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PREFACE

This book resulted from various probability and statistics courses that we have
taught over the years. Of course, there are many good books available that teach
probability from a very elementary to a highly advanced level, so why the need for
another one? We wanted to create a probability course that was (1) mathematically
rigorous at an upper-undergraduate/lower-graduate level, and (2) would cover most
of the important topics in advanced probability and stochastic processes, while (3)
still being concise enough to fit into a one-semester curriculum. Another reason
why we wrote the book is that it is enjoyable to try to explain mathematical “truth” in
as simple a way as possible. We hope that we have succeeded in this. To paraphrase
Richard Feynman: “if you cannot explain something in simple terms, you don’t
really understand it”.

Naturally, in writing this book, we have been influenced by our own teachers.
In particular, Dirk has been fortunate to have experienced the probability lectures
of Erhan Çinlar in person at Princeton, and several results in this book have been
inspired by his lecture notes, which later appeared in Çinlar (2011). Other main
sources used were Billingsley (1995), Chung and Williams (1990), Grimmett and
Stirzaker (2001), Kallenberg (2021), Karatzas and Shreve (1998), Klebaner (2012),
Kreyszig (1978), Kroese et al. (2019), Kroese et al. (2011), and Mörters and Peres
(2010). The online lecture notes of Lalley (2012) were also very helpful.

Ideally, the reader should be well-versed in mathematical foundations (calculus,
linear algebra, real- and complex-analysis, etc.), and should have had some exposure
to elementary probability and stochastic processes, including topics such as Markov
chains and Poisson processes, although the latter is not essential.

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. I. Botev. xi



xii Preface

An outline of the rest of the book is as follows. We start by emphasizing the
crucial role of mathematical notation and introduce the “house-style” of the book.

An advanced course in probability should have measure-theoretic foundations.
For this reason, Chapter 1 reviews the fundamentals of measure theory. We introduce
𝜎-algebras, measurable spaces, measurable functions, measures, and integrals.

Probability starts in earnest in Chapter 2. We explain how concepts such as
probability spaces, random variables, stochastic processes, probability distribu-
tions, and expectations, can be elegantly introduced and analysed through measure
theory. We also discuss 𝐿𝑝 spaces, moment and characteristic functions, the role
of independence in probability, and how filtrations of 𝜎-algebras can model in-
formation flow. Important stochastic processes such as Gaussian processes, Poisson
random measures, and Lévy processes make their first appearance at the end of the
chapter.

Chapter 3 deals with convergence concepts in probability. We discuss almost
sure convergence, convergence in probability, convergence in distribution, and 𝐿𝑝
convergence. The notion of uniform integrability connects various modes of con-
vergence. Main applications are the Law of Large Numbers and the Central Limit
Theorem.

Chapter 4 describes how the concept of conditioning can be used to process
additional knowledge about a random experiment. We first introduce conditional
expectations and then conditional distributions. Two existence results for probability
spaces are also presented. At the end of the chapter we introduce Markov chains
and Markov jump processes, and show how they are related to Lévy processes and
Poisson random measures.

Martingales form an important class of stochastic processes. They are introduced
and discussed in Chapter 5. Stopping times, filtrations, and uniform integrability
play important roles in their analysis. The key results are Doob’s stopping theorem
and the martingale convergence theorem. Example applications include proofs for
the Law of Large Numbers and the Radon–Nikodym theorem.

Chapter 6 deals with the Wiener process and Brownian motion. We prove the
existence of the Wiener process and put some of its many properties on display, in-
cluding its path properties, the strong Markov property, and the reflection principle.
Various martingales associated with the Wiener process are also discussed, as well
as its relation to the Laplace operator. We show that the maximum and hitting time
processes have close connections to Lévy processes and Poisson random measures.

Chapter 7 concludes with a detailed introduction to stochastic integrals with
respect to the Wiener process, Itô diffusions, stochastic differential equations, and
stochastic calculus.

There are many definitions, theorems, and equations in this book, but not all
of them are equally important. The most important definitions and theorems are
displayed in blue and yellow boxes, respectively:



Preface xiii

Definition 1: Complex i

The number i is given by

(2) i =
√
−1.

Theorem 3: Euler’s Identity

It holds that

(4) ei𝜋 + 1 = 0.

It is important to note that definitions, theorems, equations, figures, etc., are
numbered consecutively using the same counter. This facilitates searches in the
text. Less important definitions may appear within the text, and are often stressed
by the use of italics. Less fundamental theorems are stated as propositions or
lemmas and are displayed in boxes with a lighter color. Sections, subsections, and
exercises are numbered separately.

We have included many exercises throughout the book and encourage the reader
to attempt these, as actions speak louder than (reading) words. Similarly, the
inclusion of various algorithms, as well as pseudo and actual MATLAB code, will
help with a better understanding of stochastic processes, when actually simulating
these on a computer. Solutions to selected exercises (indicated by a ∗) are given in
Appendix A. Appendix B summarizes some important results on function spaces.
Appendix C gives a complete proof of the existence of the Lebesgue measure.

Acknowledgments
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without the pioneering work of the giants of probability: Kolmogorov, Lévy, Doob,
and Itô. This work was supported by the Australian Research Council, under grant
number DP200101049.

Dirk Kroese and Zdravko Botev
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NOTATION

Notation is the heart of mathematics. Its function is to keep the myriad of ideas
and concepts of the mathematical body connected and alive. A poorly performing
notation system confuses the brain.

We have tried to keep the notation as simple as possible, descriptive, easy to
remember, and consistent. We hope that this will help the reader to quickly recognize
the mathematical objects of interest (functions, measures, vectors, matrices, random
variables, etc.) and understand intricate ideas. The choice of fonts plays a vital role
in the notation. In this book we use the following conventions:

• Boldface font is used to indicate composite objects, such as column vectors
𝒙 = [𝑥1, . . . , 𝑥𝑛]⊤ and matrices X = [𝑥𝑖 𝑗 ]. Note also the difference between the
upright bold font for matrices and the slanted bold font for vectors.

• Random variables are generally specified with upper case roman letters 𝑋,𝑌, 𝑍
and their values with lower case letters 𝑥, 𝑦, 𝑧. Random vectors are thus denoted in
upper case slanted bold font: 𝑿 = [𝑋1, . . . , 𝑋𝑛]⊤.

• Sets are generally written in upper case roman font 𝐷, 𝐸, 𝐹 and their 𝜎-algebras
are in calligraphic font D, E, F . The set of real numbers uses the common
blackboard bold font R. Expectation E and probability P also use the latter font.

• Probability distributions use a sans serif font, such as Bin and Gamma. Excep-
tions to this rule are the standard notations N and U for the normal and uniform
distributions.

A careful use of delimiters (parentheses, brackets, braces, etc.) in formulas
is important. As a rule, we omit delimiters when it is clear what the argument
is of a function or operator. For example, we prefer E𝑋2 to E[𝑋2] and ln 𝑥 to
ln(𝑥). Summation and other indexes will also be suppressed when possible. Hence,
we write (𝑥𝑛) rather than (𝑥𝑛, 𝑛 ∈ N), lim 𝑥𝑛 instead of lim𝑛→∞ 𝑥𝑛, and

∑
𝑛 𝑥𝑛 for∑∞

𝑛=0 𝑥𝑛. When defining sets and other unordered objects, we will use curly braces

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. I. Botev. xv



xvi Notation

{ }. In contrast, parentheses ( ) and square brackets [ ] signify ordered objects,
such as sequences and vectors.

Measures are generally denoted by Greek letters 𝜆, 𝜇, 𝜈, and 𝜋. An exception is
the occasional use of the notation Leb for the Lebesgue measure. Whether 𝜋 plays
the role of a measure or of the fundamental constant 3.14159 . . . will be clear from
the context.

For (Lebesgue) integrals we favor the notations
∫
𝜇(d𝑥) 𝑓 (𝑥),

∫
𝑓 d𝜇 or just 𝜇 𝑓

over
∫
𝑓 (𝑥)𝜇(d𝑥); and when 𝜇 is the Lebesgue measure, we simply write

∫
d𝑥 𝑓 (𝑥).

Putting the integrating measure directly after the integral sign avoids unnecessary
brackets in repeated integrals; for example,∫

𝜇(d𝑥)
∫

𝜈(d𝑦) 𝑓 (𝑥, 𝑦) instead of
∫ (∫

𝑓 (𝑥, 𝑦)𝜈(d𝑦)
)
𝜇(d𝑥).

We make an exception for stochastic and Stieltjes integrals, which have the integrator
at the end, such as in

∫
𝐹𝑡 d𝑊𝑡 .

The qualifiers positive and increasing are used in a “lenient” sense. Thus,
a positive function can take values ≥ 0 and an increasing function can remain
constant in certain intervals. We add the adjective strict to indicate the stringent
sense. Thus, a strictly positive function can only take values > 0.

A function 𝑓 is a mapping from one set to another set. Its function value at 𝑥 is
𝑓 (𝑥). The two should not be confused.

Reserved letters

B Borel 𝜎-algebra on R

C set of complex numbers
d differential symbol
E expectation
e the number 2.71828 . . .
1{𝐴} or 1𝐴 indicator function of set 𝐴
i the square root of −1
ln (natural) logarithm
N set of natural numbers {0, 1, . . .}
O big-O order symbol: 𝑓 (𝑥) = O(𝑔(𝑥)) if | 𝑓 (𝑥) | ≤ 𝛼𝑔(𝑥) for some

constant 𝛼 as 𝑥 → 𝑎

𝑜 little-o order symbol: 𝑓 (𝑥) = 𝑜(𝑔(𝑥)) if 𝑓 (𝑥)/𝑔(𝑥) → 0 as 𝑥 → 𝑎

P probability measure
𝜋 the number 3.14159 . . .; also used for measures
Q set of rational numbers
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R set of real numbers (one-dimensional Euclidean space)
T index (time) set of a stochastic process
Ω sample space
Z set of integers {. . . ,−1, 0, 1, . . .}

General font/notation rules

𝑥 scalar
𝒙 vector
𝑿 random vector
X matrix

Matrix/vector notation

A⊤, 𝒙⊤ transpose of matrix A or vector 𝒙
A−1 inverse of matrix A
det(A) determinant of matrix A
|A| absolute value of the determinant of matrix A

Specific notation

∩ 𝐴 ∩ 𝐵 is the intersection of sets 𝐴 and 𝐵
∪ 𝐴 ∪ 𝐵 is the union of sets 𝐴 and 𝐵
\ 𝐴 \ 𝐵 is the set difference between sets 𝐴 and 𝐵
⊆ 𝐴 ⊆ 𝐵 means that 𝐴 is a subset of, or is equal to, 𝐵
⊇ 𝐴 ⊇ 𝐵 means that 𝐴 contains or is equal to 𝐵
∨ 𝑥 ∨ 𝑦 is the maximum of 𝑥 and 𝑦. Also, F ∨ G is the smallest

𝜎-algebra generated by the sets in F ∪ G
∧ 𝑥 ∧ 𝑦 is the minimum of 𝑥 and 𝑦
◦ 𝑓 ◦ 𝑔 is the composition of functions 𝑓 and 𝑔. Also used to define the

Itô–Stratonovich integral
∫
𝑌𝑠 ◦ d𝑋𝑠

⊗ E ⊗ F is the product 𝜎-algebra of E and F . Also, 𝜇 ⊗ 𝜈 is the
product measure of measures 𝜇 and 𝜈.

∈ is an element of, belongs to
∀ for all
∼ is distributed as
iid∼, ∼iid are independent and identically distributed as



xviii Notation

approx.∼ is approximately distributed as
𝐶 [0, 1] space of continuous functions on [0, 1]
EF𝑠 , E𝑠 conditional expectation given F𝑠
E𝒙 expectation operator under which a process starts at 𝒙
F+ set of positive F -measurable numerical functions
𝐿2 [0, 1] space of square-integrable functions on [0, 1]
N extended natural numbers: N ∪ {∞}
P𝒙 probability measure under which a process starts at 𝒙
R extended real line: R ∪ {−∞,∞}
R𝑛 𝑛-dimensional Euclidean space
R+ positive real line: [0,∞)
𝜕𝑖 𝑓 partial derivative of 𝑓 with respect to component 𝑖
𝜕𝑖 𝑗 𝑓 second partial derivative of 𝑓 with respect to components 𝑖 and 𝑗
𝝏 𝑓 gradient of 𝑓
𝝏2 𝑓 Hessian matrix of 𝑓
Δ 𝑓 Laplace operator acting on 𝑓

𝑓 + max{ 𝑓 , 0}
𝑓 − max{− 𝑓 , 0}
≈ is approximately
≪ is absolutely continuous with respect to
:=, =: is defined as, is denoted by
⇒ implies
→ converges/tends to
↑ increases to
↓ decreases to
↦→ maps to
a.s.→ converges almost surely to
cpl.→ converges completely to
d→ converges in distribution to
P→ converges in probability to
𝐿𝑝→ converges in 𝐿𝑝 norm to
| · | absolute value
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∥ · ∥ norm; e.g., Euclidean norm or supremum norm. Also, ∥Π∥ is the
mesh of a segmentation

∥ · ∥𝑝 𝐿𝑝 norm
⌈𝑥⌉ smallest integer larger than 𝑥
⌊𝑥⌋ largest integer smaller than 𝑥
⟨𝑋⟩ quadratic variation process of 𝑋
⟨·, ·⟩ ⟨ 𝑓 , 𝑔⟩ is the inner product of functions 𝑓 and 𝑔. Also, ⟨𝑋,𝑌⟩ is the

covariation process of stochastic processes 𝑋 and 𝑌

Probability distributions

Ber Bernoulli
Beta beta
Bin binomial
Exp exponential
F Fisher–Snedecor 𝐹
Geom geometric
Gamma gamma
Itô Itô process
N normal or Gaussian
Pareto Pareto
Poi Poisson
t Student’s 𝑡
U uniform

Abbreviations

a.s. almost surely
cdf cumulative distribution function
iid independent and identically distributed
MGF moment generating function
Leb Lebesgue measure
ODE ordinary differential equation
pdf probability density function (discrete or continuous)
SDE stochastic differential equation
UI uniformly integrable





CHAPTER 1

MEASURE THEORY

The purpose of this chapter is to introduce the main ingredients of measure
theory: measurable spaces, measurable functions, measures, and integrals.
These objects will form the basis for a rigorous treatment of probability, to be
discussed in subsequent chapters.

1.1 Measurable Spaces
Measure theory is a branch of mathematics that studies measures and integrals on
general spaces. A measure can be thought of as a generalization of a length, area, or
volume function to an arbitrary one- or multi-dimensional space. We will see that
the concept is, in fact, much more general. Why do we need a study of length? Is it
not obvious that, for example, the length of an interval (𝑎, 𝑏) with 𝑎 < 𝑏 is equal to
𝑏 − 𝑎? The following two examples indicate that there are potential complications
with the “length” concept.

Example 1.1 (Cantor Set) Consider the set that is constructed in the following
way, illustrated in Figure 1.2:

Figure 1.2: Construction of the Cantor set.

Take the interval [0, 1]. Divide it into three parts: [0, 1
3 ], (

1
3 ,

2
3 ), and [ 2

3 , 1].
Cut out the middle interval 𝐷0,1 := ( 1

3 ,
2
3 ). Next, divide the remaining two closed

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. I. Botev. 1
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intervals in the same way by removing the middle parts (i.e., removing the open
intervals𝐷1,1 := ( 1

9 ,
2
9 ) and𝐷1,2 := ( 7

9 ,
8
9 )), and continue this procedure recursively,

ad infinitum. The resulting set is called the Cantor set. Figure 1.2 only shows a few
steps of the construction, starting with the interval [0, 1] of length 1 at the bottom
and ending with a set that is the union of 32 intervals with a combined length of
(2/3)5 ≈ 0.13 at the top. If we keep going, we end up with a “dust” of points,
invisible to the eye, with a combined length of 0. However, the cardinality of this
Cantor set (i.e., the number of elements in this set) is equal to the cardinality of the
set of real numbers, R; see Exercise 19.

Although the above example may seem artificial, similar sets appear quite nat-
urally in the study of random processes. For example, we will see in Chapter 6 that
the set of times when a Wiener process is zero behaves very much like the Cantor
set. The Cantor set shows that the “length” of a set is fundamentally different from
its size or cardinality. Even more bewildering is that some sets may not even have
a length, as shown in the following example. Here, we make use of the axiom of
choice, which states that, given an arbitrary collection of sets, we may construct a
new set by taking a single element from each set in the collection. The axiom of
choice cannot be proved or disproved, but states a self-evident fact.

Example 1.3 (A Set Without Length) We wish to construct a set 𝐶 on the
unit circle 𝑆 that cannot have a length. We can denote the points on the circle by
ei𝑥 = (cos 𝑥, sin 𝑥), 𝑥 ∈ [0, 2𝜋), and we know that the circle has length 2𝜋.

Let us divide the circle into equivalence classes: each point ei𝑥 is grouped into
a class with all points of the form ei(𝑛+𝑥) for all 𝑛 ∈ Z, where Z is the set of integers.
Each equivalence class has a countably-infinite number of points (one for each
𝑛 ∈ Z) and there are uncountably many of these equivalence classes.

Applying the axiom of choice, we can make a subset 𝐶 of the circle by electing
one member from each equivalent class as the representative of that equivalence
class. The collection of representatives, 𝐶, can thus be viewed as a “congress” of
the points on the circle.

The set 𝐶 has uncountably many elements. What else can we say about 𝐶? Let
𝐶𝑛 := ei𝑛𝐶 be a rotated copy of 𝐶, for each 𝑛 ∈ Z. Then, by construction of 𝐶, the
union ∪𝑛𝐶𝑛 = 𝑆 and, moreover, all the copies are disjoint (non-overlapping).

Since the union of the 𝐶𝑛 is the whole circle, i.e.,

𝑆 = 𝐶0 ∪ 𝐶1 ∪ 𝐶−1 ∪ · · ·
and all copies 𝐶𝑛 must have the same length as 𝐶 (as they are simply obtained by a
rotation) — if they indeed have a length —, we must have

(1.4) 2𝜋 = length(𝑆) = length(𝐶) + length(𝐶) + · · ·
Suppose that 𝐶 has some length 𝑐 ≥ 0. Then, (1.4) leads to a contradiction, as we
either get 2𝜋 = 0 or 2𝜋 = ∞. Hence, 𝐶 cannot have a length.
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The above examples illustrate that, when dealing with large sets such as R or
the interval (0, 1], we cannot expect every subset therein to have a length. Instead,
the best we can do is to define the length only for certain subsets.

In what follows, we let 𝐸 be an arbitrary set; e.g., the interval (0, 1] or the
square (0, 1] × (0, 1]. We wish to assign a “measure” (think of “length” or “area”)
to certain subsets of 𝐸 . We can apply the usual set operations to subsets of 𝐸 , as
illustrated in Figure 1.5.

𝐴𝑐𝐴 ∩ 𝐵 𝐴 ∪ 𝐵 𝐴 \ 𝐵

𝐴 𝐴 𝐴𝐵𝐵 𝐴 𝐵

Figure 1.5: Venn diagrams of set operations: intersection, union, complement, and
set difference.

The collection of all subsets to which we wish to assign a measure is usually a
𝜎-algebra:

Definition 1.6: 𝜎-Algebra

A 𝜎-algebra E on 𝐸 is a collection of subsets of 𝐸 that contains 𝐸 itself, and
that is closed under complements and countable unions; that is:
1. 𝐸 ∈ E.
2. If 𝐴 ∈ E, then also 𝐴𝑐 ∈ E.
3. If 𝐴1, 𝐴2, . . . ∈ E, then also ∪𝑛𝐴𝑛 ∈ E.

A 𝜎-algebra is also closed under countable intersections: If 𝐴1, 𝐴2, . . . ∈ E,
then also ∩𝑛𝐴𝑛 ∈ E; see Exercise 1. If instead in Definition 1.6 the collection E
is closed only under finite unions (while Items 1. and 2. remain the same), then E
is said to be an algebra. Convince yourself that the conditions of a 𝜎-algebra are
natural and are minimal requirements to have, for a collection of sets to which we
wish to assign a measure.

Example 1.7 (Algebra and 𝜎-Algebra) Let 𝐸 := (0, 1] and let E0 be the
collection of finite unions of non-overlapping intervals of the form (𝑎, 𝑏], where
0 ≤ 𝑎 < 𝑏 ≤ 1; we also add ∅ to E0. For example, the set (0, 1/4] ∪ (1/3, 1/2] lies
in E0. Note that E0 is an algebra. However, it is not a 𝜎-algebra; see Exercise 6.

For any set 𝐸 , the collection of all subsets of 𝐸 , the so-called power set of 𝐸 ,
written as 2𝐸 , is of course a 𝜎-algebra. Unfortunately, as Example 1.3 indicates, it
will often be too large to allow a proper measure to be defined thereon.



4 1.1. Measurable Spaces

Let 𝐸 be a set with 𝜎-algebra E. The pair (𝐸, E) is called a measurable
space. The usual way to construct a 𝜎-algebra on a set 𝐸 is to start with a smaller
collection C of sets in 𝐸 and then take the intersection of all the 𝜎-algebras that
contain C. There is at least one 𝜎-algebra that contains C: the power set of 𝐸 ,
so this intersection is not empty. That the intersection of 𝜎-algebras is again a
𝜎-algebra can be easily checked; see Exercise 7. We write 𝜎(𝐶) (or also 𝜎C) for
this 𝜎-algebra and call it the 𝜎-algebra that is generated by C.

Example 1.8 (Borel 𝜎-algebra on R𝑛) Consider 𝐸 := R, and let C be the
collection of all intervals of the form (−∞, 𝑥] with 𝑥 ∈ R. The 𝜎-algebra that is
generated by C is called the Borel 𝜎-algebra on R; we denote it by B. This B
contains all sets of interest to us: intervals, countable unions of intervals, and sets
of the form {𝑥}. We can do the same in 𝑛 dimensions. Let 𝐸 := R𝑛 and let C be the
collection of subsets of the form (−∞, 𝑥1] × · · · × (−∞, 𝑥𝑛], 𝑥1, . . . , 𝑥𝑛 ∈ R. The
𝜎-algebra 𝜎(C) is called the Borel 𝜎-algebra on R𝑛; we denote it by B𝑛.

In the above example, we could have taken different collections C to generate the
Borel 𝜎-algebra on R. For instance, we could have used the collection of open sets
on R. More generally, for any topological space (see Definition B.4), the 𝜎-algebra
generated by the open sets is called the Borel 𝜎-algebra on this set.

Note that the collections C in Example 1.8 are closed under finite intersections;
e.g., (−∞, 𝑥] ∩ (−∞, 𝑦] = (−∞, 𝑥] if 𝑥 ≤ 𝑦. Such a collection of sets is called a
p-system (where p is a mnemonic for “product”).

Definition 1.9: p-System

A collection C of subsets of 𝐸 is called a p-system (or 𝜋-system) if it is closed
under finite intersections.

One final collection of sets that will be important for us, mainly to simplify
proofs, is the Dynkin- or d-system (an equivalent definition is given in Exercise 10):

Definition 1.10: d-System

A collection D of subsets of 𝐸 is called a d-system (or 𝜆-system) if it satisfies
the following three conditions:
1. 𝐸 ∈ D.
2. If 𝐴, 𝐵 ∈ D, with 𝐴 ⊇ 𝐵, then 𝐴 \ 𝐵 ∈ D.
3. If (𝐴𝑛) ∈ D, with 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ⊆ · · · ⊆ ∪𝑛𝐴𝑛 =: 𝐴, then 𝐴 ∈ D.
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Similar to a 𝜎-algebra, the intersection of an arbitrary number of d-systems is
again a d-system, and the intersection of all d-systems that contains a collection C
of sets is called the d-system that is generated by C; we write 𝑑 (C) for it. The two
main theorems that connect p-systems, d-systems, and 𝜎-algebras are given next.

Theorem 1.11: 𝜎-Algebra as a d- and p-System

A collection of subsets of 𝐸 is a 𝜎-algebra if and only if it is both a p-system
and a d-system on 𝐸 .

Proof. Obviously, a𝜎-algebra is both a d- and p-system. We now show the converse.
SupposeE is both a d- and p-system. We check the three conditions in Definition 1.6:

1. 𝐸 ∈ E, because E is a d-system.

2. E is closed under complements, as 𝐸 ∈ E and for any 𝐵 ∈ E we have 𝐵𝑐 =

𝐸 \ 𝐵 ∈ E by the second condition of a d-system.

3. E is closed under finite unions: 𝐴 ∪ 𝐵 = (𝐴𝑐 ∩ 𝐵𝑐)𝑐 ∈ E, because E is closed
under complements (as just shown) and is a p-system. It remains to show that it
is also closed under countable unions. Let 𝐴1, 𝐴2, . . . ∈ E. Define 𝐵1 := 𝐴1 and
𝐵𝑛 := 𝐵𝑛−1 ∪ 𝐴𝑛, 𝑛 = 2, 3, . . .. As E is closed under finite unions (just shown),
each 𝐵𝑛 ∈ E. Moreover, by condition 3 of a d-system, ∪𝑛𝐵𝑛 ∈ E. But this union
is also ∪𝑛𝐴𝑛. This completes condition 3 for a 𝜎-algebra.

□

Theorem 1.12: Monotone Class Theorem

If a d-system contains a p-system, then it also contains the𝜎-algebra generated
by that p-system.

Proof. The proof requires the following result, which is easily checked: If D is a
d-system on 𝐸 and 𝐵 ∈ D, then

(1.13) D𝐵 := {𝐴 ∈ D : 𝐴 ∩ 𝐵 ∈ D} is a d-system.

Consider a d-system that contains a p-system C. We do not need to give it a
name, as all we need to appreciate is that it contains the d-system D := 𝑑 (C) that is
generated by C, as 𝑑 (C) is the smallest d-system that contains C. We want to show
that D contains 𝜎(C), and for this it suffices to show that D is a 𝜎-algebra itself.
By Theorem 1.11 we just need to show that D is a p-system (i.e., is closed under
finite intersections).

First take a set 𝐵 in C and consider the set D𝐵 defined in (1.13). We know it is
a d-system, as 𝐵 ∈ C ⊆ D. It also contains C, as C is a p-system. Hence, D𝐵 = D.
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In other words: for any 𝐵 ∈ C the intersection of 𝐵 with any set in D lies in D.
Now take any set 𝐴 ∈ D and consider the set

D𝐴 := {𝐵 ∈ D : 𝐴 ∩ 𝐵 ∈ D}.

It is again a d-system (by (1.13)), and we have just shown that it contains every set 𝐵
of C. Hence, D𝐴 ⊇ D. That is, 𝐴, 𝐵 ∈ D ⇒ 𝐴 ∩ 𝐵 ∈ D, as had to be shown. □

A final important definition in this section is that of a product space of two
measurable spaces.

Definition 1.14: Product Space

The product space of two measurable spaces (𝐸, E) and (𝐹, F ) is the meas-
urable space (𝐸 × 𝐹, E ⊗ F ), where 𝐸 × 𝐹 := {(𝑥, 𝑦) : 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹} is the
Cartesian product of 𝐸 and 𝐹, and E ⊗ F is the product 𝜎-algebra on 𝐸 × 𝐹
that is generated by the rectangle sets

𝐴 × 𝐵, 𝐴 ∈ E, 𝐵 ∈ F .

Example 1.15 (Borel 𝜎-algebra onR2) The product space of (R,B) and (R,B)
is (R2,B2), with B2 = B ⊗ B. We can think of the product 𝜎-algebra B ⊗ B as the
collection of sets in R2 that can be obtained by taking complements and countable
unions of rectangles in R2. In particular, we can obtain all the usual geometric
shapes: triangles, polygons, disks, etc. from this procedure.

Figure 1.16: A shape being approximated by a countable union of rectangles in the
product set B2.
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1.2 Measurable Functions
Now we have established the basics of measurable spaces, we are going to define a
class of “well-behaved” functions between such spaces.

Definition 1.17: Measurable Function

Let (𝐸, E) and (𝐹, F ) be two measurable spaces, and let 𝑓 be a function
from 𝐸 to 𝐹. The function 𝑓 is called E/F -measurable if for all 𝐵 ∈ F it
holds that

(1.18) {𝑥 ∈ 𝐸 : 𝑓 (𝑥) ∈ 𝐵} ∈ E .

The set in (1.18) is called the inverse image of 𝐵 under 𝑓 , and is also written as

𝑓 −1(𝐵), 𝑓 −1𝐵, or { 𝑓 ∈ 𝐵}.

(𝐸, E)

(𝐹, F )
𝑓

𝐵𝑓 −1𝐵

Figure 1.19: All elements in 𝑓 −1𝐵 are mapped to somewhere in 𝐵.

Note that here 𝑓 −1 does not mean the functional inverse of 𝑓 . Notwithstanding,
if 𝑓 has an inverse 𝑓 †, then 𝑓 −1{𝑦} = { 𝑓 †(𝑦)}, so the notation 𝑓 −1 is natural.

As most 𝜎-algebras in practice are generated from smaller sets, the following
theorem is useful in checking if a function is measurable:

Theorem 1.20: Measurable Function on a Generated 𝜎-Algebra

A function 𝑓 : 𝐸 → 𝐹 is E/F -measurable if and only if (1.18) holds for all
𝐵 ∈ F0, with F0 generating F .

Proof. Necessity is obvious. To prove sufficiency, we start from the fact that
{ 𝑓 ∈ 𝐵} ∈ E for all 𝐵 ∈ F0. Now consider the collection of sets G := {𝐵 ∈ F :
𝑓 −1(𝐵) ∈ E}. By assumption, this collection contains the sets in F0. Is G a
𝜎-algebra? Let us check this.
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1. Obviously, 𝐹 ∈ G, as 𝐸 = 𝑓 −1(𝐹).
2. Take 𝐵 ∈ G. Is its complement also in G? Yes, because 𝑓 −1(𝐵𝑐) is the comple-

ment of 𝑓 −1(𝐵) (Hint: draw a picture).
3. Finally, take a sequence (𝐵𝑛) of sets in G. Then, the inverse image of their union

is
𝑓 −1(∪𝑛𝐵𝑛) = ∪𝑛 𝑓 −1(𝐵𝑛),

and so the union lies in G.

Consequently, G is a 𝜎-algebra. Also, it contains every element of F0, and so it
must be at least as large as (i.e., contain all elements of) 𝜎(F0) = F . That is,
G ⊇ F . But, by the definition of G, we also have G ⊆ F . So the two must be
equal. And hence 𝑓 −1(𝐵) ∈ E for all 𝐵 ∈ F . □

The next theorem shows that measurable functions of measurable functions are
again measurable. Recall that the composition 𝑔 ◦ 𝑓 of functions 𝑔 and 𝑓 is the
function 𝑥 ↦→ 𝑔( 𝑓 (𝑥)).

Theorem 1.21: Composition of Measurable Functions

Let (𝐸, E), (𝐹, F ), and (𝐺,G) be measurable spaces. If 𝑓 : 𝐸 → 𝐹 and
𝑔 : 𝐹 → 𝐺 are respectivelyE/F - andF/G-measurable, then 𝑔 ◦ 𝑓 : 𝐸 → 𝐺

is E/G-measurable.

Proof. Take any set 𝐵 ∈ G and let 𝐶 := {𝑔 ∈ 𝐵} = 𝑔−1(𝐵). By the measurability
of 𝑔, 𝐶 ∈ F . Moreover, since 𝑓 is E/F -measurable, the set { 𝑓 ∈ 𝐶} belongs to E.
But this set is the same as {𝑔 ◦ 𝑓 ∈ 𝐵} (make a diagram to verify). Thus, the latter
set is a member of E for any 𝐵 ∈ G. In other words, 𝑔 ◦ 𝑓 is E/G-measurable. □

Let (𝐸, E) be a measurable space. We will often be interested, especially when
defining integrals, in real-valued functions that are E/B-measurable, where B is
the Borel 𝜎-algebra in R. In fact, it will be convenient to consider the extended
real line R := [−∞, +∞], adding two “infinity” points to the set R, and extending
the arithmetic in a natural way, but leaving operations such as ∞ − ∞ and ∞/∞
undefined. The corresponding Borel 𝜎-algebra, denoted B, is generated by the
p-system consisting of intervals [−∞, 𝑟], 𝑟 ∈ R.

Definition 1.22: Numerical Function

Let (𝐸, E) be a measurable space.
• A function 𝑓 : 𝐸 → R is called a real-valued function on 𝐸 .
• A function 𝑓 : 𝐸 → R := [−∞, +∞] is called a numerical function on 𝐸 .
• An E/B-measurable numerical function 𝑓 is said to be E-measurable; we

write 𝑓 ∈ E. Also, E+ is the class of positive E-measurable functions.
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Theorem 1.20 shows that to check if 𝑓 ∈ E, all we have to verify is that

{ 𝑓 ≤ 𝑟} = 𝑓 −1 [−∞, 𝑟] ∈ E for all 𝑟 ∈ R.

Example 1.23 (Indicator Function) Let (𝐸, E) be a measurable space. It will
turn out that the building block for all E-measurable functions is the indicator
function (in real analysis also called characteristic function — not to be confused
with the characteristic function defined in Section 2.6.2). The indicator function of
a set 𝐴 ⊆ 𝐸 is defined as

1𝐴 (𝑥) :=

{
1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴.

If 𝐴 ∈ E, then 1𝐴 is E-measurable (in our notation: 1𝐴 ∈ E). However, if 𝐴 ∉ E,
then 1𝐴 is not E-measurable.

The moral of the previous example is that not all numerical functions are meas-
urable, but if we start from measurable indicator functions, we should be able to
construct a large class of measurable functions. We will show this next.

