can be defined as the limit of the
Riemann sum above.
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18. Suppose that f is a three times continuously differentiable and invertible func-
tion such that ff % = g(b) — g(a). Use the Ito—Stratonovich method to find the
strong solution to the SDE:

dX; = (cf(Xp) + f/(X) f(X1)/2) dt + f(X;) dW,,
where ¢ is a constant.

19. Let Z := (J s dW, 1 > 0) be a continuous local martingale, and let f(Z) :=
exp(Z — (Z)/2) be its stochastic exponential. Assume that there exists an £ > 0
such that Z satisfies the weak Novikov condition:

Eexp((1+&)(Z);/2) < co.

(a) Show that (f(Z,),s < t) is a local martingale.
(b) Let (7,) be a localizing sequence for f(Z), so that (f(Zsar,),s < t) is

a martingale. Use Holder’s inequality in Theorem 2.47 to prove that for
1

1,1
r,g>land -+~ =":
p-rq = adp q T

If Zint )y < [Ef (prZeng,)]'?

1/
Eexp (W(Z%AT,,)] ' .

(c) Use the inequality in (b) with r = 1 + &* and p = 1 + & to prove that

2
sup E[f (Ziar,) ] < oo,
n

(d) Use the results above to show that ( f(Z;.r,), n € N) is UL Hence, deduce that
(f(Zs), s < r) is a martingale.

20. Let Z := (J§ pus AWy, 1 > 0) be a continuous local martingale, and let f(Z) :=
exp(Z — (Z)/2) be its stochastic exponential. Assume that Z satisfies the Krylov
condition:

li{gslnEexp((l —&e){Z)/2) =0.

(a) Show that the Krylov condition is less stringent than the weak Novikov condi-
tion in Exercise 19.

(b) Prove that there exists a sufficiently small € > 0 such that (f((1—-¢&)Zy),s < t)
satisfies the weak Novikov condition in Exercise 19. Hence, deduce that
(f((1—¢&)Zs),s < t)is amartingale with Ef ((1 —&)Z;) =1 forall s < ¢.

(c) Use Holder’s inequality in Theorem 2.47 with p = 1/(1 — &) and g = 1 /e to
prove that:

1 =Ef((1-8)Z) < [Bf(Z,)]'*[Eexp (1 - £)(Z)/2)]°.
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(d) Using the results above, prove that Ef (Z,) = 1 for all s < ¢t. Hence, deduce
that (f(Z,),s < t) is a martingale.

21. Solve the Schwartz log-mean reverting SDE, which models energy prices:

dX[ = (I(/.,l — lnX[) Xt dt +O-Xl dW[, X() > 0.

22F Let x € R? with Euclidean norm ||x|| =: x > 0 and let W be a d-dimensional
Wiener process. Define the processes X := ||x + W|| and W := (W,,t > 0), where

d t
(7.116) W, ::Z/ o dWys 120
i=1 Y0
and
xi+ W 1 J
oy =——, i=1,...,d.
YT e+ Wl

(a) Prove that W is a one-dimensional Wiener process.
(b) Show that X satisfies the SDE

d
dx, =
T ox

t

dr +dW,, Xo = x.

23 For a multidimensional SDE of the form (7.66) the Euler method generalization
is to replace (7.111) with

Yie1 =Y +a(Yo) h+B(Y) Vh Z

as an approximation to Xy, where the {Z;} are standard multivariate normal
random vectors. Implement a two-dimensional Euler algorithm to simulate the
solution to the (simplified) Duffing—Van der Pol Oscillator:

dXt = Yl‘ dl N

@y, = (x, (a - X,Z) - Y,) dr+ o X, dW,.

For the parameters @ = 1 and o = 1/2 draw a plot of X, against ¢ for ¢ € [0, 1000].
Also plot the trajectory of the two-dimensional process (X;,Y;),t € [0, 1000]. Use
a step size h = 1073 and starting point (=2, 0).

24. Simulate the paths of the process Y in Example 7.58 in three different ways.

(a) Evaluate the integral fé W, ds via a standard integration quadrature rule.

(b) Use Euler’s method to approximately simulate the process ( [y s dW;, ¢ € [0, 1])
and subtract this from (tW;,t € [0, 1]). How does the simulated sample path
compare with that in part (a)?
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(c) Simulate the Gaussian process Y via Algorithm 2.76.

25. Consider the autonomous SDE (7.77). By Itd’s lemma:
’ 1 ”
db(Xs) = b'(Xy) dX; + Eb (X5) d(X;, Xs)
1
= b'(X,) {a(X;)ds + b(X) AW} + Sb7(X,) b(X;)* ds.
Denoting AW, := Wy, — Wy and AX; := X4 — X;, it follows that
t+h t+h
AX; = / a(Xy)du +/ b(X,)dw,
t t
t+h pu
=ha(X;) + b(X;)AW; + O(h\/ﬁ) + / / b'(Xy) b(X,) dW, dW,,,
t t
where the last term can be written as
, 1
b'(X:) b(Xt)E((AWt)Z —h)+O(h?).
This suggests that we can replace the SDE (7.110) with the difference equation

, h
(7.117) Yier =Yi+ a(Vi) h+ b(VOVh Zia + b’ (Yi) bV (Z3y = 15,

additional term

where Zi, Za, ... "¢ N(0, 1). This is Milstein’s method. The only difference with

the Euler method is the additional term involving the derivative of b.

Specify how, for the geometric Brownian motion in Example 7.112, the updating
step in (7.113) is modified in Milstein’s method.

26. Modify the stochastic difference equation in (7.111) to obtain an Euler approx-
imation to the non-autonomous SDE

dXt :a(X[,t) dt+b(Xt,t) dW[, t>0.
27. Consider approximating the strong and weak solutions of the SDE:
1
dX[:_dt+dW[, X():.XZO,
Xi

where W is a Wiener process.
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(a)

(b)

(©

(d)

Simulate an approximate realization of (X;, 7 € [0, 1]), Xo = x = 1 on the grid
0, h,2h, ..., 1 with step size h = 1/(2!% = 1) by approximating the solution
of the ODE (7.106) in Example 7.105 via the Euler method (Y; =~ Zj and
YO = 0):

h

Y. =Y+ , k=1,2,....
x+W(k—1)h +Yi_ g

In other words, simulate (x + Wy, + Y, k < 212) as an approximation to
(th,k < 212).

Compare the approximation in part (a) with Euler’s approximation ( X, k € N)
(i.e., X;5 = X;) to the SDE:
s = h
(7.118) Xk :Xk—1+5(-—+th_W(k—l)h, k=1,2,....
k-1

The explicit or vanilla Euler approximation in (7.118) fails when Xy = x = 0,
because the recursion requires division by O at k = 1. This failure motivates the
implicit Euler method, in which the approximation (Xj, k € N) with X = 0
satisfies:

= = h
(7.119) Xp =Xpc1+ = +Win = Weeiyn, k=1,2,....
Xk
Simulate a realization of X on the grid 0, h,2h,...,1 with step size h =
/(22 - 1).
Let W be a three-dimensional Wiener process, so that its norm ||W/|| defines

a Bessel process, see Exercise 22, and the W defined in formula (7.116) with
d =3 and x = 0 is a Wiener process. If we replace W with W in (7.119), we
obtain the approximate weak solution ()?k n k € N, Xy = 0) to the SDE, where
X satisfies

—~ —~ h — —
Xx :Xk_1+Xv—+th—W(k—1)h’ k=1,2,....
k

Using a realization of W and its corresponding Wiener process W, simulate
a sample path of the Bessel process [|[W|| on [0, 1] and compare it with the
corresponding sample path of X.






APPENDIX A

SELECTED SOLUTIONS

We have included in this appendix a selection of solutions. These could be
used in a tutorial setting, for example.

Various exercises in this book have been inspired by and adapted from the references
mentioned in the preface. Additional sources for exercises are Feller (1970), Jacod
and Protter (2004), and Williams (1991).

A.1 Chapter 1

4. Write C = {B;,i € I}, where [ is a countable set of indexes and the {B;} are
disjoint with union E. Let & be the collection of all sets of the form U;c;B;, where
J C I. Thisis a o-algebra on E, because (a) E = Uj¢;B; € &; (b) the complement of
UjesB; 18 Ugep\y Bk, and so is also in &; (¢) the union of sets Ujey, Bj,n=1,2,...
18 Ujeu, s, B, which also lies in &. Since & is a o-algebra that contains C, we have
& 2 oC. Conversely, each set from & lies in 0C, so 0C = &E.

9. We check the properties of Definition 1.6: (a) E = f~'F € f~'F since F € F,
as ¥ is a o-algebra on F; (b) Let A € f ~1#  then there exists B € ¥ such that
A = f~!'B. The complementof Ain EisE\ A= (f"'F)\ (f"'B) = f"'(F \ B).
This set belongs to f‘l?', since F\ B € ¥, as ¥ is a o-algebra on F; (c) Let
A1, A, ... € f‘lf, then there exist By, By,... € ¥ suchthat A,, = f"B,,. Taking
the union, we have U,A, = Unf_an = f‘1 U, B,. Since ¥ is a o-algebra,
U, B, € ¥ and therefore | J, A, € f~'F.

11. We need to show that the finite additivity and continuity imply countable
additivity. Let By, B», ... be disjointand let B := Ul?'lei. Also, define A, := U2, B;,
n=1,2,.... We have, by the finite additivity: u(B) = 37, u(B;) + (Ans1). Now,
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21 1(B;) is increasing in n and is bounded by 1, since u(B) = u(E) — u(B) < 1
by the finite additivity and the fact that x(E) = 1. Hence, lim,—c 2.1, u(B;) =
Yoy M(Bj) exists,and u(B) = lim, 0o 251 f(Bi)+Himy, o pt(Aps1) = 272, u(Bi)+
0, using the continuity property, since Ay, Az, . . . is decreasing to 0.

14. The complement of (—oo0, a] is (a, ). For a < b, the intersection of (a, )
and (—oo, b] is (a, b]. Finally, (a,b) = Nysn(a,b — 1/n] and {a} = Ny=n(a —
1/n,a + 1/n) for N large enough.

5. Leb(Q) = TyeqLeb({x}) = X,cq0=0.

19. Atstep n of the construction (starting with n = 0) we take away the open intervals
D, i=1,...,2" Eachof these 2" intervals is of the form (3k -2, 3k — 1)/3"! for
some k € {1,...,3"}, and have Lebesgue measure (i.e., length) 31 The deleted
intervals form the open set D := UZO:O Ul.zzl D, ;, and its complement in [0, 1] is
the closed Cantor set C. Since D is a countable union of intervals, its Lebesgue
measure is easy to determine:

co 2" )

Leb(D) = Z Z Leb(D,;) = Z on -y 2 L i (%) = 1.
n=0 i=1 n=0 3 n=0 3

Hence, Leb(C) = 1 —Leb(D) = 0. Atany stage n in the construction, the remaining
set (that is, complement of UL.ZZIDW- in [0,1]) consists of the union of closed intervals,
and therefore has as many points as the interval [0, 1]. It therefore is plausible that
C has as many points as [0, 1]. To formally prove this, we need to show that there
exists a one-to-one function which maps each point in [0, 1] to a point in C. This
is done in Exercise 2.6.