The first extension is to take linear combinations of measurable indicator func-
tions. A numerical function 𝑓 on 𝐸 is called simple if there exists an 𝑛 ∈ {1, 2, . . .}
and subsets 𝐴𝑖 ∈ E, 𝑖 = 1, . . . , 𝑛, such that 𝑓 can be written as

𝑓 =

𝑛∑︁
𝑖=1

𝑎𝑖1𝐴𝑖 ,

with each 𝑎𝑖 ∈ R. Any simple function can be written in a “canonical” form, where
the sets {𝐴𝑖} form a partition of 𝐸 ; that is, they do not overlap and their union is 𝐸 .
It is easy to check that simple functions are measurable. Moreover, with 𝑓 and 𝑔
simple functions, any of the functions

𝑓 + 𝑔, 𝑓 − 𝑔, 𝑓 𝑔, 𝑓 /𝑔, 𝑓 ∧ 𝑔︸︷︷︸
min{ 𝑓 , 𝑔}

, 𝑓 ∨ 𝑔︸︷︷︸
max{ 𝑓 , 𝑔}

is again a simple function. For the function 𝑓 /𝑔 we require that 𝑔(𝑥) ≠ 0 for all
𝑥 ∈ 𝐸 . We can further expand the collection of measurable functions that can
be obtained from simple functions by taking limits of sequences of measurable
functions. Let us first recall some definitions regarding sequences of real numbers.
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Definition 1.24: Infimum and Supremum

Let (𝑎𝑛) be a sequence of real numbers.
1. The infimum, inf 𝑎𝑛, is the greatest element in R that is less than or equal

to all 𝑎𝑛. It can be −∞.

2. The supremum, sup 𝑎𝑛, is the smallest element in R that is greater than or
equal to all 𝑎𝑛. It can be ∞.

If for some 𝑁 ∈ N it holds that inf 𝑎𝑛 = 𝑎𝑁 , then we can write inf 𝑎𝑛 also
as min 𝑎𝑛. In that case, the set of indexes for which the minimum is attained is
denoted by argmin 𝑎𝑛. In the same way, when the supremum is attained by some
𝑁 ∈ argmax 𝑎𝑛, we can write max 𝑎𝑛 instead of sup 𝑎𝑛. Similarly, the infimum and
supremum can be defined for any set 𝐴 ⊆ R. In particular, if 𝐴 := {𝑎𝑛, 𝑛 ∈ N},
then inf 𝐴 = inf 𝑎𝑛.

Definition 1.25: Liminf and Limsup

Let (𝑎𝑛) be a sequence of real numbers.

1. The limit inferior, lim inf 𝑎𝑛, is the eventual lower bound for the sequence
(𝑎𝑛); that is, lim inf 𝑎𝑛 := lim𝑚→∞ inf𝑛≥𝑚 𝑎𝑛 = sup𝑚 inf𝑛≥𝑚 𝑎𝑛.

2. The limit superior, lim sup 𝑎𝑛, is the eventual upper bound for the sequence
(𝑎𝑛); that is, lim sup 𝑎𝑛 := lim𝑚→∞ sup𝑛≥𝑚 𝑎𝑛 = inf𝑚 sup𝑛≥𝑚 𝑎𝑛.

For a sequence ( 𝑓𝑛) of numerical functions on a set 𝐸 , we can define functions

inf 𝑓𝑛, sup 𝑓𝑛, lim inf 𝑓𝑛, lim sup 𝑓𝑛

pointwise, considering for each 𝑥 the sequence (𝑎𝑛) defined by 𝑎𝑛 := 𝑓𝑛 (𝑥).
Obviously, lim inf 𝑓𝑛 ≤ lim sup 𝑓𝑛 (pointwise). If the two are equal, we write

lim 𝑓𝑛 for the limit, and write 𝑓𝑛 → 𝑓 . If ( 𝑓𝑛) is a sequence of functions that
increases pointwise, then the limit 𝑓 := lim 𝑓𝑛 always exists. In this case we write
𝑓𝑛 ↑ 𝑓 . A similar notation 𝑓𝑛 ↓ 𝑓 holds for a decreasing sequence of functions.

Proposition 1.26: Limits of Measurable Functions

Let ( 𝑓𝑛) be a sequence of E-measurable numerical functions. Then,
the numerical functions sup 𝑓𝑛, inf 𝑓𝑛, lim sup 𝑓𝑛, and lim inf 𝑓𝑛 are also E-
measurable. In particular, limits of measurable functions (when lim sup 𝑓𝑛 =
lim inf 𝑓𝑛) are measurable as well.

Proof.
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1. Let 𝑓 := sup 𝑓𝑛. Since sets of the form [−∞, 𝑟] form a p-system that generates the
Borel 𝜎-algebra onR, it suffices to show, by Theorem 1.20, that 𝑓 −1 [−∞, 𝑟] ∈ E
for all 𝑟. The latter follows from the observation that

𝑓 −1 [−∞, 𝑟] = ∩𝑛 𝑓 −1
𝑛 [−∞, 𝑟],

where 𝑓 −1
𝑛 [−∞, 𝑟] ∈ E by the measurability of 𝑓𝑛, and the fact that E is closed

under countable intersections.
2. To show inf 𝑓𝑛 ∈ E, we simply observe that inf 𝑓𝑛 = − sup(− 𝑓𝑛).
3. Since lim sup 𝑓𝑛 = inf𝑚 sup𝑛≥𝑚 𝑓𝑛, we can use Steps 1 and 2 above to conclude

that lim sup 𝑓𝑛 ∈ E.
4. Similarly, since lim inf 𝑓𝑛 = sup𝑚 inf𝑛≥𝑚 𝑓𝑛, we have lim inf 𝑓𝑛 ∈ E.

□

The next theorem shows that, for any measurable space (𝐸, E), every positive
numerical function on 𝐸 can be obtained as an increasing limit of simple functions.
Recall that the set of all positive measurable functions on 𝐸 is denoted by E+.

Theorem 1.27: Approximation from Below

A positive numerical function on 𝐸 is E-measurable if and only if it is the
(pointwise) limit of an increasing sequence of simple functions.

Proof. For each 𝑛 ∈ {1, 2, . . .}, define

(1.28) 𝑑𝑛 (𝑟) :=

{
𝑘−1
2𝑛 if 𝑘−1

2𝑛 ≤ 𝑟 < 𝑘
2𝑛 for some 𝑘 ∈ {1, . . . , 𝑛2𝑛},

𝑛 if 𝑟 ≥ 𝑛.

Then, 𝑑𝑛 is an increasing right-continuous simple function that takes values in R+,
and 𝑑𝑛 (𝑟) increases to 𝑟 for each 𝑟 as 𝑛→ ∞; see Figure 1.29 for the case 𝑛 = 3.

0 1 2 3 4

0

1

2

3

Figure 1.29: The graph of the function 𝑑3.



12 1.2. Measurable Functions

Take a function 𝑓 ∈ E+. We are going to use the function 𝑑𝑛 to define the
sequence ( 𝑓𝑛) via 𝑓𝑛 := 𝑑𝑛 ◦ 𝑓 ; that is, 𝑓𝑛 is the composition of 𝑑𝑛 and 𝑓 , meaning
𝑓𝑛 (𝑥) = 𝑑𝑛 ( 𝑓 (𝑥)) for all 𝑥. Note that, by construction, 𝑓𝑛 ↑ 𝑓 , because 𝑑𝑛 (𝑟) ↑ 𝑟.
Moreover, each 𝑓𝑛 is positive and only takes a finite number of values, so 𝑓𝑛 is a
simple function. It is also measurable, since it is the composition of two measurable
functions. This completes the necessity part of the proof. Sufficiency follows from
Proposition 1.26. □

The previous theorem characterizes the functions in E+, but what about the
functions in E? Fortunately, the solution is easy: each numerical function 𝑓 on 𝐸
can be written as the difference of its positive and negative part:

𝑓 = 𝑓 + − 𝑓 −,

where 𝑓 + = 𝑓 ∨ 0 is the positive part and 𝑓 − = −( 𝑓 ∧ 0) = (− 𝑓 ) ∨ 0 is the negative
part of 𝑓 ; see Figure 1.30 for an illustration.

-1

0

1

0

0.5

1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Figure 1.30: Any function can be decomposed as the difference of its positive and
negative part.

We now have the following characterization:

Theorem 1.31: Positive and Negative Part of a Function

A function 𝑓 is E-measurable if and only if both 𝑓 + and 𝑓 − are.
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Proof. To prove sufficiency, suppose 𝑓 + and 𝑓 − are measurable. Sketch graphs of
𝑓 + and 𝑓 − to verify the following: For 𝑟 ≥ 0, we have { 𝑓 ≤ 𝑟} = { 𝑓 + ≤ 𝑟}. For
𝑟 < 0, we have { 𝑓 ≤ 𝑟} = { 𝑓 − ≥ −𝑟}. In both cases the inverse image of 𝑓 is in E.
Hence, 𝑓 is E-measurable.

Necessity is proved in a similar way; e.g., { 𝑓 + ≤ 𝑟} = { 𝑓 ≤ 𝑟} ∈ E for 𝑟 ≥ 0
and is equal to the empty set (also in E) for 𝑟 < 0. □

The important point of the preceding results is that every measurable function
can be viewed as the pointwise limit of simple functions, which themselves are
constructed as linear combinations of indicator functions. As a consequence, arith-
metic operations on E-measurable functions 𝑓 and 𝑔, such as 𝑓 + 𝑔, 𝑓 − 𝑔, 𝑓 𝑔,
𝑓 /𝑔, 𝑓 ∧ 𝑔, and 𝑓 ∨ 𝑔 are E-measurable as well, as long as these functions are
well-defined (for example, ∞−∞ and ∞/∞ are undefined).

As an example, if 𝑓 , 𝑔 ∈ E, then 𝑓 +, 𝑓 −, 𝑔+ and 𝑔− are in E+. Moreover, each
of these functions is the limit of a sequence of simple functions 𝑓 +𝑛 , 𝑓 −𝑛 , 𝑔+𝑛 , and 𝑔−𝑛 ,
respectively. Thus, 𝑓 − 𝑔 is the limit of the simple function 𝑓 +𝑛 − 𝑓 −𝑛 − 𝑔+𝑛 + 𝑔−𝑛 ,
which lies in E. Hence, the limit is also in E.

We conclude this section with the notion of a monotone class of functions.

Definition 1.32: Monotone Class of Functions

Let (𝐸, E) be a measurable space. A collection M of numerical functions
on 𝐸 is called a monotone class if it satisfies:
1. 1𝐸 ∈ M.
2. If 𝑓 , 𝑔 ∈ M are bounded and 𝑎, 𝑏 ∈ R, then 𝑎 𝑓 + 𝑏𝑔 ∈ M.
3. If ( 𝑓𝑛) is a sequence of positive functions in M that increases to some 𝑓 ,
then 𝑓 ∈ M.

The following theorem is useful in proving that a certain property holds for all
positive measurable functions:

Theorem 1.33: Monotone Class Theorem for Functions

Let M be a monotone class of functions on 𝐸 and let C be a p-system that
generates E. If 1𝐴 ∈ M for every 𝐴 ∈ C, then M includes
• all positive E-measurable functions,
• all bounded E-measurable functions.

Proof. We first show thatM contains all indicator functions in E; it already contains
all indicator functions in C. To this end, define the collection of sets

D := {𝐴 ∈ E : 1𝐴 ∈ M}.

This is a d-system. Namely:
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1. 𝐸 ∈ D.

2. Take 𝐴, 𝐵 ∈ D with 𝐴 ⊆ 𝐵. Then, by Property 2 of M, the function 1𝐵 − 1𝐴 ∈
M. But this is the indicator function of 𝐵 \ 𝐴. So 𝐵 \ 𝐴 ∈ E.

3. Let (𝐴𝑛) be an increasing sequence of sets inD . Then, the sequence of indicators
(1𝐴𝑛) increases to 1𝐴, where 𝐴 = ∪𝑛𝐴𝑛. By Property 3 of M, 1𝐴 ∈ M, and
hence 𝐴 ∈ D.

Because D is a d-system that contains the p-system C, it must contain E, by the
Monotone Class Theorem 1.12. Thus, 1𝐴 ∈ M for all 𝐴 ∈ E.

Next, let 𝑓 ∈ E+ (i.e., a positive E-measurable function). By Theorem 1.27,
there is a sequence of simple functions ( 𝑓𝑛) in E+ that increases to 𝑓 . Each 𝑓𝑛 is a
linear combination of indicator functions, which by the previous step all lie in M.
It follows by Property 2 of M that each 𝑓𝑛 is a positive function in M as well, and
so, by Property 3, 𝑓 ∈ M.

Finally, let 𝑓 be bounded and E-measurable. Then, its positive and negative
parts are E-measurable and thus in M via the preceding step, and are bounded
obviously. By Property 2 of M, we have 𝑓 = 𝑓 + − 𝑓 − ∈ M. □

1.3 Measures
Let (𝐸, E) be a measurable space. We wish to assign a measure to all sets in E that
has the same properties as an area or length measure. In particular, any measure
should have the property that the measure of the union of a disjoint (i.e., non-
overlapping) collection of sets is equal to the sum of the measures for the individual
sets, as illustrated in Figure 1.34.

Figure 1.34: Any measure has the same properties as the “area” measure. For
example, the total area of the non-overlapping triangles is the sum of the areas of
the individual triangles.
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Definition 1.35: Measure

Let (𝐸, E) be a measurable space. A measure 𝜇 on E is a set function

𝜇 : E → [0,∞]

with 𝜇(∅) = 0, such that for every sequence (𝐴𝑛) of disjoint sets in E,

(1.36) 𝜇(∪𝑛𝐴𝑛) =
∑
𝑛 𝜇(𝐴𝑛).

The main property (1.36) is called countable additivity or 𝜎-additivity. The
triple (𝐸, E, 𝜇) is called a measure space. If 𝜇(𝐸) < ∞, then 𝜇 is called finite. If
𝜇(𝐸) = 1, it is called a probability measure. A measure 𝜇 is called 𝜎-finite if there
exists a sequence of sets (𝐸𝑛) in E such that ∪𝑛𝐸𝑛 = 𝐸 and 𝜇(𝐸𝑛) < ∞ for all 𝑛.
Exercise 11 gives an equivalent way to verify countable additivity.

It is easy to check (Exercise 20) that if 𝜇 and 𝜈 are measures on (𝐸, E), then
𝑎𝜇 + 𝑏𝜈 with 𝑎, 𝑏 ≥ 0 is a measure on (𝐸, E) as well. In fact, for any sequence
(𝜇𝑛) of measures,

∑
𝑛 𝜇𝑛 is also a measure. Such a measure is said to be Σ-finite if

𝜇𝑛 (𝐸) < ∞ for each 𝑛. Clearly, any 𝜎-finite measure is Σ-finite.

Example 1.37 (Dirac Measure) Perhaps the simplest measure is one that assigns
a measure of 1 to any set in E that contains a specific element 𝑥 ∈ 𝐸 and 0 otherwise.
This is called the Dirac measure at 𝑥, and is written as 𝛿𝑥 . In particular, for any
𝐴 ∈ E:

𝛿𝑥 (𝐴) := 1𝐴 (𝑥) =
{

1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴.

Example 1.38 (Counting Measure) Let 𝐷 be a countable subset in E. The
counting measure on 𝐷 counts for each 𝐴 ∈ E how many points of 𝐴 fall in 𝐷; that
is, it is the measure 𝜈 defined by

𝜈(𝐴) :=
∑︁
𝑥∈𝐷

𝛿𝑥 (𝐴), 𝐴 ∈ E .

We can further generalize counting measures to discrete measures as follows:

Example 1.39 (Discrete Measure) Let 𝐷 be a countable subset in E and for
each 𝑥 ∈ 𝐷, let 𝑚(𝑥) be a positive number. Any measure 𝜇 of the form

𝜇(𝐴) :=
∑︁
𝑥∈𝐷

𝑚(𝑥) 𝛿𝑥 (𝐴), 𝐴 ∈ E
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is called a discrete measure. If 𝐸 is countable and E is the set of all subsets of 𝐸
(i.e., the power set of 𝐸), then all measures on (𝐸, E) are of this form.

The preceding example indicates that for discrete measurable spaces, where 𝐸
is countable and E := 2𝐸 , measures are easy. However, for uncountable sets such as
R and R𝑛 or subsets thereof, the existence of measures may be complicated, as we
have seen in Example 1.3. Fortunately, the following theorem comes to the rescue.
It guarantees that, under certain mild conditions, there exists exactly one measure
𝜇 on 𝜎(E0) that coincides with a pre-measure 𝜇0 on an algebra E0. The latter is a
countably additive set function 𝜇0 : E0 → [0,∞], with 𝜇0(∅) = 0. We cannot call
𝜇0 a measure, as E0 is not a 𝜎-algebra.

Theorem 1.40: Extension Theorem (Carathéodory)

Let 𝐸 be a set with an algebra E0 thereon. Every pre-measure 𝜇0 : E0 →
[0,∞] can be extended to a measure 𝜇 on (𝐸, 𝜎(E0)).

Proof. Appendix C provides a complete proof for the case where 𝜇0 is finite; see
Theorem C.21. This is usually all that is required. □

Example 1.41 (Lebesgue Measure) Let E0 be the algebra in Example 1.7; that
is, every non-empty set in E0 is a finite union of intervals of the form (𝑎, 𝑏]. Let
B(0,1] denote the 𝜎-algebra that is generated by E0. The natural length of the set in
E0 formed by the union (𝑎1, 𝑏1] ∪ · · · ∪ (𝑎𝑛, 𝑏𝑛] of disjoint intervals is of course

𝜇0((𝑎1, 𝑏1] ∪ · · · ∪ (𝑎𝑛, 𝑏𝑛]) :=
𝑛∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘 ).

In Theorem C.6 we prove that 𝜇0 is countably additive (this is not trivial). Hence,
by the extension theorem there exists a measure on B(0,1] that coincides with 𝜇0 on
E0. We will show shortly why there can be only one such measure. We have thus
found the natural “length” measure on B(0,1] . It is called the Lebesgue measure (on
(0,1]). In the same manner we can prove the existence of unique “volume” measures
on (R𝑛,B𝑛), 𝑛 = 1, 2, . . .. These measures are also called Lebesgue measures. All
these measures are 𝜎-finite.

As a direct consequence of the definition of a measure, we have the following
properties for any measure 𝜇:
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Proposition 1.42: Properties of a Measure

Let 𝜇 be a measure on a measurable space (𝐸, E), and let 𝐴, 𝐵 and 𝐴1, 𝐴2, . . .
be measurable sets. Then, the following hold:
1. (Monotonicity): 𝐴 ⊆ 𝐵 =⇒ 𝜇(𝐴) ≤ 𝜇(𝐵).

2. (Continuity from below): If 𝐴1, 𝐴2, . . . is increasing (i.e., 𝐴1 ⊆ 𝐴2 ⊆ · · · ),
then

(1.43) lim 𝜇(𝐴𝑛) = 𝜇(∪𝑛𝐴𝑛).

3. (Countable subadditivity): 𝜇(∪𝑛𝐴𝑛) ≤
∑
𝑛 𝜇(𝐴𝑛).

Proof.
1. Suppose 𝐴 ⊆ 𝐵. Then, we can write 𝐵 = 𝐴∪ (𝐴𝑐∩𝐵). The countable additivity

and positivity of 𝜇 imply that

𝜇(𝐵) = 𝜇(𝐴) + 𝜇(𝐴𝑐 ∩ 𝐵) ≥ 𝜇(𝐴),

which proves monotonicity.

2. Suppose (𝐴𝑛) is an increasing sequence of measurable sets. From the definition
of a 𝜎-algebra it follows that 𝐴 := ∪𝑛𝐴𝑛 is again a measurable set. Now consider
Figure 1.44.

𝐸

𝐴4

𝐴3

𝐴2

𝐴1

𝐴

𝐵1

𝐵3

𝐵2

𝐵4

Figure 1.44: Sequential continuity from below.

Define sets 𝐵1, 𝐵2, . . . via 𝐵1 := 𝐴1 and 𝐵𝑛 := 𝐴𝑛 \ 𝐴𝑛−1, 𝑛 = 2, 3, . . .. The
“rings” 𝐵1, 𝐵2, . . . are disjoint, with

∪𝑛𝑖=1𝐵𝑖 = ∪𝑛𝑖=1𝐴𝑖 = 𝐴𝑛 and ∪∞
𝑖=1 𝐵𝑖 = 𝐴.
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Hence, from the countable additivity property (1.36) it follows that

𝜇(𝐴) = 𝜇
(
∪∞
𝑖=1𝐵𝑖

)
=

∑∞
𝑖=1 𝜇(𝐵𝑖)

= lim
∑𝑛
𝑖=1 𝜇(𝐵𝑖) = lim 𝜇(∪𝑛𝑖=1𝐵𝑖) = lim 𝜇(𝐴𝑛),

which proves the sequential continuity from below.

3. Let (𝐴𝑛) be a sequence of measurable sets, not necessarily disjoint. Define
𝐵1 := 𝐴1 and 𝐵𝑛 := 𝐴𝑛 \ ∪𝑛−1

𝑖=1 𝐵𝑖 for 𝑛 = 2, 3, . . .. We have

𝜇(∪𝑛𝐴𝑛) = 𝜇(∪𝑛𝐵𝑛) =
∑
𝑛 𝜇(𝐵𝑛) ≤

∑
𝑛 𝜇(𝐴𝑛).

□

Often we are dealing with a measurable space (𝐸, E) in whichE can be generated
by a p-system C; i.e., a collection that is closed under finite intersections (such as
an algebra). In that case, any finite measure 𝜇 on (𝐸, E) is completely specified by
its value on C. This is a consequence of the following theorem:

Theorem 1.45: Uniqueness of Finite Measures

Let C be a p-system that generates E. If 𝜇 and 𝜈 are two measures on (𝐸, E)
with 𝜇(𝐸) = 𝜈(𝐸) < ∞, then

𝜇(𝐴) = 𝜈(𝐴) for all 𝐴 ∈ C ⇒ 𝜇(𝐴) = 𝜈(𝐴) for all 𝐴 ∈ E .

Proof. Consider the collection

D := {𝐴 ∈ E : 𝜇(𝐴) = 𝜈(𝐴)}.

This is a d-system, because:

1. 𝐸 ∈ D by the assumption of the theorem.
2. Take 𝐴, 𝐵 ∈ D such that 𝐴 ⊇ 𝐵. Then, 𝐴 \ 𝐵 ∈ D, because

𝜇(𝐴 \ 𝐵) = 𝜇(𝐴) − 𝜇(𝐵) = 𝜈(𝐴) − 𝜈(𝐵) = 𝜈(𝐴 \ 𝐵).

3. Take an increasing sequence of sets (𝐴𝑛) in D. Then, for all 𝑛, 𝜇(𝐴𝑛) = 𝜈(𝐴𝑛)
and, by continuity from below, 𝜇(∪𝐴𝑛) = lim𝑛 𝜇(𝐴𝑛) = lim𝑛 𝜈(𝐴𝑛) = 𝜈(∪𝐴𝑛),
so that ∪𝑛𝐴𝑛 ∈ D.

Since D is a d-system that contains the p-system C, it must also contain the 𝜎-
algebra generated by C (see the Monotone Class Theorem 1.12), which is E. □
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Example 1.46 (Uniqueness of Lebesgue Measures) Continuing Example 1.41,
consider the Lebesgue measure on the measurable space ((0, 1],B(0,1]). Existence
is guaranteed by Carathéodory’s extension Theorem 1.40. Moreover, Theorem 1.45
ensures that there can only be one measure for which its value (length) of an interval
(𝑎, 𝑏] is 𝑏 − 𝑎 for all 0 ≤ 𝑎 < 𝑏 ≤ 1.

To prove uniqueness for the Lebesgue measure 𝜆 on (R,B) we need an extra
step, as 𝜆 is not finite. Define 𝐸𝑛 := (𝑛, 𝑛 + 1], 𝑛 ∈ Z. The collection {𝐸𝑛} forms
a partition of R. Consider the algebra C of finite unions of intervals of the form
(𝑎, 𝑏] in R. This is a p-system that generates B. Suppose that 𝜇 is a measure that
coincides with 𝜆 on C. We want to show that 𝜇 = 𝜆 on B. Take 𝐴 ∈ B. Then,
{𝐴 ∩ 𝐸𝑛} forms a partition of 𝐴. For each measurable space (𝐸𝑛,B𝐸𝑛) we can
invoke Theorem 1.45 to conclude that 𝜇(𝐴 ∩ 𝐸𝑛) = 𝜆(𝐴 ∩ 𝐸𝑛). Hence,

𝜇(𝐴) =
∑︁
𝑛

𝜇(𝐴 ∩ 𝐸𝑛) =
∑︁
𝑛

𝜆(𝐴 ∩ 𝐸𝑛) = 𝜆(𝐴),

which had to be shown.

Suppose we have two measure spaces (𝐸, E, 𝜇) and (𝐹, F , 𝜈). We can define a
measure 𝜇⊗ 𝜈 on the product space (see Definition 1.14) (𝐸 ×𝐹, E ⊗F ) as follows:

Definition 1.47: Product Measure

Let (𝐸, E, 𝜇) and (𝐹, F , 𝜈) be two measure spaces. The product measure of
𝜇 and 𝜈 on the product space (𝐸 × 𝐹, E ⊗ F ) is defined as the measure 𝜋
with

(1.48) 𝜋(𝐴 × 𝐵) := 𝜇(𝐴) 𝜈(𝐵), 𝐴 ∈ E, 𝐵 ∈ F .

This measure 𝜋 is often written as 𝜇 ⊗ 𝜈.

Note that the collection of rectangles {𝐴 × 𝐵, 𝐴 ∈ E, 𝐵 ∈ F } is a p-system that
generates E ⊗ F , so the product measure is unique if it is finite. This uniqueness
property can be extended to the 𝜎-finite case by considering a partition of 𝐸 × 𝐹 on
which the measure is finite.

Example 1.49 (Lebesgue Measure on (R2,B2)) We can think of the Lebesgue
measure 𝜆 on (R2,B2) in two ways. First, it is the natural area measure on this
measurable space. Second, it is the product measure of the Lebesgue measures on
the coordinate spaces (R,B). That is, if 𝜇 is the Lebesgue (length) measure on
(R,B), then 𝜆 = 𝜇 ⊗ 𝜇.
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1.4 Integrals
In this section, we combine measurable functions and measures to define integrals
in a unified and elegant way. The procedure for building up proofs for measurable
functions from indicator functions, simple functions, and limits thereof is often
referred to as “the standard machine”.

1.4.1 Definition of an Integral
In elementary mathematics, the integral of a function is thought of as the area
underneath the graph of the function. We wish to extend this idea to a broad class
of functions and measures, using the standard machine. In particular, let (𝐸, E, 𝜇)
be a measure space and let 𝑓 be a (numerical) E-measurable function. We define
the (Lebesgue) integral of 𝑓 with respect to 𝜇 in four stages (given next) and denote
the integral by any of

𝜇 𝑓 ,

∫
𝐸

𝑓 d𝜇, or
∫
𝐸

𝜇(d𝑥) 𝑓 (𝑥).

The index 𝐸 under the integral sign is often omitted. The four defining stages are
as follows:

1. If 𝑓 = 1𝐴, then
𝜇 𝑓 := 𝜇(𝐴).

2. If 𝑓 is simple and positive, and its canonical form is 𝑓 =
∑𝑛
𝑖=1 𝑎𝑖1𝐴𝑖 , then (with

∞ · 0 := 0 =: 0 · ∞)

𝜇 𝑓 :=
𝑛∑︁
𝑖=1

𝑎𝑖 𝜇(𝐴𝑖).

3. If 𝑓 is positive, put 𝑓𝑛 := 𝑑𝑛 ◦ 𝑓 , with 𝑑𝑛 defined in (1.28). Then, ( 𝑓𝑛) is a
sequence of simple positive functions such that 𝑓𝑛 (𝑥) ↑ 𝑓 (𝑥) for all 𝑥. The
sequence (𝜇 𝑓𝑛) is increasing and so lim 𝜇 𝑓𝑛 exists (possibly +∞). We define

𝜇 𝑓 := lim 𝜇 𝑓𝑛.

4. For general (not necessarily positive) E-measurable numerical functions we can
often also define the integral. Namely, each such function 𝑓 can be written as

𝑓 = 𝑓 + − 𝑓 −,

where 𝑓 + = 𝑓 ∨ 0 and 𝑓 − = (− 𝑓 ) ∨ 0 are both positive and E-measurable
(Theorem 1.31). We define in this case

𝜇 𝑓 := 𝜇 𝑓 + − 𝜇 𝑓 −,
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provided that at least one of the terms on the right-hand side is finite. Functions
for which the above integral is finite are called (𝜇-) integrable. This is equivalent
to 𝜇 𝑓 + < ∞ and 𝜇 𝑓 − < ∞ , and thus to 𝜇 | 𝑓 | = 𝜇( 𝑓 + + 𝑓 −) < ∞.

Example 1.50 (Integrals for Discrete Measures) Let 𝜇 be a discrete measure
(see Example 1.39) on (𝐸, E) of the form

(1.51) 𝜇 :=
∑︁
𝑥∈𝐷

𝑚(𝑥) 𝛿𝑥

for some countable set 𝐷 and positive masses {𝑚(𝑥), 𝑥 ∈ 𝐷}. Then, for any 𝑓 ∈ E+:

𝜇 𝑓 =
∑︁
𝑥∈𝐷

𝑚(𝑥) 𝑓 (𝑥).

In particular, if 𝐸 is a countable set and E := 2𝐸 is the discrete 𝜎-algebra (power
set of 𝐸), then all measures on (𝐸, E) are of the form (1.51), with 𝐷 = 𝐸 and
𝑚(𝑥) = 𝜇{𝑥}. Thus, for every 𝑓 ∈ E+ we have 𝜇 𝑓 =

∑
𝑥∈𝐸 𝜇{𝑥} 𝑓 (𝑥). The notation

𝜇 𝑓 is thus similar to the one used in linear algebra regarding the multiplication of
a row vector 𝜇 with a column vector 𝑓 , to yield a number 𝜇 𝑓 .

Example 1.52 (Lebesgue Integrals) Let 𝜆 be the Lebesgue measure on (R,B)
and let 𝑓 be a B-measurable function. The integral 𝜆 𝑓 =

∫
𝑓 d𝜆 (provided it exists,

e.g., if 𝑓 ≥ 0) is called the Lebesgue integral of 𝑓 . We can view this number as the
area under the graph of 𝑓 . The crucial difference between the Lebesgue integral
and the Riemann integral is illustrated in Figure 1.53. In Riemann integration the
domain of the function is discretized, whereas in Lebesgue integration the (real)
range of the function is discretized. In order to keep the notation the same as in
elementary (Riemann) integration, we write

∫
𝑓 d𝜆 as any of∫

R
𝑓 (𝑥) d𝑥,

∫ ∞

−∞
𝑓 (𝑥) d𝑥, or

∫
d𝑥 𝑓 (𝑥).

The integral of 𝑓 over the interval (𝑎, 𝑏) is written as∫
(𝑎,𝑏)

𝑓 (𝑥) d𝑥,
∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥, or
∫ 𝑏

𝑎

d𝑥 𝑓 (𝑥).

For a general 𝐴 ∈ B, we write∫
𝐴

𝑓 (𝑥) d𝑥 for
∫

1𝐴 𝑓 d𝜆.

In the same way, we can define the Lebesgue integral
∫
𝑓 d𝜆 of a B𝑛-measurable

function on R𝑛 with respect to the Lebesgue measure 𝜆 on (R𝑛,B𝑛). We often use
the notation∫

· · ·
∫

𝑓 (𝑥1, . . . , 𝑥𝑛) d𝑥1 . . . d𝑥𝑛,
∫

𝑓 (𝒙) d𝒙, or
∫

d𝒙 𝑓 (𝒙)
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instead of 𝜆 𝑓 or
∫
𝑓 d𝜆.
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Figure 1.53: In Lebesgue integration the range (𝑦-axis) is discretized and in Riemann
integration the domain (𝑥-axis) is discretized.

Continuing the notation in the last example, we define the integral of an E-
measurable function 𝑓 over a set 𝐶 ∈ E as the integral of 𝑓 1𝐶 , and write it as any
of the following:

𝜇( 𝑓 1𝐶) =
∫
𝐶

𝜇(d𝑥) 𝑓 (𝑥) =
∫
𝐶

𝑓 d𝜇.

The natural property holds that if 𝐴 = 𝐵 ∪ 𝐶, with 𝐵 ∈ E and 𝐶 ∈ E disjoint, then

𝜇( 𝑓 1𝐴) = 𝜇( 𝑓 1𝐵) + 𝜇( 𝑓 1𝐶).

Let (𝐸, E, 𝜇) be a measure space. A set 𝐴 ⊂ 𝐸 is said to be negligible if there
exists a 𝐵 ∈ E that contains 𝐴 and for which 𝜇(𝐵) = 0. It is possible to “complete”
a measure space to contain all negligible sets. Two functions 𝑓 and 𝑔 are said to
be equal 𝜇-almost everywhere if the set of points for which they differ is negligible.
The following shows that such functions have the same integral:

Proposition 1.54: Insensitivity of the Integral

Let (𝐸, E, 𝜇) be a measure space and let 𝑓 and 𝑔 be positive E-measurable
functions that are equal 𝜇-almost everywhere. Then, 𝜇 𝑓 = 𝜇𝑔.

Proof. The set 𝐴 := { 𝑓 ≠ 𝑔} has measure 0. We show that 𝜇( 𝑓 1𝐴) = 0. If 𝑓 ∈ E+
is simple, then by definition of the integral (Steps 1 and 2), 𝜇( 𝑓 1𝐴) = 0. For general
𝑓 ∈ E+ take the sequence ( 𝑓𝑛) of simple functions increasing to 𝑓 (in Step 3 of the
definition). All the integrals 𝜇( 𝑓𝑛1𝐴) are 0 and so their limit, 𝜇( 𝑓 1𝐴), is 0 as well.
For the same reason 𝜇(𝑔1𝐴) = 0. Thus, 𝜇 𝑓 = 𝜇( 𝑓 1𝐴𝑐 ) = 𝜇(𝑔1𝐴𝑐 ) = 𝜇𝑔. □
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1.4.2 Properties of an Integral
Below, the numerical functions refer to a measurable space (𝐸, E). Let E+ be the
set of positive E-measurable numerical functions. The following theorem lists the
main properties of an integral. Property 3 is called the Monotone Convergence
Theorem and is the main reason why this integral definition is so powerful.

Theorem 1.55: Properties of an Integral

Below 𝑎, 𝑏 are in R+ and 𝑓 , 𝑔, 𝑓𝑛 are in E+.
1. (Positivity and Monotonicity): 𝜇 𝑓 ≥ 0, and 𝑓 = 0 ⇒ 𝜇 𝑓 = 0. Also,

𝑓 ≤ 𝑔 ⇒ 𝜇 𝑓 ≤ 𝜇𝑔.

2. (Linearity): 𝜇(𝑎 𝑓 + 𝑏𝑔) = 𝑎𝜇 𝑓 + 𝑏𝜇𝑔.

3. (Monotone convergence): If 𝑓𝑛 ↑ 𝑓 , then 𝜇 𝑓𝑛 ↑ 𝜇 𝑓 .

Proof.
1. That 𝜇 𝑓 ≥ 0 and that the integral of the zero function is 0 follows directly from

the definition. Next, take 𝑓 ≤ 𝑔. With 𝑑𝑛 as in (1.28), let 𝑓𝑛 := 𝑑𝑛 ◦ 𝑓 and
𝑔𝑛 := 𝑑𝑛◦𝑔 be simple measurable functions that increase to 𝑓 and 𝑔, respectively.
Then, for each 𝑛, 𝜇 𝑓𝑛 ≤ 𝜇𝑔𝑛 (check this for simple functions). Now take the
limit for 𝑛→ ∞ to obtain 𝜇 𝑓 ≤ 𝜇𝑔.

2. Linearity of the integral for simple functions in E+ is easily checked. For
general functions 𝑓 , 𝑔, ∈ E+, we take, as above, simple measurable functions
that increase to 𝑓 and 𝑔, respectively; thus, 𝑎 𝑓𝑛 + 𝑏𝑔𝑛 increases to 𝑎 𝑓 + 𝑏𝑔. We
have 𝜇(𝑎 𝑓𝑛 + 𝑏𝑔𝑛) = 𝑎𝜇 𝑓𝑛 + 𝑏𝜇𝑔𝑛. The limit of the left-hand side is 𝜇(𝑎 𝑓 + 𝑏𝑔)
and the limit of the right-hand side is 𝑎𝜇 𝑓 + 𝑏𝜇𝑔 by Step 3 of the definition of
an integral.

3. The result is true, by definition, if 𝑓𝑛 is of the form 𝑓𝑛 = 𝑑𝑛 ◦ 𝑓 with 𝑓 ∈ E+.
But the point of the monotone convergence property is that it also holds for any
increasing sequence ( 𝑓𝑛) in E+ with limit 𝑓 = lim 𝑓𝑛. Since ( 𝑓𝑛) is increasing,
the limit 𝑓 is well-defined, and 𝑓 ∈ E+. So 𝜇 𝑓 is well-defined. Since ( 𝑓𝑛) is
increasing, the integrals (𝜇 𝑓𝑛) form an increasing sequence of numbers (by the
monotonicity property of integrals) and so lim 𝜇 𝑓𝑛 exists. We want to show
that this limit is equal to 𝜇 𝑓 . Since 𝑓 ≥ 𝑓𝑛, we have 𝜇 𝑓 ≥ 𝜇 𝑓𝑛 and hence
𝜇 𝑓 ≥ lim 𝜇 𝑓𝑛. We want to show that also lim 𝜇 𝑓𝑛 ≥ 𝜇 𝑓 . We do this in three
steps.

(a) Let 𝑏 ≥ 0 and suppose that 𝑓 (𝑥) > 𝑏 for every 𝑥 ∈ 𝐵, where 𝐵 ∈ E. Define
𝐵𝑛 := 𝐵∩{ 𝑓𝑛 > 𝑏}. Then, 𝐵𝑛 ↑ 𝐵 and lim 𝜇(𝐵𝑛) = 𝜇(𝐵) by the sequential
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continuity from below property of 𝜇; see (1.43). Since

𝑓𝑛1𝐵 ≥ 𝑓𝑛1𝐵𝑛 ≥ 𝑏1𝐵𝑛 ,

the monotonicity and linearity of the integral yield that 𝜇( 𝑓𝑛1𝐵) ≥ 𝑏𝜇(𝐵𝑛)
and, by taking limit for 𝑛→ ∞, that

lim 𝜇( 𝑓𝑛1𝐵) ≥ 𝑏 𝜇(𝐵).

This remains true if instead 𝑓 (𝑥) ≥ 𝑏 on 𝐵. This is trivially true for
𝑏 = 0. For 𝑏 > 0, choose a sequence (𝑏𝑚) strictly increasing to 𝑏. Then,
lim𝑛 𝜇( 𝑓𝑛1𝐵) ≥ 𝑏𝑚 𝜇(𝐵). Now take the limit for 𝑚 → ∞.

(b) Let 𝑔 =
∑𝑚
𝑖=1 𝑏𝑖1𝐵𝑖 be a positive simple function, in canonical form, such

that 𝑓 ≥ 𝑔. Thus, 𝑓 (𝑥) ≥ 𝑏𝑖 for every 𝑥 ∈ 𝐵𝑖, 𝑖 = 1, . . . , 𝑚, and part (a)
above yields

lim
𝑛
𝜇( 𝑓𝑛1𝐵𝑖 ) ≥ 𝑏𝑖 𝜇(𝐵𝑖), 𝑖 = 1, . . . , 𝑚.

Hence,

lim 𝜇 𝑓𝑛 = lim
𝑛

𝑚∑︁
𝑖=1

𝜇( 𝑓𝑛1𝐵𝑖 ) =
𝑚∑︁
𝑖=1

lim
𝑛
𝜇( 𝑓𝑛1𝐵𝑖 ) ≥

𝑚∑︁
𝑖=1

𝑏𝑖 𝜇(𝐵𝑖) = 𝜇𝑔.

(c) Taking 𝑔 in (b) equal to 𝑑𝑚 ◦ 𝑓 and letting 𝑚 → ∞, we find lim 𝜇 𝑓𝑛 ≥ 𝜇 𝑓 .

□

In our definition of the integral, we used a specific approximating sequence ( 𝑓𝑛),
given by 𝑓𝑛 := 𝑑𝑛 ◦ 𝑓 . An important consequence of the Monotone Convergence
Theorem is that we could have taken any sequence ( 𝑓𝑛) with 𝑓𝑛 ↑ 𝑓 .

We leave it as an exercise to show that the linearity of the integral extends to
integrable 𝑓 , 𝑔 ∈ E and arbitrary 𝑎, 𝑏 ∈ R.

Remark 1.56 (Monotone Convergence and Insensitivity) A consequence of
the insensitivity property (Property 1.54) of the integral is that Theorem 1.55 also
holds in an almost everywhere sense. For example, if 𝑓𝑛 (𝑥) ↑ 𝑓 (𝑥) for 𝑥 ∈ 𝐸0 with
𝜇(𝐸 \ 𝐸0) = 0, then 𝜇 𝑓𝑛 ↑ 𝜇 𝑓 . Namely, let 𝑓̃𝑛 := 𝑓𝑛1𝐸0 + 𝑓 1𝐸\𝐸0 . Then, 𝜇 𝑓𝑛 = 𝜇 𝑓̃𝑛
by the insensitivity of the integral, and the Monotone Convergence Theorem yields
𝜇 𝑓̃𝑛 ↑ 𝜇 lim 𝑓̃𝑛 = 𝜇 𝑓 .

Any positive linear functional 𝐿 ( 𝑓 ) on the set of positive measurable functions
can be represented as an integral 𝜇 𝑓 if it possesses the three main properties of
the integral (positivity, linearity, and monotone convergence), as shown in the next
theorem.



Chapter 1. Measure Theory 25

Theorem 1.57: Measures from Linear Functionals

Let 𝐿 : E+ → R+. Then, there exists a unique measure 𝜇 on (𝐸, E) such that
𝐿 ( 𝑓 ) = 𝜇 𝑓 if and only if
1. 𝑓 = 0 ⇒ 𝐿 ( 𝑓 ) = 0,
2. 𝑓 , 𝑔 ∈ E+ and 𝑎, 𝑏 ∈ R+ ⇒ 𝐿 (𝑎 𝑓 + 𝑏𝑔) = 𝑎𝐿 ( 𝑓 ) + 𝑏𝐿 (𝑔),
3. ( 𝑓𝑛) ∈ E+ and 𝑓𝑛 ↑ 𝑓 ⇒ 𝐿 ( 𝑓𝑛) ↑ 𝐿 ( 𝑓 ).

Proof. Necessity is immediate from the properties of integration. To show suffi-
ciency, suppose 𝐿 has the properties stated above. The obvious candidate for 𝜇 is the
set function 𝜇 : E → R+ via 𝜇(𝐴) := 𝐿 (1𝐴). We first show that 𝜇 satisfies the prop-
erties of a measure on (𝐸, E). First, 𝜇(∅) = 0, because 𝜇(∅) = 𝐿 (0) = 0. Second,
let (𝐴𝑛) be a sequence of disjoint sets in E with union 𝐴. Define 𝐵𝑛 := ∪𝑛

𝑖=1𝐴𝑖.
Then, (𝐵𝑛) increases to 𝐴 and 1𝐵𝑛 =

∑𝑛
𝑖=1 1𝐴𝑖 . The sequence (1𝐵𝑛) increases to

1𝐴, and hence by the monotone convergence (Property 3) of 𝐿 and the linearity
(Property 2) of 𝐿, we have

𝐿 (1𝐴) = lim
𝑛
𝐿

(
𝑛∑︁
𝑖=1

1𝐴𝑖

)
= lim

𝑛

𝑛∑︁
𝑖=1

𝐿 (1𝐴𝑖 ) =
∞∑︁
𝑖=1

𝐿 (1𝐴𝑖 ).

In other words, 𝜇(𝐴) = ∑∞
𝑖=1 𝜇(𝐴𝑖), and so 𝜇 is a measure.

To show that 𝐿 ( 𝑓 ) = 𝜇 𝑓 for all 𝑓 ∈ E+, first observe that this is true for simple
𝑓 ∈ E+, i.e., of the form

∑𝑛
𝑖=1 𝑏𝑖1𝐵𝑖 , by using the linearity of 𝐿 and the linearity

property of an integral. For a general 𝑓 ∈ E+, take a sequence ( 𝑓𝑛) of simple
functions in E+ that increases to 𝑓 . For all 𝑓𝑛 we have 𝐿 ( 𝑓𝑛) = 𝜇 𝑓𝑛. Taking the
limit on the left-hand side gives 𝐿 ( 𝑓 ) by the monotone convergence property of 𝐿,
and taking the limit on the right-hand side gives 𝜇 𝑓 by the monotone convergence
property of integrals with respect to 𝜇. Hence, 𝐿 ( 𝑓 ) = 𝜇 𝑓 for all 𝑓 ∈ E+. □

1.4.3 Indefinite Integrals, Image Measures, and Measures with
Densities

Let 𝜇 be a measure on (𝐸, E) and 𝑝 a positive E-measurable function. We have
defined the integral of 𝑝 over a subset 𝐴 ∈ E as

𝜇(𝑝1𝐴) =
∫
𝐴

𝑝 d𝜇 =

∫
1𝐴𝑝 d𝜇.

The mapping
𝐴 ↦→

∫
𝐴

𝑝 d𝜇

defines a measure 𝜈 on (𝐸, E), which is called the indefinite integral of 𝑝 with
respect to 𝜇. We leave the proof as an exercise; see Exercise 25. Conversely, we
say that 𝜈 has density 𝑝 with respect to 𝜇, and write 𝜈 = 𝑝𝜇.
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Theorem 1.58: Integrals with Densities

Let 𝜈 := 𝑝𝜇. Then, for every 𝑓 ∈ E+, we have 𝜈 𝑓 = 𝜇(𝑝 𝑓 ).

Proof. Let 𝐿 ( 𝑓 ) := 𝜇(𝑝 𝑓 ). 𝐿 satisfies the properties in Theorem 1.57, so there is
a unique measure 𝜈̂ on (𝐸, E) with 𝜈̂ 𝑓 = 𝜇(𝑝 𝑓 ). Taking 𝑓 := 1𝐴 for 𝐴 ∈ E, we see
that 𝜈̂(𝐴) = 𝐿 (1𝐴) = 𝜇(𝑝1𝐴) = 𝜈(𝐴). So 𝜈̂ = 𝜈. □

Let 𝜈 and 𝜇 be two measures on (𝐸, E). Measure 𝜈 is said to be absolutely
continuous with respect to 𝜇 if for all 𝐴 ∈ E,

𝜇(𝐴) = 0 implies 𝜈(𝐴) = 0.

We write 𝜈 ≪ 𝜇. To answer the question whether a certain measure 𝜈 can be
represented as the indefinite integral with respect to a given measure 𝜇, we only
need to verify 𝜈 ≪ 𝜇. That is the purport of the celebrated Radon–Nikodym
theorem. A martingale-based proof will be given in Section 5.5.3.

Theorem 1.59: Radon–Nikodym

Let 𝜈 and 𝜇 be two measures on (𝐸, E) such that 𝜇 is 𝜎-finite and 𝜈 ≪ 𝜇.
Then, there exists a 𝑝 ∈ E+ such that 𝜈 = 𝑝𝜇. Moreover, 𝑝 is unique up to
equivalence; that is, if there is another 𝑝 ∈ E+ such that 𝜈 = 𝑝𝜇, then 𝑝 = 𝑝,
𝜇-almost everywhere.

The function 𝑝 is referred to as the Radon–Nikodym derivative of 𝜈 with respect
to 𝜇, and is frequently written as 𝑝 = d𝜈/d𝜇. The functions 𝑝 and 𝑝 above are said
to be versions of each other.

Another way of creating measures from integrals is via a change of variable.
Specifically, let (𝐸, E) and (𝐹, F ) be measurable spaces and let ℎ : 𝐸 → 𝐹 be an
E/F -measurable function. Suppose on (𝐸, E) we have a measure 𝜇. Then, we can
create a measure 𝜈 on (𝐹, F ) by defining

(1.60) 𝜈(𝐵) := 𝜇(ℎ−1(𝐵)) = 𝜇({𝑥 ∈ 𝐸 : ℎ(𝑥) ∈ 𝐵}).

It is called the image measure of 𝜇 under ℎ; the name pushforward measure is also
used. Suggestive notation 𝜈 = 𝜇 ◦ ℎ−1 (or also ℎ(𝜇)); see Figure 1.61. The figure
also illustrates how integration with respect to image measures works, as detailed
in Theorem 1.62.
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(𝐸, E, 𝜇)
(𝐹, F , 𝜈)

ℎ

𝑓

𝑓 ◦ ℎ

Figure 1.61: The image measure 𝜈 of the dark blue set in 𝐹 is the same as the
measure 𝜇 of the dark blue set in 𝐸 . Also, the integral of 𝑓 with respect to 𝜈 is the
same as the integral of 𝑓 ◦ ℎ with respect to 𝜇.

Theorem 1.62: Integration with Respect to Image Measures

Let 𝜈 = 𝜇 ◦ ℎ−1 be the image measure of 𝜇 under ℎ. Then, for every positive
F -measurable function 𝑓 ,

𝜈 𝑓 = (𝜇 ◦ ℎ−1) 𝑓 =
∫
𝐹

𝑓 d𝜈 =
∫
𝐸

𝑓 ◦ ℎ d𝜇 = 𝜇( 𝑓 ◦ ℎ).

Proof. The idea is again to use the characterization from Theorem 1.57. Define
𝐿 ( 𝑓 ) := 𝜇( 𝑓 ◦ ℎ). Check yourself that 𝐿 satisfies the conditions of Theorem 1.57.
Thus, 𝐿 ( 𝑓 ) = 𝜈̃ 𝑓 for some measure 𝜈̃. Taking 𝑓 := 1𝐵 shows that 𝜈̃(𝐵) = 𝜇(ℎ−1𝐵) =
(𝜇 ◦ ℎ−1) (𝐵). Thus, 𝜈̃ = 𝜈. □

1.4.4 Kernels and Product Spaces
Recall that a measure 𝜇 and a measurable function 𝑓 can be treated, via The-
orem 1.57, as a row vector (linear functional) and a column vector, respectively.
Their integral 𝜇 𝑓 is then viewed as a “product” of the two. Continuing this analogy,
we wish to consider vector-matrix products such as 𝜇𝐾 and 𝐾 𝑓 . The corresponding
matrix-like object in measure theory and probability is the transition kernel.

Definition 1.63: Transition Kernel

Let (𝐸, E) and (𝐹, F ) be measurable spaces. A transition kernel from (𝐸, E)
into (𝐹, F ) is a mapping 𝐾 : 𝐸 × F → R+ such that:
1. 𝐾 (·, 𝐵) is E-measurable for every 𝐵 ∈ F .

2. 𝐾 (𝑥, ·) is a measure on (𝐹, F ) for every 𝑥 ∈ 𝐸 .
If (𝐹, F ) = (𝐸, E) and 𝐾 (𝑥, ·) is a probability measure for every 𝑥 ∈ 𝐸 , 𝐾 is
said to be a probability transition kernel on (𝐸, E).
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As 𝐾 (𝑥, ·) is a measure for every 𝑥 ∈ 𝐸 , we can consider its integral with
𝑓 ∈ F+. This will define a function in 𝐸 . Is it measurable? Similarly, as 𝐾 (·, 𝐵)
is E-measurable for every 𝐵 ∈ F , we can consider its integral with respect to a
measure 𝜇 on (𝐸, E), seen as a function of 𝐵. Will this result in a measure on
(𝐹, F )? The following theorem confirms both these questions:

Theorem 1.64: Measures and Functions from Kernels

Let 𝐾 be a transition kernel from (𝐸, E) into (𝐹, F ).
1. For all 𝑓 ∈ F+ the function 𝐾 𝑓 defined by (𝐾 𝑓 ) (𝑥) :=

∫
𝐹
𝐾 (𝑥, d𝑦) 𝑓 (𝑦),

𝑥 ∈ 𝐸 , is in E+.

2. For every measure 𝜇 on (𝐸, E) the set function 𝜇𝐾 defined by (𝜇𝐾) (𝐵) :=∫
𝐸
𝜇(d𝑥)𝐾 (𝑥, 𝐵), 𝐵 ∈ F , is a measure on (𝐹, F ).

3. For every measure 𝜇 on (𝐸, E) and 𝑓 ∈ F+,

(𝜇𝐾) 𝑓 = 𝜇(𝐾 𝑓 ) =
∫
𝐸

𝜇(d𝑥)
∫
𝐹

𝐾 (𝑥, d𝑦) 𝑓 (𝑦).

Proof.
1. Take 𝑓 ∈ F+. Clearly, the function 𝐾 𝑓 is well-defined and positive. To show that
𝐾 𝑓 ∈ E+, first consider simple functions; i.e., 𝑓 =

∑𝑛
𝑖=1 𝑏𝑖1𝐵𝑖 . Then, (𝐾 𝑓 ) (𝑥) =∑𝑛

𝑖=1 𝑏𝑖𝐾 (𝑥, 𝐵𝑖), and since each 𝐾 (·, 𝐵𝑖) is E-measurable, we have 𝐾 𝑓 ∈ E+.
For general 𝑓 ∈ F+, we know there exists a sequence of simple functions 𝑓𝑛 ∈ F+
increasing to 𝑓 . By the preceding, each 𝐾 𝑓𝑛 ∈ E+. Moreover, for each fixed 𝑥,
𝐾 (𝑥, ·) is a measure on (𝐹, F ) and so by the Monotone Convergence Theorem
applied to 𝐾 (𝑥, ·) and 𝑓𝑛, we have that the sequence of integrals (𝐾 (𝑥, ·) 𝑓𝑛)
converges to 𝐾 (𝑥, ·) 𝑓 = (𝐾 𝑓 ) (𝑥). In other words, the function 𝐾 𝑓 is the limit
of E+-measurable functions and is therefore E+-measurable as well.

2. Take a measure 𝜇 on (𝐸, E). The set function 𝜇𝐾 is well-defined. We want to
show that it is a measure by identifying its actions on functions 𝑓 ∈ F+. Thereto,
consider the functional 𝐿 : F+ → R+ defined by

𝐿 ( 𝑓 ) := 𝜇(𝐾 𝑓 ).

It satisfies the properties of Theorem 1.57:

(a) If 𝑓 = 0, then 𝐾 𝑓 = 0 and hence 𝜇(𝐾 𝑓 ) = 0.
(b) If 𝑓 , 𝑔 ∈ F+ and 𝑎, 𝑏 ∈ R+, then 𝐿 (𝑎 𝑓 + 𝑏𝑔) = 𝜇(𝐾 (𝑎 𝑓 + 𝑏𝑔)). Note

that (𝐾 (𝑎 𝑓 + 𝑏𝑔)) (𝑥) is defined as the integral of 𝑎 𝑓 + 𝑏𝑔 with respect to
the measure 𝐾 (𝑥, ·). Hence, by the linearity of the integral, 𝐾 (𝑎 𝑓 + 𝑏𝑔) =
𝑎𝐾 𝑓 + 𝑏𝐾𝑔. The integral of this function with respect to 𝜇 is 𝜇(𝑎𝐾 𝑓 + 𝑏𝐾𝑔)
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which, again by linearity of the integral, is equal to 𝑎𝜇(𝐾 𝑓 ) + 𝑏𝜇(𝐾𝑔). But
the latter can be written as 𝑎𝐿 ( 𝑓 ) + 𝑏𝐿 (𝑔). So 𝐿 is linear.

(c) Take a sequence ( 𝑓𝑛) in F+, with 𝑓𝑛 ↑ 𝑓 . By the Monotone Convergence
Theorem applied to each 𝐾 (𝑥, ·), we have (𝐾 𝑓𝑛) (𝑥) ↑ (𝐾 𝑓 ) (𝑥). By the same
theorem, applied to 𝜇 and 𝐾 𝑓𝑛, we have 𝜇(𝐾 𝑓𝑛) ↑ 𝜇(𝐾 𝑓 ). In other words
𝐿 ( 𝑓𝑛) ↑ 𝐿 ( 𝑓 ).

It follows from Theorem 1.57 that there exists a measure 𝜈 on (𝐹, F ) such that
𝐿 ( 𝑓 ) = 𝜈 𝑓 , 𝑓 ∈ F+. But this measure is 𝜇𝐾 , as can be found by taking 𝑓 = 1𝐵,
𝐵 ∈ F . Namely: 𝜈(𝐵) = 𝜇(𝐾1𝐵) = 𝜇𝐾 (·, 𝐵) = (𝜇𝐾) (𝐵). So 𝜇𝐾 is indeed a
measure.

3. A byproduct from the proof in Step 2 is that we have established that (𝜇𝐾) 𝑓 =
𝜈 𝑓 = 𝐿 ( 𝑓 ) = 𝜇(𝐾 𝑓 ).

□

Let (𝐸, E) and (𝐹, F ) be measurable spaces, and let 𝐾 be a transition kernel
from (𝐸, E) into (𝐹, F ). The above shows that by starting with a measure 𝜇 on
(𝐸, E), we can obtain a measure 𝜇𝐾 on (𝐹, F ). Using 𝜇 and 𝐾 , we can also
construct a measure 𝜇 ⊗ 𝐾 on the product space (𝐸 × 𝐹, E ⊗ F ) by defining

(1.65) (𝜇 ⊗ 𝐾) (𝐴 × 𝐵) :=
∫
𝐴

𝜇(d𝑥)𝐾 (𝑥, 𝐵), 𝐴 ∈ E, 𝐵 ∈ F .

The notation
(𝜇 ⊗ 𝐾) (d𝑥, d𝑦) = 𝜇(d𝑥)𝐾 (𝑥, d𝑦)

is also used. This notation is compatible with the one that we used for the product
measure 𝜇 ⊗ 𝜈 in the case where 𝐾 (𝑥, d𝑦) = 𝜈(d𝑦) does not depend on 𝑥.

Instead of (1.65), one can also define the measure by specifying its integrals
with respect to functions 𝑓 ∈ (E ⊗ 𝐹)+, via

(1.66) (𝜇 ⊗ 𝐾) 𝑓 :=
∫
𝐸

𝜇(d𝑥)
∫
𝐹

𝐾 (𝑥, d𝑦) 𝑓 (𝑥, 𝑦), 𝑓 ∈ (E ⊗ F )+.

More generally, the same construction can be employed to define measures on
higher-dimensional product spaces. For example, using a kernel 𝐿 from (𝐹, F ) to
a measurable space (𝐺,G), the integrals

(𝜇⊗𝐾 ⊗ 𝐿) 𝑓 :=
∫
𝐸

𝜇(d𝑥)
∫
𝐹

𝐾 (𝑥, d𝑦)
∫
𝐺

𝐿 (𝑦, d𝑧) 𝑓 (𝑥, 𝑦, 𝑧), 𝑓 ∈ (E ⊗F ⊗G)+,

define a measure on (𝐸 × 𝐹 × 𝐺, E ⊗ F ⊗ G).
For (1.65) and (1.66) to be well-defined, we need some form of finiteness

restrictions on 𝐾 and 𝜇. Mild conditions are that 𝜇 should be 𝜎-finite and 𝐾 should
be 𝜎-bounded, meaning that there is a measurable partition (𝐹𝑛) of 𝐹 such that
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𝐾 (·, 𝐹𝑛) is bounded for each 𝑛. You can check with Exercises 26 and 27 that the
right-hand side of (1.66) indeed defines a measure on (𝐸 × 𝐹, E ⊗ F ).

For a product measure 𝜇 ⊗ 𝜈, the order in which the integral (1.66) is evaluated
should be irrelevant. This is the message of Fubini’s theorem: under mild condi-
tions, an integral with respect to a product measure, i.e., a multiple integral, can be
computed by repeated integration, where the order of integration does not matter.
Recall that a Σ-finite measure 𝜇 is of the form 𝜇 =

∑
𝑛 𝜇𝑛, where 𝜇𝑛 (𝐸) < ∞ for

each 𝑛. A 𝜎-finite measure is thus Σ-finite as well.

Theorem 1.67: Fubini

Let 𝜇 and 𝜈 be Σ-finite measures on (𝐸, E) and (𝐹, F ), respectively.

1. There exists a unique Σ-finite measure 𝜋 on the product space (𝐸 ×𝐹, E ⊗
F ) such that for every positive 𝑓 in E ⊗ F ,

(1.68) 𝜋 𝑓 =

∫
𝐸

𝜇(d𝑥)
∫
𝐹

𝜈(d𝑦) 𝑓 (𝑥, 𝑦) =
∫
𝐹

𝜈(d𝑦)
∫
𝐸

𝜇(d𝑥) 𝑓 (𝑥, 𝑦).

2. If 𝑓 ∈ E ⊗ F and is 𝜋-integrable, then 𝑓 (𝑥, ·) is 𝜈-integrable for 𝜇-almost
every 𝑥, and 𝑓 (·, 𝑦) is 𝜇-integrable for 𝜈-almost every 𝑦 and (1.68) holds
again.

Proof. Assume first that 𝜇 and 𝜈 are finite measures. From Exercise 27, with
𝐾 (·, 𝐵) = 𝜈(𝐵), the first integral in (1.68) defines a measure 𝜋 := 𝜇 ⊗ 𝜈 on the
product space (𝐸 ×𝐹, E ⊗F ). With the same reasoning, the second integral defines
a measure, 𝜋̂ := 𝜈 ⊗ 𝜇 on (𝐹 × 𝐸, F ⊗ E). Defining 𝑓̂ (𝑦, 𝑥) := 𝑓 (𝑥, 𝑦), we need to
show that

𝜋 𝑓 = 𝜋̂ 𝑓̂ .

The “swap” mapping 𝑠 : (𝑥, 𝑦) ↦→ (𝑦, 𝑥) is obviously (E⊗F )/(F ⊗E)-measurable,
and for any 𝐴 ∈ E and 𝐵 ∈ F , we have

𝜋 ◦ 𝑠−1(𝐵 × 𝐴) = 𝜋(𝐴 × 𝐵) = 𝜇(𝐴)𝜈(𝐵) = 𝜋̂(𝐵 × 𝐴).

Since the rectangles 𝐴 × 𝐵 form a p-system that generates E ⊗ F , it follows by
Theorem 1.45 that 𝜋̂ is simply the image measure of 𝜋 under 𝑠; that is 𝜋̂ = 𝜋 ◦ 𝑠−1.
It follows then from Theorem 1.62 that

𝜋̂ 𝑓̂ = (𝜋 ◦ 𝑠−1) 𝑓̂ = 𝜋( 𝑓̂ ◦ 𝑠) = 𝜋 𝑓 .

We can generalize this to Σ-finite measures 𝜇 :=
∑
𝜇𝑖 and 𝜈 :=

∑
𝜈 𝑗 , where the {𝜇𝑖}

and {𝜈 𝑗 } are finite measures. Namely, in this case we have 𝜋 𝑓 =
∑
𝑖, 𝑗 (𝜇𝑖 ⊗ 𝜈 𝑗 ) 𝑓

and 𝜋̂ 𝑓̂ =
∑
𝑖, 𝑗 (𝜈 𝑗 ⊗ 𝜇𝑖) 𝑓̂ , so that again 𝜋 𝑓 = 𝜋̂ 𝑓̂ , because (𝜇𝑖 ⊗ 𝜈 𝑗 ) 𝑓 = (𝜈 𝑗 ⊗ 𝜇𝑖) 𝑓̂

for every pair (𝜇𝑖, 𝜈 𝑗 ) of finite measures.
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For the second part of the theorem, suppose 𝑓 is 𝜋-integrable, then (1.68) holds
for 𝑓 , because it holds for both 𝑓 + and 𝑓 −, and 𝜋 𝑓 = 𝜋 𝑓 + − 𝜋 𝑓 −, where both terms
are finite. From Exercise 12, we know that the section 𝑓 (𝑥, ·) is F -measurable, and
hence for each 𝑥 the integral

∫
𝐹
𝜈(d𝑦) 𝑓 (𝑥, 𝑦) is well-defined. Moreover, from the

integrability of 𝑓 , this integral must be finite for 𝜇-almost every 𝑥; that is, 𝑓 (𝑥, ·)
is 𝜈-integrable for 𝜇-almost every 𝑥. Similarly, 𝑓 (·, 𝑦) is 𝜇-integrable for 𝜈-almost
every 𝑦. □

Exercises
1. Prove that a 𝜎-algebra is also closed under countable intersections; that is, if
𝐴1, 𝐴2, . . . ∈ E, then also ∩𝑛𝐴𝑛 ∈ E.

2. Let 𝐴, 𝐵, 𝐶 be a partition of 𝐸 . Describe the smallest 𝜎-algebra containing the
sets 𝐴, 𝐵, and 𝐶.

3. Let 𝐸 be a sample set with 𝑛 elements. If F = 2𝐸 (i.e., the collection of all
subsets of 𝐸), how many sets does F contain?

4.∗ Let C be a countable partition of 𝐸 . Show that every set in 𝜎C is a countable
union of sets in C.

5. Let C := {{𝑥}, 𝑥 ∈ R}. Show that every set in 𝜎C is either countable or has a
countable complement.

6. Show that E0 in Example 1.7 is not a 𝜎-algebra.

7. Let {E𝑖, 𝑖 ∈ 𝐼} be an arbitrary (countable or uncountable) collection of𝜎-algebras
on 𝐸 . Show that the intersection ∩𝑖∈𝐼E𝑖 is also a 𝜎-algebra on 𝐸 .

8. Let (𝐸, E) be a measurable space. Let 𝐷 ⊆ 𝐸 (not necessarily in E). Define
D as the collection of sets of the form 𝐴 ∩ 𝐷, where 𝐴 ∈ E. Show that D is a
𝜎-algebra on 𝐷. The measurable space (𝐷,D) is called the trace of (𝐸, E) on 𝐷.

9.∗ Let 𝐸 be a set and (𝐹, F ) a measurable space. For 𝑓 : 𝐸 → 𝐹, define

𝑓 −1F = { 𝑓 −1𝐵 : 𝐵 ∈ F },

where 𝑓 −1𝐵 is the inverse image of 𝐵. Show that 𝑓 −1F is a 𝜎-algebra on 𝐸 . It
is the smallest 𝜎-algebra on 𝐸 such that 𝑓 is measurable relative to it and F . It is
called the 𝜎-algebra generated by 𝑓 .

10. Prove that Definition 1.10 of a d-system is equivalent to Definition 1.6 of a
𝜎-algebra, replacing (in the latter definition) E with D and Item 3. with:

3′. If 𝐴1, 𝐴2, . . . ∈ D are disjoint, then also ∪𝑛𝐴𝑛 ∈ D.
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11.∗ Let (𝐸, E) be a measurable space and 𝜇 a mapping from E to [0, 1] such that

• 𝜇(𝐸) = 1;
• for every finite sequence 𝐴1, . . . , 𝐴𝑛 of disjoint sets in E it holds that 𝜇(∪𝑛

𝑖=1𝐴𝑖) =∑𝑛
𝑖=1 𝜇(𝐴𝑖);

• for every decreasing sequence 𝐴1, 𝐴2, . . . , of sets in E that converges to the
empty set, i.e., 𝐴𝑛 ↓ ∅, it holds that lim𝑛 𝜇(𝐴𝑛) = 0.

Prove that 𝜇 is a probability measure on (𝐸, E).

12. Let 𝑓 : 𝐸 × 𝐹 → 𝐺 be (E ⊗ F )/G-measurable, where E, F , and G are 𝜎-
algebras on 𝐸, 𝐹, and 𝐺. Show that the function 𝑦 ↦→ 𝑓 (𝑥0, 𝑦) is F/G-measurable
for any fixed 𝑥0 ∈ 𝐸 . Such a function is called a section of 𝑓 .