26. (a) For fixed x, the function f; :y+ f(x,y) is a section of f. By Ex-
ercise 12 it is F-measurable. Since K(x,-) is a measure on (F,¥), the
mapping x — K(x, ) f; is well-defined and in &, and the same holds for
gx Yy g(x,y). By the linearity of the integral with respect to K(x,-),
we have T'(af + bg)(x) = K(x,-)(af; + bgy) = aK(x,-) fx + bK(x,)g, =
a(Tf)(x) + b(Tf)(x). In other words, T is a linear mapping.

(b) If f, T f, with corresponding x-sections (f; ), then for each x, (T f,)(x)
K(x,)fux T K(x,)fx = (Tf)(x), by the Monotone Convergence Theorem,
since K (x, -) is a measure. That is, T is a continuous mapping.

(c) Let

M={fe(EF),: Tfec&}.

It contains the indicator 1gxr. Moreover, if f,g € M are bounded, and
a,b € R, then af + bg are bounded and, by the linearity of 7, they are in &
again. Finally, (b) shows that for any sequence of positive functions in M that
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increases to some f, the latter also belongs to M. Hence, M is a monotone
class of functions. It also includes the indicators 1 44«5, A € &, B € 4, because
(T1axp)(x) = 14(x)K(x, B), where both 14 and K(-, b) are in &,. It follows
from Theorem 1.33 that M countains all positive (as well as all bounded)
(& ® F)-measurable functions.

A.2 Chapter 2

5. We have F(x) = aF;(x) + (1 — @)F.(x), where Fy is the cdf of the constant 0
and F is the cdf of the Exp(1) distribution. In terms of the Dirac measure at 0 and
the Lebesgue measure, the measure ¢ on (R, B) is given by:

6.

(d)

7.

1.0}
0.8;
0.6;
0.43»

0.2}

p(dx) = adp(dx) + (1 — @) Ljpc0) (x) e dx.

(c) Note that g is a strictly increasing function (swap the axes in the graph
of F to obtain the graph of g). Each element x € D, ; is mapped by F' to
u = (2i — 1)/2™!, and this u is mapped by ¢ to the right-endpoint of D, .
Hence, no element of the set D is in the range of g and neither are the left-
endpoints of the {D,,;}. Since F(x) < 1 for all x € [0, 1], there is no u such
that g(u) = 1. Thus, the range of g does not include D U Cy. Now take any
x € C\ Cyp and consider its value u = F(x). By Exercise 1.24 (b), g(u) = x,
because F(x + &) > F(x) for every € > 0. Thus, every x € C \ Cy lies in the
range of q.

Every element in [0, 1] is mapped to a unique element in the range C \ Cy of
q. Since Cy is a countable set, C has as many elements as [0, 1] (or indeed
R), even though it has Lebesgue measure 0.

(a) The graphs are given in Figure A.1.

1.0 10 — == = =

0.8 0.8}
0.6 0.6}
0.4 0.4}

0.2 0.2}

(b)

0.2 04 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0 ' 0.2 04 0.6 0.8 1.0

Figure A.1: The functions X;, X, and X3.

The area under the graph of each X, is 1/2, so P(X = 1) = 1/2, and because
X,, only takes the values 0 and 1, X,, ~ Ber(1/2).
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(c) Take any finite set of indexes iy,...,i,. For any selection x; € {0,1},k =
1,...,n, we have
P(Xil = Xigs e ,Xl’" = x,-n) =2"= ﬁ P(Xik = xik).
k=1

8. (a) Since X and Y are independent, the density f of (X,Y) with respect to
the Lebesgue measure on R? is given by the product of the individual pdfs:

f(x,y) = 1jo17(x) X I, (y)e™, (x,y) € R%.

Figure A.2: The joint pdf of X and Y.

(b) It follows from direct computation that

P((X.Y) € [0,1] % [0,1]) = / dxdy f(x.)

[0,1]x[0,1]

Ix{
1 1
:/ dx/ dye” =1-¢'.
0 0

1 1-x 1
P(X+Y < 1):/ dx/ dyf(x,y):/ dxP(Y <1-x)
0 0 0

1
:/ dx (1 —e'(l"‘)) = [x —e'(l"‘)]l =el.
0 0

9. From Example 2.42 (on multivariate normal distributions), we see that X has
a multivariate normal distribution with mean vector 0 and covariance matrix X =
AAT. Using Example 2.40 (on linear transformations), it follows that X has density

(c) We have

frATx) @m0 s,
Al Al =]

, x € R".

fx(x) =
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This density is that of a standard normal random vector if and only if X = I,.
The geometric explanation is that the spherical symmetry of the standard normal
distribution is preserved by any orthogonal transformation (e.g., rotation).

10. (a) Since X ~ Exp(d) and Y ~ Exp(u), we have P(X > x) = e~ and
P(Y > y) =e™™. Let Z := min(X,Y). Then, Z > z if and only if X > z and
Y > z. Hence,

P(Z>2)=P(X>zY>2)=P(X>2)PY >2) = e~ ()2
It follows that the cdf of Z is given by
Fz(z) :=1=-P(Z > z7) =1—e 417

which is the cdf of Exp(A + u).

(b) The desired result follows from direct computation:

. .
P(X < ¥) = /0 dy /0 dx fr () fy (y) = /0 dy e (1 — )

. /oo dy (e—/dy — e—(/1+,u))’) =u [_le—/xy + Le—(/l+/¢)y
0 M A+ u 0
A
A+

11. Since X ~U(-n/2,7/2), fx(x)=1/n,x € (-n/2,7x/2). LetY := tan(X).
We apply the transformation rule (2.39). The inverse transformation is given by
x = arctan(y), with Jacobian |dx/dy| = 1/(1 + y?). Hence,

fr(y) = y €R,
T

1
(I+y%)
which is the pdf of the Cauchy distribution.

13. Let Z := | X|. The distribution of Z is called the half-normal distribution. Its
pdf is twice that of the N(0, 1) distribution on R, so

2 12

fz(2) = —=e™", z€R,.
V2r ’

Now apply the transformation rule (2.39) to ¥ := Z%. The inverse transformation

Z =4/y,y > 0 has Jacobian |g—§| =1/(2+/y), so

1

2 1 1y
o, (3 e
_—_e_iyy_iz—, y>0,

2y \2r r()

which is the pdf of Gamma(3, ) = x?.

fr(y) = fz(2)
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19. We have

Loil o L O Sl I
40) :/dx—e_M e”x:/ dx—ex(l+1’)+/ dx = ¥ (-1+i1)
2 2 >
R . A
1111 1

= — + — = .
21+ir 21 —it 1+¢2

22. For f = al, of the form suggested, we have Nf = aN(A), where N(A) ~
Poi(u(A)). Hence, using the Laplace transform for the Poisson distribution, we
have

Ee N/ = Be aN() = o=r(A)(1-e7) _ o= [u(dn)(1-e"1a) _ o—p(1-e™/)

where we have used the integral notation p f for the last equation. So (2.80) holds
for this case. It also holds if u(A) = co. Next, take f a positive simple function
in canonical form; thus, f = ", a;14,, where the {A;} are disjoint and the {a;}
are in Ry. Then, Nf = ¥, a;N(A;), where the {N(A;)} are independent, and
N(A;) ~ Poi(u(A;)),i=1,...,n. Therefore,

n
Ee N = H B e @N(Ai) — o= XLy u(Ai)(1-e7)
i=1
= o [uan) (= H ) i),

so that (2.80) holds again. For a general f € &,, take a sequence ( f,) of positive
simple functions increasing to f. By the Bounded Convergence Theorem 2.36
(applied to each outcome),

Ee_Nf = limEe—an — lime—,u(]—e_fn) _ e—,u(l—e‘f),
n n

where the last equality follows from the Monotone Convergence Theorem applied
to the measure y and the sequence (1 —e™/») 71 —-¢e™/.

A.3 Chapter 3

4. (a) If N < n, then there is a k < n such that |S;| > a, which implies that
maxy<, |Sx| > a. Conversely, if maxy<, |Sx| > a, then there is a k < n such
that |Sk| > a, which implies that N < n.

(b) For k < n, §; = Zt’.‘zl X; and S, — Sk = X, Xi, so Sk only depends on
Xi,..., X, and S, — S depends only on Xj41,...,X,. By (a), the event
{N < k} depends on X,..., Xy and {N < k — 1} depends on X, ..., X, so
that {N = k} only depends on X1, ..., Xk.



Appendix A. Selected Solutions 313

(c) By (b),
E[Sk(Sy — Sk)Lin=k}] = E[Sk1n=k}] E[Sy —Sk] =0 forallk <n
———
=0

and trivally also for k = n.

(d) We have

ESnLin=ky = E[(S; +25¢(Sn = Si)) Lin=k}]
= B[(S% +2Sn(Sn = Si)) Lin=k}]
> Ela?1y=k}] + 2aE[S, — St |ELy=k) = a* P(N = k).

(e) Using (a) and (d), we have

n n
VarS, =ES2 > E ng H{Nsk}] > aZZP(N = k)
k=1 k=1

= a’P(N < n) = a* P(max |Sk| > a).
k<n

10b. The characteristic function of X,,/n is given by

A/n 3 A B A
e/~ (1=A/n)  A+n(erin—1) A+ (=ir+o(1))

Yn(r) =
as n — oo, We see that i, (r) converges to ¥ (r) = 1/(A — ir), which we recognize
as the characteristic function of the Exp(2) distribution.

11. (a) The characteristic function of X; is
ox, (r) = Ee'™ =¢ "l reR.
It follows that the characteristic function of S, is
¢s,(r) = (Eeirxl)” —e =gl =g X1y eR.

The distribution of S, /n is thus the same as that of X;. Hence, (S, /n) trivially
converges in distribution to a Cauchy random variable.
(b) We have that

n

P(M, <x)=[P(X <nx/n)]" = %+arctan(nx/7r)/7r
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Hence, for x < 0 we get (% + arctan(nx/n)/n) <(1/2)" - 0, and forx > 0
we have (by L’Hopital’s rule):

In (% + arctan(nx/ﬂ)/ﬂ)
1/n
) 1/(1+ [nx/7]?) x/n°
= lim
n 1 +arctan(nx/n)/n —1/n?
—n’x

— lim—— = )k
n 12+ n2x?

In

= lim
n

1 n
lim (5 + arctan(nx/ﬂ)/ﬂ)
n

Hence,
limP(M, < x) =exp(-1/x), x>0.

21. SinceY is integrable, we have E |V |1y|>5) — 0as b — oo by Proposition 3.30.
The condition f(x)/x T co as x T oo implies that for any &€ > 0, we can always find
a b such that f(x)/x > 1/e forall x > b > 0. Therefore,

_ FUX])
e X|Tyxsp) < I X|Lyxs6y < FUXD L x>0y

|X|

implies that

&' sup E[X|Ljx>py < sup B (IX])Lqjxjspy < sup BF(IX]) = c1 < eo.
XeK XeK XeK

Hence, for any & > 0, there is a sufficiently large b such that supy 4 E|X|1{x)5p} <
gcy, which is another way to express the fact that supy 4 E|X|1{ x5y — O as
b T co. Hence, K is UI by Proposition 3.30.