13. Prove the two assertions in Example 1.23 rigorously.

14.∗ Show that because (−∞, 𝑥], 𝑥 ∈ R, are elements of B, the sets of the form
(𝑎, 𝑏], (𝑎, 𝑏), and {𝑎} are also in B.

15.∗ What is the Lebesgue measure of Q, the set of rational numbers?

16. Let (𝐸, E, 𝜇) be a measure space and let 𝐷 ∈ E. Define 𝜈(𝐴) := 𝜇(𝐴∩𝐷), 𝐴 ∈
E. Show that 𝜈 is a measure on (𝐸, E). It is called the trace of 𝜇 on 𝐷.

17. Let (𝐸, E, 𝜇) be a measure space and let (𝐷,D) be the trace of (𝐸, E) on
𝐷 ∈ E (see Exercise 8). Define 𝜈 by

𝜈(𝐴) := 𝜇(𝐴), 𝐴 ∈ D .

Show that (𝐷,D, 𝜈) is a measure space. The measure 𝜈 is called the restriction of
𝜇 to (𝐷,D).

18. Let (𝐸, E) be a measurable space and let (𝐷,D) be the trace of (𝐸, E) on
𝐷 ∈ E. Let 𝜈 be a measure on (𝐷,D). Define 𝜇 by

𝜇(𝐴) := 𝜈(𝐴 ∩ 𝐷), 𝐴 ∈ E .

Show that 𝜇 is a measure on (𝐸, E). It is called the extension of 𝜈 to (𝐸, E).

19.∗ Prove that the Cantor set in Example 1.1 has Lebesgue measure 0, and argue
why it has as many points as the interval [0, 1].

20. Prove that if 𝜇 and 𝜈 are measures, then 𝑎𝜇 + 𝑏𝜈 with 𝑎, 𝑏 ≥ 0 is a measure as
well. Hint: The main thing to verify is the countable additivity.

21. Let (𝐸, E, 𝜇) be a measure space and 𝑓 an E-measurable (numerical) function.
Prove that if 𝑓 is integrable, then 𝑓 must be real-valued 𝜇-almost everywhere. Hint:
show this first for 𝑓 ∈ E+.
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22. Let 𝜇 : B(0,1] → [0,∞] be defined by 𝜇(𝐴) := |𝐴|; that is, the number of
elements in 𝐴. Show that 𝜇 is a measure, but is not Σ-finite.

23. Verify that 𝜈 in (1.60) is indeed a measure.

24. Let 𝑐 be an increasing right-continuous function from R+ into R+. Define

𝑎(𝑢) := inf{𝑡 ∈ R+ : 𝑐(𝑡) > 𝑢}, 𝑢 ∈ R+,

with the usual convention that inf ∅ = ∞.

(a) Show that the function 𝑎 : R+ → R+ is increasing and right-continuous, and
that

𝑐(𝑡) = inf{𝑢 ∈ R+ : 𝑎(𝑢) > 𝑡}, 𝑡 ∈ R+.

Thus, 𝑎 and 𝑐 are right-continuous functional inverses of each other.
(b) Suppose 𝑐(𝑡) < ∞. Show that 𝑎(𝑐(𝑡)) ≥ 𝑡, with equality if and only if

𝑐(𝑡 + 𝜀) > 𝑐(𝑡) for every 𝜀 > 0.

25. Let 𝜇 be a measure on (𝐸, E) and 𝑝 a positive E-measurable function. Show
that the mapping

𝜈 : 𝐴 ↦→ 𝜇(1𝐴 𝑝) =
∫

1𝐴 𝑝 d𝜇, 𝐴 ∈ E

defines a measure 𝜈 on (𝐸, E).

26.∗ Let 𝐾 be a transition kernel from (𝐸, E) into (𝐹, F ). Consider the transform-
ation 𝑇 : (E ⊗ F )+ → E+ defined by (𝑇 𝑓 ) (𝑥) :=

∫
𝐹
𝐾 (𝑥, d𝑦) 𝑓 (𝑥, 𝑦).

(a) Show that 𝑇 (𝑎 𝑓 + 𝑏𝑔) = 𝑎𝑇 𝑓 + 𝑏𝑇𝑔 for all 𝑓 , 𝑔 ∈ (E ⊗ F )+ and 𝑎, 𝑏 ∈ R+.
(b) Show that if ( 𝑓𝑛) is a sequence in (E ⊗ F )+ increasing to 𝑓 , then 𝑇 𝑓𝑛 ↑ 𝑇 𝑓 .
(c) Prove that 𝑇 𝑓 is a positive E-measurable numerical function for every 𝑓 ∈

(E ⊗ F )+. Hint: show that

M := { 𝑓 ∈ (E ⊗ F )+ : 𝑇 𝑓 ∈ E}

is a monotone class that includes 1𝐴×𝐵 for every 𝐴 ∈ E and 𝐵 ∈ F .

27. Using Theorem 1.57 and Exercise 26, show that the right-hand side of (1.66)
indeed defines a measure on (𝐸 × 𝐹, E ⊗ F ). Hint: define 𝐿 ( 𝑓 ) := 𝜇(𝑇 𝑓 ).

28. The Σ-finiteness condition is necessary in Fubini’s theorem. For example, take
𝐸 = 𝐹 = (0, 1] and E = F = B(0,1] . Let 𝜇 be the Lebesgue measure on (𝐸, E) and
𝜈 the counting measure defined in Exercise 22. Show that, with 𝑓 (𝑥, 𝑦) := 1{𝑥=𝑦},
(𝑥, 𝑦) ∈ 𝐸 × 𝐹,∫

𝐸

𝜇(d𝑥)
∫
𝐹

𝜈(d𝑦) 𝑓 (𝑥, 𝑦) ≠
∫
𝐹

𝜈(d𝑦)
∫
𝐸

𝜇(d𝑥) 𝑓 (𝑥, 𝑦).





CHAPTER 2

PROBABILITY

The purpose of this chapter is to put various results from elementary prob-
ability theory in the more rigorous and mature framework of measure theory. In
this framework we will treat concepts such as random variables, expectations,
distributions, etc., in a unified manner, without necessarily having to introduce
the dichotomy between the “discrete” and “continuous” case, as is customary in
elementary probability.

2.1 Modeling Random Experiments
Probability theory is about modeling and analysing random experiments: experi-
ments whose outcome cannot be determined in advance, but are nevertheless still
subject to analysis. Mathematically, we can model a random experiment by defining
a specific measure space (Ω,H , P), which we call a probability space, where the
three components are: a sample space, a collection of events, and a probability
measure.

The sample spaceΩ of a random experiment is the set of all possible outcomes of
the random experiment. Sample spaces can be countable, such asN, or uncountable,
such as R𝑛 or {0, 1}∞. The sets in the 𝜎-algebra H are called events. These are the
subsets to which we wish to assign a probability. We can view H as the hoard of
events. An event 𝐴 occurs if the outcome of the experiment is one of the elements
in 𝐴. The properties of H are natural in the context of random experiments and
events:

• If 𝐴 and 𝐵 are events, the set 𝐴 ∪ 𝐵 is also an event, namely the event that 𝐴 or
𝐵 or both occur. For a sequence 𝐴1, 𝐴2, . . . of events, their union is the event
that at least one of the events occurs.

• If 𝐴 and 𝐵 are events, the set 𝐴 ∩ 𝐵 is also an event, namely the event that 𝐴

An Advanced Course in Probability and Stochastic Processes. D. P. Kroese and Z. I. Botev. 35



36 2.1. Modeling Random Experiments

and 𝐵 both occur. For a sequence 𝐴1, 𝐴2, . . . of events, their intersection is the
event that all of the events occur.

• If 𝐴 is an event, its complement 𝐴𝑐 is also an event, namely the event that 𝐴
does not occur.

• The setΩ itself is an event, namely the certain event (it always occurs). Similarly
∅ is an event, namely the impossible event (it never occurs).

When the sample space Ω is R, the natural 𝜎-algebra H is the Borel 𝜎-algebra
B. Recall that this is the smallest 𝜎-algebra on R that contains all the intervals
of the form (−∞, 𝑥] for 𝑥 ∈ R. This 𝜎-algebra of sets is big enough to contain all
important sets and small enough to allow us to assign a probability to all events.

The third ingredient in the model for a random experiment is the specification
of the probability of the events. In fact, this is the crucial part of the model.
Mathematically, we are looking for a measure P that assigns to each event 𝐴 a
number P(𝐴) in [0, 1] describing how likely or probable that event is.

Definition 2.1: Probability Measure

A probability measure is a measure on (Ω,H) with P(Ω) = 1. Thus, P is a
mapping from H to [0, 1] with the following properties:

1. P(∅) = 0 and P(Ω) = 1.

2. For any sequence 𝐴1, 𝐴2, . . . of disjoint events,

P(∪𝑛𝐴𝑛) =
∑
𝑛 P(𝐴𝑛).

An event 𝐴 is said to occur almost surely (a.s.) if P(𝐴) = 1. The following prop-
erties follow directly from the properties of a general measure in Proposition 1.42:

Theorem 2.2: Properties of a Probability Measure

Let P be a probability measure on a measurable space (Ω,H), and let 𝐴, 𝐵
and 𝐴1, 𝐴2, . . . be events. Then, the following hold:
1. (Monotonicity): 𝐴 ⊆ 𝐵 =⇒ P(𝐴) ≤ P(𝐵).

2. (Continuity from below): If 𝐴1, 𝐴2, . . . is an increasing sequence of events,
i.e., 𝐴1 ⊆ 𝐴2 ⊆ · · · , then

(2.3) limP(𝐴𝑛) = P (∪𝑛𝐴𝑛) .

3. (Countable subadditivity): P(∪𝑛𝐴𝑛) ≤
∑
𝑛 P(𝐴𝑛).
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Additional properties arise from the fact that P is a finite measure.

Theorem 2.4: Additional Properties of a Probability Measure

Let P be a probability measure on a measurable space (Ω,H), and let 𝐴, 𝐵
and 𝐴1, 𝐴2, . . . be events. Then, the following hold:
1. (Complement): P(𝐴𝑐) = 1 − P(𝐴).

2. (Union): P(𝐴 ∪ 𝐵) = P(𝐴) + P(𝐵) − P(𝐴 ∩ 𝐵).

3. (Continuity from above): If 𝐴1, 𝐴2, . . . is a decreasing sequence of events,
i.e., 𝐴1 ⊇ 𝐴2 ⊇ · · · , then

(2.5) limP(𝐴𝑛) = P (∩𝑛𝐴𝑛) .

Proof. Properties 1 and 2 follow directly from the (finite) additivity of P and the
fact that P(Ω) = 1. It remains to prove Property 3. Let 𝐴1, 𝐴2, . . . be a sequence
of events that decreases to 𝐴 := ∩𝑛𝐴𝑛. Then, 𝐴𝑐1, 𝐴

𝑐
2, . . . is a sequence of events

that increases to ∪𝑛𝐴𝑐𝑛 = (∩𝑛𝐴𝑛)𝑐 = 𝐴𝑐. By the continuity from below property,
limP(𝐴𝑐𝑛) = P(𝐴𝑐). Now apply Property 1 to conclude that limP(𝐴𝑛) = P(𝐴). □

Thus, our model for a random experiment consists of specifying a probability
space. We give two fundamental examples.

Example 2.6 (Discrete Probability Space) Let Ω := {𝑎1, 𝑎2, . . .} and let
{𝑝1, 𝑝2, . . .} be a set of positive numbers summing up to 1. Take H to be the
power set of Ω. Then, any P : H → [0, 1] defined by P(𝐴) :=

∑
𝑖:𝑎𝑖∈𝐴 𝑝𝑖, 𝐴 ⊆ Ω,

is a probability measure on (Ω,H) and, conversely, any probability measure on
(Ω,H) is of this form. Thus, we can specify P by specifying only the probabilities
of the elementary events {𝑎𝑖}; see Figure 2.7 for an illustration.

Ω

𝐴

Figure 2.7: A discrete probability space.
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Example 2.8 (Lebesgue Measure) We select randomly a point in the interval
(0, 1] such that each point is equally likely to be drawn. Let Ω := (0, 1]. How
should we choose H and P? We know that the probability that a randomly selected
point falls in the interval [𝑎, 𝑏] should be proportional to the length of that interval;
that is,

P( [𝑎, 𝑏]) = 𝑏 − 𝑎,
for 0 < 𝑎 < 𝑏 ≤ 1. Does such a P exist? Yes, take H := B(0,1] and P := Leb(0,1]
as respectively the Borel 𝜎-algebra and Lebesgue measure on (0, 1]. Both are
well-defined; see Example 1.41.

Specifying an explicit probability space may not always be easy or necessary,
and in practice we often leave the probability space in the background and choose
to formulate and analyse the model via random variables instead.

2.2 Random Variables
Usually the most convenient way to describe quantities of interest connected with
random experiments is by using random variables. Random variables allow us to
use intuitive notations for certain events, such as {𝑋 ∈ 𝐴}, {max(𝑋,𝑌 ) ≤ 𝑍}, etc.
Intuitively, we can think of a random variable 𝑋 as a measurement on a random
experiment that will become available tomorrow. However, all the think work can
be done today. If for each possible outcome 𝜔, the measurement is 𝑋 (𝜔), we can
specify today probabilities such as P(𝑋 ∈ 𝐴).

We can translate our intuitive notion of a random variable into rigorous math-
ematics by defining a random variable to be a measurable function from (Ω,H) to
a measurable space (𝐸, E).

Definition 2.9: Random Variable

Let (Ω,H , P) be a probability space and (𝐸, E) a measurable space. A
random variable 𝑋 taking values in 𝐸 is an H/E-measurable function; that
is, a mapping 𝑋 : Ω → 𝐸 that satisfies

(2.10) 𝑋−1𝐴 = {𝑋 ∈ 𝐴} = {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ 𝐴} ∈ H for all 𝐴 ∈ E .

Example 2.11 (Coin Tosses) Let 𝑋 be the total number of heads in 20 tosses of
a fair coin. We know from elementary probability theory that

(2.12) P(𝑋 = 𝑘) =
(
20
𝑘

)
1

220 , 𝑘 = 0, 1, . . . , 20.
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We have left the probability space completely in the background. How can we
reconcile this result with our mathematical model? First, for the sample space we
could choose

Ω := {0, 1}20,

i.e., the set of vectors [𝑥1, . . . , 𝑥20] where each 𝑥𝑖 = 0 or 1, indicating the result of
the 𝑖th toss (1 = heads, 0 = tails). Since Ω has a finite number of elements, we can
define H as the set of all subsets of Ω. The measure P can now be specified by
assigning probability 1/220 to each elementary event {[𝑥1, . . . , 𝑥20]}. This finalizes
our probability space.

Let 𝑋 be the function that assigns the total number of heads to each outcome 𝜔.
In particular, for 𝜔 = [𝑥1, . . . , 𝑥20], we have

𝑋 (𝜔) :=
20∑︁
𝑖=1

𝑥𝑖 .

Now consider the set {𝜔 ∈ Ω : 𝑋 (𝜔) = 𝑘}. The probability of this event is given
by the right-hand side of (2.12). Thus, if we abbreviate {𝜔 ∈ Ω : 𝑋 (𝜔) = 𝑘} to
{𝑋 = 𝑘} and further abbreviate P({𝑋 = 𝑘}) to P(𝑋 = 𝑘), then we have justified
(2.12)!

We often are interested in numerical random variables; that is, random variables
taking values in 𝐸 := R (the extended real line), with 𝜎-algebra E := B. However,
note that Definition 2.9 allows for a general measurable space (𝐸, E). The meaning
of (2.10) becomes clear in a probabilistic context: we want to be able to assign a
probability to each set {𝑋 ∈ 𝐴}, and so these sets should be events.

Example 2.13 (Indicator Functions and Simple Functions) The simplest
example of a numerical random variable is an indicator function of an event 𝐴:

1𝐴 (𝜔) :=

{
1 if 𝜔 ∈ 𝐴,
0 if 𝜔 ∉ 𝐴.

Positive linear combinations of indicator random variables, i.e.,
∑
𝑖 𝑎𝑖1𝐴𝑖 with

𝑎𝑖 ∈ R+ and 𝐴𝑖 ∈ H for all 𝑖, are again positive numerical random variables. In fact,
any positive numerical random variable is the increasing limit of a sequence of such
simple random variables. See also Theorems 1.27 and 1.31 for a characterization
of numerical random variables.

The fact that random variables are measurable functions has some nice con-
sequences. For example, any measurable function of 𝑋 is again a random variable,
by Theorem 1.21. In particular, if 𝑋 is a real-valued random variable and 𝑔 : R → R
is measurable with respect to the Borel 𝜎-algebra B on R, then 𝑔(𝑋) = 𝑔 ◦ 𝑋 is
again a numerical random variable.
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Example 2.14 (Quadratic Function) Let 𝑋 be a real-valued random variable
and let 𝑔 be the function 𝑥 ↦→ 𝑥2, 𝑥 ∈ R. The function 𝑔 is continuous, meaning that
the inverse image 𝑔−1(𝑂) of any open set 𝑂 is again open. Since the open sets in R
generate B, we have 𝑔−1(𝑂) ∈ B and thus, by Theorem 1.20, 𝑔 is B/B-measurable.
It follows then from Theorem 1.21 that 𝑔 ◦ 𝑋 is H/B-measurable; that is, it is again
a real-valued random variable. This random variable maps 𝜔 ∈ Ω to the number
𝑔(𝑋 (𝜔)) = (𝑋 (𝜔))2. Therefore, we write 𝑔 ◦ 𝑋 also as 𝑋2.

Often a random experiment is described via more than one random variable.
Let (Ω,H , P) be a probability space and let T be an arbitrary index set, which may
be countable or uncountable. We can think of T as a set of times. For each 𝑡, let
(𝐸𝑡 , E𝑡) be a measurable space. Generalizing Definition 1.14, the product space of
{(𝐸𝑡 , E𝑡), 𝑡 ∈ T} is the measurable space (×𝑡∈T𝐸𝑡 , ⊗𝑡∈T E𝑡). That is, each element
𝒙 ∈ ×𝑡∈T𝐸𝑡 is of the form 𝒙 = (𝑥𝑡 , 𝑡 ∈ T). Often (𝐸𝑡 , E𝑡) is one and the same
measurable space (𝐸, E), and in that case 𝒙 can be viewed as a function from T to
𝐸 . The 𝜎-algebra on ×𝑡∈T𝐸𝑡 is the 𝜎-algebra generated by the rectangles

(2.15)
?
𝑡∈T

𝐴𝑡 =

{
𝒙 ∈

?
𝑡∈T

𝐸𝑡 : 𝑥𝑡 ∈ 𝐴𝑡 for each 𝑡 in T

}
,

where 𝐴𝑡 = 𝐸𝑡 except for a finite number of 𝑡.

Definition 2.16: Stochastic Process

A collection of random variables 𝑿 := {𝑋𝑡 , 𝑡 ∈ T}, where T is any index set,
is called a stochastic process. When T is finite, 𝑿 is called a random vector.

The point of the following theorem is that we can think of a stochastic process
𝑿 := {𝑋𝑡 , 𝑡 ∈ T} in two equivalent ways.

Theorem 2.17: Stochastic Process

𝑿 := {𝑋𝑡 , 𝑡 ∈ T} is a stochastic process taking values in ×𝑡∈T𝐸𝑡 with 𝜎-
algebra ⊗𝑡∈T E𝑡 if and only if each 𝑋𝑡 is a random variable taking values in
𝐸𝑡 with 𝜎-algebra E𝑡 .

Proof. Let 𝑿 := {𝑋𝑡 , 𝑡 ∈ T} be a stochastic process taking values in ×𝑡∈T𝐸𝑡 with
𝜎-algebra ⊗𝑡∈T E𝑡 . We wish to show that each 𝑋𝑡 is a random variable taking values
in 𝐸𝑡 with 𝜎-algebra E𝑡 . In ⊗𝑡∈T E𝑡 consider rectangles of the form ×𝑢∈T 𝐴𝑢, where
𝐴𝑢 = 𝐸𝑢 for all 𝑢 ≠ 𝑡 and 𝐴𝑡 = 𝐵𝑡 ∈ E𝑡 . The inverse image of this set is an event,
since 𝑿 is a stochastic process. But this inverse image is exactly {𝑋𝑡 ∈ 𝐵𝑡}. As this
is true for all 𝐵𝑡 ∈ E𝑡 , 𝑋𝑡 is a random variable. To prove the converse, suppose all
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the 𝑋𝑡 are random variables. Now take a rectangle of the form (2.15). Its inverse
image under 𝑿 is the intersection of {𝑋𝑡 ∈ 𝐴𝑡} for a finite number of 𝑡 and is thus
an event. Since these rectangles generate ⊗𝑡∈TE𝑡 , 𝑿 is a stochastic process. □

From Section 1.2, we see that measurable functions of stochastic processes
again yield stochastic processes. In particular, when dealing with numerical random
variables 𝑋 and 𝑌 , the functions 𝑋 + 𝑌 , 𝑋𝑌 , 𝑋/𝑌 are random variables as well,
as long as they are well-defined. Also, if (𝑋𝑛) is a sequence of numerical random
variables then, by Proposition 1.26, sup 𝑋𝑛, inf 𝑋𝑛, lim sup 𝑋𝑛, and lim inf 𝑋𝑛 are
all random variables. In particular, if (𝑋𝑛) converges (that is, pointwise) to 𝑋 , then
𝑋 is again a random variable. Two random variables are said to be equal almost
surely, if they are the same P-almost everywhere; that is, if the set of points for
which they differ has probability 0.

2.3 Probability Distributions
Let (Ω,H , P) be a probability space and let 𝑋 be a random variable taking values
in a set 𝐸 with 𝜎-algebra E. To simplify our usage, we also say that “𝑋 takes values
in (𝐸, E)”. If we wish to describe our experiment via 𝑋 , then we need to specify
the probabilities of events such as {𝑋 ∈ 𝐵}, 𝐵 ∈ E. In elementary probability
theory we usually made a distinction between “discrete” and “continuous” random
variables. However, it is sometimes better to analyse random variables in a more
unified manner; many definitions and properties of random variables do not depend
on whether they are “discrete” or “continuous”. Moreover, some random variables
are neither discrete nor continuous.

Recall that by definition all the sets {𝑋 ∈ 𝐵} with 𝐵 ∈ E are events. So we
may assign a probability to each of these events. This leads to the notion of the
distribution of a random variable.

Definition 2.18: Probability Distribution

Let (Ω,H , P) be a probability space and let 𝑋 be a random variable taking
values in (𝐸, E). The (probability) distribution of 𝑋 is the image measure 𝜇
of P under 𝑋 . That is,

(2.19) 𝜇(𝐵) := P(𝑋 ∈ 𝐵), 𝐵 ∈ E .

The probability distribution of 𝑋 therefore carries all the “information” about
𝑋 that is known. Note that above we should have written P({𝑋 ∈ 𝐵}) instead of
P(𝑋 ∈ 𝐵). Since this abbreviation is harmless, we will use it from now on.

A distribution 𝜇 defined by (2.19) is thus a probability measure on (𝐸, E) and
is completely specified by its values on a p-system that generates E, as shown in
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Theorem 1.45. In particular, for a numerical random variable, it suffices to specify
𝜇( [−∞, 𝑥]) = P(𝑋 ≤ 𝑥) for all 𝑥 ∈ R. This leads to the following definition:

Definition 2.20: Cumulative Distribution Function

The (cumulative) distribution function of a numerical random variable 𝑋 is
the function 𝐹 : R → [0, 1] defined by

𝐹 (𝑥) := P(𝑋 ≤ 𝑥), 𝑥 ∈ R.

We usually abbreviate cumulative distribution function to cdf. In Figure 2.21
the graph of an arbitrary cdf is depicted.

0

1

Figure 2.21: A cumulative distribution function.

The following properties for a cdf 𝐹 are a direct consequence of the properties
of the probability measure P. We leave the proof as an exercise; see Exercise 3.

Proposition 2.22: Properties of a Cumulative Distribution Function

1. (Bounded): 0 ≤ 𝐹 (𝑥) ≤ 1.
2. (Increasing): 𝑥 ≤ 𝑦 ⇒ 𝐹 (𝑥) ≤ 𝐹 (𝑦).
3. (Right-continuous): limℎ↓0 𝐹 (𝑥 + ℎ) = 𝐹 (𝑥).

The uniqueness result in Theorem 1.45 shows that to each distribution 𝜇 of a
numerical random variable 𝑋 there corresponds exactly one cdf 𝐹 and vice versa.
The distribution is said to be proper if lim𝑥→−∞ 𝐹 (𝑥) = 0 and lim𝑥→∞ 𝐹 (𝑥) = 1.

In many cases we specify distributions of random variables as measures with a
density with respect to some other measure, usually a counting measure or Lebesgue
measure; see Section 1.4.3 for the measure-theoretic background.
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Definition 2.23: Discrete Distribution

We say that 𝑋 has a discrete distribution 𝜇 on (𝐸, E) if 𝜇 is a discrete measure;
that is, it is of the form

𝜇 =
∑︁
𝑥∈𝐷

𝑓 (𝑥) 𝛿𝑥

for some countable set 𝐷 and positive masses { 𝑓 (𝑥), 𝑥 ∈ 𝐷}.

We see that 𝑓 is the density of 𝜇 with respect to the counting measure on 𝐷,
and that 𝑓 (𝑥) = 𝜇({𝑥}) = P(𝑋 = 𝑥). The number 𝑓 (𝑥) represents the amount of
probability “mass” at 𝑥. In elementary probability 𝑓 is often called the probability
mass function (pmf) of the discrete random variable 𝑋 .

Definition 2.24: Distribution with a Density

We say that 𝑋 has an absolutely continuous distribution 𝜇 on (𝐸, E) with
respect to a measure 𝜆 on (𝐸, E) if there exists a positive E-measurable
function 𝑓 such that 𝜇 = 𝑓 𝜆; that is,

𝜇(𝐵) = P(𝑋 ∈ 𝐵) =
∫
𝐵

𝜆(d𝑥) 𝑓 (𝑥), 𝐵 ∈ E .

The function 𝑓 is thus the (probability) density function (pdf) of 𝑋 with respect
to the measure𝜆— often taken to be the Lebesgue measure. Note that 𝜇 is absolutely
continuous with respect to 𝜆 in the sense that for all 𝐵 ∈ E: 𝜆(𝐵) = 0 ⇒ 𝜇(𝐵) = 0.

︷             ︸︸             ︷
𝑥

𝑓 (𝑥)

𝐵

Figure 2.25: A probability density function of a numerical random variable.

Describing an experiment via a random variable and its probability distribution
or density is often more convenient than specifying the probability space. In fact, the
probability space usually stays in the background. The question remains, however,
whether there exists a probability space (Ω,H , P) and a numerical random variable
𝑋 for a given probability distribution. Fortunately, existence can be established for
all practical probability models. We will have a closer look at this in Section 4.4.
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Here is a simple example: there exists a probability space and a numerical random
variable 𝑋 such that 𝑋 has a given cdf 𝐹. Namely, take Ω := R, H := B, and let P
be the measure on B that is defined by

P( [−∞, 𝑥]) := 𝐹 (𝑥).

Now, let 𝑋 be the identity function 𝑥 ↦→ 𝑥 on R. Then, 𝑋 is a random variable on
(Ω,H , P) with cdf 𝐹, because

P(𝑋 ≤ 𝑥) = P( [−∞, 𝑥]) = 𝐹 (𝑥).

Some probability distributions (R,B) are neither discrete nor absolutely con-
tinuous with respect to the Lebesgue measure; see the example below. In elementary
probability the pdf 𝑓 of a “continuous” random variable is often taken to be the
derivative of its cdf 𝐹. This is not true in general. In Exercise 6 a continuous cdf 𝐹
is constructed for a distribution that does not have a pdf with respect to the Lebesgue
measure, even though the derivative of 𝐹 exists almost everywhere.

Example 2.26 (Mixture Distribution) Let 𝐹𝑑 and 𝐹𝑐 be distribution functions
of a discrete and absolutely continuous (with respect to the Lebesgue measure)
distribution on (R,B), respectively. For any 0 < 𝛼 < 1, the function 𝐹 defined by

𝐹 (𝑥) := 𝛼𝐹𝑑 (𝑥) + (1 − 𝛼)𝐹𝑐 (𝑥), 𝑥 ∈ R,

is again a distribution function, but the corresponding distribution is neither discrete
nor absolute continuous with respect to the Lebesgue measure. This is an example
of a mixture of distributions.

Tables 2.1 and 2.2 list a number of important absolutely continuous (with
respect to the Lebesgue measure) and discrete distributions on (R,B). Note that in
Table 2.1, Γ is the gamma function: Γ(𝛼) :=

∫ ∞
0 d𝑥 e−𝑥𝑥𝛼−1, 𝛼 > 0. The normal

distribution is often called the Gaussian distribution — we will use both names. The
Gamma(𝑛/2, 1/2) distribution is called the chi-squared distribution with 𝑛 degrees
of freedom, denoted 𝜒2

𝑛 . The t1 distribution is also called the Cauchy distribution.
We write

𝑋 ∼ Dist or 𝑋 ∼ 𝑓

to indicate that the random variable 𝑋 has distribution Dist or density 𝑓 .
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Table 2.1: Commonly used continuous distributions.

Name Notation 𝑓 (𝑥) 𝑥 ∈ Parameters

Uniform U[𝛼, 𝛽] 1
𝛽 − 𝛼 [𝛼, 𝛽] 𝛼 < 𝛽

Normal N(𝜇, 𝜎2) 1
𝜎
√

2𝜋
e−

1
2 ( 𝑥−𝜇

𝜎 )2
R 𝜎 > 0, 𝜇 ∈ R

Gamma Gamma(𝛼, 𝜆) 𝜆𝛼𝑥𝛼−1e−𝜆𝑥

Γ(𝛼) R+ 𝛼, 𝜆 > 0

Inverse
Gamma

InvGamma(𝛼, 𝜆) 𝜆𝛼𝑥−𝛼−1e−𝜆𝑥−1

Γ(𝛼) R+ 𝛼, 𝜆 > 0

Exponential Exp(𝜆) 𝜆 e−𝜆𝑥 R+ 𝜆 > 0

Beta Beta(𝛼, 𝛽) Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽) 𝑥

𝛼−1(1 − 𝑥)𝛽−1 [0, 1] 𝛼, 𝛽 > 0

Weibull Weib(𝛼, 𝜆) 𝛼𝜆 (𝜆𝑥)𝛼−1e−(𝜆𝑥 )𝛼 R+ 𝛼, 𝜆 > 0

Pareto Pareto(𝛼, 𝜆) 𝛼𝜆 (1 + 𝜆𝑥)−(𝛼+1) R+ 𝛼, 𝜆 > 0

Student t𝜈
Γ( 𝜈+1

2 )
√
𝜈𝜋 Γ( 𝜈2 )

(
1 + 𝑥

2

𝜈

)−(𝜈+1)/2
R 𝜈 > 0

F F(𝑚, 𝑛)
Γ(𝑚+𝑛

2 ) (𝑚/𝑛)𝑚/2𝑥 (𝑚−2)/2

Γ(𝑚2 ) Γ(
𝑛
2 ) [1 + (𝑚/𝑛)𝑥] (𝑚+𝑛)/2 R+ 𝑚, 𝑛 ∈ N+

Table 2.2: Commonly used discrete distributions.

Name Notation 𝑓 (𝑥) 𝑥 ∈ Parameters

Bernoulli Ber(𝑝) 𝑝𝑥 (1 − 𝑝)1−𝑥 {0, 1} 0 ≤ 𝑝 ≤ 1

Binomial Bin(𝑛, 𝑝)
(
𝑛

𝑥

)
𝑝𝑥 (1 − 𝑝)𝑛−𝑥 {0, 1, . . . , 𝑛} 0 ≤ 𝑝 ≤ 1, 𝑛 ∈ N

Discrete
uniform

U{1, . . . , 𝑛} 1
𝑛

{1, . . . , 𝑛} 𝑛 ∈ {1, 2, . . .}

Geometric Geom(𝑝) 𝑝(1 − 𝑝)𝑥−1 {1, 2, . . .} 0 ≤ 𝑝 ≤ 1

Poisson Poi(𝜆) e−𝜆
𝜆𝑥

𝑥!
N 𝜆 > 0

Negative
binomial

NegBin(𝑛, 𝑝)
(
𝑛 + 𝑥 − 1
𝑛 − 1

)
𝑝𝑛 (1 − 𝑝)𝑥 N 0 ≤ 𝑝 ≤ 1, 𝑛 ∈ N
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Definition 2.18 is very general and applies, in particular, to any numerical
random vector 𝑿 := [𝑋1, . . . , 𝑋𝑛]⊤. In this case, the distribution 𝜇 of 𝑿 is defined
by

𝜇(𝐵) := P(𝑿 ∈ 𝐵), 𝐵 ∈ B𝑛
.

Where possible, we characterize the distribution of a numerical random vector
via densities with respect to counting or Lebesgue measures. For example, if the
distribution of 𝑿 has a density 𝑓 with respect to the Lebesgue measure, then

P(𝑿 ∈ 𝐵) =
∫
𝐵

d𝒙 𝑓 (𝒙) , 𝐵 ∈ B𝑛
.

If instead 𝑿 is a discrete random vector, i.e., one that can only take values in
some countable set 𝐷, then the distribution of 𝑿 is most easily specified via its
probability mass function 𝑓 (𝒙) := P(𝑿 = 𝒙), 𝒙 ∈ 𝐷, which is in this case a function
of 𝑛 variables.

The concept of independence is of great importance in the study of random
experiments and the construction of probability distributions. Loosely speaking,
independence is about the lack of shared information between random objects.

Definition 2.27: Independent Random Variables

Let 𝑋 and 𝑌 be random variables taking values in (𝐸, E) and (𝐹, F ), re-
spectively. They are said to be independent if for any 𝐴 ∈ E and 𝐵 ∈ F it
holds that

(2.28) P(𝑋 ∈ 𝐴,𝑌 ∈ 𝐵) = P(𝑋 ∈ 𝐴) P(𝑌 ∈ 𝐵).

Intuitively, this means that information regarding 𝑋 does not affect our know-
ledge of𝑌 and vice versa. Mathematically, (2.28) simply states that the distribution,
𝜇 say, of (𝑋,𝑌 ) is given by the product measure of the distributions 𝜇𝑋 of 𝑋 and
𝜇𝑌 of 𝑌 . We can extend the independence concept to a finite or infinite collection
of random variables as follows:

Definition 2.29: Independency

We say that a collection of random variables {𝑋𝑡 , 𝑡 ∈ T}, with each 𝑋𝑡 taking
values in (𝐸𝑡 , E𝑡), is an independency if for any finite choice of indexes
𝑡1, . . . , 𝑡𝑛 ∈ T and sets 𝐴𝑡1 ∈ E𝑡1 , . . . , 𝐴𝑡𝑛 ∈ E𝑡𝑛 it holds that

P(𝑋𝑡1 ∈ 𝐴𝑡1 , . . . , 𝑋𝑡𝑛 ∈ 𝐴𝑡𝑛) = P(𝑋𝑡1 ∈ 𝐴𝑡1) · · · P(𝑋𝑡𝑛 ∈ 𝐴𝑡𝑛).

Remark 2.30 (Independence as a Model Assumption) More often than not, the
independence of random variables is a model assumption, rather than a consequence.
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Instead of describing a random experiment via an explicit description of Ω and P,
we will usually model the experiment through one or more (independent) random
variables.

Suppose 𝑋1, . . . , 𝑋𝑛 are independent random variables taking values in (𝐸, E).
Denote their individual distributions — the so-called marginal distributions — by
𝜇1, . . . , 𝜇𝑛, and suppose that these have densities 𝑓1, . . . , 𝑓𝑛 with respect to some
measure 𝜆 on E (think Lebesgue measure or counting measure). Then, the product
distribution 𝜇 := 𝜇1 ⊗ · · · ⊗ 𝜇𝑛 has a density 𝑓 with respect to the product measure
𝜆 ⊗ · · · ⊗ 𝜆, and

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓1(𝑥1) · · · 𝑓𝑛 (𝑥𝑛).
If the {𝑋𝑖} are independent and have the same distribution, they are said to be
independent and identically distributed, abbreviated as iid. We write

𝑿1, . . . , 𝑿𝑛
iid∼ 𝑓 or 𝑿1, . . . , 𝑿𝑛

iid∼ Dist,

to indicate that the random vectors are iid with a density 𝑓 or distribution Dist.

Example 2.31 (Bernoulli Trials) Consider the experiment where we throw a
coin repeatedly. The easiest way to model this is by using random variables, via:

𝑋1, 𝑋2, . . .
iid∼ Ber(𝑝).

We interpret {𝑋𝑖 = 1} as the event that the 𝑖th toss yields a success, e.g., heads.
Here, we (naturally) assume that the 𝑋1, 𝑋2, . . . are independent. Note that the model
depends on a single parameter 𝑝, which may be known or remain unspecified; e.g.,
𝑝 = 1/2 when the coin is fair. The collection of random variables {𝑋𝑖} is called
a Bernoulli process with success parameter 𝑝. It is the most important stochastic
process in the study of probability and serves as the basis for many more elaborate
stochastic processes.

For example, let 𝑆𝑛 denote the number of successes (i.e., the number of 1s) in
the first 𝑛 trials; that is,

𝑆𝑛 :=
𝑛∑︁
𝑖=1

𝑋𝑖, 𝑛 = 1, 2, . . . .

Put 𝑆0 := 0. The stochastic process {𝑆𝑛, 𝑛 ∈ N} is an example of a random walk.
Verify yourself that 𝑆𝑛 ∼ Bin(𝑛, 𝑝). For 𝑝 = 1/2, let 𝑌𝑛 := 2𝑆𝑛 − 𝑛. The process
{𝑌𝑛, 𝑛 ∈ N} is called the symmetric random walk on the integers. A typical path is
given in Figure 2.32.
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Figure 2.32: Symmetric random walk on the integers.

Another process derived from the Bernoulli process is the process {𝑇𝑘 , 𝑘 ∈ N},
where 𝑇0 := 0 and 𝑇𝑘 is the time of 𝑘th success, 𝑘 = 1, 2, . . .. Verify yourself that
the intersuccess times 𝑇𝑘 −𝑇𝑘−1, 𝑘 = 1, 2, . . . are independent and have a Geom(𝑝)
distribution.

Finally, note that in our model for the coin toss experiment, we have completely
ignored the probability space (Ω,H , P). The question arises whether there exists
a probability space on which we can define independent Ber(𝑝) random variables
𝑋1, 𝑋2, . . .. Exercise 7 gives a concrete probability space for the case 𝑝 = 1/2.

We will come back to the concept of independence in Section 2.7 and define it
for various other probabilistic objects.

2.4 Expectation
The expectation of a (numerical) random variable is a weighted average of all the
values that the random variable can take. In elementary probability theory the
expectation of a discrete random variable 𝑋 is defined as

E𝑋 :=
∑︁
𝑥

𝑥 P(𝑋 = 𝑥)

and for a continuous random variable 𝑋 with pdf 𝑓 it is defined as

E𝑋 :=
∫ ∞

−∞
d𝑥 𝑥 𝑓 (𝑥).

Having to define the expectation in two ways is not very satisfactory. Also, we
have seen that there exists random variables whose distribution is neither discrete
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nor continuous. How should we define the expectation for these random variables?
Again, measure theory comes to the rescue. Here is the formal definition:

Definition 2.33: Expectation

Let (Ω,H , P) be a probability space and 𝑋 a numerical random variable.
The expectation of 𝑋 is defined as the integral

E𝑋 := P𝑋 =

∫
𝑋 dP.

Below, we could have copied the four defining steps for a general integral,
given in Section 1.4.1, but we slightly simplified these using the linearity and
monotone convergence properties of general integrals, which were given and proved
in Theorem 1.55.

1. If 𝑋 is an indicator function, 𝑋 = 1𝐴 of an event 𝐴, then we define

E𝑋 := P(𝐴).

2. If 𝑋 is a simple function, 𝑋 =
∑𝑛
𝑖=1 𝑎𝑖 1𝐴𝑖 for events {𝐴𝑖}, then we define

E𝑋 :=
𝑛∑︁
𝑖=1

𝑎𝑖 P(𝐴𝑖).

3. If 𝑋 is a positive random variable, then, see Theorem 1.27, 𝑋 is the (pointwise)
limit of an increasing sequence of positive simple random variables 𝑋1, 𝑋2, . . .,
and by the Monotone Convergence Theorem (see Theorem 1.55), we define

E𝑋 := limE𝑋𝑛.

4. For general 𝑋 , write 𝑋 = 𝑋+ − 𝑋−, where 𝑋+ := max{𝑋, 0} and 𝑋− :=
max{−𝑋, 0}. Then, 𝑋+ and 𝑋− are both positive random variables, for which
the integral is defined. We now define

E𝑋 := E𝑋+ − E𝑋− ,

provided that the right-hand side is well-defined.

Thus, for positive random variables the expectation always exists (can be +∞).
For general random variables, it only fails to exist if both the positive and negative
parts of a random variable have infinite integrals. Next, we list various properties of
the expectation. The first list of properties is simply a restatement of Theorem 1.55.
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Theorem 2.34: Properties of an Expectation

Let 𝑎, 𝑏 ∈ R and let 𝑋,𝑌 , and (𝑋𝑛) be numerical random variables for which
the expectations below are well-defined. Then, the following hold:

1. (Monotonicity): If 𝑋 ≤ 𝑌 , then E𝑋 ≤ E𝑌 .
2. (Linearity): E(𝑎𝑋 + 𝑏𝑌 ) = 𝑎 E𝑋 + 𝑏 E𝑌 .
3. (Monotone convergence): If 𝑋𝑛 ↑ 𝑋 , then E𝑋𝑛 ↑ E𝑋 .

The next property, Fatou’s lemma, is helpful in various technical proofs. Simply
replace E with 𝜇 and 𝑋𝑛 with 𝑓𝑛, to obtain the result for a general measure 𝜇 and
positive numerical functions ( 𝑓𝑛).

Lemma 2.35: Fatou

For any sequence (𝑋𝑛) of positive numerical random variables,

E lim inf 𝑋𝑛 ≤ lim inf E𝑋𝑛.

Proof. Define 𝑌𝑚 := inf𝑛≥𝑚 𝑋𝑛. Then, 𝑌𝑚 ↑ lim inf 𝑋𝑛. Hence, by Theorem 2.34
(monotone convergence):

limE𝑌𝑚 = E lim inf 𝑋𝑛.

But we also have 𝑌𝑚 ≤ 𝑋𝑛 for all 𝑛 ≥ 𝑚, so that E𝑌𝑚 ≤ E𝑋𝑛 for 𝑛 ≥ 𝑚 by the
monotonicity property of the expectation. Thus,

E𝑌𝑚 ≤ inf
𝑛≥𝑚

E𝑋𝑛.

Combining the two displayed results above gives E lim inf 𝑋𝑛 ≤ lim inf E𝑋𝑛. □

We can use Fatou’s lemma to prove the following instrumental properties:

Theorem 2.36: Dominated and Bounded Convergence

Let (𝑋𝑛) be a sequence of numerical random variables for which lim 𝑋𝑛 = 𝑋

exists. Then, the following hold:

1. (Dominated convergence): If, for each 𝑛, |𝑋𝑛 | ≤ 𝑌 for some random
variable 𝑌 with E𝑌 < ∞, then E𝑋𝑛 → E𝑋 < ∞.

2. (Bounded convergence): If |𝑋𝑛 | ≤ 𝑐 for all 𝑛 for some 𝑐 ∈ R, then E𝑋𝑛 →
E𝑋 < ∞.
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Proof. If E𝑌 < ∞, then𝑌 is real-valued almost surely and 𝑋𝑛 +𝑌 ≥ 0 almost surely.
Hence, by Fatou’s lemma,

E lim inf(𝑋𝑛 + 𝑌 ) ≤ lim inf E(𝑋𝑛 + 𝑌 ),

which shows that
E lim inf 𝑋𝑛 ≤ lim inf E𝑋𝑛.

Similarly, 𝑌 − 𝑋𝑛 ≥ 0 almost surely, so that

E lim inf(𝑌 − 𝑋𝑛) ≤ lim inf E(𝑌 − 𝑋𝑛),

leading to
lim supE𝑋𝑛 ≤ E lim sup 𝑋𝑛.

Combining, we have

E lim inf 𝑋𝑛 ≤ lim inf E𝑋𝑛 ≤ lim supE𝑋𝑛 ≤ E lim sup 𝑋𝑛.

Since lim 𝑋𝑛 =: 𝑋 exists, lim inf 𝑋𝑛 = lim sup 𝑋𝑛, and so we have equality of the
four terms above. In particular, by the monotonicity property of E, this limit must
have a finite expectation, E𝑋 , which lies between −E𝑌 and E𝑌 . In the case where
(𝑋𝑛) is bounded by a constant 𝑐, we can take 𝑌 := 𝑐 (i.e., 𝑌 (𝜔) := 𝑐 for all 𝜔 ∈ Ω)
to obtain the bounded convergence result. □

In Theorem 2.36, replace E with 𝜇 and 𝑋𝑛, 𝑋,𝑌 with 𝑓𝑛, 𝑓 , 𝑔 to obtain the
corresponding results for integration with respect to a general measure 𝜇. For
bounded convergence, this measure needs to be finite.

The following theorem — which is just Theorem 1.62 — is the workhorse of the
theory. It enables us to actually calculate the expectation of a function of a random
variable.

Theorem 2.37: Expectation and Image Measure

Let 𝑋 be a random variable taking values in (𝐸, E) with distribution 𝜇 and
let ℎ be an E-measurable function. Then, provided the integral exists:

E ℎ(𝑋) =
∫

ℎ(𝑋) dP =

∫
R
𝜇(d𝑥) ℎ(𝑥) = 𝜇ℎ.

Combining Theorem 2.37 with Theorem 1.58 for measures with a density, gives
the familiar results for the expectation of a function of a random variable. In
particular, when 𝑋 has a discrete distribution, we have

E ℎ(𝑋) =
∑︁
𝑥

ℎ(𝑥) P(𝑋 = 𝑥).
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Similarly, when 𝑋 has a density 𝑓 with respect to the Lebesgue measure, we have

E ℎ(𝑋) =
∫ ∞

−∞
d𝑥 ℎ(𝑥) 𝑓 (𝑥).

The generalization to random vectors is immediate. Namely, if 𝑿 := [𝑋1, . . . , 𝑋𝑛]⊤
is a random vector with (𝑛-dimensional) pdf 𝑓 , and ℎ a measurable numerical
function on R𝑛, then

E ℎ(𝑿) =
∫
R𝑛

d𝒙 ℎ(𝒙) 𝑓 (𝒙).

Once we have specified a probabilistic model in terms of random variables and
their distributions (possibly including independence assumptions), we may wish to
explore the properties of certain functions of the random variables in the model.
For example, the following theorem is useful for computing probability densities of
functions of random variables. See Exercises 8–14 for more examples.

Theorem 2.38: Transformation Rule

Let 𝑿 be a random vector with density 𝑓𝑿 with respect to the Lebesgue
measure on (R𝑛,B𝑛). Let 𝒁 := 𝒈(𝑿), where 𝒈 : R𝑛 → R𝑛 is invertible with
inverse 𝒈−1 and Jacobian1 | 𝜕𝒛

𝜕𝒙 |. Then, at 𝒛 = 𝒈(𝒙) the random vector 𝒁 has
the following density with respect to the Lebesgue measure on (R𝑛,B𝑛):

(2.39) 𝑓𝒁 (𝒛) :=
𝑓𝑿 (𝒙)
| 𝜕𝒛
𝜕𝒙 |

= 𝑓𝑿 (𝒈−1(𝒛))
����𝜕𝒙𝜕𝒛 ����, 𝒛 ∈ R𝑛.

Proof. By Theorem 2.37, we have for any function ℎ ∈ B𝑛:

Eℎ(𝒁) =
∫

d𝒛 ℎ(𝒛) 𝑓𝒁 (𝒛) =
∫

d𝒙 ℎ(𝒈(𝒙)) 𝑓𝑿 (𝒙).

Evaluating the last integral via a multidimensional change of variables, with 𝒙 =

𝒈−1(𝒛), gives ∫
d𝒙 ℎ(𝒈(𝒙)) 𝑓𝑿 (𝒙) =

∫
d𝒛 ℎ(𝒛) 𝑓𝑿 (𝒈

−1(𝒛))
| 𝜕𝒛
𝜕𝒙 |

.

As ℎ is arbitrary, the first equation in (2.39) follows. The second equation is because
the matrix 𝜕𝒛

𝜕𝒙 of partial derivatives of 𝒈 is the inverse of the matrix 𝜕𝒙
𝜕𝒛 of partial

derivatives of 𝒈−1, and so their determinants (and Jacobians) are reciprocal. □

1The Jacobian is the absolute value of the determinant of the matrix of partial derivatives of 𝒈.
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Example 2.40 (Linear Transformation) Let 𝑿 := [𝑋1, . . . , 𝑋𝑛]⊤ be a numerical
random column vector with density 𝑓𝑿 with respect to the Lebesgue measure on
(R𝑛,B𝑛). Consider the linear transformation:

𝒁 = A𝑿,

where A is an invertible matrix. Then, by Theorem 2.38, 𝒁 has density

𝑓𝒁 (𝒛) :=
𝑓𝑿 (A−1𝒛)

|A| , 𝒛 ∈ R𝑛.

We conclude this section with a review of some common notions from elemen-
tary probability and statistics that involve expectations.

The variance of a random variable 𝑋 is defined by

Var 𝑋 := E(𝑋 − E𝑋)2.

The variance measures the “spread” in the values of 𝑋 — the average squared
distance from the mean. The square root of the variance is called the standard
deviation. The standard deviation measures the spread in the same units as the
random variable — unlike the variance, which uses squared units. The expectation
E𝑋𝑛 is called the 𝑛th moment of 𝑋 . The covariance of two random variables 𝑋 and
𝑌 with expectations 𝜇𝑋 and 𝜇𝑌 , respectively, is defined as

Cov(𝑋,𝑌 ) := E[(𝑋 − 𝜇𝑋) (𝑌 − 𝜇𝑌 )] .

This is a measure of the amount of linear dependency between the variables. For
𝜎2
𝑋

:= Var 𝑋 and 𝜎2
𝑌

:= Var𝑌 , a scaled version of the covariance is given by the
correlation coefficient,

𝜚(𝑋,𝑌 ) :=
Cov(𝑋,𝑌 )
𝜎𝑋 𝜎𝑌

.

Table 2.3 shows properties of the variance and covariance, which follow directly
from their definitions. We leave the proof as an exercise; see Exercise 15.

As a consequence of Properties 2, 8, and 9 in Table 2.3, we have that for any
sequence of independent random variables 𝑋1, . . . , 𝑋𝑛 with variances 𝜎2

1 , . . . , 𝜎
2
𝑛 ,

Var(𝑎1𝑋1 + 𝑎2𝑋2 + · · · + 𝑎𝑛𝑋𝑛) = 𝑎2
1 𝜎

2
1 + 𝑎2

2 𝜎
2
2 + · · · + 𝑎2

𝑛 𝜎
2
𝑛

for any choice of constants 𝑎1, . . . , 𝑎𝑛.
For random vectors, it is convenient to write the expectations and covariances

in vector and matrix form. For a random column vector 𝑿 := [𝑋1, . . . , 𝑋𝑛]⊤, we
define its expectation vector as the vector of expectations:

𝝁 := [𝜇1, . . . , 𝜇𝑛]⊤ := [E𝑋1, . . . ,E𝑋𝑛]⊤.
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Table 2.3: Properties of the variance and covariance.

1. Var 𝑋 = E𝑋2 − 𝜇2
𝑋
.

2. Var(𝑎𝑋 + 𝑏) = 𝑎2 𝜎2
𝑋
.

3. Cov(𝑋,𝑌 ) = E[𝑋𝑌 ] − 𝜇𝑋 𝜇𝑌 .
4. Cov(𝑋,𝑌 ) = Cov(𝑌, 𝑋).
5. −𝜎𝑋𝜎𝑌 ≤ Cov(𝑋,𝑌 ) ≤ 𝜎𝑋𝜎𝑌 .
6. Cov(𝑎𝑋 + 𝑏𝑌, 𝑍) = 𝑎 Cov(𝑋, 𝑍) + 𝑏 Cov(𝑌, 𝑍).
7. Cov(𝑋, 𝑋) = 𝜎2

𝑋
.

8. Var(𝑋 + 𝑌 ) = 𝜎2
𝑋
+ 𝜎2

𝑌
+ 2Cov(𝑋,𝑌 ).

9. If 𝑋 and𝑌 are independent, then Cov(𝑋,𝑌 ) = 0.

Similarly, letting the expectation of a matrix be the matrix of expectations, we define
for two random vectors 𝑿 ∈ R𝑛 and 𝒀 ∈ R𝑚 their 𝑛 × 𝑚 covariance matrix by:

Cov(𝑿,𝒀) := E[(𝑿 − E𝑿) (𝒀 − E𝒀)⊤],

with (𝑖, 𝑗)th element Cov(𝑋𝑖, 𝑌 𝑗 ) = E[(𝑋𝑖 − E𝑋𝑖) (𝑌 𝑗 − E𝑌 𝑗 )] . A consequence of
this definition is that

Cov(A𝑿,B𝒀) = ACov(𝑿,𝒀) B⊤,

where A and B are two matrices with 𝑛 and 𝑚 columns, respectively.
The covariance matrix of the vector 𝑿 is defined as the 𝑛×𝑛matrix Cov(𝑿, 𝑿).

Any such covariance matrix 𝚺 is positive semidefinite, meaning that 𝒙⊤𝚺𝒙 ≥ 0 for
all 𝒙 ∈ R𝑛. To see this, write

𝒙⊤𝚺𝒙 = E
[
𝒙⊤(𝑿 − E𝑋)︸          ︷︷          ︸

𝑌

(𝑿 − E𝑋)⊤𝒙︸          ︷︷          ︸
𝑌

]
= E𝑌2 ≥ 0.

Any positive semidefinite matrix 𝚺 can be written as

𝚺 = BB⊤

for some real matrix B, which can be obtained, for example, by using the Cholesky
square-root method; see, for example, Kroese et al. (2019, Algorithm A.6.2).
Conversely, for any real matrix B, the matrix BB⊤ is positive semidefinite. The
covariance matrix is also denoted as Var𝑿 := Cov(𝑿, 𝑿), by analogy to the scalar
identity Var𝑋 = Cov(𝑋, 𝑋).

A useful application of the cyclic property and linearity of the trace of a matrix
is the following:
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Proposition 2.41: Expectation of a Quadratic Form

Let A be an 𝑛 × 𝑛 matrix and 𝑿 an 𝑛-dimensional random vector with
expectation vector 𝝁 and covariance matrix 𝚺. The random variable 𝑌 :=
𝑿⊤A𝑿 has expectation tr(A𝚺) + 𝝁⊤A𝝁.

Proof. Since 𝑌 is a scalar, it is equal to its trace. Now, using the cyclic property:
E𝑌 = E tr(𝑌 ) = E tr(𝑿⊤A𝑿) = E tr(A𝑿𝑿⊤) = tr(AE[𝑿𝑿⊤]) = tr(A(𝚺+𝝁𝝁⊤)) =
tr(A𝚺) + tr(A𝝁𝝁⊤) = tr(A𝚺) + 𝝁⊤A𝝁. □

Example 2.42 (Multivariate Normal (Gaussian) Distribution) Let 𝑍1, . . . , 𝑍𝑛
be independent and standard normal (i.e., N(0, 1)-distributed) random variables.
The joint pdf of 𝒁 := [𝑍1, . . . , 𝑍𝑛]⊤ is given by

𝑓Z(𝒛) :=
𝑛∏
𝑖=1

1
√

2𝜋
e−

1
2 𝑧

2
𝑖 = (2𝜋)− 𝑛2 e−

1
2 𝒛⊤𝒛, 𝒛 ∈ R𝑛.

We write 𝒁 ∼ N(0, I𝑛), where I𝑛 is the 𝑛-dimensional identity matrix. Consider the
affine transformation

𝑿 = 𝝁 + B 𝒁

for some 𝑚 × 𝑛 matrix B and 𝑚-dimensional vector 𝝁. Note that 𝑿 has expectation
vector 𝝁 and covariance matrix 𝚺 := BB⊤.We say that 𝑿 has a multivariate normal
or multivariate Gaussian distribution with mean vector 𝝁 and covariance matrix 𝚺.
We write 𝑿 ∼ N(𝝁,𝚺). The multivariate normal distribution has many interesting
properties; see, for example, Kroese et al. (2019, Section C.7). In particular:

1. Any affine combination of independent multivariate normal random vectors is
again multivariate normal.

2. The (marginal) distribution of any subvector of a multivariate normal random
vector is again multivariate normal.

3. The conditional distribution of a multivariate normal random vector, given any
of its subvectors, is again multivariate normal.

4. Two jointly multivariate normal random vectors are independent if and only if
their covariance matrix is the zero matrix.

2.5 𝐿𝑝 Spaces
Let 𝑋 be a numerical random variable on (Ω,H , P). For 𝑝 ∈ [1,∞) define

∥𝑋 ∥𝑝 := (E|𝑋 |𝑝)
1
𝑝
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and let
∥𝑋 ∥∞ := inf{𝑥 : P( |𝑋 | ≤ 𝑥) = 1}.

Definition 2.43: 𝐿𝑝 Space

For each 𝑝 ∈ [1,∞] the space 𝐿𝑝 is comprised of all numerical random
variables 𝑋 for which ∥𝑋 ∥𝑝 < ∞.

In particular, 𝐿1 consists of all integrable random variables and 𝐿2 is the space
of all square-integrable random variables. If we identify random variables that are
almost surely equal as one and the same, then 𝐿𝑝 is a Banach space: a complete
normed vector space. Completeness means that every Cauchy sequence converges,
with respect to the norm ∥ · ∥𝑝. That is, if lim𝑚,𝑛→∞ ∥𝑋𝑚 − 𝑋𝑛∥𝑝 = 0, then there
exists an 𝑋 ∈ 𝐿𝑝 such that lim𝑛→∞ ∥𝑋𝑛 − 𝑋 ∥𝑝 = 0. Of particular importance is
𝐿2, which is in fact a Hilbert space, with inner product ⟨𝑋,𝑌⟩ := E [𝑋𝑌 ]; see
Appendix B for more details.

Theorem 2.47 summarizes important properties of 𝐿𝑝 spaces through the prop-
erties of ∥ · ∥𝑝; the first three show that 𝐿𝑝 is a vector space with norm ∥ · ∥𝑝. To
prove these properties, we first need the following result on expectations of convex
functions, which is of independent interest and is very useful in many applications.
Let X ⊆ R𝑛. A function ℎ : X → R is said to be convex on X if for each 𝒙 in the
interior of X there exists a vector 𝒗 — called a subgradient of ℎ — such that

(2.44) ℎ(𝒚) ≥ ℎ(𝒙) + 𝒗⊤(𝒚 − 𝒙), 𝒚 ∈ X.

Lemma 2.45: Jensen’s Inequality

Let ℎ : X → R be a convex function and let 𝑿 be a random variable taking
values in X, with expectation vector E𝑿. Then,

E ℎ(𝑿) ≥ ℎ(E𝑿).

Proof. In (2.44) replace 𝒚 with 𝑿 and 𝒙 with E𝑿, and then take expectations on
both sides, to obtain:

E ℎ(𝑿) ≥ E ℎ(E𝑿) + 𝒗⊤E(𝑿 − E𝑿) = ℎ(E𝑿).

□

Example 2.46 (Convex Function) A well-known property of a convex function
ℎ is that

ℎ(𝛼𝒖 + (1 − 𝛼)𝒗) ≤ 𝛼ℎ(𝒖) + (1 − 𝛼)ℎ(𝒗), 𝛼 ∈ [0, 1] .
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This is a simple consequence of Jensen’s inequality, by taking 𝑿 the random variable
that takes the value 𝒖 with probability 𝛼 and the value 𝒗 with probability 1 − 𝛼.

For convex functions on R we can further exploit the above inequality by taking
𝒖 := 𝑈 and 𝒗 := 𝑉 for any pair of real-valued random variables (𝑈,𝑉). Using the
monotonicity of the expectation, we conclude that

Eℎ(𝛼𝑈 + (1 − 𝛼)𝑉) ≤ 𝛼 Eℎ(𝑈) + (1 − 𝛼) Eℎ(𝑉), 𝛼 ∈ [0, 1] .

We use this device to prove various properties of the 𝐿𝑝 norm.

Theorem 2.47: Properties of the 𝐿𝑝 Norm

Let 𝑋 and𝑌 be numerical random variables on (Ω,H , P). Then, the following
hold:

1. (Positivity): ∥𝑋 ∥𝑝 ≥ 0, and ∥𝑋 ∥𝑝 = 0 ⇔ 𝑋 = 0 almost surely.

2. (Multiplication by a constant): ∥𝑐 𝑋 ∥𝑝 = |𝑐 | ∥𝑋 ∥𝑝.
3. (Minkowski’s (triangle) inequality):

|∥𝑋 ∥𝑝 − ∥𝑌 ∥𝑝 | ≤ ∥𝑋 + 𝑌 ∥𝑝 ≤ ∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝 .

4. (Hölder’s inequality): For 𝑝, 𝑞, 𝑟 ∈ [1,∞] with 1
𝑝
+ 1
𝑞
= 1
𝑟
,

(2.48) ∥𝑋𝑌 ∥𝑟 ≤ ∥𝑋 ∥𝑝 ∥𝑌 ∥𝑞 .

5. (Monotonicity): If 1 ≤ 𝑝 < 𝑞 ≤ ∞, then ∥𝑋 ∥𝑝 ≤ ∥𝑋 ∥𝑞.

Proof.

1. Obviously, E|𝑋 |𝑝 ≥ 0 implies ∥𝑋 ∥𝑝 ≥ 0, and 𝑋 = 0 (a.s.) ⇒ E|𝑋 |𝑝 = 0 ⇒
∥𝑋 ∥𝑝 = 0. Conversely, ∥𝑋 ∥𝑝 = 0 ⇒ E|𝑋 |𝑝 = 0, which can only be true if
P(𝑋 = 0) = 1.

2. This follows from the linearity of the expectation for 𝑝 < ∞. The identity is also
trivial for 𝑝 = ∞ and 𝑐 = 0. In the case of 𝑝 = ∞ and |𝑐 | > 0, we have

∥𝑐 𝑋 ∥∞ = inf{𝑥 : P( |𝑐 𝑋 | ≤ 𝑥) = 1}
= inf{𝑥 : P( |𝑋 | ≤ 𝑥/|𝑐 |) = 1}
= |𝑐 | inf{𝑥/|𝑐 | : P( |𝑋 | ≤ 𝑥/|𝑐 |) = 1}
= |𝑐 | ∥𝑋 ∥∞.

3. Assume 𝑋,𝑌 ∈ 𝐿𝑝; otherwise, there is nothing to prove. For 𝑝 = ∞, let 𝑥 :=
∥𝑋 ∥∞ and 𝑦 := ∥𝑌 ∥∞. Then, almost surely |𝑋+𝑌 | ≤ 𝑥+𝑦, and so ∥𝑋+𝑌 ∥∞ ≤ 𝑥+𝑦.
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Next, consider the case 𝑝 ∈ [1,∞). Since 𝑥 ↦→ |𝑥 |𝑝 is convex, we have

|𝛼𝑈 + (1 − 𝛼)𝑉 |𝑝 ≤ 𝛼 |𝑈 |𝑝 + (1 − 𝛼) |𝑉 |𝑝, 𝛼 ∈ [0, 1]

for any 𝛼 ∈ [0, 1] and random variables 𝑈 and 𝑉 . In particular, it holds for
𝑈 := 𝑋/∥𝑋 ∥𝑝, 𝑉 := 𝑌/∥𝑌 ∥𝑝, and 𝛼 := ∥𝑋 ∥𝑝/(∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝). Substituting and
taking expectations on both sides gives the inequality:

E

���� 𝑋 + 𝑌
∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝

����𝑝 ≤ 𝛼E |𝑋 |𝑝∥𝑋 ∥𝑝𝑝
+ (1 − 𝛼)E |𝑌 |

𝑝

∥𝑌 ∥𝑝𝑝
= 1,

which after rearrangement, yields the second inequality in Minkowski’s Property
3. The first inequality is a consequence of this, because ∥𝑋 ∥𝑝 = ∥𝑋 +𝑌 −𝑌 ∥𝑝 ≤
∥𝑋 + 𝑌 ∥𝑝 + ∥𝑌 ∥𝑝 and ∥𝑌 ∥𝑝 = ∥𝑋 + 𝑌 − 𝑋 ∥𝑝 ≤ ∥𝑋 + 𝑌 ∥𝑝 + ∥𝑋 ∥𝑝.

4. Let 𝑋,𝑌 ∈ 𝐿𝑝. For 𝑝 = ∞, we have 𝑟 = 𝑞, and almost surely |𝑋𝑌 | ≤ ∥𝑋 ∥∞ |𝑌 |,
so

∥𝑋𝑌 ∥𝑟 = (E|𝑋𝑌 |𝑟)1/𝑟 ≤ (∥𝑋 ∥𝑟∞ E|𝑌 |𝑟)1/𝑟 = ∥𝑋 ∥∞ ∥𝑌 ∥𝑟 .
For 𝑞 = ∞, we have 𝑟 = 𝑝 and the same holds. Next, consider the case where
both 𝑝 and 𝑞 are finite. Since the logarithmic function is concave (that is, −𝑔 is
convex), we have that for any 𝛼 ∈ [0, 1] and positive 𝑢 and 𝑣:

𝛼 ln 𝑢 + (1 − 𝛼) ln 𝑣 ≤ ln(𝛼𝑢 + (1 − 𝛼)𝑣).

We have thus proved the geometric and arithmetic mean inequality:

𝑢𝛼𝑣1−𝛼 ≤ 𝛼𝑢 + (1 − 𝛼)𝑣.

This inequality remains valid, almost surely, if we replace 𝑢 and 𝑣 with positive
random variables𝑈 and 𝑉 . In particular, letting

𝛼 := 𝑟/𝑝, 𝑈 :=
|𝑋 |𝑟/𝛼

∥𝑋 ∥𝑟/𝛼𝑝
, 𝑉 :=

|𝑌 |𝑟/(1−𝛼)

∥𝑌 ∥𝑟/(1−𝛼)𝑞

and taking expectations on both sides yields:

E
|𝑋𝑌 |𝑟

∥𝑋 ∥𝑟𝑝 ∥𝑌 ∥𝑟𝑞
≤ 𝛼E |𝑋 |

𝑝

∥𝑋 ∥𝑝𝑝
+ (1 − 𝛼)E |𝑌 |

𝑞

∥𝑌 ∥𝑞𝑞
= 1,

which, after rearrangement, yields Hölder’s inequality.

5. Apply (2.48) with 𝑌 := 1, 𝑟 := 𝑝, 𝑝 := 𝑞, and 𝑞 := 𝑝𝑞/(𝑞 − 𝑝).

□
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For random variables in 𝐿2 the concepts of variance and covariance have a
geometric interpretation. Namely, if 𝑋 and𝑌 are zero-mean random variables (their
expectation is 0), then

Var 𝑋 = ∥𝑋 ∥2
2 and Cov(𝑋,𝑌 ) = ⟨𝑋,𝑌⟩.