31. (a) This follows from:
X7, (r) = ¥x,c(F)] < Wx,.o(r) —¥xc(r)| +¥x,y, (r) = ¢x,.(r)]

— &2 | (1 %0 — e X)| 4 |B el(r1Xntr20) (gira(fa=c) _ 1|
< [e2¢] x [E(el"1 % — ein1X)| 4 B [l ("1Xnt720)| o |eir2(Fa=e) _ 1
< yx, (r1) = ¥x (r1)| + B 70 — 1.

(b) We use the fact that

e — 1] = ]fox do et

< [Fdglie?] = x|, xeR

to obtain the bound:
E |eirz(Yn—C) —1|=E |eir2(Yn—C) _ 1|]1{|Yn—c|>s} +E |eir2(Yn—C) _ 1|]l{|Y,,—c|Se}
S 2E Ly, —cjsey + Elra(Yn — o)1y, —c|<e)
<2P[|Y, —c| > g] + || &.
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(c) The first term in the right-hand side of (3.52) goes to 0, since X,, - X, and
Theorem 3.24 implies that ¢ x, (r1) — ¥ x(r1). The second term in the right-
hand side of (3.52) also goes to 0, as ¥, -5 ¢ and ¢ is arbitrary in (b). It follows
that Z, -% Z and, by the continuity of g, we have g(Z,) -> g(Z); that is,
g( X, Yn) = g(X,¢).

36. First, the symmetry of the distribution shows that EX; = 0 so that EX,, = 0.
Second, a direct computation shows that

2k2 1 1
_ 2 _ _
Vaer_EXk_m-'-l_ﬁ_z_ﬁ’
so that
— 1 < Il 1
\ X,)=—» EX?=2--)% — 52
ar(vin X,,) ; n;kﬁ
Next, we show that vn X, - Z. Since

Zk:P(IXkI #1)= Z% < oo,

k

the first part of the Borel-Cantelli Lemma 3.14 shows that 3}, 1{x, <1} < co almost
surely. This implies that there is an almost surely finite random integer N such that
|Xx| = 1for k > N. Suppose that Y1, Y5, ... areiid with P(Y = 1) =P(Y = -1) =
1/2. Then, for sufficiently large n > N, we can write:

B SN (X = Ye) s SN Y+ X0 Xe

VnX, =
" N N
LS')O =ZZn
Since the distribution of X, conditional on |Xj| = 1, is the same as that of Y,

we deduce that Z, has the same distribution as % 2ui—1 Yk. An application of the
Central Limit Theorem 3.45 to # 2= Yk then yields that Z, - Z or, equivalently,
that Vi X,, % Z.

A.4 Chapter 4

4. We have that

P(X=x,X+Y=27) P(Y=z—xX-=
P(X = x| X4 =) = X=X ) _PE=2-xX=x)

P(X+Y=20 = PX+Y=2)
CP(Y=z-x)xP(X=x) Xp(—p) g X exp(-D) 5
P(X+Y =2) exp(—p — 1) L5
z! UEEAX

L) z—x(1 _ X
:X!(Z—X)!(/l+/,¢)z:(x)p (1-p)',
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where p := A/(A+ w).

7. First observe that {Ny = j} = {S;j-1 = k - 1,X; = 1}. Thus,

0 )
P(Ni = J) =P(X; =1|8;1=k=1P(S;-1 =k - 1) :p(j._k)pk "(1-p)*

:(J._llc) K1=p)=*, j=kk+1,....
j-

This gives a negative binomial distribution starting at k.
11. The MGF of Z is given by
Eexp(sZ) = EE[exp(sZ) | X3]
5 $°X3 2
= Eexp (Z(TX%)) X exp (Z(TX%)) = exp(s /2),
which implies that Z is standard normal.

16. If the distribution satisfies the Markov property (a), then (b) follows trivially.
Now we show that (b) implies (a).

Conditional on X;, consider the joint distribution of X;.; and X; for some
arbitrary k < t. By assumption, (X;+1, Xx) | X; has a jointly normal distribution.
This means that if the conditional covariance

E[ X1 Xk | Xi] = E[Xi1 | Xi] X E[ Xk | X;]
is 0, then X4 and X} are conditionally independent. To simplify, consider

E[Xt+l Xk | Xt]

E[ E[Xr1 Xk | Xj, J < 1] | Xi]
E[Xk E[Xl+1 |X'»j < f] |Xt]
= E[ Xx E[Xz+1 |Xt] |Xt]

= B[ X1 | X¢] X E[ Xy | Xi].

Since the conditional covariance is 0, we can deduce that X;., Xy, given X,, are
independent. Since k < t was arbitrary, this shows that given X;, the future X, is
independent of the past { Xy, k < t}.

A.5 Chapter 5

3. (a) Integrability and adaptedness are evident. The martingale property follows
from:

E Zp1 =Eu[ X0 +2B, - 1] - (n+ 1)(1’ _9)
=Xu+(p—q@)—-(n+1)(p-q) =Xy —n(p-q) =2,
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(b) The martingale property for the stopped martingale (Z,,7) shows that EZ, 7 =
EZy = a for all n. Since T is almost surely finite, Z,,r T Z7 and so, by the
Monotone Convergence Theorem,

EZr = a.
Since
EZr =EXr -ET(p - q) =bP(Xr =b) — (p - q) ET,
we have
BT = bP(Xr =b) —a’
P—9q

where P(X7 = b) is given in (5.34).

4. (a) Let M, := X,% —n and U, := 2B+ — 1 for n € N. Integrability and adap-
tedness for the process (M,) are evident. The martingale property follows
from:

n+l — (n+1) =Eq (X, + Un+l)2 —(n+1)

=By [ X7 +2X,Ups1 + U2, ] = (n+1)

= X2+ 2X,BUpi1 + By U2 —(n+ 1) = X7 +0+ 1= (n+1) = M,.

E M1 = EnX2

(b) In the same way as in Example 5.33, we may assume that 7" is almost surely
finite. The martingale property for the stopped martingale (M, 7) combined
with the finiteness of T shows that

EMp = My = 0.
But also, EMy = EX? — ET = a® — ET, so that ET = a*.

5. The process Y is integrable since 0 < Y,, = 2"(1 — X,;) < 2". AsY,, is a (measur-
able) function of X,, we have o (Xo,...,X,) = c(Yy,...,Y,) and Y is adapted to
the natural filtration.The martingale property follows from:

EnYpe = E2" (1 = X)) = 2" (1 = E, X1
=2 (1 - (1+X,)/2) =211 -X,)/2=Y,.

10. (a) Wehave (T|X;=1)=1,and (T | X; = —1) is distributed as 1 + 7" + T"”,
where 77 and T” are independent copies of 7. Hence, G satisfies

1 1
G(z) =EEy, 7' = 7+ EZGZ(Z)-

This quadratic equation has two solutions. But only the stated solution yields
a valid probability generating function.
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(b) We have

o /1 > /1

G(z) =7 I_Z 2)(=1)kz2| = 2)(=1)k1 g2t

k k
k=0 k=1

From this, we conclude that P(T = 2k) =0fork =1,2,... and

1
P(T =2k —1) = (i)(—l)k‘l, k=1,2,....

Consequently, using again Newton’s formula, we have

/1] 00 1 oo /1]
P(T < 0) = > (i)(—nk—l =-> (i)(—l)k =1-> (z)(—uk
k=1 k=1 k=0
=1-(1-D"=1.
Also,
> (3 O _ 1=V1-22
_ 2 _1\k-1 _ ’ _ - o
]ET_kZ;k(k)( 1 _1%1G(z)_121%?—22 — =
13. (a)

EpYue1 = B, et > exp(0 B, M,,.1) = e,

where we have use the fact that e’ is a convex function in x for any 6 € R and
applied Jensen’s inequality (Lemma 2.45).

(b) In (5.43), take b := e and ¥, := eMn.
(c) By repeated conditioning (see (4.5)), we have

Ee"™" = EB,_1 exp (0My—1 + 0(M,, — M,,_1))
OM,_1 502
=E [CXp(QMn_l) Ey- eXp(Q(Mn - Mn—l))] <Ee™mlte2" T,
(d) Repeatedly applying the bound in (d), and noting that My = 0, gives the bound

n
Ee’ < exp (%92 Z cﬁ) .

k=1

Hence,
n
— 192 2
P(IESZ(Mk Zx) < exp( Ox + 50 ;ck).

We now find the value 6* which minimizes the upper bound. The exponent is
quadratic in 6 so 6" = x/ (X} _, ci).
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15. Let r be the probability given in (5.34). Then, (M,,7) converges almost surely
and in L' to a random variable that takes the values 0 and b with probabilities 1 — r
and r, respectively.

23. We will show that (M,,n =1,2,...) is a Ul martingale. Theorem 5.52 then
implies that it converges almost surely and in L' to an integrable random vari-
able. Adaptedness is evident from the fact that M, is measurable with respect to
o(X1,...,X,). For uniform integrability it suffices to show that sup, EM> < oo,
using Item 3 of Proposition 3.34, with f(x) := x2. Indeed, we have

EM? = ZH:EX}]'—Z = Zn:ﬂ < ij‘z < co.
' j=1 =1

J=1 J
Finally, the martingale property follows from:

n+l n

ByMp+1 = E, Z X;j ' =Eu(n+ 1) Xy + Z X;j ' =M,
J=1 j=1

where we have used the fact that the {X,} are independent zero-mean random
variables.

A.6 Chapter 6

4. Define X := [W,,,...,W,, |7 and t := [¢1,...,14]T. Let () be a sequence in
R¢, with all its components lying in D,,, that converges to ¢ as n — co. Denote by
X ™ the random vector whose kth component is Wt(k"), k=1,...,d. Since W ig

a zero-mean Gaussian process with covariance EWS(") W,(") =sAtforalls,t € D,
we have that X is Gaussian with mean vector 0 and covariance matrix X, with
(i, j)th element tf@ fori, j € {1,...,d}. Obviously, X, converges elementwise to

the matrix X with (i, j)thelement ;, ;. Since, (X (M) converges almost surely to X, it
converges in distribution. The characteristic function of X is thus, by Theorem 3.24,
equal to the limit of ¢ =7/2 a5 n — oo, which is e */2, showing that X is
multivariate Gaussian with mean vector 0 and covariance matrix X. Consequently,
(W,) is a zero-mean Gaussian process with covariance function EW W, = s A 1.

9. Let T be the exit time and define p := P*(X7 = b). Applying Doob’s stopping
Theorem 5.83 to the stopped martingale (Wrx;), we have EXWr,, = E¥W, = x for
every t. Since a < Wrpy < b, limy_oo EXWra, = B limy_,oo Wrpr = E*Wr, by the
Bounded Convergence Theorem 2.36. Consequently, we have

x=BEWr=aP*(Wr =a) +bP*" (W, =b) =a(l - p) + bp,
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from which the first result follows. For the second result, define M, := Wt2 —t,t > 0.
Obviously, |M;| < a®> v b>+T for t € [0,T]. Hence, if E*T < oo, we can apply
Proposition 5.96 to conclude that E* M, = E* My, leading to:

x* =FE*Mo=E"My = (1 - p)(a®> = E*T) + p(b* - E’T),
which shows that
ET = (1 - p)a®+ pb?> —x* = (x —a)(b - x).