In particular, from the Hölder’s inequality with 𝑝 = 𝑞 = 2 and 𝑟 = 1, we obtain the
famous Cauchy–Schwarz inequality

(2.49) |Cov(𝑋,𝑌 ) | ≤
√
Var 𝑋 Var𝑌 .

2.6 Integral Transforms
Expectations are used in many probabilistic analyses. In this section, we highlight
their use in integral transforms. Many calculations and manipulations involving
probability distributions are facilitated by the use of such transforms. We describe
two major types of transforms.

2.6.1 Moment Generating Functions

Definition 2.50: Moment Generating Function

The moment generating function (MGF) of a numerical random variable 𝑋
with distribution 𝜇 is the function 𝑀 : R → [0,∞], given by

𝑀 (𝑠) := E e𝑠𝑋 =

∫ ∞

−∞
𝜇(d𝑥) e𝑠𝑥 , 𝑠 ∈ R.

We sometimes write 𝑀𝑋 to stress the role of 𝑋 . Table 2.4 gives a list of MGFs
for various important distributions that are absolutely continuous with respect to
the Lebesgue measure.

The MGF of a positive random variable is called the Laplace transform. In most
definitions the sign of 𝑠 is then flipped. That is, the Laplace transform of 𝑋 is the
function 𝑠 ↦→ E e−𝑠𝑋 = 𝑀 (−𝑠), 𝑠 ∈ R.

The set 𝐼 := {𝑠 ∈ R : 𝑀 (𝑠) < ∞} always includes 0. For some distributions
this may be the only point. However, the important case is where 𝐼 contains a
neighborhood of 0; i.e., there is an 𝑠0 such that 𝑀 (𝑠) < ∞ for all 𝑠 ∈ (−𝑠0, 𝑠0). In
this case 𝑀 completely determines 𝜇. That is, two distributions are the same if and
only if their MGFs are the same.
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Theorem 2.51: Uniqueness of the MGF

A measure 𝜇 is determined by its MGF 𝑀 if the latter is finite in a neighbor-
hood of 0.

The proof relies on a similar uniqueness result for the characteristic function,
which we will prove in Section 2.6.2; see also Billingsley, page 390.

Table 2.4: MGFs for common distributions.

Distr. 𝑓 (𝑥) 𝑥 ∈ 𝑀 (𝑠) 𝑠 ∈

U[𝑎, 𝑏] 1
𝑏 − 𝑎 [𝑎, 𝑏] e𝑏𝑠 − e𝑎𝑠

𝑠(𝑏 − 𝑎) R

Exp(𝜆) 𝜆 e−𝜆𝑥 R+

(
𝜆

𝜆 − 𝑠

)
(−∞, 𝜆)

Gamma(𝛼, 𝜆) 𝜆𝛼𝑥𝛼−1e−𝜆𝑥

Γ(𝛼) R+

(
𝜆

𝜆 − 𝑠

)𝛼
(−∞, 𝜆)

N(𝜇, 𝜎2) 1
𝜎
√

2𝜋
e−

1
2 ( 𝑥−𝜇𝜎 )2

R e𝜇𝑠+
1
2𝜎

2𝑠2 R

For a discrete random variable 𝑋 it is often convenient to express the MGF 𝑀 (𝑠)
in terms of 𝑧 = e𝑠; that is, E e𝑠𝑋 = E 𝑧𝑋 . For common discrete distributions this
is done in Table 2.5. The function 𝑧 ↦→ E 𝑧𝑋 is called the probability generating
function of 𝑋 .

Table 2.5: MGFs 𝑀 (𝑠), expressed in terms of 𝑧 = e𝑠.

Distr. 𝑓 (𝑥) 𝑥 ∈ 𝑀 (𝑠)

Ber(𝑝) 𝑝𝑥 (1 − 𝑝)1−𝑥 {0, 1} 1 − 𝑝 + 𝑝𝑧

Bin(𝑛, 𝑝)
(
𝑛

𝑥

)
𝑝𝑥 (1 − 𝑝)𝑛−𝑥 {0, 1, . . . , 𝑛} (1 − 𝑝 + 𝑝𝑧)𝑛

Poi(𝜆) e−𝜆
𝜆𝑘

𝑘!
{0, 1, . . .} e−𝜆(1−𝑧)

Geom(𝑝) 𝑝(1 − 𝑝)𝑥−1 {1, 2, . . .} 𝑝𝑧

1 − (1 − 𝑝)𝑧
NegBin(𝑛, 𝑝)

(
𝑛 + 𝑥 − 1
𝑛 − 1

)
𝑝𝑛 (1 − 𝑝)𝑥 {0, 1, . . .}

(
𝑝

1 − (1 − 𝑝)𝑧

)𝑛
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Theorem 2.52: Taylor’s Theorem for MGFs

Suppose 𝑀 (𝑠) := Ee𝑠𝑋 is finite in the neighborhood (−𝑠0, 𝑠0) of 0. Then, 𝑀
has the Taylor expansion

𝑀 (𝑠) =
∞∑︁
𝑘=0

𝑠𝑘

𝑘!
E𝑋 𝑘 , |𝑠 | < 𝑠0.

In particular, all moments E𝑋 𝑘 , 𝑘 ∈ N are finite.

Proof. Suppose 𝑀 (𝑠) < ∞ for 𝑠 ∈ (−𝑠0, 𝑠0) for some 𝑠0 > 0. The Taylor expansion
for e𝑠𝑥 is

∑∞
𝑘=0(𝑠𝑥)𝑘/𝑘!, so we can write

𝑀 (𝑠) = Ee𝑠𝑋 = E lim
𝑛

𝑛∑︁
𝑘=0

(𝑠𝑋)𝑘
𝑘!

.

We want to use the Dominated Convergence Theorem (see Theorem 2.36) to swap
the limit and expectation. This would give

𝑀 (𝑠) = E lim
𝑛

𝑛∑︁
𝑘=0

(𝑠𝑋)𝑘
𝑘!

= lim
𝑛

E
𝑛∑︁
𝑘=0

(𝑠𝑋)𝑘
𝑘!

= lim
𝑛

𝑛∑︁
𝑘=0

𝑠𝑘 E𝑋 𝑘

𝑘!
=

∞∑︁
𝑘=0

𝑠𝑘 E𝑋 𝑘

𝑘!
,

which would prove the result. It remains to show that
�� ∑𝑛

𝑘=0
(𝑠𝑋)𝑘
𝑘!

�� ≤ 𝑌 for all 𝑛, for
some positive random variable 𝑌 with finite expectation. We can take 𝑌 := e|𝑠𝑋 |.
For all 𝑠 ∈ (−𝑠0, 𝑠0) the expectation of 𝑌 is finite, since 𝑌 ≤ e−𝑠𝑋 + e𝑠𝑋 and both of
the right-hand side terms have finite expectations. □

Theorems 2.51 and 2.52 show that the positive integer moments of a random
variable completely determine its distribution, provided that the MGF is finite in a
neighborhood of 0.

The Taylor expansion in Theorem 2.52 is a power series, and we know from real
and complex analysis that such infinite sums behave like finite sums as long as 𝑠 is
less than the radius of convergence — in particular, less than 𝑠0. It follows that

E𝑋 𝑘 = 𝑀 (𝑘) (0), 𝑘 ≥ 1;

that is, the 𝑘th derivative of 𝑀 , evaluated at 0. This allows us to derive moments
if we have an expression for 𝑀 (𝑠) in terms of a power series. Another very useful
property is the following convolution theorem:

Theorem 2.53: Product of MGFs

If 𝑋 and 𝑌 are independent, then 𝑀𝑋+𝑌 (𝑠) = 𝑀𝑋 (𝑠) 𝑀𝑌 (𝑠).
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Proof. The distribution of (𝑋,𝑌 ) is a product measure 𝜇 ⊗ 𝜈. Hence, by Fubini’s
Theorem 1.68:

Ee𝑠(𝑋+𝑌 ) =
∫

(𝜇 ⊗ 𝜈) (d𝑥, d𝑦) e𝑠(𝑥+𝑦) =
∫

𝜇(d𝑥)
∫

𝜈(d𝑦) e𝑠𝑥 e𝑠𝑦

=

∫
𝜇(d𝑥) e𝑠𝑥

∫
𝜈(d𝑦) e𝑠𝑦 =

∫
𝜇(d𝑥) e𝑠𝑥 Ee𝑠𝑌 = Ee𝑠𝑋 Ee𝑠𝑌 .

□

Example 2.54 (Sum of Poisson Random Variables) Let 𝑋 ∼ Poi(𝜆) and 𝑌 ∼
Poi(𝜇) be independent. Then, the MGF of 𝑋 + 𝑌 is given by the product

e−𝜆(1−e𝑠) e−𝜇(1−e𝑠) = e−(𝜆+𝜇) (1−e𝑠) , 𝑠 ∈ R.

By the uniqueness of the MGF, it follows that 𝑋 + 𝑌 ∼ Poi(𝜆 + 𝜇).

Example 2.55 (Binomial Distribution) There is an interesting method for
deriving the density of 𝑋 ∼ Bin(𝑛, 𝑝) using MGFs. First, the expression for the
MGF of a Ber(𝑝) random variable is 𝑝e𝑠 + 𝑞, with 𝑞 := 1 − 𝑝 for 𝑠 ∈ R. Since 𝑋
can be viewed as the sum of 𝑛 independent Ber(𝑝) random variables, the expression
for its MGF is (𝑝e𝑠 + 𝑞)𝑛. But using the well-known Newton’s formula (binomial
theorem), we have

(𝑝e𝑠 + 𝑞)𝑛 =
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
(𝑝e𝑠)𝑘 𝑞𝑛−𝑘 =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 𝑞𝑛−𝑘 e𝑠𝑘 ,

which shows that 𝑋 has density 𝑘 ↦→
(𝑛
𝑘

)
𝑝𝑘 𝑞𝑛−𝑘 with respect to the counting meas-

ure on {0, 1, . . . , 𝑛}.

Example 2.56 (Linear Combinations of Normal Random Variables) An
important property of the normal distribution is that any affine combination of
independent normals is again normal; that is, if 𝑋𝑖 ∼ N(𝜇𝑖, 𝜎2

𝑖
), independently,

for 𝑖 = 1, 2, . . . , 𝑛, then

𝑌 := 𝑎 +
𝑛∑︁
𝑖=1

𝑏𝑖𝑋𝑖 ∼ N

(
𝑎 +

𝑛∑︁
𝑖=1

𝑏𝑖𝜇𝑖,

𝑛∑︁
𝑖=1

𝑏2
𝑖 𝜎

2
𝑖

)
.

Note that the parameters follow easily from the rules for the expectation and variance.
We can prove this via the MGF. Namely,

Ee𝑠𝑌 = exp(𝑠𝑎)
𝑛∏
𝑖=1

E exp(𝑠𝑏𝑖𝑋𝑖) = exp(𝑠𝑎)
𝑛∏
𝑖=1

exp
{
𝜇𝑖𝑠𝑏𝑖 +

1
2
𝜎2
𝑖 𝑠

2𝑏2
𝑖

}
,

so that

Ee𝑠𝑌 = exp

{
𝑠

(
𝑎 +

𝑛∑︁
𝑖=1

𝑏𝑖𝜇𝑖

)
+ 1

2
𝑠2

𝑛∑︁
𝑖=1

𝑏2
𝑖 𝜎

2
𝑖

}
,

which shows the desired result, by the uniqueness of the MGF.
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2.6.2 Characteristic Functions
The ultimate integral transform is the characteristic function. Every random variable
has a characteristic function that is finite, no matter how strange that random variable
might be. It is closely related to the classical Fourier transform of a function and
has analytical properties superior to those of the MGF.

Definition 2.57: Characteristic Function

The characteristic function of a numerical random variable 𝑋 with distribu-
tion 𝜇 is the function 𝜓 : R → C, defined by

𝜓(𝑟) := Eei 𝑟𝑋 = E cos(𝑟𝑋) + iE sin(𝑟𝑋) =
∫ ∞

−∞
𝜇(d𝑥) ei 𝑟𝑥 , 𝑟 ∈ R.

For a random vector 𝑿 ∈ R𝑑 , the characteristic function is defined similarly as

𝜓(𝒓) := Eei 𝒓⊤𝑿 , 𝒓 ∈ R𝑑 .

The characteristic function has many interesting properties, some of which are
similar to those of the generating functions already mentioned. The following
establishes the uniqueness property:

Theorem 2.58: Inversion and Uniqueness of the Characteristic Function

If the probability measure 𝜇 has characteristic function 𝜓, and if 𝜇{𝑎} =

𝜇{𝑏} = 0, then

(2.59) 𝜇(𝑎, 𝑏] = lim
𝑡→∞

1
2𝜋

∫
R

d𝑟 1[−𝑡,𝑡] (𝑟)
e−i 𝑟𝑎 − e−i 𝑟𝑏

i 𝑟
𝜓(𝑟) =: lim

𝑡→∞
𝐼𝑡 .

In particular, the characteristic function determines 𝜇 uniquely. If, in addi-
tion,

∫
R d𝑟 |𝜓(𝑟) | < ∞, then 𝜇 has a density 𝑓 with respect to the Lebesgue

measure, given by

(2.60) 𝑓 (𝑥) :=
1

2𝜋

∫ ∞

−∞
d𝑟 e−i 𝑟𝑥 𝜓(𝑟).

Proof. Let 𝐼𝑡 be the quantity for which we take the limit, as defined in the theorem.
Then, by expanding the definition of 𝜓(𝑟) and using Fubini’s theorem, we may write

𝐼𝑡 =
1

2𝜋

∫ ∞

−∞
𝜇(d𝑥)

∫ 𝑡

−𝑡
d𝑟

ei 𝑟 (𝑥−𝑎) − ei 𝑟 (𝑥−𝑏)

i 𝑟
.



64 2.6. Integral Transforms

Using ei𝑧 = cos 𝑧 + i sin 𝑧, we can compute the inner integral in terms of functions
sin, cos, and Si(𝑧) :=

∫ 𝑧

0 d𝑥 (sin(𝑥)/𝑥) to obtain

𝐼𝑡 =

∫ ∞

−∞
𝜇(d𝑥)

(
sgn(𝑥 − 𝑎)

𝜋
Si(𝑡 |𝑥 − 𝑎 |) − sgn(𝑥 − 𝑏)

𝜋
Si(𝑡 |𝑥 − 𝑏 |)

)
.

Since lim𝑧→∞ Si(𝑧) = 𝜋/2 and
∫ ∞
𝑧

d𝑥 (sin(𝑥)/𝑥) = cos(𝑧)/𝑧 − ∫∞𝑧 d𝑥 (cos(𝑥)/𝑥2)
for 𝑧 > 0, we have ���Si( |𝑧 |) − 𝜋

2

��� ≤ ∫ ∞

|𝑧 |
d𝑥

sin 𝑥
𝑥

≤ 2
|𝑧 | , |𝑧 | > 0.

Hence, the integrand in the integral 𝐼𝑡 above is bounded and converges as 𝑡 → ∞ to
𝑔𝑎,𝑏 (𝑥), given by

𝑔𝑎,𝑏 (𝑥) :=


0 if 𝑥 < 𝑎 or 𝑥 > 𝑏,
1/2 if 𝑥 = 𝑎 or 𝑥 = 𝑏,
1 if 𝑎 < 𝑥 < 𝑏.

So, 𝑔𝑎,𝑏 is almost-everywhere the indicator function of the interval [𝑎, 𝑏]. Hence,
𝐼𝑡 → 𝜇 𝑔𝑎,𝑏, which implies (2.59), if 𝜇{𝑎} = 𝜇{𝑏} = 0. Uniqueness follows from
the fact that intervals of the form (𝑎, 𝑏] form a p-system that generate B and so
determine a measure uniquely.

When
∫
R d𝑟 |𝜓(𝑟) | < ∞, then the integral in (2.59) can be extended to R; that

is, from
��(e−i 𝑟𝑎 − e−i 𝑟𝑏)/(i 𝑟)

�� = ��∫ 𝑏𝑎 d𝑢 e−i 𝑟𝑢
�� ≤ |𝑏 − 𝑎 | and Theorem 2.36, we have

lim
𝑡→∞

1
2𝜋

∫
R

d𝑟 1[−𝑡,𝑡] (𝑟)
e−i 𝑟𝑎 − e−i 𝑟𝑏

i 𝑟
𝜓(𝑟) = 1

2𝜋

∫
R

d𝑟
e−i 𝑟𝑎 − e−i 𝑟𝑏

i 𝑟
𝜓(𝑟),

so in terms of the cdf of 𝜇:

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥)
ℎ

=
1

2𝜋

∫
R

d𝑟
e−i 𝑟𝑥 − e−i 𝑟 (𝑥+ℎ)

i 𝑟ℎ
𝜓(𝑟).

Taking the limit for ℎ → 0 gives (2.60). □

Proposition 2.61 lists some more properties of the characteristic function.
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Proposition 2.61: Properties of the Characteristic Function

1. (Symmetry): The random variables 𝑋 and −𝑋 are identically distributed
if and only if the characteristic function of 𝑋 is real-valued.

2. (Convolution): If 𝑋 and 𝑌 are independent, then 𝜓𝑋+𝑌 = 𝜓𝑋 𝜓𝑌 .

3. (Affine transformation): If 𝑎 and 𝑏 are real numbers, then

𝜓𝑎𝑋+𝑏 (𝑟) = ei 𝑟𝑏𝜓𝑋 (𝑎𝑟), 𝑟 ∈ R.

4. (Taylor’s theorem): If E |𝑋𝑛 | < ∞, then

𝜓(𝑟) =
𝑛∑︁
𝑘=0

E𝑋 𝑘

𝑘!
(i 𝑟)𝑘 + 𝑜(𝑟𝑛), 𝑟 ∈ R.

Proof. The only non-trivial result is Taylor’s theorem. We prove it by using the
following useful inequality:

(2.62)

�����ei𝑥 −
𝑛∑︁
𝑘=0

(i𝑥)𝑘
𝑘!

����� ≤ min
{

|𝑥 |𝑛+1

(𝑛 + 1)! ,
2|𝑥 |𝑛
𝑛!

}
.

If 𝑋 has a moment of order 𝑛, it follows that�����𝜓(𝑟) − 𝑛∑︁
𝑘=0

(i 𝑟)𝑘 E𝑋 𝑘
𝑘!

����� ≤ |𝑟 |𝑛 Emin
{
|𝑟 | |𝑋 |𝑛+1

(𝑛 + 1)! ,
2|𝑋 |𝑛
𝑛!

}
=: |𝑟 |𝑛 E𝑌𝑟 .

The random variable 𝑌𝑟 defined above goes to 0 when 𝑟 → 0. Moreover, it is
dominated by 2|𝑋𝑛 |/𝑛!, which has a finite expectation. Hence, by the Dominated
Convergence Theorem 2.36, E𝑌𝑟 → 0 as 𝑟 → 0. In other words, the error term is
of order 𝑜(𝑟𝑛) for 𝑟 → 0. □

Table 2.6 gives a list of the characteristic functions for various common distri-
butions. In the table, we assume the geometric distribution with probability masses
(1 − 𝑝)𝑘−1𝑝, 𝑘 = 1, 2, . . . (so starting from 1, not 0). Note that for 𝑋 ∼ U[−𝛼, 𝛼],
where 𝛼 > 0, we have

𝜓(𝑟) =
{

sin𝛼𝑟
𝛼𝑟

, 𝑟 ≠ 0,
1, 𝑟 = 0.

It is also worth mentioning that the Cauchy distribution does not have an MGF that
is finite in a neighborhood of 0, and so does not appear in Table 2.4 for the MGFs,
whereas its characteristic function is perfectly well-defined.
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Table 2.6: Characteristic functions for common distributions.

Distr. 𝜓(𝑟)

constant 𝑐 ei 𝑟𝑐

Ber(𝑝) 1 − 𝑝 + 𝑝ei 𝑟

Bin(𝑛, 𝑝) (1 − 𝑝 + 𝑝ei 𝑟)𝑛

Poi(𝜆) exp(−𝜆(1 − ei 𝑟))

Geom(𝑝) ei 𝑟 𝑝

1 − (1 − 𝑝)ei 𝑟

Distr. 𝜓(𝑟)

U[𝑎, 𝑏] ei𝑏𝑟 − ei𝑎𝑟

i 𝑟 (𝑏 − 𝑎)

Exp(𝜆)
(

𝜆

𝜆 − i 𝑟

)
Gamma(𝛼, 𝜆)

(
𝜆

𝜆 − i 𝑟

)𝛼
N(𝜇, 𝜎2) exp

(
i𝜇𝑟 − 1

2
𝜎2𝑟2

)
Cauchy e−|𝑟 |

2.7 Information and Independence
In this section, we have another look at the role of 𝜎-algebras and independence
in random experiments. As always, (Ω,H , P) is our probability space in the
background. Let 𝑋 be a random variable taking values in some measurable space
(𝐸, E). We are usually only interested in events of the form {𝑋 ∈ 𝐴} = 𝑋−1(𝐴) for
𝐴 ∈ E. These events form a 𝜎-algebra by themselves; see Exercise 1.9.

Definition 2.63: 𝜎-Algebra Generated by a Random Variable

Let 𝑋 be a random variable taking values in (𝐸, E). The sets {𝑋 ∈ 𝐴}, 𝐴 ∈ E
form a 𝜎-algebra, called the 𝜎-algebra generated by 𝑋 , and we write 𝜎𝑋 .

Definition 2.63 also applies to a stochastic process 𝑋 := {𝑋𝑡 , 𝑡 ∈ T}. Recall
from Theorem 2.17 that 𝑋 may be viewed equivalently as (1) a random variable
taking values in (𝐸, E) := (×𝑡∈T𝐸𝑡 , ⊗𝑡∈TE𝑡) and (2) a collection of random variables
where 𝑋𝑡 takes values in (𝐸𝑡 , E𝑡).

Theorem 2.64: 𝜎-Algebra Generated by a Stochastic Process

For the stochastic process 𝑋 := {𝑋𝑡 , 𝑡 ∈ T}, the 𝜎-algebra generated by 𝑋 is
the smallest 𝜎-algebra on Ω that is generated by the union of the 𝜎-algebras
𝜎𝑋𝑡 , 𝑡 ∈ T. We write

∨
𝑡∈T 𝜎𝑋𝑡 or 𝜎{𝑋𝑡 , 𝑡 ∈ T}.

Proof. Let H = 𝜎𝑋 . Then, 𝑋 is a random variable. By Theorem 2.17, it follows
that each 𝑋𝑡 is a random variable. This in turn implies that each 𝜎𝑋𝑡 is contained in
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𝜎𝑋 and, therefore, 𝜎𝑋 contains 𝜎{𝑋𝑡 , 𝑡 ∈ T}. Conversely, let H = 𝜎{𝑋𝑡 , 𝑡 ∈ T}.
Then, each 𝑋𝑡 is a random variable. By Theorem 2.17, it follows that 𝑋 is a random
variable and, therefore, 𝜎𝑋 is contained in 𝜎{𝑋𝑡 , 𝑡 ∈ T}. Hence, the two must be
the same. □

We can think of𝜎𝑋 as a precise way of describing the information on a stochastic
experiment modelled by a random variable or process 𝑋 . What do 𝜎𝑋-measurable
numerical functions look like? The following theorem shows that they must be
deterministic measurable functions of 𝑋 . Recall that if ℎ is E/B-measurable, we
write ℎ ∈ E.

Theorem 2.65: 𝜎𝑋-Numerical Random Variables

Let 𝑋 be a random variable taking values in a measurable space (𝐸, E). A
mapping 𝑉 : Ω → R belongs to 𝜎𝑋 if and only if 𝑉 = ℎ ◦ 𝑋 for some ℎ ∈ E.

Proof. Sufficiency follows from Theorem 1.21: If ℎ and 𝑋 are measurable with
respect to E/B and 𝜎𝑋/E, then the composition 𝑉 := ℎ ◦ 𝑋 is measurable with
respect to 𝜎𝑋/B, so 𝑉 ∈ 𝜎𝑋 .

For necessity, we invoke the Monotone Class Theorem 1.33. Define

M := {𝑉 = ℎ ◦ 𝑋 : ℎ ∈ E}.

This is a monotone class of random variables. Check this yourself. Now, consider
an event 𝐻 ∈ 𝜎𝑋 . Since 𝑋 is a random variable, there is a set 𝐴 ∈ E such that
𝐻 = 𝑋−1𝐴. Hence, 1𝐻 = 1𝐴 ◦ 𝑋 , which lies in M. So M contains all indicator
variables in 𝜎𝑋 . By the Monotone Class Theorem, it must therefore contain all
positive random variables in 𝜎𝑋 .

Finally, for an arbitrary𝑉 ∈ 𝜎𝑋 , we write𝑉 = 𝑉+ −𝑉−, where both the positive
and negative part can be written as measurable functions of 𝑋 . □

A corollary is that for a stochastic process 𝑋 := {𝑋1, 𝑋2, . . .} a random variable
𝑉 belongs to 𝜎𝑋 if and only if it can be written as some measurable function of
𝑋1, 𝑋2, . . .. In fact, we have the following generalization:

Theorem 2.66: Stochastic Process with Arbitrary Index Set

For each 𝑡 in an arbitrary set T, let 𝑋𝑡 be a random variable taking values
in a measurable space (𝐸𝑡 , E𝑡). Then, the mapping 𝑉 : Ω → R belongs to
𝜎{𝑋𝑡 , 𝑡 ∈ T} if and only if there exists a sequence (𝑡𝑛) in T and a function ℎ
in ⊗𝑛E𝑡𝑛 such that

𝑉 = ℎ(𝑋𝑡1 , 𝑋𝑡2 , . . .).
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We can view 𝜎𝑋 as the information that we have about the stochastic experi-
ment, based on the measurement 𝑋 . If we have more measurements on the same
experiment, say 𝑌 and 𝑍 , we may gain more information about the experiment.
So 𝜎{𝑋,𝑌, 𝑍} contains at least as many events of interest as 𝜎𝑋 — usually many
more. For stochastic processes indexed by time, it makes sense to consider in-
creasing collections of information as time increases. This leads to the following
definition:

Definition 2.67: Filtration

Let T be a subset of R. A filtration is an increasing collection {F𝑡 : 𝑡 ∈ T} of
sub-𝜎-algebras of H ; that is, F𝑠 ⊆ F𝑡 whenever 𝑠 < 𝑡.

Filtrations are often used when dealing with stochastic processes {𝑋𝑡 : 𝑡 ∈ T},
where T ⊆ R. The natural filtration is then the filtration defined by F𝑡 := 𝜎{𝑋𝑠 :
𝑠 ≤ 𝑡, 𝑠 ∈ T}.

We can also use families of 𝜎-algebras to model the notion of independence in
a random experiment. We already defined independence for random variables. We
now extend this to 𝜎-algebras.

Definition 2.68: Independence for 𝜎-Algebras

Let {F𝑖, 𝑖 = 1, . . . , 𝑛} be a collection of sub-𝜎-algebras of H . The {F𝑖} are
said to be (mutually) independent or form an independency if

(2.69) E𝑉1 · · ·𝑉𝑛 = E𝑉1 · · ·E𝑉𝑛

for all positive random variables 𝑉𝑖 ∈ F𝑖, 𝑖 = 1, . . . , 𝑛.

We can extend the independence definition to an arbitrary collection of 𝜎-
algebras by requiring that every finite choice of 𝜎-algebras forms an independency.
The following extends the criterion for independence of random variables given in
Definition 2.29:

Theorem 2.70: Independence of 𝜎-Algebras

Sub-𝜎-algebras F1, . . . , F𝑛 of H generated by p-systems C1, . . . , C𝑛 are in-
dependent if and only if for all 𝐻𝑖 ∈ C𝑖 ∪ {Ω}, 𝑖 = 1, . . . , 𝑛, it holds that:

(2.71) P(𝐻1 ∩ · · · ∩ 𝐻𝑛) = P(𝐻1) · · · P(𝐻𝑛).

Proof. If (2.69) holds, then it holds in particular for 𝑉𝑖 = 1𝐻𝑖 , 𝑖 = 1, . . . , 𝑛, and so
(2.71) follows. This proves necessity.
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Next, suppose that (2.71) holds for all 𝐻𝑖 ∈ C𝑖 ∪ {Ω}, 𝑖 = 1, . . . , 𝑛. Fix such
𝐻2, . . . , 𝐻𝑛 and define

D := {𝐻1 ∈ F1 : P(𝐻1 ∩ · · · ∩ 𝐻𝑛) = P(𝐻1) · · · P(𝐻𝑛)}.

This is a d-system (check yourself). It contains C1 and so by Theorem 1.12 it must
contain F1. We can do the same process for 𝐻2, 𝐻3, . . . , 𝐻𝑛 to see that (2.71) holds
for 𝐻1 ∈ F1, . . . , 𝐻𝑛 ∈ F𝑛. Hence, (2.69) holds for all indicator functions𝑉𝑖 := 1𝐻𝑖 .
This extends to positive simple functions and from these to positive measurable
functions via the Monotone Convergence Theorem 2.34. □

We now have an equivalent characterization of independence between random
variables.

Theorem 2.72: Independence of Random Variables

Random variables 𝑋 and 𝑌 taking values in (𝐸, E) and (𝐹, F ) are independ-
ent if and only if

(2.73) E𝑔(𝑋) ℎ(𝑌 ) = E𝑔(𝑋) Eℎ(𝑌 ), 𝑔 ∈ E+, ℎ ∈ F+.

Proof. Suppose 𝑋 and 𝑌 are independent in the sense of (2.69). Take any 𝑔 ∈ E+
and ℎ ∈ F+. By Theorem 2.65, 𝑉 := 𝑔(𝑋) and 𝑊 := ℎ(𝑌 ) are positive random
variables in 𝜎𝑋 and 𝜎𝑌 , respectively. Thus, (2.69) implies (2.73). Conversely,
suppose that (2.73) holds and take positive random variables 𝑉 ∈ 𝜎𝑋 and𝑊 ∈ 𝜎𝑌 .
Again, by Theorem 2.65, there must be a 𝑔 ∈ E+ and ℎ ∈ F+ such that 𝑉 = 𝑔 ◦ 𝑋
and𝑊 = ℎ ◦ 𝑌 , and so (2.73) implies (2.69); i.e., E𝑉𝑊 = E𝑉 E𝑊 . □

We can rewrite equation (2.73) in terms of the joint distribution 𝜋 of (𝑋,𝑌 ) and
marginal distributions 𝜇 and 𝜈 of 𝑋 and 𝑌 as follows:∫

𝐸×𝐹
𝜋(d𝑥, d𝑦) 𝑔(𝑥) ℎ(𝑦) =

∫
𝐸

𝜇(d𝑥) 𝑔(𝑥)
∫
𝐹

𝜈(d𝑦) ℎ(𝑦).

In other words; 𝜋 is equal to the product measure 𝜇 ⊗ 𝜈.

2.8 Important Stochastic Processes
We conclude this chapter by showcasing some important classes of stochastic pro-
cesses, namely Gaussian processes, Poisson random measures, and Lévy processes.
Together with Markov processes, they account for most of the study of stochastic
processes. We will discuss Markov processes at the end of Chapter 4, after we have
had more experience with the concept of conditioning.
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2.8.1 Gaussian Processes
Gaussian processes can be thought of as generalizations of Gaussian random vari-
ables and vectors. Their distributional properties derive directly from the properties
of the multivariate Gaussian distribution; see also Example 2.42.

Definition 2.74: Gaussian Process

A real-valued stochastic process {𝑋𝑡 , 𝑡 ∈ T} is said to be Gaussian if all its
finite-dimensional distributions are Gaussian (normal); that is, if the vector
[𝑋𝑡1 , . . . , 𝑋𝑡𝑛]⊤ is multivariate normal for any choice of 𝑛 and 𝑡1, . . . , 𝑡𝑛 ∈ T.

An equivalent condition for a process to be Gaussian is that every linear com-
bination

∑𝑛
𝑖=1 𝑏𝑖𝑋𝑡𝑖 has a Gaussian distribution. The probability distribution of a

Gaussian process is determined completely by its expectation function

𝜇𝑡 := E𝑋𝑡 , 𝑡 ∈ T

and covariance function

𝛾𝑠,𝑡 := Cov(𝑋𝑠, 𝑋𝑡), 𝑠, 𝑡 ∈ T.

The latter is a positive semidefinite function; meaning that for every 𝑛 ≥ 1 and every
choice of 𝛼1, . . . , 𝛼𝑛 ∈ R and 𝑡1, . . . , 𝑡𝑛 ∈ T, it holds that

(2.75)
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝛼𝑖 𝛾𝑡𝑖 ,𝑡 𝑗 𝛼 𝑗 ≥ 0.

A zero-mean Gaussian process is one for which 𝜇𝑡 = 0 for all 𝑡.
To simulate a realization of a Gaussian process with expectation function (𝜇𝑡)

and covariance function (𝛾𝑠,𝑡) at times 𝑡1, . . . , 𝑡𝑛, we can simply generate a mul-
tivariate normal random vector 𝒀 := [𝑌1, . . . , 𝑌𝑛]⊤ := [𝑋𝑡1 , . . . , 𝑋𝑡𝑛]⊤ with mean
vector 𝝁 := [𝜇𝑡1 , . . . , 𝜇𝑡𝑛]⊤ and covariance matrix 𝚺, with 𝚺𝑖, 𝑗 := 𝛾𝑡𝑖 ,𝑡 𝑗 . As such,
the basic generation method is as follows:

Algorithm 2.76 (Gaussian Process Generator)

1. Construct the mean vector 𝝁 and covariance matrix 𝚺 as specified above.

2. Derive the Cholesky decomposition 𝚺 = AA⊤.

3. Simulate 𝑍1, . . . , 𝑍𝑛
iid∼ N(0, 1). Let 𝒁 := [𝑍1, . . . , 𝑍𝑛]⊤.

4. Output 𝒀 := 𝝁 + A𝒁.
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Example 2.77 (Wiener Process and Brownian Motion) The prototypical Gaus-
sian process on R+ is the Wiener process (𝑊𝑡 , 𝑡 ≥ 0), which will be discussed in
detail in Chapter 6. For now, it suffices to define the Wiener process as a zero-mean
Gaussian process with continuous sample paths and covariance function 𝛾𝑠,𝑡 = 𝑠∧ 𝑡
for 𝑠, 𝑡 ≥ 0. A typical path of the process is given in Figure 2.78, suggesting that
the Wiener process can be viewed as a continuous version of the symmetric random
walk in Figure 2.32.

0 2 4 6 8 10
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-1

0

1

2

3

Figure 2.78: A typical realization of the Wiener process on the interval [0,10].

By applying the affine transformation

𝐵𝑡 = 𝐵0 + 𝑎𝑡 + 𝑐𝑊𝑡 , 𝑡 ≥ 0,

where 𝐵0 is independent of (𝑊𝑡), we obtain a Brownian motion process (𝐵𝑡 , 𝑡 ≥ 0),
with drift2 𝑎 and diffusion coefficient 𝑐. It is a Gaussian process only if 𝐵0 is
Gaussian. More generally, a 𝑑-dimensional Wiener process 𝑾 := (𝑾 𝑡 , 𝑡 ≥ 0) is a
stochastic process whose component processes are independent Wiener processes.
Similarly, a 𝑑′-dimensional Brownian motion 𝑩 := (𝑩𝑡 , 𝑡 ≥ 0) is obtained from 𝑾
via the affine transformation

𝑩𝑡 = 𝑩0 + 𝒂 𝑡 + C𝑾 𝑡 , 𝑡 ≥ 0,

where C is a 𝑑′ × 𝑑 matrix and 𝒂 a 𝑑′-dimensional vector, and 𝑩0 is independent of
𝑾.

2Often 𝜇 and 𝜎 are used for the drift and diffusion coefficients, but in this chapter we would
rather reserve the Greek letters for measures.
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2.8.2 Poisson Random Measures and Poisson Processes
Poisson random measures are used to model random configurations of points in
space and time. Specifically, let 𝐸 ⊆ R𝑑 and let E be the collection of Borel sets
on 𝐸 . To any collection of random points {𝑿𝑖, 𝑖 ∈ 𝐼} in 𝐸 corresponds a random
counting measure 𝑁 defined by

𝑁 (𝐴) :=
∑︁
𝑖∈𝐼

1{𝑿𝑖∈𝐴}, 𝐴 ∈ E,

counting the random number of points in 𝐴. The quintessential random counting
measure is the Poisson random measure.

Definition 2.79: Poisson Random Measure

A random measure 𝑁 on (𝐸, E) is said to be a Poisson random measure with
mean measure 𝜇 if the following properties hold:

1. 𝑁 (𝐴) ∼ Poi(𝜇(𝐴)) for any set 𝐴 ∈ E.

2. For any selection of disjoint sets 𝐴1, . . . , 𝐴𝑛 ∈ E, the random variables
𝑁 (𝐴1), . . . , 𝑁 (𝐴𝑛) are independent.

In most practical cases, the mean measure has a density 𝑟 with respect to the
Lebesgue measure, called the intensity or rate function, so that

𝜇(𝐴) =
∫
𝐴

d𝒙 𝑟 (𝒙).

In that case, 𝜇 is a diffuse measure; that is, 𝜇({𝒙}) = 0 for all 𝒙 ∈ 𝐸 . The Poisson
random measure is said to be homogeneous if the rate function is constant.

The distribution of any random counting measure 𝑁 is completely determined
by its Laplace functional:

𝐿 ( 𝑓 ) := Ee−𝑁 𝑓 , 𝑓 ∈ E+,

where 𝑁 𝑓 is the random variable
∫
𝑁 (d𝒙) 𝑓 (𝒙). This is an example of a stochastic

integral. For every outcome 𝜔 ∈ Ω the integral is an ordinary Lebesgue integral in
the sense of Section 1.4.1. For the Poisson random measure with mean measure 𝜇,
the Laplace functional is

(2.80) Ee−𝑁 𝑓 = e−𝜇(1−e− 𝑓 ) , 𝑓 ∈ E+;

see Exercise 22 for a proof. Compare this with the Laplace transform of a Poisson
random variable 𝑁 with rate 𝜇:

Ee−𝑁𝑠 = e−𝜇(1−e−𝑠) , 𝑠 ≥ 0.
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We can think of 𝑁 both in terms of a random counting measure, where 𝑁 (𝐴)
denotes the random number of points in 𝐴 ∈ E, or in terms of the (countable)
collection {𝑿𝑖, 𝑖 ∈ 𝐼} of random points (often called atoms) in 𝐸 , where 𝐼 ⊆ N may
be finite and random, or countably infinite. In particular, we have

(2.81) 𝑁 𝑓 =

∫
𝐸

𝑁 (d𝒙) 𝑓 (𝒙) =
∑︁
𝑖∈𝐼

𝑓 (𝑿𝑖), 𝑓 ∈ E+.

The following proposition describes one way of constructing a Poisson random
measure on a product space. In its proof, the principle of repeated conditioning is
used; see Theorem 4.5. An elementary understanding will suffice at this point.

Proposition 2.82: Poisson Random Measure on a Product Space

Let 𝑿 := {𝑿𝑖, 𝑖 ∈ 𝐼} be the atoms of a Poisson random measure 𝑁 on (𝐸, E)
with mean measure 𝜇, and let {𝒀 𝑖, 𝑖 ∈ N} be iid random variables on (𝐹, F )
with distribution 𝜋, independent of 𝑿. Then, {(𝑿𝑖,𝒀 𝑖), 𝑖 ∈ 𝐼} form the atoms
of a Poisson random measure 𝑀 on (𝐸×𝐹, E⊗F ) with mean measure 𝜇⊗𝜋.

Proof. For any 𝑓 ∈ (E ⊗ F )+, we have 𝑀 𝑓 =
∑
𝑖 𝑓 (𝑿𝑖,𝒀 𝑖), and

Ee−𝑀 𝑓 = EE𝑿

∏
𝑖

e− 𝑓 (𝑿𝑖 ,𝒀 𝑖) = E
∏
𝑖

E𝑿e− 𝑓 (𝑿𝑖 ,𝒀 𝑖) = E
∏
𝑖

∫
𝐹

𝜋(d𝒚) e− 𝑓 (𝑿𝑖 ,𝒚) ,

where repeated conditioning is used in the first equation, and the independence of
𝒀 𝑖 of 𝑿 is used in the second equation. Defining

e−𝑔(𝒙) :=
∫
𝐹

𝜋(d𝒚) e− 𝑓 (𝒙,𝒚) ,

we thus have
Ee−𝑀 𝑓 = E

∏
𝑖

e−𝑔(𝑿𝑖) = Ee−𝑁𝑔 = e−𝜇(1−e−𝑔) ,

where we have used (2.80) for the Laplace functional of 𝑁 . Since

𝜇(1 − e−𝑔) =
∫
𝐸

𝜇(d𝒙)
∫

𝜋(d𝒚) (1 − e− 𝑓 (𝒙,𝒚)) = (𝜇 ⊗ 𝜋) (1 − e− 𝑓 ),

the Laplace functional of 𝑀 is of the form (2.80), and hence 𝑀 is a Poisson random
measure with mean measure 𝜇 ⊗ 𝜋. □

Let 𝑁 be a Poisson random measure on (𝐸, E) with mean measure 𝜇, with
𝜇(𝐸) =: 𝑐 < ∞. The total number of atoms of 𝑁 has a Poisson distribution with
mean 𝑐. The following theorem shows how the points are distributed conditional on
the total number of points. Conditioning will be discussed in detail in Chapter 4.
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Theorem 2.83: Conditioning on the Total Number of Points

Let𝑁 be a Poisson random measure on (𝐸, E) with mean measure 𝜇 satisfying
𝜇(𝐸) =: 𝑐 < ∞. Then, conditional on 𝑁 (𝐸) = 𝑘 , the 𝑘 atoms of 𝑁 are iid
with probability distribution 𝜇/𝑐.

Proof. Let 𝐾 := 𝑁 (𝐸) ∼ Poi(𝑐), and on {𝐾 = 𝑘} denote the atoms by 𝑿1, . . . , 𝑿𝑘 .
Suppose that, conditionally on {𝐾 = 𝑘}, the atoms are iid with probability distribu-
tion 𝜇/𝑐. We want to show that the Laplace functional of such a random measure
is precisely that of 𝑁 . For 𝑓 ∈ E+ we have

E exp

(
−

𝐾∑︁
𝑘=1

𝑓 (𝑿𝑘 )
)
= EE𝐾 exp

(
−

𝐾∑︁
𝑘=1

𝑓 (𝑿𝑘 )
)

= E
(∫

(𝜇(d𝒙)/𝑐 ) e− 𝑓 (𝒙)
)𝐾

= E
(
(𝜇/𝑐) e− 𝑓

)𝐾
=: E𝑧𝐾 ,

where E𝐾 denotes the expectation conditional on 𝐾 . In the first equation we
are applying the repeated conditioning property; see Theorem 4.5. The second
equation follows from the conditional independence assumption for the atoms. The
third equation is just a simplification of notation, as in 𝜈𝑔 =

∫
𝜈(d𝒙)𝑔(𝒙). Since 𝐾

has a Poi(𝑐) distribution, it holds that

E𝑧𝐾 = e−𝑐(1−𝑧) = e−𝑐(1−(𝜇/𝑐) e− 𝑓 ) = e−𝜇(1−e− 𝑓 ) = Ee−𝑁 𝑓 ,

as had to be shown. □

The preceding theorem leads directly to the following generic algorithm for
simulating a Poisson random measure on 𝐸 , assuming that 𝜇(𝐸) =

∫
𝐸

d𝒙 𝑟 (𝒙) < ∞:

Algorithm 2.84 (Simulating a General Poisson Random Measure)

1. Generate a Poisson random variable 𝐾 ∼ Poi(𝜇(𝐸)).

2. Given 𝐾 = 𝑘 , draw 𝑿1, . . . , 𝑿𝑘
iid∼ 𝑔, where 𝑔 := 𝑟/𝜇(𝐸) is the mean density,

and return these as the atoms of the Poisson random measure.

Example 2.85 (Convex Hull of a Poisson Random Measure) Figure 2.86
shows six realizations of the point sets and their convex hulls of a homogeneous
Poisson random measure on the unit square with rate 20. The MATLAB code is given
below. A particular object of interest could be the random volume of the convex
hull formed in this way.
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Figure 2.86: Realizations of a homogeneous Poisson random measure with rate 20.
For each case the convex hull is also plotted.

for i=1:6
K = poissrnd(20); %using the Statistics Toolbox
x = rand(K,2);
j = convhull(x(:,1),x(:,2));
% [J,v] = convhulln(x); %v is the area
subplot(2,3,i);
plot(x(j,1),x(j,2),'r-',x(:,1),x(:,2),'b.')

end

For a homogeneous Poisson random measure on R+ with rate 𝑟 a more direct
simulation algorithm can be formulated. Denote the points by 0 < 𝑇1 < 𝑇2 < · · · ,
which are interpreted as arrival points of some sort, and let 𝐴𝑖 := 𝑇𝑖 − 𝑇𝑖−1 be the
𝑖th interarrival time, 𝑖 = 1, 2, . . ., setting 𝑇0 := 0. It turns out that the interarrival
times {𝐴𝑖} are iid and Exp(𝑟) distributed. We will see an elegant proof of this in
Example 5.38, once we have been introduced to martingales.

Let 𝑁𝑡 := 𝑁 ( [0, 𝑡]) be the number of arrivals in [0, 𝑡] of the above homogeneous
Poisson random measure 𝑁 on R+. The process (𝑁𝑡 , 𝑡 ≥ 0) is called a Poisson
counting process, or simply Poisson process, with rate 𝑟. We can thus generate the
points of this Poisson process on some interval [0, 𝑡] as follows:

Algorithm 2.87 (Simulating a Poisson Process)
1. Set 𝑇0 := 0 and 𝑛 := 1.
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2. Generate𝑈 ∼ U(0, 1).

3. Set 𝑇𝑛 := 𝑇𝑛−1 − 1
𝑟

ln𝑈.

4. If 𝑇𝑛 > 𝑡, stop; otherwise, set 𝑛 := 𝑛 + 1 and go to Step 2.

For an intuitive “proof” of the above, it is useful to view the properties of
a Poisson process or, more generally, a Poisson random measure, through the
glasses of the following Bernoulli approximation. Divide the time-axis into small
intervals [0, ℎ), [ℎ, 2ℎ), . . .. The numbers of arrivals in each of these intervals are
independent and have a Poi(𝑟ℎ) distribution. So, for small ℎ, with a large probability
there will be either no arrivals or 1 arrival in each time interval, with probability
1 − 𝑟ℎ + O(ℎ2) and 𝑟ℎ + O(ℎ2), respectively. Next, consider a Bernoulli process
{𝑋𝑛} with success parameter 𝑝 := 𝑟 ℎ. Put 𝑌0 := 0 and let 𝑌𝑛 := 𝑋1 + · · · + 𝑋𝑛 be the
total number of successes in 𝑛 trials. Properties 1 and 2 of Definition 2.79 indicate
that for small ℎ the process {𝑌𝑖, 𝑖 = 0, 1, . . . , 𝑛} should have similar properties to
the Poisson counting process (𝑁𝑠, 0 ≤ 𝑠 ≤ 𝑡), if 𝑡 and 𝑛 are related via 𝑛 = 𝑡/ℎ. In
particular:

1. For small ℎ, 𝑁𝑡 should have approximately the same distribution as 𝑌𝑛. Hence,

P(𝑁𝑡 = 𝑘) = lim
ℎ↓0

P(𝑌𝑛 = 𝑘) = lim
ℎ↓0

(
𝑛

𝑘

)
(𝑟 ℎ)𝑘 (1 − (𝑟 ℎ))𝑛−𝑘

= lim
𝑛→∞

(
𝑛

𝑘

) (𝑟𝑡
𝑛

) 𝑘 (
1 − 𝑟𝑡

𝑛

)𝑛−𝑘
=

(𝑟𝑡)𝑘
𝑘!

lim
𝑛→∞

𝑛!
𝑛𝑘 (𝑛 − 𝑘)!

(
1 − 𝑟𝑡

𝑛

)𝑛−𝑘
=

(𝑟𝑡)𝑘
𝑘!

lim
𝑛→∞

(
1 − 𝑟𝑡

𝑛

)𝑛
=

(𝑟𝑡)𝑘
𝑘!

e−𝑟𝑡 .

This shows heuristically that 𝑁𝑡 must have a Poisson distribution and that this is
entirely due to the independence assumption in Property 2.

2. Let 𝑈1,𝑈2, . . . denote the times of success for the Bernoulli process 𝑋 . We
know that the intersuccess times 𝑈1,𝑈2 − 𝑈1, . . . are independent and have a
geometric distribution with parameter 𝑝 = 𝑟ℎ. The interarrival times 𝐴1, 𝐴2, . . .
of 𝑁 should therefore also be iid. Moreover, for small ℎ we have, again with
𝑛 = 𝑡/ℎ,

P(𝐴1 > 𝑡) ≈ P(𝑈1 > 𝑛) = (1 − 𝑟ℎ)𝑛 ≈
(
1 − 𝑟𝑡

𝑛

)𝑛
≈ e−𝑟𝑡 ,

which is in accordance with the fact that 𝐴1 ∼ Exp(𝑟). This can be made precise
by observing that

P(𝐴1 > 𝑡) = P(𝑁𝑡 = 0) = e−𝑟𝑡 , 𝑡 ≥ 0.
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3. In higher dimensions we can make similar Bernoulli approximations. For ex-
ample, we can partition a region 𝐴 ⊂ R2 into a fine grid and associate with each
grid cell a Bernoulli random variable — a success indicating a point in that cell;
see Figure 2.88. In the limit, as the grid size goes to 0, the Bernoulli process
tends to a Poisson random measure on 𝐴. The independence property follows
directly from the independence of the Bernoulli random variables, and this in-
dependence leads also to the number of points in any region having a Poisson
distribution. The Poisson random measure is homogeneous if all the Bernoulli
success probabilities are the same.

Figure 2.88: Bernoulli approximation of a two-dimensional Poisson random meas-
ure.

Let (𝐸, E, 𝜈) be a measure space with a finite measure 𝜈. Combining Pro-
position 2.82 with Algorithm 2.87 gives a convenient algorithm for simulating the
points {(𝑇𝑖,𝒀 𝑖), 𝑖 = 1, 2, . . .} of a Poisson random measure (PRM) on R+ × 𝐸 with
mean measure Leb⊗ 𝜈. This algorithm is relevant for the construction of compound
Poisson and Lévy processes, to be discussed next.

Algorithm 2.89 (Simulating a PRM on R+ ×𝐸 with Mean Measure Leb⊗ 𝜈)

1. Set 𝑇0 := 0, 𝑖 := 1, and 𝑐 := 𝜈(𝐸).

2. Simulate𝑈 ∼ U(0, 1) and set 𝑇𝑖 := 𝑇𝑖−1 − 𝑐−1 ln𝑈.

3. Simulate 𝒀 𝑖 ∼ 𝜈/𝑐.

4. Set 𝑖 := 𝑖 + 1 and repeat from Step 2.
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2.8.3 Compound Poisson Processes

Let 𝑁 be a Poisson random measure on R+ × R𝑑 with mean measure Leb ⊗ 𝜈 —
we also write the latter as d𝑡 𝜈(d𝒙). We assume that 𝑐 := 𝜈(R𝑑) < ∞. The process
(𝐾𝑡) with 𝐾𝑡 := 𝑁 ( [0, 𝑡] × R𝑑) is a Poisson process with rate 𝑐. We now construct
the following stochastic process as a stochastic integral with respect to 𝑁 .

Definition 2.90: Compound Poisson Process

The process (𝑿𝑡 , 𝑡 ≥ 0) defined by

𝑿𝑡 :=
∫
[0,𝑡]×R𝑑

𝑁 (d𝑠, d𝒙) 𝒙, 𝑡 ≥ 0,

is the compound Poisson process corresponding to the measure 𝜈.

A compound Poisson process can be thought of as a “batch” Poisson process,
where arrivals occur according to a Poisson process with rate 𝑐, and each arrival
adds a batch of size 𝒀 ∼ 𝜈/𝑐 to the total, so that we may also write

𝑿𝑡 =
𝐾𝑡∑︁
𝑘=1

𝒀 𝑘 ,

where 𝒀1,𝒀2, . . .
iid∼ 𝜈/𝑐 are independent of 𝐾𝑡 ∼ Poi(𝑐𝑡). The compound Poisson

process is an important example of a Lévy process — a stochastic process with
independent and stationary increments; see Section 2.8.4. In this context the
measure 𝜈 is called the Lévy measure.

The characteristic function of 𝑿𝑡 can be found by conditioning on 𝐾𝑡 :

Eei 𝒓⊤𝑿𝑡 = E E𝐾𝑡e
i 𝒓⊤

∑𝐾𝑡
𝑘=1 𝒀𝑘 = E (Eei 𝒓⊤𝒀)𝐾𝑡 = exp(−𝑐𝑡 (1 − Eei 𝒓⊤𝒀))

= exp
(
𝑡

∫
𝜈(d𝒚) (ei 𝒓⊤𝒚 − 1)

)
.

Denoting the jump times of the compound Poisson process by {𝑇𝑘 } and the jump
sizes by {𝒀 𝑘 }, we have the following simulation algorithm.

Algorithm 2.91 (Simulating a Compound Poisson Process)

1. Initialize 𝑇0 := 0, 𝑿0 := 0, and set 𝑘 := 1.

2. Generate 𝐴𝑘 ∼ Exp(𝑐).

3. Generate 𝒀 𝑘 ∼ 𝜈/𝑐.
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4. Set 𝑇𝑘 := 𝑇𝑘−1 + 𝐴𝑘 and 𝑿𝑇𝑘 := 𝑿𝑇𝑘−1 + 𝒀 𝑘 .

5. Set 𝑘 := 𝑘 + 1 and repeat from Step 2.

Example 2.92 (Compound Poisson Process) The bottom panel of Figure 2.93
shows a realization of the compound Poisson process 𝑋 := (𝑋𝑡 , 𝑡 ≥ 0) with Lévy
measure

𝜈(d𝑥) := 5 e−|𝑥 | d𝑥, 𝑥 ∈ R.

The top panel shows the atoms of the corresponding Poisson random measure 𝑁 .
For each atom (𝑡, 𝑥) of 𝑁 , the process jumps an amount 𝑥 at time 𝑡.
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Figure 2.93: Realization of a compound Poisson process taking values in R.

2.8.4 Lévy Processes
Lévy processes generalize the stationarity and independence of increments prop-
erties of the Wiener and compound Poisson processes. They can be completely
characterized in terms of a Poisson random measure and a Brownian motion.

Let (Ω,H , P) be a probability space and 𝑿 := (𝑿𝑡 , 𝑡 ≥ 0) a stochastic process
with state space R𝑑 .
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Definition 2.94: Lévy Process

The process 𝑿 is said to be a Lévy process with respect to its natural filtration
(F𝑡) if

1. the paths of 𝑿 are almost surely right-continuous and left-limited, with
𝑿0 = 0, and

2. for every 𝑡, 𝑢 ≥ 0, the increment 𝑋𝑡+𝑢 − 𝑋𝑡 is independent of F𝑡 and has
the same distribution as 𝑋𝑢.

Property 2 is summarized by stating that a Lévy process has independent
and stationary increments. A Lévy process can be viewed as a continuous-time
generalization of a random walk process. Indeed the process observed at times
0 =: 𝑡0 < 𝑡1 < 𝑡2 < · · · forms a random walk,

(2.95) 𝑿𝑡𝑛 =
𝑛∑︁
𝑖=1

(𝑿𝑡𝑖 − 𝑿𝑡𝑖−1),

whose increments {𝑿𝑡𝑖 − 𝑿𝑡𝑖−1} are independent. Moreover, if the times are chosen
at an equal distance from each other, 𝑡𝑖 − 𝑡𝑖−1 = ℎ, then the increments are iid,
and so the distribution of the Lévy process is completely specified by its increment
distribution in any time interval of length ℎ > 0, for example by the distribution of
𝑿1. Note also that linear combinations of independent Lévy processes are again
Lévy. It is not difficult to show (see Exercise 24) that the characteristic function of
𝑿𝑡 must be of the form

Eei 𝒓⊤𝑿𝑡 = e𝑡 𝜙(𝒓) , 𝒓 ∈ R𝑑

for some complex-valued function 𝜙. This is called the characteristic exponent of
the Lévy process.

Example 2.96 (Brownian Motion and the Compound Poisson Process) A 𝑑-
dimensional Brownian motion process starting at 0 is the archetypal Lévy process
with continuous sample paths; in fact, we will see it is the only Lévy process with
this property.

To check independence and stationarity of the increments for the Brownian
motion process, it suffices to verify these properties for a one-dimensional Wiener
process. Namely, a linear drift process 𝑡 ↦→ 𝒂𝑡 is a trivial Lévy process, and a
Brownian motion minus its drift process and initial position is a linear transformation
of a 𝑑-dimensional Wiener process, whose components, in turn, are independent
one-dimensional Wiener processes. So, let 𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) be a Wiener process.
Since 𝑊 is a zero-mean Gaussian process with covariance function 𝑠 ∧ 𝑡, the
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increment𝑊𝑡+𝑢 −𝑊𝑡 has a Gaussian distribution with expectation 0 and variance

Cov(𝑊𝑡+𝑢 −𝑊𝑡 ,𝑊𝑡+𝑢 −𝑊𝑡) = Cov(𝑊𝑡+𝑢,𝑊𝑡+𝑢) + Cov(𝑊𝑡 ,𝑊𝑡) − 2Cov(𝑊𝑡+𝑢,𝑊𝑡)
= 𝑡 + 𝑢 + 𝑡 − 2𝑡 = 𝑢,

which does not depend on 𝑡. Next, take 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 and let𝑈 := 𝑊𝑡2 −𝑊𝑡1 and
𝑉 := 𝑊𝑡4 −𝑊𝑡3 . We have

Cov(𝑈,𝑉) = Cov(𝑊𝑡2 ,𝑊𝑡4) − Cov(𝑊𝑡2 ,𝑊𝑡3) − Cov(𝑊𝑡1 ,𝑊𝑡4) + Cov(𝑊𝑡1 ,𝑊𝑡3)
= 𝑡2 − 𝑡2 − 𝑡1 + 𝑡1 = 0.

This shows that 𝑈 and 𝑉 are independent, since [𝑈,𝑉]⊤ is a Gaussian random
vector. A similar argument can be used to show independence of increments at
arbritrary times 0 = 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝑛.

On the other side of the coin is the compound Poisson process

(2.97) 𝑿𝑡 :=
∫
[0,𝑡]×R𝑑

𝑁 (d𝑠, d𝒙) 𝒙, 𝑡 ≥ 0,

where 𝑁 is a Poisson random measure on R+ × R𝑑 with mean measure Leb ⊗ 𝜈,
satisfying 𝜈(R𝑑) < ∞. This is the typical pure jump Lévy process. Independence
and stationary of increments follow directly from the properties of the Poisson
random measure.

For a Lévy process, each increment can be written as the sum of 𝑛 iid random
variables, for every 𝑛. We say that the increments have an infinitely divisible distri-
bution. Many of the common distributions are infinitely divisible; see Exercise 25.

For the compound Poisson process in (2.97), the requirement is that 𝜈(R𝑑) < ∞.
If this restriction on 𝜈 is relaxed to

(2.98)
∫
𝐸

𝜈(d𝒙) (∥𝒙∥ ∧ 1) < ∞,

the process (𝑿𝑡) in (2.97) still defines a pure-jump Lévy process, but not necessarily
a compound Poisson process. In fact, any pure-jump Lévy process must be of this
form for some Poisson random measure 𝑁 , with 𝜈 satisfying (2.98). In this context,
𝑁 measures the times and magnitudes of the jumps, and 𝜈 the expected number of
jumps of a certain magnitude.

More precisely, for a Lévy process 𝑿, the jump measure 𝑁 is such that 𝑁 ( [0, 𝑡]×
𝐴) counts the number of jumps of 𝑿 during the interval [0, 𝑡] whose size lies in
𝐴 ∈ B𝑑 , excluding 0. The mean measure of 𝑁 is then Leb ⊗ 𝜈, where 𝜈 is the Lévy
measure. The expected number of jumps of 𝑿 during [0, 1] whose size lies in 𝐴 is
then 𝜈(𝐴) = E𝑁 ( [0, 1] × 𝐴). The main theorem on Lévy processes is the following.
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Theorem 2.99: Lévy–Itô Decomposition

The process 𝑿 := (𝑿𝑡 , 𝑡 ≥ 0) is a Lévy process if and only if there exists a
𝑑-dimensional Brownian motion process 𝑩 := (𝑩𝑡 , 𝑡 ≥ 0) starting at 0 and
a Poisson random measure 𝑁 on R+ × R𝑑 that is independent of 𝑩 and has
mean measure Leb ⊗ 𝜈, with 𝜈 satisfying

(2.100)
∫
R𝑑
𝜈(d𝒙) (∥𝒙∥2 ∧ 1) < ∞,

such that 𝑿 = 𝑩+𝑼+𝒁, where the summands are independent,𝑼 := (𝑼𝑡 , 𝑡 ≥
0) is the compound Poisson process

𝑼𝑡 :=
∫ 𝑡

0

∫
∥𝒙∥>1

𝑁 (d𝑠, d𝒙) 𝒙, 𝑡 ≥ 0,

and 𝒁 := (𝒁𝑡 , 𝑡 ≥ 0) is the limit of compensated compound Poisson pro-
cesses:

𝒁 := lim
𝛿↓0

𝒁𝛿 with 𝒁𝛿𝑡 :=
∫ 𝑡

0

∫
𝛿≤∥𝒙∥≤1

[𝑁 (d𝑠, d𝒙) − d𝑠 𝜈(d𝒙)] 𝒙, 𝑡 ≥ 0.

Proof. (Sketch). To show necessity, one needs to show (1) that adding independent
Lévy processes gives another Lévy process, and (2) that each of the processes 𝑩,𝑼,
and 𝒁 is a Lévy process. The first statement follows easily from the definition
of a Lévy process, and we already proved (2) for the Brownian motion 𝑩 and
the compound Poisson process 𝑼. Obviously, 𝒁𝛿 is a Lévy process as well, for
every 𝛿 > 0. Thus, the main thing that remains to be proved is that the limit 𝒁 is
well-defined under condition (2.100) and that it is Lévy. We omit the proof.

To show sufficiency, start with a Lévy process 𝑿 and let 𝑁 be its jump measure.
This yields the Lévy processes𝑼 and 𝒁 via the integrals defined in the theorem. Let
B be the unit ball on R𝑑 . As𝑼 is determined by the trace of 𝑁 on R+×B𝑐, and 𝒁 by
the trace of 𝑁 on R+×B, the two processes are independent by the Poisson nature of
𝑁 . By removing the jumps from 𝑿, the process 𝑿 −𝑼 − 𝒁 has continuous sample
paths. Moreover, it is a Lévy process. It can be shown that the only Lévy processes
with continuous sample paths are Brownian motions. Consequently, we have the
decomposition 𝑿 = 𝑩 +𝑼 + 𝒁. There remains to show that 𝑩 is independent of the
jump measure 𝑁 (and hence independent of 𝑼 and 𝒁). This is the tricky part of the
proof. A complete proof can be found in Çinlar (2011, Chapter 7). □

Remark 2.101 (Truncation Level) The choice of 1 for the truncation level in
the above theorem is arbitrary. It may be changed to any positive number. However,
this will change the drift of 𝑩.
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The Lévy–Itô decomposition gives a complete and precise characterization of
Lévy processes. The continuous part is described by a Brownian motion process,
and the jump part by a Poisson random measure with Lévy measure 𝜈 satisfying
(2.100). Note that this condition on 𝜈 is less restrictive than (2.98). We now have
the following picture for the jumps of a Lévy process:

1. If 𝜈(𝐸) < ∞, there are finitely many jumps in any time interval.

2. If 𝜈(𝐸) = ∞, but (2.98) holds, then the process 𝒁 becomes

𝒁 =

∫ 𝑡

0

∫
0≤∥𝒙∥≤1

𝑁 (d𝑠, d𝒙) 𝒙 − 𝑡
∫

0≤∥𝒙∥≤1
𝜈(d𝒙) 𝒙, 𝑡 ≥ 0,

where the first integral can be combined with 𝑼 to give a pure jump process
of the form (2.97), and the second integral is a linear drift term. In each time
interval there are infinitely many small jumps, tending to 0.

3. When 𝜈(𝐸) = ∞, (2.98) does not hold, but (2.100) does hold, then the integral∫
0≤∥𝒙∥≤1

𝜈(d𝒙) 𝒙

is not finite (or does not exist). Nevertheless, as 𝛿 ↓ 0, the limit of 𝒁𝛿𝑡 still
exists, leading to a process 𝒁 that has both an infinite number of jumps in any
time interval as well as a drift.

A corollary of the Lévy–Itô decomposition is that the characteristic exponent 𝜙
of a Lévy process is of the form

−1
2
𝒓⊤𝚺𝒓 + i 𝒓⊤𝒂︸                ︷︷                ︸

from 𝑩𝑡

+
∫
∥𝒙∥>1

𝜈(d𝒙)
(
ei𝒓⊤𝒙 − 1

)
︸                         ︷︷                         ︸

from 𝑼𝑡

+
∫
∥𝒙∥≤1

𝜈(d𝒙)
(
ei𝒓⊤𝒙 − 1 − i 𝒓⊤𝒙

)
︸                                    ︷︷                                    ︸

from 𝒁𝑡

for some vector 𝒂 and covariance matrix 𝚺 = CC⊤. It follows that each Lévy
process is characterized by a characteristic triplet (𝒂,𝚺, 𝜈).

Example 2.102 (Gamma Process) Let 𝑁 be a Poisson random measure on
R+ × R+ with mean measure d𝑡 𝜈(d𝑥) := d𝑡 𝑔(𝑥) d𝑥, where

𝑔(𝑥) :=
𝛼 e−𝜆𝑥

𝑥
, 𝑥 > 0.

Define
𝑋𝑡 :=

∫ 𝑡

0

∫ ∞

0
𝑁 (d𝑠, d𝑥) 𝑥, 𝑡 ≥ 0.



84 2.8. Important Stochastic Processes

Then, (𝑋𝑡 , 𝑡 ≥ 0) is, by construction, an increasing Lévy process. The characteristic
exponent is

𝜙(𝑟) =
∫

d𝑥 (ei 𝑟𝑥 − 1) 𝑔(𝑥) = 𝛼(ln𝜆 − ln(𝜆 − i 𝑟)),

which shows that 𝑋1 ∼ Gamma(𝛼, 𝜆), hence the name gamma process. The char-
acteristic triplet is thus (𝑎, 0, 𝜈), with 𝑎 =

∫ 1
0 d𝑥 𝑥𝑔(𝑥) = 𝛼

𝜆
(1 − e−𝜆). Note that

an increment 𝑋𝑡+𝑠 − 𝑋𝑡 has a Gamma(𝛼𝑠, 𝜆) distribution. A typical realization on
[0, 1] with 𝛼 = 10 and 𝜆 = 1 is given in Figure 2.103.
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Figure 2.103: Gamma process realization for 𝛼 = 10 and 𝜆 = 1.

The simplest method to simulate certain Lévy processes is based on the random
walk property (2.95). For this approach to work, the distribution of 𝑋𝑡 needs to be
known for all 𝑡.