To verify that indeed E*T < oo, write
E'T = / dt P*(T > 1)
0

and consider r € [k — 1,k) for some k = 1,2,.... The event {T" > t} = {W, €
(a,b) for all s € [0,¢]} is contained in the event {a < W < b} N{a < Wp —W; <
byn---Nn{a < Wy — Wi < b}, and so PX(T > 1) < Qk]].[k’k+1)(t), where
6 :=sup, P*(a < W; < b) < 1. Hence, E'T < 6/(1 — 6) < co.

12. Let Y := 1/T,. Then, ¥ ~ Gamma(1/2,x%/2). Since Y has no probability
mass at 0, we have 1 = P(Y > 0) = P(T; < ), as had to be shown. Moreover,

ET, :/ det fr (1) > / dt e /? = .
* 0 1 V2rt

22. AsTy, < T,

P(Ty <T-o <T.)=P(Tp < T-4,T-q <T¢)
=P(T o <T.|Tp < T_o)P(Tp < T_,).
Then,
a
b+a’
where we used Exercise 9. The strong Markov property of the Wiener process means

that Wy,r, — Wr,,t > 0is a Wiener process and independent of TT: Conditioning
on hitting b before —a, we have:

P(T) < T-q) =

c—b _c—b
c—-b+|-a-bl c+a’

P(T_y <Te | Ty <T-g) =P(T-g-p <Te-p) =

Hence,

a c—b
P(Ty <Ta <Te) = (b+a)(c+a)'
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26. Recall from (5.18) that the total variation of (N, s € [0, 7]) is given by:

Since N, can be interpreted as the number of arrivals up to time si, the process
is increasing: N, > N;,. Therefore, |N;,,, — Nys.| = Ny,,, — N, and the total
variation equals the telescoping sum:

n—1
sup > (N = Noy) = Ny = No = Ny
n k=0

For the quadratic variation, consider the fact that the value of ANy, := N;,,, — Ng,
belongs to the set N of natural numbers and AN, > 0 only if (s, sx+1] contains
at least one jump/arrival. Since [|II,|| — 0, and the Poisson process is right-
continuous and left-limited, there is a large enough n such that (s, sx+1] contains
no more than one arrival. Therefore,

n—1
lim > (N, = No)> = ). [ANg]* =N,
120 k:ANy, >0

An alternative derivation uses the results from Example 5.20. Namely, since
/Ol N;_dNg = N;(N; —1)/2 and /Ol NgdNg = (N, + 1)N;/2, we can write

n—1 n—1 n—1

lim > [ANy 1> =lim ) Ny, AN;, — liTmZ N, AN,

nTDO i nTOO Sk+1

k=0 k=0
t t

:/ Nsts—/ Ns;—dNg = N;.
0 0

A.7 Chapter 7

2. The process (W¢(;)) is zero-mean, has independent increments, and is Gaussian.
The same properties hold for (Z;). To show that the two processes have the same
distribution, it thus remains to show that for every ¢ the variance of Wc(;) is equal
to the variance of Z;. But this is immediate from

t
EWe ) = VarWe) = C(1) = /O f2(s)ds =EZ2.

11. The derivative of the function 4 satisfies

W(t) = (f(t) -c /Ot f(s) ds) ce™ < g(t)ce™,
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so that, by integration of A’(s) from O to ¢, we find that

h(t) < ‘/Otg(s) ce % ds.

Multiplying both sides with e’ gives

c/otf(s) ds =e“h(t) < c/otec(t_s)g(s) ds,

which shows the result for ¢ # 0. The case ¢ = 0 is trivial.

22. (a) The process Wisa martingale that has quadratic variation (see Exercise 8):

d t
<W>t:Z/ aiidS—/ ZO’ ds =t.
i=1 70

:1

Consequently, by Lévy’s characterization in Example 7.61, W is a Wiener
process.

(b) Let X; := ||x + W,||. By the multidimensional It6 formula in Theorem 7.51
applied to ||x + W,||, we have

)Cl + th d - 1
dw, . + ———dr.
Z lx+W, [ "7 2x,

In other words, the process X satisfies the SDE

-1 —
dt + dWl, XO =X,

t

dXt =

where W is a Wiener process.

23. The following MATLAB code generates the process ((X;, Y;),t > 0).

alpha = 1; sigma = 0.5;

al = @(x1,x2,t) x2;

a2 @(x1,x2,t) xl*(alpha-x142)-x2;

bl @(x1l,x2,t) 0 ;

b2 = @(x1,x2,t) sigma*x1l;

n=1046; h=102(-3); t=h.*(0:1:n); xl=zeros(l,n+1); x2=x1;
x1(1)=-2;

x2(1)=0;
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for k=1:n
x1(k+1)=x1(k)+al(x1(k),x2(k),t(k))*h+ ...
b1(x1(k),x2(k),t(k))*sqrtCh)*randn;
x2(k+1)=x2(k)+a2(x1(k),x2(k),t(k))*h+ ...
b2(x1(k),x2(k),t(k))*sqrtCh)*randn;

end

step = 100; %plot each 100th value

figure(l) ,plot(t(l:step:n),x1(l:step:n), 'k-")

figure(2), plot(xl1(l:step:n),x2(l:step:n), 'k-");

Figure A.3 shows two plots of interest. That left pane shows that the process
oscillates between two modes.

0 500 1000 -2 -1 0 1 2
t X

Figure A.3: Typical trajectories for the Duffing—Van der Pol Oscillator.






APPENDIX B

FUNCTION SPACES

This appendix reviews a number of topics from functional analysis, including
metric, normed, and Hilbert spaces. The emphasis is on L? function spaces and
their orthonormal bases.

The development of mathematics often involves the continual generalization of basic
concepts. For example, the set of natural numbers N is generalized to the set of
integers Z and rational numbers Q, which are then further generalized to the sets R
and C of real and complex numbers, which offer yet more generalizations in the form
of multidimensional spaces of numbers and spaces of functions. While it may lead to
a sometimes overwhelming growth of abstractions, this constant generalization can
also bring about a simplification of ideas by identifying common patterns, leading
to fundamental constructs such as metric, normed, and inner product spaces.

B.1 Metric Spaces

A metric space is a set of elements (or points) equipped with a metric function that
assigns a “distance” between any two elements of the set.

Definition B.1: Metric Space

The pair (E, d), where E isasetand d : E X E — R, is a metric on E, is
called a metric space if for all x, y,z € E:

1. (Finiteness): 0 < d(x,y) < oo; that is, d is positive and finite.

2. (Zero): d(x,y) =0if and only if x = y.

3. (Symmetry): d(x,y) = d(y,x).

4. (Triangle inequality): d(x,y) < d(x,z) +d(z,y).

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. I. Botev. 325
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B Example B.2 (Metric Spaces) The quintessential metric space is the space R”,
equipped with the Euclidean metric:

d(x,y) = (1= Y2+ -+ (= )

Another important example is the space of bounded functions on the interval [0, 1],
equipped with the metric: d(x, y) := sup,ejo 1 [X(#) — y(?)]- [ |

B Example B.3 (Isometry) A mapping f : E — E between the two metric spaces
(E,d)and (E, d) is called an isometry if f preserves distances betweenany x,y € E:

d(f(x), f(y)) = d(x,y).

For instance, suppose that U € R is an orthonormal matrix. Then, the mapping
x — Ux, where x € R™, is a linear isometry from the Euclidean space (R™, d,,) to
(R", d,), because for any x,y € R™ we have

d2(Ux,Uy) = (x —y)"UTU(x - y) = d%(x,y).

On a metric space E we can define “open” sets to be unions (not necessarily
countable) of sets of the form {y € E : d(x,y) < r}, where r is a positive real
number. In the case where E = R? is equipped with the Euclidean metric, this set
is simply an “open ball” centered at x with radius r. More generally, we can define
a collection of open sets 7, as follows:

Definition B.4: Topological Space

The pair (E, 7 ), where E is a set and 7 is a collection of subsets of E, is
called a topological space, provided that 7 satisfies:

1.0 €T and E € T
2. Any (not necessary countable) union of sets in 7~ belongs to 7.
3. Any finite intersection of sets in 7~ belongs to 7.

The sets in 7 are called open sets and 7 is called a topology on E.

All metric spaces are topological spaces. In a topological space (E,7) the
collection of open sets {O,, @ € R} is called an open cover of F C E, provided
that each O, C E and F C U,Q,. A subcover is a subset of {O,, a € R} that still
covers F.

Convergence in metric spaces is similar to convergence in R. In particular, we say
that a sequence (x,) in a metric space (E, d) converges to x € E, if d(x,,x) — 0
as n — co. A convergent sequence has a unique limit and is bounded; that is,
sup,, d(x,,r) < co for some r € E.
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B Example B.5 (Metric Continuity) Suppose that both (x,) and (y,) converge in
E; that is, d(x,,x) — 0 and d(y,,y) — 0 for some x,y € E. Then, d(x,,y,) —
d(x,y). Indeed, by the triangle inequality we have:

d(xn, yn) < d(xp,x) +d(x,y) +d(y, yn),
d(x,y) < d(x,xn) +d(xu, yn) + d(yn, y)-

Hence, using the symmetry d(x,,x) = d(x,x,) and d(y, y,) = d(y,, y), we obtain:

|d (xp, yn) = d(x, y)| = [d(xn, yn) = d(x,y)] V [d(x,y) = d(xn, yn)]
< [d(xp,x) +d(y, yu) V [d(x,x,) +d(yn, y)]
< d(xy,x)+d(y,y) — 0.

B Example B.6 (Heine-Cantor Theorem) Suppose that we have two metric
spaces, (E,d) and (E, d) and a continuous function f : E — E. Here, the con-
tinuity of f means that for any € > 0 and x € E, there exists a > 0 (depending on
€ and x) such that

(y € Eandd(x,y) <6) = d(f(x),f(y) <e.

In other words, d~(f(x), f(y)) < eforall y € E satisfying d(x,y) < 6.

The Heine—Cantor theorem asserts that if the set E is closed and bounded, then
f is uniformly continuous; that is, for any & > 0 there exists a 6 > 0 (depending
solely on &) such that

((x,y) € EXEandd(x,y) <8) = d(f(x),f(y)) <e.

Without loss of much generality we next prove the Heine—Cantor theorem in the
case where E := [0, 1] and d(x,y) := |x — y|.

First, the ContiNnuity of f implies that for each € > O and x € [0, 1], there exists a
0y > O suchthat d(f(x), f(y)) < &/2 for all y satisfying |y — x| < §,. In particular,
d(f(x), f(y)) < £/2 whenever y belongs to the open set Oy := {y : |[y—x| < 6¢/2}.

Second, the Heine—Borel property of R states that bounded closed intervals are
compact; that is, every open cover of such a set has a finite subcover. This implies
that the collection {O,,x € [0, 1]}, which is an open cover of [0, 1] € Uy¢(0,1]Ox,
has a finite subcover, so that [0, 1] € U}_ {y : |xx — y| < 6, /2} for some finite n
and xq,...,x, € [0, 1].

Finally, consider all x, y € [0, 1] satisfying |x — y| < ¢ := ming d,, /2. For each
y, define k, := argmin, |x; — y| and apply the triangle inequality:

Ix = x| < Jx =yl + [y — x| <6+5§mkin6xk.
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Therefore, for all x, y € [0, 1] satisfying |x — y| < d, we have

d(f (0. ) < d(F ). fer,) +d(f (xi,) f()) < 5 +5 =&,

|
Given the metric space (E, d), a sequence of elements x1, x2, . .. € E satisfying
(B.7) d(xm,,x,) =0 asm,n — oo,
is called a Cauchy sequence in the metric space (E, d).

B Example B.8 (Cauchy Sequences and Existence of a Limit) Suppose that (x;,)
is a sequence in (E, d) that converges to x € E. By the triangle inequality, for any
integers m and n, we have

d(xpm,xp) < d(xp,x)+d(x,x,) — 0.

In other words, any sequence which converges to a limit in E is a Cauchy sequence.
While every convergent sequence in E is a Cauchy sequence, the converse is not
necessarily true. For example, if (E, d) is the set of real numbers on (0, 1] with
metric d(x,y) := |x — y|, then the sequence x, = 1/n,n = 1,2,... is a Cauchy
sequence, but it does not have a limit in £ (it has a limit in [0, 1]). [ |

Definition B.9: Complete Metric Space

A metric space (E, d) is said to be complete if every Cauchy sequence (x;,)
in (E, d) converges to some x € E.

That is to say, the metric space (E, d) is complete if the condition (B.7) implies
that lim,, d(x,,x) = 0 for some x € E. Being a Cauchy sequence in (E,d) is a
necessary (but not a sufficient) condition for the existence of a limit in £. However,
if the space (E,d) is complete, then being a Cauchy sequence is sufficient to
guarantee a limit in £. We can deduce the completeness of the real line R with the
metric d(x, y) = |x—y| from the Bolzano—Weierstrass theorem; see Proposition 3.2.

We now consider a number of special metric spaces.

B.2 Normed Spaces

A set V is called a real (or complex) vector space if its elements satisfy the algebraic
rules of addition and scalar multiplication:

IfxeVandyeV,thenax+ By e Vforalla, € R (or C).
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In this section we assume that V is a vector space. Typical examples to have in mind
are the Euclidean space R" and the space C[O0, 1] of continuous functions on the
interval [0, 1]. A normed space is a vector space equipped with a norm, defined as
follows:

Definition B.10: Norm

A norm is a function || - || : V — R,, which assigns a size to each element of
V and satisfies for all x, y € V and scalar o € C:

1. (Zero): ||x|| = 0 if and only if x = 0.
2. (Scaling): ||ax|| = || ||x]|.

3. (Triangle inequality): ||x + y|| < ||x|| + ||yl

A normed space with norm || - || is also a metric space, with metric
dx,y) =llx—-yll, x,yeV.

We say that the norm || - || induces the metric d and write (V, || - ||) for the corres-
ponding metric space. In principle, we can measure distances in V using metrics
not derived from norms. However, only a metric induced by a norm takes full
advantage of the algebraic structure of the vector space V.

Definition B.11: Banach Space

A normed space that is complete is said to be a Banach space.

B Example B.12 (Space of Polynomial Functions with Supremum Norm) Con-

sider the normed space (V, || - ||), where V is the space of all polynomials on [0, 1]
and ||x|| := sup,¢(o 17 [x ()] is the supremum norm. Define the n-degree polynomial
function:

n

xn (1) := Zx(k/n)(Z)tk(l —0)"*, te]o,1],

k=0

where x : [0, 1] — R s a given non-polynomial continuous function on the interval
[0, 1]. The Weierstrass approximation theorem, proved in Exercise 3.33, asserts
that lim,, ||x, — x|| = 0. Therefore, by the triangle inequality:

IXn = xmll < [lxp = x|+ |lx —xpl| >0 as m,n — co.

In other words, (x,) is a Cauchy sequence in (V, || - ||) that converges to an x ¢ V.
We conclude that, by definition, the metric space (V, || - ||) is not complete. [ |
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The next example shows that if we enlarge the space V of polynomial functions
to the space C|0, 1] of continuous functions on [0, 1] and retain the supremum
norm, then the resulting normed space (C[0, 1], || - ||) is complete.

B Example B.13 (Space of Continuous Functions with Supremum Norm) The
space C|0, 1] of continuous functions on [0, 1], equipped with the supremum norm,
is a Banach space. To show that (C[0, 1], || - ||) is a complete space, we need to
show that lim,;, 0 || —x,|| = 0 implies the existence of an x € C[0, 1] such that
[lxn — x|l — 0.

For an arbitrary s € [0, 1], the sequence (a,,n € N) := (x,(s),n € N) is a
Cauchy sequence of real numbers, because |a, — a;;| < |[x, — x|l — 0. Hence,
by the completeness of the normed space (R, | - |), we know that there exists a limit
a € R such that |a — a,| — 0, and we define x(s) := a. In other words, we have
that |x(s) — x,(s)| — O for every s € [0, 1] or, equivalently, that ||x — x,|| — O.

It remains to show that x € C[0, 1]. For an arbitrary € > 0, choose N large
enough such that ||x — x,|| < &/4 for n > N. Since xy € C[0, 1], there exists a
0. > 0 such that |r — s| < §, implies |xy(s) — xn(?)| < &/2. Finally, the condition
|t — 5| < 0. and the triangle inequality yield:

e(s) = x(O)] < |x(s) =xn(s)] + [xn(s) —xn ()] + |xn (1) = x(1)]

(B.14)
< 2x —xnll + lxn(s) —xn(0)] < &,

proving that x € C[0, 1]. [ |

The following example shows that if we replace the supremum norm in Ex-
ample B.13 with the L! norm, then the resulting space is no longer complete:

B Example B.15 (Space of Continuous Functions with L' Norm) Let A be the
Lebesgue measure on (R, $) and define the norm on the space C[0, 1] of continuous
functions on [0, 1] via:

1
el = Al L0, = /0 ar 1x(1)].

The normed space (C[0, 1], || - ||) is not a Banach space. To see this, define the
sequence (x;) of continuous functions on [0, 1]:

X, (1) ::n(t— %) X ﬂ[o’%+%](l‘)+ﬂ(%+%’l](l‘), t €[0,1].

1 1

Sam ~ 2omwmy — O form,n — co, which

This is a Cauchy sequence: ||x,, — x,|| =
converges to a discontinuous function:

0 if re[0,1/2],

lir{nxn(f) = {1 if te(1/2,1].
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Another important example of a Banach space is the L? space of random
variables defined in Section 2.5.

Theorem B.16: Completeness of L”

The space L” is complete for every p € [1, o0].

Proof. Let (X,) be a Cauchy sequence in L”; i.e., || X,, — X,||, — 0as m,n — oo.
We are going to construct the limit X to which (X)) converges in L” norm, as
follows: take a subsequence (ny, k € N) such that || X,, — X, ||, < 2k form > ny,
and define Y} == X,;, — X,,,_, for k > 1 and Y, := X,,,. Then,

k

Xy = ZY’” k € N, where Z 1Y:]|, < oo.
i=0 i=0

For each w € Q, define
k oS
Zuw) = ) W) and Z() = %(w)].
i=0 i=0

Since Z, = Z, and hence Z, =5 Z”, we have by the Monotone Convergence The-
orem that ||Z]|, < oo; that is, Z € L. In particular, sup; [X,,| < Z < co almost
surely, which implies that X,,, =5 X := Z;’iOYi as k T oo. Also, X € L?, because
|X| < Z and so || X, < ||Z|l, < 0. Since |X — X, |7 < (2Z)? € L, it follows
that || X,,, — X||, — 0. Finally, from the fact that (X,,) is a Cauchy sequence and the
triangle inequality:

”Xn - X”p < ”Xn - Xnk”p + ”Xnk - X”p - 0’

we conclude that X, X, a

B.3 Inner Product Spaces

The next natural enhancement of a vector space V is to bestow it with a geometry
via the introduction of an inner product, taking values in either C or R. The former
is used in the definition below. The resulting space V' with the inner product norm
is called an inner product space.
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Definition B.17: Inner Product

An inner product on V is a mapping (-, -) from V x V to C that satisfies:
1. {ax| + Bx2,y) = alxy,y) + B{xz,y) forall @, 8 € C.

2. (xy) =y, x).

3. (x,x) > 0.

4. (x,x) = 0if and only if x = O (the zero element).

We say that two elements x and y in V are orthogonal to each other with respect
to an inner product if (x, y) = 0. Given an inner product on V, we define a norm on

V via
x| := v/ {x, x).

The fact that 4/(x, x) is a norm and satisfies the properties in Definition B.10 follows
readily from the following properties of the inner product:

Theorem B.18: Properties of the Inner Product

1. (Cauchy-Schwarz inequality): |{x,y)| < ||x||||y]| for any x,y € V, with
equality achieved if and only if x = @y for some constant @ € C.

2. (Triangle inequality): ||x — y|| < ||x|| + ||y|| for any x,y € V.

3. (Continuity): If ||x, — x|| = O and ||y, — y|| — O, then (x,,, y,) — {(x, y).

Proof. Without loss of generality, we may assume that ||x|| ||y|| > O; otherwise, the
Cauchy—Schwarz inequality is trivial. Since (x — ay,x — ay) = ||x — ay||*> = 0, we
have

0 < (x—ay.x—ay) = |Ix|I” —ax,y) —a[(v.x) - alyl’].

Substituting @ = (v, x)/||y||* yields the inequality:
0 < [lx +ayll® = lIxlI* = G, /NIy,

from which we deduce the Cauchy—Schwarz inequality. Furthermore, |x|*> —
[(x, ¥)2/]I]1? is O if and only if |]x — a@y||*> = 0 or, equivalently, x = ay.

The triangle inequality follows from an application of Cauchy—Schwarz as fol-
lows:

e = Y12 = Il + 1Y 11 = G, y) = (0,00

< el + I + 16 )1+ 1Ky, 2|
< el + Iy P + ey I+ Il = (el + 1y D3,
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To show the continuity statement, note that by adding and subtracting (x, y,) and
using the triangle inequality, we obtain

[<Xns Y} = 6 < Qs yn) = (6 ynd | + [, yn) = (3, )
< [ =2, yu) | + 1€ yn = ¥
< [l = Xl X Alyall + [lxll X lyn = Il = O,

where we used the Cauchy—Schwarz inequality twice in the last line. O

An inner product space that is complete is called a Hilbert space. One of the
most fundamental Hilbert spaces is the L? space! of functions.

Definition B.19: L? Space

Let (E, &, u) be a measure space and define the inner product:
(B.20) (.= [ (o) £ 5.

The Hilbert space Lz(E , &, u) is the vector space of functions from E to C
that satisfy || f]|? := (f, f) < co. Any pair of functions f and g that are
u-everywhere equal, that is, || f — g|| = 0, are identified as one and the same.

Of particular interest is the space L?[0, 1], where E is the interval [0, 1], & is
the Borel o-algebra thereon (i.e., B(¢,1]), and u is the Lebesgue measure restricted
to [0, 1] (i.e., Lebyg 7).

A set of functions {u;, i € I} is called an orthonormal system for a Hilbert space

L*(E,&, ) if
(i, u;) = {1 %f l._].’
0 ifi+#j.
It follows then that the {u;} are linearly independent; that is, the only linear com-
bination }’; a;u;(x) that is equal to u;(x) for all x is the one where @; = 1 and
a; = 0 for j # i. Although the general theory allows for uncountable index set /,
it can be proved that when E is a bounded and closed subset of R4, then the set [
must be countable. For simplicity, we will henceforth assume that / is countable,
and without loss of generality / := N.
Let (V,]| - ||) be the Hilbert space L>(E, &, ). An orthonormal system {u;,i €
N} is called an orthonormal basis if there is no f € V, other than the O function, that

INote that Definition B.19 involves a space of complex-valued functions, in contrast to the L?
space of square-integrable random variables in Section 2.5 (with E = Q, & = H, and u = P), where
we used real-valued functions.
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is orthogonal to all the {u;,i € N}. Any orthonormal system satisfies the following
inequality:

Theorem B.21: Bessel Inequality

For any orthonormal system {u;,i € N}, 37 [(f, u)|> < |fI* forall f e V.

Proof. Let f,, := 2 o(f, u;)u;, so that
o £) = D o) uis £y = D uid P
i=0 i=0
is real (implying that (f,,, f) = (f, f»)) and

(s F) = D D o) atiy )iy = > N(Fo ).
i=0 j=0 i=0
Since (f — fu, fu) = 0, we deduce that f; is orthogonal to f — f,. Hence, from
0<(f=Ju. S =1 =X/ f =T =L, )= {F. )

we obtain (fy, fu) = Yo [(fiu)l*> < |IfII>. Since {f;, f,) is increasing and
bounded from above, it follows that it converges to a limit: lim, e || fall? =

S0 (foun P < 1% O
Orthonormal bases satisfy the following stronger result, the consequence of
which is that in a Hilbert space (V, || - ||) with orthonormal basis {u;,i € N} every

element f € V can be written as
[e¢]
£= (fou)u,
i=0

in the sense that the approximation f, := >." ,{f, u;) u; converges to f in the norm
onV.

Theorem B.22: Parseval Identity

It holds that 3}° [(f, ui)|> = || fII? for any f in a Hilbert space (V, || - ||) if
and only if {u;,i € N} is an orthonormal basis for (V, || - ||).

Proof. First, suppose that Parseval’s identity holds for any f in the Hilbert space
V. If {u;,i € N} is not an orthonormal basis, there exists a nonzero f € V such
that (f,u;) = 0 for all i € N. This, however, contradicts Parseval’s identity, because
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0<I|fII?= oo IS, u)|> = 2000 = 0 is impossible. Hence, {u;,i € N} must be
an orthonormal basis.

Conversely, suppose that {u;,i € N} is an orthonormal basis, so that (&, u;) =0
foralli € Nimplies that 2 = 0. Foran arbitrary f € V,let f, := 3.\ (f, u;)u;. Since
forn > m — oo wehave that || f,,— f,1|* = XL, [(f, u;)|* — 0is a Cauchy sequence
in the complete space (V, || - ||), (fn) converges (in norm) to an element of V. This
element g := lim f, must be f, because, (f — f, u;) = (f,u;) — {fy, u;) = 0 for all
i < n and so, by the continuity of the inner product, (f — g, u;) = im{(f — f,,u;) =0
for all i € N. In other words, f = >°, (f, u;)u;, implying Parseval’s identity. O

B.4 Sturm-Liouville Orthonormal Basis

Let L be the linear differential operator that maps a twice differentiable function u
into the function Lu defined by:

a [POE] +au)

[Lul](x) := W)

9

where p, w are positive functions on [0, 1] and p, p’, w, g are all continuous.

Let L*([0, 1], Bjo,1}, #) be the Hilbert space with u(dx) = w(x)dx. One of
the simplest ways to construct a countable infinite-dimensional orthonormal basis
{uy} for L*([0, 1], Bjo,1], u) is to find all the distinct eigenvalue and eigenfunction
pairs { (A, ug)} of the Sturm—Liouville ordinary differential equation with separated
boundary conditions:

(Lug) (x) = A ug (x) =0,
(B.23) crug(0) + c2up (0) =0,
caur(1) +cqus (1) =0,

where |ci| + |c2] > 0 and |c3| + |c4] > 0. Using integration by parts and the
separated boundary conditions in (B.23), it is straightforward to show that L is
a self-adjoint linear operator with respect to the inner product (B.20); that is,
(ug,Lu;) = (Lug,u;). Hence, from (B.23) we can write

(Ak = ) g uy) = Qrug, ug) = Qug, gy = (Lug, ug) — (ug, Luj) = 0.
The last equation implies that:
1. (A = Ap)|lug])? = 0 for k = j (that is, each eigenvalue Ay is real) and

2. the eigenfunctions u; and u; are orthogonal to each other, provided that
Ak # 4.
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All of the eigenvalues can be shown to be real and distinct, and so they form an
increasing sequence, Ao < 4] < Ay < ---.

B Example B.24 (Sine Orthonormal Basis) Choosingw(x) = p(x) =1,q(x) =0
and ¢, = c4 = 0, one can verify that the eigenvalues A; = k2 and eigenfunctions
sin(knx) satisfy (B.23). Hence, \/isin(knx), k = 1,2,3,... is an orthonormal
basis for L]0, 1].

An alternative half-sine basis results from choosing w(x) = p(x) = 1,g(x) =0
and ¢» = ¢3 = 0. One can verify that the eigenvalues A, = (k+1/2)? and eigenfunc-
tions sin([k + 1/2]xx) satisfy (B.23). Hence, V2sin([k + 1/2]nx), k =0, 1,2, ...
is also an orthonormal basis for L[0, 1]. [ |

B Example B.25 (Cosine Orthonormal Basis) Choosingw(x) = p(x) =1,¢(x) =
0 and ¢; = c3 = 0, one can verify that the eigenvalues 1; = k? and eigenfunctions
cos(kmx) satisfy (B.23). Hence, the cosine functions uy(x) = cos(0xx), uy(x) =
\/Ecos(kﬂx), k = 1,2,... form an orthonormal basis for L? [0,1]. For example,
consider the indicator function 1, on [0, 1]. The approximation

m—1 m .
m sin(knt)
1%0’2] (x) = kZ_(:)(IL[O,,], upyup(x) =t+ 2; B cos(kmx), x e [0,1],

converges to 1o in the corresponding norm: || 11%12] —10ll = 0. Therefore, from

the continuity property in Theorem B.18 we can deduce the pointwise convergence

of the inner product (11%813?] , 1%82]) — (Lj0.5]> Lj0,])> and we can write

S V2 sin(krs) V2 sin(knt)
(B.26) sAt=(Tjos), Ljo) =st+ Z kn kn '

k=1

Yet another basis follows from w(x) = p(x) =1,g(x) =0 and ¢y = c4 =0, so
that the eigenvalues A; = (k + 1/2)? and eigenfunctions cos([k + 1/2]xx) satisfy
(B.23), giving the orthonormal basis V2 cos(knx/2), k = 1,3,5,... for L*[0, 1].
With this basis we can write
2V2sin(kns/2) 2V2 sin(knt/2)

kn kn ’

(B.27) sAt= (Lo, Lios) = Z
k=1,3,...

B.5 Hermite Orthonormal Basis

Another useful orthonormal basis can be constructed from the Hermite polynomials,
defined via

dn
Tin(x) == (—=1)" exp(x2/2)@ exp(-x2/2), n=0,1,2,...,
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or explicitly via
Ln/2] e 1)k

fip(x) = n! Z o —2k)'2k X2k,

The definition of the Hermite polynomials implies the following properties:

Ty (x) = nly-1(x),
fina1 (x) = X Fip (x) — Ty (x),
exp(xt — 12/2) = 20 L e ().
Each 7, (x) satisfies the Sturm-Liouville ODE (B.23) of the form:

(exp(—x2/2)u’ (x)) + k exp(—x*/2)u(x) =0
=p(x) = =w(x)

subject to the boundary conditions: exp(—x?/2)u(x) — 0 and exp(—x?/2)u’(x) —
0 as x — +oco. Note that the boundary conditions at infinity differ from those in
(B.23), but similar integration by parts computations establish the orthogonality
property with respect to the inner product (B.20): (7, hig) = a'\2n La=py}-

Since [ dx f(x)x" exp(—x?) = 0 for all n € N implies that f = 0 almost every-
where, the Hermite polynomials form an orthogonal basis of L*(R, 8, w(x) dx),
with w(x) = exp(—x2/2). Hence, any function f in this space can be approximated
via £ (x) = ¥l j{{jﬁ 7 (x) such that || f — £ — 0.

B Example B.28 (Hermite Functions) Using the properties of the Hermite poly-
nomials, we can show that the Hermite functions:

exp(—x2/4)
Vn'\2r

form an orthonormal basis of L?(R, B, Leb); i.e., [ dx /,, (x),(x) = 1{m=ny, and
hence any function therein can be approximated with " (x) := Z',::OI cr i (x),
where ¢ := [dx f(x)¥,(x). [ ]

Yn(x) = fin(x), neN

B.6 Haar Orthonormal Basis

For every pair of integers n > O and k =0, 1,...,2" — 1, the Haar function h,  is
defined by:
1
1 2% <x<X2
I (x) = 2"% x 24 k+% <x< kztll,

0 0therw1se.
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Note that all Haar functions are 0 outside the interval [0, 1]. With (B.20) as the
inner product for the Hilbert space L?[0, 1], we have:

1 ifn=m, k=1,
hoi, h =
s B} {O otherwise.
In addition, (1, A, k) = fol dx hy, x (x) = 0, implying that the constant 1 is orthogonal
to all Haar functions. The set of Haar functions with the addition of the constant
function 1, that is, {h,x,n > 0,k =0,...,2" — 1} U {1}, forms an orthonormal
basis of L?[0, 1]. In other words, for every f € L?[0, 1] we have the approximation

m—12"-1

FM@) =0+ Y (k) b (),
n=0 k=0
where || f — f™]|| — 0asm T oo and || - || is the norm on L?[0, 1].

While the expansion above uses two indexes n and k, we can define a single-index
set of orthonormal functions:

ho(x) :=Tjo11(x),  hj(x) = huk(x), Jj=2"+k,
and thus obtain the more familiar expansion £ (x) = ZT:_OI (f hj)hj(x).

B Example B.29 (Schauder Functions) A useful set of functions derived from
the Haar basis are the tent-like or Schauder functions, defined for n > 0,k =
0,1,...,2" — 1 by

cni(t) i= (Lo, bug) = 27271 [1 = 2 = 2k — 1]]*.

Figure B.30 shows the characteristic tent-like shape of all ¢, x forn =0, 1, 2.

051
0.4
03
N, ,‘\ ,'\‘ 74
L 7 ) 3
0.2 / 5 AN '/ "\ o \\
K A /s ‘.\ / \ 7 N
o L,
0.1k Ly \Y ,,I “ / \\ J AN
. 1/ \ / R ! ‘ / AN
e P / 3 I/ \ , N\
A Ny N/ s N
o “ I' -\ ,,
0 (I ¥ I I A
0 0.2 0.4 0.6 0.8 1

Figure B.30: Tent-like functions: ¢ is the blue dotted line; ¢ ¢ and ¢ 1 are given
as the red thick line; ¢2 0, ¢2,1, ¢2.2, 23 are depicted as the black dash-dot line.
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One advantage of the Haar basis over the trigonometric basis is that each Haar
function is very localized (nonzero over a vanishingly small interval), and thus
easily permitting stronger types of convergence. For example, if f is continuous on
[0, 1], then the pointwise convergence of £ to f is uniform:

sup |£(x) = f(x)] — 0.
x€[0,1]






APPENDIX C

EXISTENCE OF THE LEBESGUE
MEASURE

In this appendix we prove the existence of the Lebesgue measure on
((0, 1], B(0,17), following Billingsley (1995).

We first show the countable additivity of the Lebesgue pre-measure on E := (0, 1].
Denote by 7 the set of subintervals of E of the form (c, d], and let & be the algebra
of sets that are finite unions of intervals in 1.

Recall that an algebra &y on E is a collection of subsets of E that contains
E itself, and that is closed under complements and finite unions. Recall also that
a pre-measure is a set function A : &y — [0, o], with A(0) = O that satisfies the
countable additivity property:

(o)

(C.1) A

for every sequence Ay, Ay, . .. of disjoint sets in &y with U, A, € &.
Define on & the natural “length” pre-measure 4. When A is applied to intervals,
we use the notation | - | instead. Thus, for disjoint intervals {(a, by ]}:

A (O(ak,bk]) = o(ak,bk] = an(bk - ag).
k=1 k=1 =1

We want to show that this pre-measure is countably additive. We do this
in two steps. First, we prove it for intervals, and then for general sets in &p.
Below, I = (a, b] and I = (ag, bx] are bounded intervals of lengths [I| =56 —a
and |Ik| = bk —dg.

A(Ax)
P
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Proposition C.2: Countable Additivity for Intervals

If I = U2 I and the {/;} are disjoint, then |7| = 337, |I¢].

Proof. We are going to prove the theorem by showing:

1. If Uy, Ix € I, and the {/; } are disjoint, then

(o)

(C.3) Dl <11,

k=1

2. If Uiy Ix 2 I (the {I;} need not be disjoint), then
(C4) IRARYE
k=1

We first show (C.3) for finite sums (that is, Y.}, |[/x| < |I[), using induction.
The statement is obviously true for n = 1. Suppose it is true for n — 1. Without
loss of generality, we may assume a, is the largest among ai,...,a,. Then,

Z;}(ak,bk] C (a,ay,], so that, by the induction hypothesis, ZZ;}(bk —ag) <
a, — a, and hence:

n
(C.5) Z(bk—ak)San—a+bn—anSb—a.
k=1

The infinite sum case follows directly from this. Namely, from the finite sum case,
we have that (C.5) holds for every n > 1. But this can only be the case if

(o0

Z(bk —ay) <b-a.

k=1

To prove (C.4), we again consider first the finite sum and then the infinite
sum case. We use again induction to show [I| < 37 _; [Ix|, which is true for
n = 1. Suppose it is true for n — 1. Without loss of generality, we may assume
a, < b < b,. If a, < a, the result is obvious. If a, > a, then (draw a picture)
(a,ay] C U?;ll(ak,bk], so that Z’Z;}(bk—ak) > a,—a by the induction hypothesis,

and hence:
n

(by —ay) = (a,—a)+ (b, —ay) = b —a.
k=1
For the infinite sum case, suppose that (a, b] C U;"Zl (ak,br]. If0 <& < b—a,the
open intervals {(ay, by + €27%)} cover the closed interval [a + &, b]. The Heine—
Borel property of the real-number system states that bounded closed intervals are
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compact; that is, every (infinite) cover of such a set has a finite subcover; see also
Example B.6. Thus,

[a+e&,b] CU;_ (ak, by + 275
for some n. But then
(a+&,b] CUL_ (ar, b +&27).

Consequently, using the finite case,
b—(a+eg)< Z(bk +e27F —ap) < Z(bk —ag) +e&.
k=1 k=1
Since & > 0 was arbitrary, we have
b—-a< Z(bk —ay).
k=1

This completes the proof for intervals. m|

Next, we prove the countable additivity for arbitrary sets in &j. Recall that we
used the notation A(A) = |A| if A is an interval.

Theorem C.6: Countable Additivity for Sets

Let A € & be of the form A = U;? | Ay, where the {A} are disjoint and in
&o. Then,

A(A) = Z/l(Ak).
k=1

Proof. We can write (for certain intervals {/;} and {Jy;}):

n mip
AZLJII,- and AkZLJlej.
i= j=

It follows that
k
(L; N Jxj).

~
Il
—_
>~
Il
—_
~
Il
—_

Note that the {/; N Ji;} are disjoint and lie in 7. Moreover,

n n
U(L‘ NJkj) = Uli Nij = Jij,
i=1 i=1

——
A
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as Jij € A. Thus, we have, by the countable additivity for intervals:

A(A) = Zn: |1;| = an i i [ 0Tl = i ﬁ [Jijl = i/l(Ak)~
i=1 i=1 k=1 j=1 k=1 =1 i=1

O

If in Proposition C.2 the { A } are not disjoint, we still have countable subaddit-
1vity:

(C.7) A(A) < Y A(Ag).
k=1

The proof is exactly the same as in Proposition 1.42.

We next show the existence of the Lebesgue measure on (E, &) for E := (0, 1]
and & := B(o,1]. Recall that & is the algebra of sets that are finite unions of disjoint
intervals of the form (c, d], and that A is the pre-measure on &g, which we have just
shown to be countably additive. The proof of existence relies on the definition of
two objects: A and M.

Definition C.8: Outer Measure 1

The outer measure of A is the set function A that assigns to each A € 2% (that
is, for each A C FE) the value

(C.9) A(A) :==inf 3, A(A,),
where the infimum is over all sequences A, A, ... of &p-sets satisfying
A C U,A,.

Note that A is not actually a measure, as the set 2F is simply too big for it to be
countably additive. We can also define an inner measure,

A(A) :=1-12(A°), Ae?2f

The outer measure A has properties reminiscent of those of a measure, such as
positivity 1(A) > 0 and monotonicity A(A) < A(B), when A C B. Also, 1(0) = 0.
The following countable subadditivity property is important as well:

Lemma C.10: The Outer Measure 1 is Countably Subadditive

For any collection of sets in E (not necessarily disjoint), it holds that

(C.11) (U2 Ay) <32 A(Ay).
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froof. Take € > 0 and choose B, € &g such that A, C Ug B, and X33 A(Bpg) <
A(A,) +&27". Because U, A, C Uy kB, it follows that

I( U;;Ozl An) < Zn,k A(Byi) < 22021 I(An) +¢,

showing (C.11), as ¢ is arbitrary. O

Definition C.12: The Collection M

The collection M consists of all sets A € 2£ for which

(C.13) AANC)+A(A°NC)=A(C) forevery C € 2F.

Taking C = E, this implies that 1(A) = A(A) for every A € M. The following
lemma shows that M is an algebra. Later on we will show that it is in fact a
o -algebra.

Lemma C.14: The Collection M is an Algebra

The collection M contains E and is closed under complements and finite
unions. Hence, it is an algebra on E.

Proof. The collection M is obviously closed under complements and contains E.
To show that it is closed under finite unions, we need to show that A U B € M for
any A, B € M. Take any C € 2F. By the countable (and hence finite) subadditivity
of 4in (C.11), we have

(C.15) AC) < A(ANB)NC)+A((ANB)NC).
Since the reverse inequality also holds:
AC)=A(BNC)+A(B°NC)
=A(ANBNC)+A(A°NBNC)+A(ANB°NC)+A(A°NB°NC)

>AANBNC)+A((A°NBNC)U(ANB NC)U(A°NB NC))
=1((ANB)NC)+A((ANB)*NC),

we have in fact equality in (C.15), which shows that AU B € M, by Definition C.12.
m]

When the outer measure A is restricted to M, we have the following form of
countable additivity. Take C = E to get the usual countable additivity.
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Lemma C.16: The Outer Measure A Restricted to M is Countably Ad-

ditive

If {A;} € M are disjoint, then for any C € 2F:

(C.17) A((UkAr) N C) = X A(Ax N C).

Proof. We first prove the case for a finite collection Ay, . . ., A, by induction, starting
withn = 2. Inthatcase,if AJUA, = E, then the statement follows from the definition
of M in (C.13). If A; U A, is smaller than E, take C := (AjUAy)NDand A := A}
in (C.13) and use the disjointness of A; and A> to conclude that

E(Al N D) +Z(A2 NnD)= ﬁ((Al UAy)ND),

showing that the induction statement holds for n = 2. Suppose that (C.17) holds for
n — 1 disjoint sets Aj,...,A,—1 in M. Then, by the induction hypothesis and the
case n = 2, we have for any C,

(Ui, A0) N C) = A((UIZjA) N C) + A(A, N C) = XF_, A(Ax N C),

completing the induction step. For an infinite sequence A, As, . .. of disjoint sets,
we have, by the monotonicity of A:

AU A NC) =2 A((U}_Ar) N C) = X7_, A(Ax N C)

for all n, so that B _
(U An) N C) = X2, (A N C).

The proof is completed by observing that the reverse inequality also holds, by the
countable subadditivity of 4 in (C.11). O

The following proposition contains all the ingredients needed for the existence
proof:

Proposition C.18: Four Main Properties of 1 and M

1. M s a o-algebra.

2. A restricted to M is countably additive.
3. & c M.
4

. For A € &g, we have

(C.19) A(A) = A(A) = |A|.

Proof.
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1. We have already proved that M is an algebra in Lemma C.14. To show thatitis a
o-algebra,let Ay, Ay,...bein Mand B| := Ajand B,, := A,\A,—1,n=2,3,...,
as illustrated in Figure 1.44 in Chapter 1. The {By} are disjoint and in M. By
the countable additivity of 1 on M (see Lemma C.16), we have for any C € 2%:

Z(UkBk NnC) +Z((UkBk)c NC) = Z(C)

Thus, (C.13) holds for the set Uy By and the latter therefore lies in M. But since
Uzlek = A, and U]f’lek = UZ‘;]A;{, the latter also lies in M. In other words,
M is closed under countable unions.

2. We have already proved this in Lemma C.16.
3. We need to show that for any A € &y it holds that

A(ANC)+A(A°NC) =A(C) for all C € 2.

Similar to the proof of Lemma C.10, take &€ > 0 and choose sets {A,} in &
such that C € U,A, and Y, 1(A,) < A(C) + &. This can always be done, by
the way A is defined. Definesets F, ;= A, NAand G, = A, N A, n=1,2,....
These sets lie in M as it is an algebra. Note that U, F}, contains C N A and U,,G,,
contains C N A°. Thus, by the definition of A and the finite additivity of 4, we
have

AANC)+AANC) < Y AF) + Y AGy) = D A(A,) <A(C) +5.

Since  is arbitrary, this shows that (A N C) + A(A° N C) < A(C). The reverse
inequality holds also, by the countable subadditivity of A in Lemma C.10.

4. From the definition (C.9) of the outer measure it is clear that 1(A) < A(A) for
all A € &y. To show that also 1(A) < A(A), we use the countable additivity of
A proved in Theorem C.6. In particular, let A € U,A,, where A and A,,n =
1,2,...arein &y. Then,

(C.20) A <A Janan) < Ylaana,) < ) aA).
n=1 n=1 n=1

The second inequality follows from the countable subadditivity of the pre-
measure A, which can be proved in exactly the same way as for proper measures
(see Proposition 1.42). As (C.20) holds for any choice of {A,}, it must hold that
A(A) <inf ¥, A(A,) = A(A).
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Using Proposition C.18, the existence of the Lebesgue measure can now be
proved with a few brush strokes.

Theorem C.21: Existence of the Lebesgue Measure

The outer measure A restricted to B(0,1] 1s a probability measure that extends
the pre-measure A.

Proof. From Proposition C.18, the outer measure A restricted to M is a proper
measure on (E, M), as it is countably additive and M is a o-algebra. Also, we
have

&y c o (&) c M c 2F.

So, 4 is also a measure on (E, o"(E)), where o°(Eq) = B(,17. That A is an
extension of A follows from (C.19). Finally, the fact that A(E) = A(E) = 1 shows
that it is a probability measure. O

Note that the proofs above hold verbatim for any probability pre-measure A on
(E, &Ep); that is, A is o-additive and A(E) = 1. Theorem 1.45 then guarantees that
A can be uniquely extended to a measure on (E, 07 (&p)).
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A

absolutely continuous, 26
adapted, 142

affine transformation, 55
algebra, 3

almost everywhere, 22
almost sure convergence, 94
a-stable process, 226
augmented filtration, 186, 213
autonomous SDE, 278
axiom of choice, 2

B

Banach space, 56, 329
Bernoulli distribution, 45
Bessel process, 235, 303
Bessel SDE, 295, 296

beta distribution, 45
binomial distribution, 45
Blumenthal’s 0 — 1 law, 215

Bolzano—Weierstrass theorem, 92,

93, 120, 328
Borel o-algebra, 4

bounded convergence theorem, 50

bounded variation, 162, 231

branching process, 198
Brownian bridge, 290
Brownian motion, 71, 204, 278
geometric —, 298
standard —, 204

C

canonical approximation, 246
Cantor

function, 86

set, 2, 86, 215
Cartesian product, 4, 6
Cauchy

distribution, 85

process, 85

sequence, 328
Cauchy—Schwarz inequality, 59, 300
central limit theorem, 113
Cesaro average, 115
chain rule of calculus, 269
change of measure, 292
Chapman—Kolmogorov equations,

143

characteristic

exponent, 80
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Index

function, 63, 100

triplet, 83
Chebyshev’s inequality, 96
Cholesky factorization, 54, 70, 88
closed and bounded set, 327
common random variables, 298
complement of event, 36
complete, 328

convergence, 94

Hilbert space, 328

probability space, 213

probability space, 185
compound Poisson process, 78
concave function, 58
conditional probability, 128
conditional expectation, 124

version of —, 125
convergence

almost sure —, 94

complete —, 94

in L? norm, 102

in distribution, 100

in probability, 98

sure —, 93
convex

function, 56

hull, 74
correlation coeflicient, 53
countable additivity, 15
countable subadditivity, 17, 344
counting measure, 15
covariance, 53, 59

function, 70

matrix, 54, 55

properties, 54
covariation of It processes, 270
cumulative distribution function, 42

D

d-system, 4
denseness, 248
density of a measure, 25

diffusion
coefficient, 204
function, 278
Dirac measure, 15
discrete
o-algebra, 21
measure, 16
uniform distribution, 45
disjoint events, 36
dispersion, 266
distribution, 41
Bernoulli —, 45

beta —, 45
binomial —, 45
Cauchy -, 85

discrete uniform —, 45
double exponential —, 88
exponential —, 45
gamma —, 45
Gaussian —, 45
geometric —, 45
infinitely divisible —, 81
marginal —, 47
multivariate normal —, 55
negative binomial —, 45
normal —, 45
Pareto —, 45
Poisson —, 45
positive normal —, 223
uniform —, 45
Weibull —, 45
distribution function, 42
dominated convergence theorem, 50
Doob martingale, 188
double exponential distribution, 88
drift
function of an SDE, 278
of a Brownian motion, 204
of an It6 process, 266
dyadic numbers, 140, 210
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E

eigenfunction, 335
eigenvalue, 335
empty set, 36
Euler’s method, 297
expectation

function, 70

vector, 53, 55
exponential distribution, 45
exponential martingale, 219
extended dominated convergence

theorem, 118

extended real line, 8
extension of a measure, 32

F

Fatou’s lemma, 50
reverse —, 119

F distribution, 44

filtration, 68
augmented —, 213
right-continuous —, 213

finite-dimensional distributions, 70

function
concave —, 58
convex —, 56
harmonic —, 228
Hermite —, 337
indicator —, 9
integrable —, 21
numerical —, 8
real-valued —, 8
simple —, 9

functional inverse, 33, 86, 87

G

gambler’s ruin problem, 168
gamma
distribution, 45
function, 44
process, 83
Gaussian
distribution, 45

process, 70
geometric Brownian motion, 298
geometric distribution, 45
Girsanov’s theorem, 293
Gronwall’s inequality, 301

H

Holder continuous function, 140, 234
Haar
basis, 209
function, 337
harmonic function, 228
heat equation, 218, 229
Heine—Borel property, 327, 342
Heine—Cantor theorem, 120, 265, 327
Hermite
function, 337
polynomial, 336
Hilbert space, 56, 333
hitting time, 220
holding rate, 148

I

image measure, 26, 27
implicit Euler, 305
indefinite integral, 25, 33, 292
independent

o -algebras, 68

and identically distributed (iid),

47,112

increments, 202

random variables, 69
indicator function, 9, 39
indistinguishable processes, 247
infimum, 10
infinitely divisible distribution, 81
infinitesimal generator, 229, 288
inner measure, 344
inner product, 332
integrable

function, 21

random variable, 56

square —, 56
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Index

integral, 20
indefinite —, 25, 33
Lebesgue —, 21
Lebesgue—Stieltjes —, 162
Riemann —, 21
integrand, 162, 241
integration by parts, 275
integrator, 162, 241
intensity function, 72
inverse image, 7
isometry, 166, 244, 326
1to diffusion, 278
Itd integral, 164, 242, 244, 251, 278
Itd process, 241, 265
covariation, 270
in R4, 270
integration by parts, 275
integration with respect to —, 266
quadratic variation, 267
It6’s formula
for 1t6 processes, 269
for the Wiener process, 263
multivariate —, 271
[t6—Stratonovich, 290, 301

J

Jacobian, 52

jointly normal, see multivariate
normal

jump measure, 81

K

Karhunen-Loe¢ve expansion, 209
Kolmogorov
backward equations, 229, 287
forward equations, 229, 287
Kronecker lemma, 115
Krylov condition, 293, 302

L

Lévy
kernel, 149
measure, 226

process, 79, 201

Lévy’s characterization theorem,
271,294

Langevin SDE, 280
Laplace

functional, 72

operator, 218

transform, 59
law of large numbers, 112
Lebesgue measure, 16
Lebesgue—Stieltjes integral, 162
Lévy

measure, 78, 81

process, 78
Lévy-Itd decomposition, 82
limit inferior, 10
limit superior, 10
linear isometry, 255
Lipschitz continuity, 282
local martingale, 187

inR?, 276
local time, 225
localization, 262
localizing sequence, 187, 262
L? space, 55

M
marginal distribution, 47
Markov

chain, 143, 144

chain generation, 147

process

time-homogeneous —, 143

property, 143

transition function, 143
Markov’s inequality, 96
martingale

Doob —, 188

reversed-time —, 178
mean measure, 72
mean-reverting process, 280
measurable space, 4
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standard —, 130

measure
Dirac —, 15
finite —, 15
image —, 26, 27
inner —, 344
Lebesgue —, 16
outer —, 344
probability —, 15, 36
space, 15
theory, 1

uniqueness, 18
memoryless property, 129
mesh of a segmentation, 162
metric, 325
metric space, 116, 325
Minkowski’s inequality, 57
modification of a stochastic process,

140

modulus of continuity, 233
moment generating function, 59
monotone class

of functions, 13
monotone class theorem

for functions, 13

for sets, 5
monotone convergence, 50
multivariate

normal distribution, 55

N

natural filtration, 68
negative binomial distribution, 45
negligible set, 22, 185
Newton’s formula, 62, 153, 195, 318
norm, 329
normal distribution, 45, 55
multivariate —, 55
positive —, 223
Novikov condition, 293
numerical function, 8

Q)

open cover, 326
open sets, 326
order statistics, 154
Ornstein—Uhlenbeck process, 280
orthonormal

basis, 333

system, 333
outer measure, 344

P
p-system, 4
Pareto distribution, 45
partition, 9
past information until a stopping
time, 157
Picard iteration, 282
Poisson
distribution, 45
random measure, 72, 226
polarization identity, 254
positive normal distribution, 223
positive semidefinite, 54, 70
power set, 3
predictable process, 150, 164, 165,
169, 241, 243
probability
complete — space, 213
conditional —, 128
density function, 43
distribution, 41
generating function, 60
mass function, 43, 46
measure, 15, 36
transition kernel, 27
process
Brownian motion —, 71
diffusion —, 278
gamma —, 83
Gaussian —, 70

geometric Brownian motion —,
298
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Index

It6 —, 265, 270
Lévy —, 78
Markov chain —, 147
Ornstein—Uhlenbeck —, 280
Poisson —, 75
Wiener
time-change —, 257
Wiener —, 71, 241
product
o -algebra, 6
measure, 19
rule for It6 processes, 275
space, 6, 40
progressively measurable, 247, 261
projection property, 124

Q

O-matrix, 148
quadratic variation, 267
of a Wiener process, 230
of an Itd process, 267
quantile, 87

R
Radon—Nikodym theorem, 26
random
counting measure, 72
experiment, 35
variable, 38
vector
covariance of —, 54
expectation of —, 53
walk, 47, 80, 146, 159, 203
rate function of a Poisson random
measure, 72
real-valued function, 8
reflected Wiener process, 224
restriction of a measure, 32
right-continuous filtration, 186, 213

S

sample space, 35
Schauder functions, 338

section of a function, 32
segmentation, 162, 230
semimartingale, 261
separable o-algebra, 182
o -algebra, 3
Borel —, 4
generator of —, 4
> -finite, 15
o -finite, 15
simple process, 242
sine series expansion
of Wiener process, 209
Slutsky’s theorem, 120
square integrability, 56
stable process, 226
standard Brownian motion, 204
standard deviation, 53
standard measurable space, 130
stochastic differential equation, 297
multidimensional —, 278
time-homogeneous —, 278
stochastic exponential, 288, 293
stochastic integral, 72, 78, 148, 150,
162
Stolz—Cesaro limit, 115
stopping time, 156
strong solution
of an SDE, 284
Student’s ¢ distribution, 44
Sturm—Liouville, 335
subadditivity
countable —, 17
subcover, 326
subgradient, 56
supremum, 10
supremum norm, 329

T

tail o-algebra, 180
time-homogeneous SDE, 278
topological space, 4, 326
topology, 326
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total variation, 162, 231
trace

of a measure, 32

of a measure space, 31
transition

density, 218

kernel, 27

matrix, 145

rate, 148
triangle inequality, 57

U

uniform distribution, 45

uniform norm, 211

uniformly continuous, 327
uniformly integrable, 104, 107, 160,

176, 177, 179
uniqueness of a measure, 18

\Y%

variance, 53, 59

variation of a function, 162, 231
vector space, 328

version of a function, 26, 125

W

weak Novikov condition, 302

Weibull distribution, 45

Weierstrass approximation theorem,

120, 329

Wiener process, 71, 201, 241
d-dimensional —, 205
time-change, 257
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