Algorithm 2.104 (Known Marginal Distributions) Suppose 𝑋𝑡 has a known
distribution Dist(𝑡), 𝑡 ≥ 0. Generate a realization of the Lévy process at times
0 =: 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 as follows:

1. Set 𝑋0 := 0 and 𝑘 := 1.

2. Draw 𝐴 ∼ Dist(𝑡𝑘 − 𝑡𝑘−1).

3. Set 𝑋𝑡𝑘 := 𝑋𝑡𝑘−1 + 𝐴.

4. If 𝑘 = 𝑛 then stop; otherwise, set 𝑘 := 𝑘 + 1 and return to Step 2.
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Example 2.105 (Cauchy Process) Let (𝑋𝑡) be a Lévy process such that 𝑋1 ∼
Cauchy. We use Algorithm 2.104 and the ratio-of-normals method for Cauchy
random variables to simulate this process at times 𝑡𝑘 := 𝑘Δ, for 𝑘 ∈ N, and Δ :=
10−5. Sample MATLAB code is given below, and a typical realization on [0, 1] is
given in Figure 2.106. Note that the process is a pure jump process with occasional
very large increments.

Delta=10^(-5); N=10^5; times=(0:1:N).*Delta;
Z=randn(1,N+1)./randn(1,N+1);
Z=Delta.*Z; Z(1)=0;
X=cumsum(Z);
plot(times,X)
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Figure 2.106: Cauchy process realization.

Exercises

1. We draw uniformly at random a point in the unit square 𝐸 := [0, 1]2. Give a
probability space (Ω,H , P) for this experiment such that the set 𝐴 := {(𝑥, 𝑦) ∈ 𝐸 :
𝑥2 + 𝑦2 ≤ 1} is an event. Calculate P(𝐴).

2. Let 𝑋 be a random variable with P(𝑋 = 𝑘) := (1/2)𝑘 , 𝑘 = 1, 2, . . .. Show that
such an object really exists. That is, construct an example of a probability space
and a function 𝑋 with the above property.
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3. Prove Proposition 2.22.

4. Let 𝐹 be a cumulative distribution function. Is lim𝑥→∞ 𝐹 (𝑥) always 1?

5.∗ Consider the distribution 𝜇 with cdf

𝐹 (𝑥) := 1 − (1 − 𝛼)e−𝑥 , 𝑥 ≥ 0,

with 0 < 𝛼 < 1.

(a) Show that 𝜇 is a mixture of a discrete and an absolutely continuous distribution.
(b) Give a measure 𝜈 and a density 𝑓 such that 𝜇 has density 𝑓 with respect to 𝜈.

6. Construct a cdf 𝐹 on the interval [0, 1] in the following way, related to the
Cantor set in Example 1.1 and Exercise 1.19. Let 𝐷𝑛,𝑖 be the 𝑖th open interval that is
removed in the 𝑛th stage of the construction of the Cantor set. For 𝑥 ∈ 𝐷𝑛,𝑖, where
𝑖 ∈ {1, . . . , 2𝑛} and 𝑛 ∈ N, define:

𝐹 (𝑥) :=
2𝑖 − 1
2𝑛+1 .

We may extend the domain of 𝐹 to include every point 𝑥 ∈ [0, 1] by taking 𝐹 (𝑥) :=
lim𝑛 𝐹 (𝑥𝑛), where (𝑥𝑛) is any sequence in 𝐷 = ∪𝑛 ∪𝑖 𝐷𝑛,𝑖 that converges to 𝑥.
This function 𝐹 is called the Cantor function. The function 𝐹 is increasing and is
continuous.

(a) Draw the graph of 𝐹.
(b) Verify that the derivative of 𝐹 is almost everywhere equal to 0.
(c)∗ Let 𝑞 be the functional inverse of 𝐹 (see Exercise 1.24):

𝑞(𝑢) := inf{𝑥 ∈ [0, 1] : 𝐹 (𝑥) > 𝑢}, 𝑢 ∈ [0, 1] .

Show that the range of 𝑞 is 𝐶 \𝐶0, where 𝐶 = [0, 1] \ 𝐷 is the Cantor set and
𝐶0 is the union of {1} and the set of left-endpoints of the {𝐷𝑛,𝑖}.

(d)∗ Deduce that 𝐶 has as many elements as the interval [0, 1].

7.∗ Consider the probability space (Ω,H , P), where Ω is the interval [0, 1), H is
the Borel 𝜎-algebra on [0, 1), and P is the Lebesgue measure (on [0,1)). Every
𝜔 ∈ [0, 1) has a unique binary expansion containing an infinite number of zeros,
e.g.,

47
64

= .101111000000 . . . .

Now, for any 𝜔 ∈ [0, 1) write down the expansion 𝜔 = .𝜔1𝜔2 · · · , and define

𝑋𝑛 (𝜔) := 𝜔𝑛.
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(a) Draw the graphs of 𝑋1, 𝑋2, and 𝑋3.
(b) Verify that 𝑋1, 𝑋2, . . . are Ber(1/2) distributed random variables.
(c) Verify that the 𝑋1, 𝑋2, . . . are independent. Hence, we have constructed an

analytical model for the coin tossing experiment with a fair coin.

8.∗ Let 𝑋 ∼ U[0, 1] and 𝑌 ∼ Exp(1) be independent.

(a) Determine the joint pdf of 𝑋 and 𝑌 and draw the graph.
(b) Calculate P((𝑋,𝑌 ) ∈ [0, 1] × [0, 1]).
(c) Calculate P(𝑋 + 𝑌 < 1).

9.∗ Let 𝑍1, . . . , 𝑍𝑛 be iid random variables, each with a standard normal distribution.
Determine the joint pdf of the vector 𝒁 := [𝑍1, . . . , 𝑍𝑛]⊤. Let A be an invertible
𝑛 × 𝑛 matrix. Determine the joint pdf of the random vector 𝑿 := [𝑋1, . . . , 𝑋𝑛]⊤
defined by 𝑿 := A𝒁.

Show that 𝑋1, . . . , 𝑋𝑛 are iid standard normal only if AA⊤ = I𝑛 (identity matrix);
in other words, only if A is an orthogonal matrix. Can you find a geometric
interpretation of this?

10.∗ Let 𝑋 ∼ Exp(𝜆) and 𝑌 ∼ Exp(𝜇) be independent.

(a) What distribution does min(𝑋,𝑌 ) have?
(b) Show that

P(𝑋 < 𝑌 ) = 𝜆

𝜆 + 𝜇 .

11.∗ Let 𝑋 ∼ U(−𝜋/2, 𝜋/2). What is the pdf of 𝑌 := tan 𝑋?

12. Prove the following. If 𝑌 := 𝑎𝑋 + 𝑏 and 𝑋 has density 𝑓𝑋 with respect to the
Lebesgue measure on (R,B), then 𝑌 has density 𝑓𝑌 given by

𝑓𝑌 (𝑦) =
1
|𝑎 | 𝑓𝑋

(
𝑦 − 𝑏
𝑎

)
.

(Here, 𝑎 ≠ 0.)

13.∗ Let 𝑋 ∼ N(0, 1). Prove that 𝑌 := 𝑋2 has a 𝜒2
1 distribution.

14. Let 𝑈 ∼ U(0, 1). Let 𝐹 be an arbitrary cdf on R, and let 𝑞 denote its quantile
(functional inverse):

𝑞(𝑢) := inf{𝑥 ∈ R : 𝐹 (𝑥) > 𝑢}, 𝑢 ∈ R.

(a) Let 𝐹 (𝑥−) := lim𝑥𝑛↑𝑥 𝐹 (𝑥𝑛) be the left limit of 𝐹 at 𝑥. This exists, since 𝐹 is
increasing. Prove that for any 𝑥 and 𝑢:

𝑞(𝑢) ≥ 𝑥 ⇔ 𝐹 (𝑥−) ≤ 𝑢.
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(b) Show that 𝑋 := 𝑞(𝑈) is a random variable with cdf 𝐹. This gives the inverse-
transform method for simulating random variables from 𝐹.

15. Using the definitions of variance and covariance, prove all the properties for
the variance and covariance in Table 2.3.

16. Prove, using Fubini’s Theorem 1.67, that for any positive random variable 𝑋 ,
it holds that

E𝑋 𝑝 =
∫ ∞

0
d𝑥 𝑝𝑥𝑝−1P(𝑋 > 𝑥).

17. Show that if 𝑌 is a random variable taking values in [−𝑐, 𝑐] and with E𝑌 = 0,
then for 𝜃 ∈ R,

Ee𝜃𝑌 ≤ e
1
2 𝜃

2𝑐2
.

18. Using MGFs, show that the sum of 𝑛 independent Exp(𝜆) distributed random
variables has a Gamma(𝑛, 𝜆) distribution.

19.∗ The double exponential distribution has pdf

𝑓 (𝑥) :=
1
2

e−|𝑥 |, 𝑥 ∈ R.

Show that its characteristic function 𝜓 is given by

𝜓(𝑟) = 1
1 + 𝑟2 , 𝑟 ∈ R.

20. Using Exercise 19 and the inversion formula (2.60), prove that the characteristic
function of the Cauchy distribution is e−|𝑟 |, 𝑟 ∈ R.

21. Algorithm 2.76 to simulate a N(0,𝚺) requires the Cholesky decomposition of
𝚺. The following alternative method uses instead the precision matrix 𝚲 := 𝚺−1.
This is useful when 𝚲 is a sparse matrix but 𝚺 is not. Suppose that DD⊤ is the
Cholesky factorization of 𝚲. Let 𝒀 satisfy 𝒁 = D⊤𝒀 , where 𝒁 is a vector of iid
N(0, 1) random variables. Show that 𝒀 ∼ N(0,𝚺).

22.∗ Let 𝑁 be a Poisson random measure with mean measure 𝜇. Show that its
Laplace functional is given by (2.80). Hint: start with functions 𝑓 = 𝑎1𝐴 with
𝑎 ≥ 0 and 𝐴 ∈ E such that 𝜇(𝐴) < ∞. Then, use the defining properties of the
Poisson random measure.

23. Consider a compound Poisson process with Lévy measure

𝜈(d𝑥) := |𝑥 |−3/2
1{𝛿< |𝑥 |<𝜀} d𝑥 , 𝑥 ∈ R

for some 0 < 𝛿 < 𝜀 ≤ ∞. Let 𝑐 := 𝜈(R) = 4(𝛿−1/2 − 𝜀−1/2).
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(a) Show that if𝑈 ∼ U(0, 1) and 𝑅 ∼ Ber(1/2) are independent, then

(2𝑅 − 1)𝛿
(1 −𝑈 +𝑈

√︁
𝛿/𝜀)2

has distribution 𝜈/𝑐.
(b) Implement Algorithm 2.91 and show a typical realization for (a) the case

𝛿 = 10−6 and 𝜀 = ∞, and (b) the case 𝛿 = 10−6 and 𝜀 = 10−5.

24. Let (𝑿𝑡) be a Lévy process. Show that the characteristic function of 𝑿𝑡 must
be of the form

Eei 𝒓⊤𝑿𝑡 = e𝑡 𝜙(𝒓) , 𝒓 ∈ R𝑑

for some complex-valued function 𝜙.

25. Show that the Gamma(𝛼, 𝑐), Poi(𝑐), and N(𝜇, 𝜎2) distributions are infinitely
divisible.





CHAPTER 3

CONVERGENCE

The purpose of this chapter is to introduce various modes of convergence in
probability and how they are interrelated. We discuss almost sure convergence,
convergence in probability, convergence in distribution, and 𝐿𝑝 convergence.
The notion of uniform integrability connects various modes of convergence.
Main applications are the Law of Large Numbers and the Central Limit Theorem.

3.1 Motivation
As a motivating example for convergence, consider the random experiment where
we repeatedly toss a biased coin. Suppose the probability of heads is 0.3. We can
model this experiment with a Bernoulli process 𝑋1, 𝑋2, . . . ∼iid Ber(0.3), where
{𝑋𝑖 = 1} is the event that the 𝑖th throw is heads. The total number of heads in 𝑛
throws is the random variable 𝑆𝑛 := 𝑋1 + · · · + 𝑋𝑛. The average number of heads in
𝑛 throws is 𝑆𝑛/𝑛. In Figure 3.1 we see a typical realization (𝑠𝑛/𝑛, 𝑛 = 1, . . . , 100)
of the random process (𝑆𝑛/𝑛, 𝑛 = 1, . . . , 100).

0 20 40 60 80 100

0

0.2

0.4

0.6

Figure 3.1: Average number of heads in 𝑛 tosses, against 𝑛.
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The behavior of the realization in Figure 3.1 is in accordance with our intuition.
We would expect the estimate 𝑠𝑛/𝑛 for the probability of heads, here 0.3, to be more
accurate for large 𝑛 than for small 𝑛. However, it is not true that (𝑠𝑛/𝑛) converges
to 0.3 for every realization (𝑠𝑛). For example, for the realization where only heads
occur, we have lim 𝑠𝑛/𝑛 = 1, and if only tails occur, lim 𝑠𝑛/𝑛 = 0. In fact, any limit
between 0 and 1 can be obtained for specific realizations. To explain the intricacies
of the above example, we have to look at the convergence behavior of sequences of
random variables — in this case the sequence (𝑆𝑛/𝑛).

To understand the convergence of a sequence of random variables, we need
to recall a few things about the convergence of real-valued sequences; see Defini-
tion 1.24. For any sequence (𝑥𝑛) of real numbers,

lim inf 𝑥𝑛 := sup
𝑚

inf
𝑛≥𝑚

𝑥𝑚 and lim sup 𝑥𝑛 := inf
𝑚

sup
𝑛≥𝑚

𝑥𝑚

are well-defined (possibly infinite). If lim inf 𝑥𝑛 = lim sup 𝑥𝑛 we say that (𝑥𝑛) has a
limit and we write lim 𝑥𝑛 for it. We say that (𝑥𝑛) converges to lim 𝑥𝑛. If the limit
lies in R then (𝑥𝑛) is said to be a convergent sequence.

Another way to state that (𝑥𝑛) converges to 𝑥 ∈ R is: for every 𝜀 > 0 there is an
𝑁𝜀 such that for all 𝑛 > 𝑁𝜀 it holds that |𝑥𝑛 − 𝑥 | < 𝜀. An equivalent statement is:∑︁

𝑛

1{|𝑥𝑛−𝑥 |>𝜀} < ∞ for every 𝜀 > 0.

When we do not know to which limit a sequence converges, we can alternatively
use the following Cauchy convergence criteria. The proposition is formulated and
proved for real numbers, but the results hold for any convergent sequence (𝑥𝑛) in a
Banach space equipped with a norm ∥ · ∥; see Exercise 3. In the proof, we make use
of the fundamental property of the real numbers that every bounded sequence (𝑥𝑛) in
R has a convergent subsequence; this is often referred to as the Bolzano–Weierstrass
theorem.

Proposition 3.2: Cauchy Criteria for Convergence

The following statements satisfy (1) ⇔ (2) and (3) ⇒ (2):

1. (𝑥𝑛) converges to some real 𝑥 := lim 𝑥𝑛.
2. (𝑥𝑛) is Cauchy convergent, that is, lim𝑚,𝑛→∞ |𝑥𝑚 − 𝑥𝑛 | = 0.
3.

∑
𝑛 1{|𝑥𝑛+1−𝑥𝑛 |>𝜀𝑛} < ∞ for any (𝜀𝑛) such that 𝑐 :=

∑
𝑛 𝜀𝑛 < ∞.

Proof. If (𝑥𝑛) converges to 𝑥, then (𝑥𝑛) is a Cauchy sequence, since

|𝑥𝑚 − 𝑥𝑛 | ≤ |𝑥𝑚 − 𝑥 | + |𝑥𝑛 − 𝑥 |
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and by letting 𝑚, 𝑛 → ∞, the right-hand side goes to 0. We have thus shown that
(1) ⇒ (2).

Conversely, suppose that (𝑥𝑛) is a Cauchy sequence of real numbers; that is, it
satisfies lim𝑚,𝑛→∞ |𝑥𝑚 − 𝑥𝑛 | = 0. Every such Cauchy sequence is bounded. To see
this, take 𝑁 large enough such that |𝑥𝑚 − 𝑥𝑛 | < 1 for 𝑚, 𝑛 > 𝑁 . Then, for 𝑚 ≥ 𝑁 ,
|𝑥𝑚 | ≤ 1 + |𝑥𝑁 |, and so for all 𝑚, we have |𝑥𝑚 | ≤ 1 + ∑𝑁

𝑖=1 |𝑥𝑖 |, which is bounded.
Therefore, by the Bolzano–Weierstrass theorem, there exists a subsequence (𝑥𝑛𝑘 )
that converges to some limit 𝑥 ∈ R. Thus, for every 𝜀 > 0, there is an 𝑁1 such that
|𝑥𝑛𝑘 − 𝑥 | < 𝜀/2 for all 𝑘 ≥ 𝑁1. Also, by the Cauchy property, there is an 𝑁2 such
that |𝑥𝑚 − 𝑥𝑛𝑘 | < 𝜀/2 for all 𝑚, 𝑛𝑘 ≥ 𝑁2. Let 𝑘 be an integer such that 𝑘 ≥ 𝑁1 and
𝑛𝑘 ≥ 𝑁2. Then, for all 𝑚 ≥ 𝑁2,

|𝑥𝑚 − 𝑥 | ≤ |𝑥𝑚 − 𝑥𝑛𝑘 | + |𝑥𝑛𝑘 − 𝑥 | ≤ 𝜀,

which shows that (𝑥𝑛) converges to 𝑥. We have thus shown that (2) ⇒ (1).
Finally, suppose that

∑
𝑘 1{|𝑥𝑘+1−𝑥𝑘 |>𝜀𝑘} < ∞. Then, there is an 𝑖 such that

|𝑥𝑘+1 − 𝑥𝑘 | ≤ 𝜀𝑘 for all 𝑘 ≥ 𝑖. So, for any 𝑘 > 𝑗 > 𝑖, we have

|𝑥𝑘 − 𝑥 𝑗 | ≤ |𝑥𝑘 − 𝑥𝑘−1 | + · · · + |𝑥 𝑗+1 − 𝑥 𝑗 | ≤
𝑘−1∑︁
𝑚= 𝑗

𝜀𝑚 ≤ 𝑐 −
𝑗−1∑︁
𝑚=1

𝜀𝑚,

which goes to 0 as 𝑖 → ∞. Hence, (𝑥𝑘 ) is a Cauchy sequence. This establishes that
(3) ⇒ (2). □

All random variables in this chapter are assumed to be numerical; that is, they
are measurable functions from Ω to R. When such random variables are finite, they
are said to be real-valued.

3.2 Almost Sure Convergence
If a sequence of random variables (𝑋𝑛) converges pointwise to a random variable
𝑋; that is,

lim 𝑋𝑛 (𝜔) = 𝑋 (𝜔) for all 𝜔 ∈ Ω,

we say that (𝑋𝑛) converges surely to 𝑋 . We have seen in Proposition 1.26 that
lim sup 𝑋𝑛 and lim inf 𝑋𝑛 are again random variables, and if both are equal, then
lim 𝑋𝑛 is again a random variable. When the event {lim 𝑋𝑛 = 𝑋} has probability 1,
we say that 𝑋𝑛 converges almost surely to 𝑋 .
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Definition 3.3: Almost Sure Convergence

The sequence of random variables (𝑋𝑛) converges almost surely (a.s.) to a
random variable 𝑋 if

P(lim 𝑋𝑛 = 𝑋) = 1.

We denote the almost sure convergence by 𝑋𝑛 a.s.→ 𝑋 .

It will be convenient to characterize almost sure convergence in a different, but
equivalent, way:

Theorem 3.4: Almost Sure Convergence

The sequence of random variables (𝑋𝑛) converges almost surely to a random
variable 𝑋 if and only if for every 𝜀 > 0

(3.5) lim
𝑚→∞

P(sup
𝑛≥𝑚

|𝑋𝑛 − 𝑋 | > 𝜀) = 0.

Proof. Consider the event 𝐴𝑚 := {sup𝑛≥𝑚 |𝑋𝑛 − 𝑋 | > 𝜀}, 𝑚 ∈ N. Because 𝐴0 ⊇
𝐴1 ⊇ · · · , we have by the sequential continuity from above (2.5) of the probability
measure P that

lim
𝑚→∞

P(𝐴𝑚) = P
(
∩∞
𝑚=0𝐴𝑚

)
= P(inf

𝑚
sup
𝑛≥𝑚

|𝑋𝑛 − 𝑋 | > 𝜀) = P(lim sup |𝑋𝑛 − 𝑋 | > 𝜀).

If 𝑋𝑛 a.s.→ 𝑋 , then lim sup |𝑋𝑛 − 𝑋 | = lim inf |𝑋𝑛 − 𝑋 | = 0 with probability 1, so
limP(sup𝑛≥𝑚 |𝑋𝑛 − 𝑋 | > 𝜀) = 0 for all 𝜀 > 0 and hence (3.5) holds. Conversely, if
P(lim sup |𝑋𝑛 − 𝑋 | > 𝜀) = 0 for all 𝜀 > 0, then P(lim sup |𝑋𝑛 − 𝑋 | = 0) = 1; and
since lim inf |𝑋𝑛 − 𝑋 | ≥ 0, the limit of 𝑋𝑛 is equal to 𝑋 with probability 1. □

Example 3.6 (Complete and Almost Sure Convergence) A sequence of random
variables (𝑋𝑛) is said to converge completely to 𝑋 if for all 𝜀 > 0∑︁

𝑛

P( |𝑋𝑛 − 𝑋 | > 𝜀) < ∞.

We write 𝑋𝑛
cpl.→ 𝑋 . Complete convergence implies almost sure convergence. To

see this, take any 𝜀 > 0 and let 𝐻𝑛 := {|𝑋𝑛 − 𝑋 | > 𝜀}. If 𝑋𝑛
cpl.→ 𝑋 , then using the

countable subadditivity in Theorem 2.2, we obtain

P(sup
𝑛≥𝑚

|𝑋𝑛 − 𝑋 | > 𝜀) = P
( ⋃
𝑛≥𝑚

𝐻𝑛

)
≤

∑︁
𝑛≥𝑚

P(𝐻𝑛) → 0

as 𝑚 → ∞; that is, 𝑋𝑚 a.s.→ 𝑋 .



Chapter 3. Convergence 95

Sometimes we do not know to which limit a sequence converges. To estab-
lish if the sequence converges almost surely, we can apply the following Cauchy
characterization:

Proposition 3.7: Cauchy Criteria for Almost Sure Convergence

The following statements are equivalent:

1. 𝑋𝑛 a.s.→ 𝑋 .
2. lim𝑛→∞ P(sup𝑘≥0 |𝑋𝑛+𝑘 − 𝑋𝑛 | > 𝜀) = 0 for any choice of 𝜀 > 0.
3. lim𝑘→∞ P(sup𝑚,𝑛≥𝑘 |𝑋𝑚 − 𝑋𝑛 | > 𝜀) = 0 for any choice of 𝜀 > 0.
4. P

(
lim𝑚,𝑛→∞ |𝑋𝑚 − 𝑋𝑛 | = 0

)
= 1; that is, (𝑋𝑛) is a.s. a Cauchy sequence.

Proof. We first establish that (1) ⇔ (4). This is really just saying that for almost
every 𝜔 ∈ Ω the sequence (𝑥𝑛) with 𝑥𝑛 := 𝑋𝑛 (𝜔) is a Cauchy sequence of real
numbers if and only if (𝑥𝑛) converges to 𝑥 := 𝑋 (𝜔). This, however, is immediate
from Proposition 3.2.

We now show that (3) ⇔ (4). Define

𝑌𝑛 := sup
𝑗 ,𝑘≥0

|𝑋𝑛+ 𝑗 − 𝑋𝑛+𝑘 |,

and note that (𝑌𝑛) is monotonically decreasing and that (4) is equivalent toP(lim𝑌𝑛 =
0) = 1. Moreover, sup𝑛≥𝑚 |𝑌𝑛 | = 𝑌𝑚, which by Theorem 3.4 implies that (3) is
equivalent to 𝑌𝑛 a.s.→ 0. In other words, (3) is equivalent to P(lim𝑌𝑛 = 0) = 1,
completing the proof.

Finally, we demonstrate that (2) ⇔ (3). Since (3) is equivalent to 𝑌𝑛 a.s.→ 0, and

sup
𝑘≥0

|𝑋𝑛+𝑘 − 𝑋𝑛 | ≤ sup
𝑗 ,𝑘≥0

|𝑋𝑛+ 𝑗 − 𝑋𝑛+𝑘 | = 𝑌𝑛 a.s.→ 0,

then (3) ⇒ (2). In addition, |𝑋 𝑗 − 𝑋𝑘 | ≤ |𝑋 𝑗 − 𝑋𝑛 | + |𝑋𝑘 − 𝑋𝑛 | implies that

𝑌𝑛 ≤ sup
𝑗 ,𝑘≥𝑛

(
|𝑋 𝑗 − 𝑋𝑛 | + |𝑋𝑘 − 𝑋𝑛 |

)
≤ 2 sup

𝑘≥0
|𝑋𝑛+𝑘 − 𝑋𝑛 |.

Therefore, P(𝑌𝑛 > 𝜀) ≤ P(sup𝑘≥0 |𝑋𝑛+𝑘 − 𝑋𝑛 | > 𝜀/2) → 0 shows that 𝑌𝑛 a.s.→ 0, or
(2) ⇒ (3), completing the proof. □

The following inequalities are useful in many different proofs and applications:
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Proposition 3.8: Markov’s and Chebyshev’s Inequality

For any random variable 𝑌 and 𝜀 > 0, Markov’s inequality holds:

(3.9) P( |𝑌 | > 𝜀) ≤ E |𝑌 |
𝜀

.

As a consequence, we have Chebyshev’s inequality, where 𝜇 := E𝑋:

(3.10) P( |𝑋 − 𝜇 | > 𝜀) ≤ Var 𝑋
𝜀2 .

Proof. We have E |𝑌 | ≥ E[|𝑌 |1{|𝑌 |>𝜀}] ≥ E[|𝜀 |1{|𝑌 |>𝜀}] = 𝜀 P( |𝑌 | > 𝜀). We obtain
Chebyshev’s inequality by taking𝑌 := (𝑋−𝜇)2 in Markov’s inequality and replacing
𝜀 with 𝜀2. □

An extension of Chebyshev’s inequality (3.10) for the case where 𝑋 is the sum
of (possibly non-identically distributed) independent random variables is given by
Kolmogorov’s inequality.

Theorem 3.11: Kolmogorov’s Inequality

Let 𝑆𝑛 :=
∑𝑛
𝑖=1 𝑋𝑖, where 𝑋1, 𝑋2, . . . are independent with 0 mean. Then, for

every 𝜀 > 0:

(3.12) P(sup
𝑘≤𝑛

|𝑆𝑘 | > 𝜀) ≤
Var 𝑆𝑛
𝜀2 .

A basic proof is outlined in Exercise 4. We provide a more general result in
Theorem 5.44, using martingale techniques.

Example 3.13 (Random Series) Suppose that the random series (that is, se-
quence of partial sums) (𝑆𝑛) in Kolmogorov’s Theorem 3.11 is such that 𝑐𝑛 :=
Var 𝑆𝑛 ≤ 𝑐 < ∞. We can then show that the series converges almost surely.

Since (𝑐𝑛) is a monotonically increasing and bounded sequence, it converges.
Hence, (𝑐𝑛) is a Cauchy sequence by Proposition 3.2. Applying Kolmogorov’s
inequality to 𝑆𝑛+𝑘 − 𝑆𝑛 = 𝑋𝑛+1 + · · · + 𝑋𝑛+𝑘 for 𝑘 = 1, . . . , 𝑚 yields

𝜀2 P(sup
𝑘≤𝑚

|𝑆𝑛+𝑘 − 𝑆𝑛 | > 𝜀) ≤
𝑚+𝑛∑︁
𝑗=𝑛+1

Var 𝑋 𝑗 = 𝑐𝑚+𝑛 − 𝑐𝑛.

Taking limits on both sides as 𝑚, 𝑛 → ∞, and using the sequential continuity from
above (2.5) yields:

𝜀2 lim
𝑛

P(sup
𝑘

|𝑆𝑛+𝑘 − 𝑆𝑛 | > 𝜀) ≤ lim
𝑚,𝑛→∞

(𝑐𝑚+𝑛 − 𝑐𝑛) = 0,
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which by Proposition 3.7 (Item 2) implies that (𝑆𝑛) converges almost surely to a
real-valued random variable 𝑆.

As a specific case, let 𝑋𝑖 := (𝐵𝑖 − 1
2 ) (

1
2 )
𝑖, 𝑖 = 1, 2, . . ., where {𝐵𝑖} ∼iid Ber( 1

2 ).
Then, E𝑋𝑖 = 0 for all 𝑖 and Var 𝑆𝑛 = 1

12 (1 − 4−𝑛) < 1
12 . Hence, we conclude that

the random series (𝑆𝑛) converges almost surely to a random variable

𝑆 :=
∞∑︁
𝑖=1

(
𝐵𝑖 −

1
2

) (
1
2

) 𝑖
=

∞∑︁
𝑖=1

𝐵𝑖

(
1
2

) 𝑖
− 1

2

and that 𝑌𝑛 :=
∑𝑛
𝑖=1 𝐵𝑖 ( 1

2 )
𝑖 converges to 𝑆 + 1

2 .

The following Borel–Cantelli lemma is useful in many proofs that require almost
sure convergence:

Lemma 3.14: Borel–Cantelli

Let (𝐻𝑛) be a sequence of events. Then, the following hold:

1.
∑
𝑛 P(𝐻𝑛) < ∞ implies that P

(∑
𝑛 1𝐻𝑛 < ∞

)
= 1.

2.
∑
𝑛 P(𝐻𝑛) = ∞ implies thatP

(∑
𝑛 1𝐻𝑛 < ∞

)
= 0, provided that the events

(𝐻𝑛) are pairwise independent.

Proof. Let 𝜀 > 0 be an arbitrarily small constant and let 𝑝𝑘 := P(𝐻𝑘 ). Define the
event

𝐴𝑛 :=
{∑𝑛

𝑘=1 1𝐻𝑘 < 𝜀
−1}

and note that, since 𝐴1 ⊇ 𝐴2 ⊇ · · · is a sequence of decreasing events, limP(𝐴𝑛) =
P(∩∞

𝑘=1𝐴𝑘 ) by Theorem 2.4. Similarly, limP(𝐴𝑐𝑛) = P(∪∞
𝑘=1𝐴

𝑐
𝑘
) by Theorem 2.2,

with ∪∞
𝑘=1𝐴

𝑐
𝑘
= {∑∞

𝑘=1 1𝐻𝑘 ≥ 𝜀−1}.
Assuming that

∑
𝑛 𝑝𝑛 := 𝑐 < ∞, Markov’s inequality (3.9) implies that

P(𝐴𝑐𝑛) = P(∑𝑛
𝑘=1 1𝐻𝑘 ≥ 𝜀−1) ≤ 𝜀 E∑𝑛

𝑘=1 1𝐻𝑘 = 𝜀
∑𝑛
𝑘=1 𝑝𝑘 .

Therefore, taking limits on both sides of the inequality as 𝑛→ ∞ yields

P(∑∞
𝑘=1 1𝐻𝑘 ≥ 𝜀−1) ≤ 𝜀 𝑐.

By taking 𝜀 ↓ 0, we deduce that with probability 0 infinitely many of the events
(𝐻𝑛) occur; or, equivalently, that with probability 1 only finitely many of the events
(𝐻𝑛) occur. This completes the first statement in the Borel–Cantelli lemma.

Now assume that
∑
𝑛 𝑝𝑛 = ∞; thus, for each 𝜀 > 0 we can find an 𝑛𝜀 such that

𝑐𝑛 :=
∑𝑛
𝑘=1 𝑝𝑘 > 𝜀

−2 for all 𝑛 ≥ 𝑛𝜀.
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Therefore, for all 𝑛 ≥ 𝑛𝜀 we have that

P(𝐴𝑛) = P(∑𝑛
𝑘=1 1𝐻𝑘 < 𝜀

−1) = P(∑𝑛
𝑘=1(𝑝𝑘 − 1𝐻𝑘 ) > 𝑐𝑛 − 𝜀−1)

≤ P( |∑𝑛
𝑘=1(𝑝𝑘 − 1𝐻𝑘 ) | > 𝑐𝑛 − 𝜀−1)

(by Chebyshev’s inequality) ≤
Var(∑𝑛

𝑘=1 1𝐻𝑘 )
(𝑐𝑛 − 𝜀−1)2

(by pairwise independence) =

∑𝑛
𝑘=1 𝑝𝑘 (1 − 𝑝𝑘 )
(𝑐𝑛 − 𝜀−1)2 ≤ 1

𝑐𝑛 (1 − 𝜀)2 .

Taking the limit on both sides of the inequality as 𝑛 → ∞, we obtain limP(𝐴𝑛) =
P(∑∞

𝑘=1 1𝐻𝑘 < 𝜀
−1) ≤ lim 1

𝑐𝑛 (1−𝜀)2
= 0. Since 𝜀 > 0 was arbitrarily small, we deduce

that with probability 1 infinitely many of the events (𝐻𝑛) occur; that is, P(∑𝑛 1𝐻𝑛 =

∞) = 1. □

3.3 Convergence in Probability
Almost sure convergence of (𝑋𝑛) to 𝑋 involves the joint distribution of (𝑋𝑛) and 𝑋 .
A simpler type of convergence that only involves the distribution of 𝑋𝑛 − 𝑋 is the
following:

Definition 3.15: Convergence in Probability

The sequence of random variables (𝑋𝑛) converges in probability to a random
variable 𝑋 if, for all 𝜀 > 0,

limP ( |𝑋𝑛 − 𝑋 | > 𝜀) = 0.

We denote the convergence in probability by 𝑋𝑛 P→ 𝑋.

Example 3.16 (Convergence in Probability Versus Almost Sure Convergence)
Since the event {|𝑋𝑛 − 𝑋 | > 𝜀} is contained in {sup𝑘≥𝑛 |𝑋𝑘 − 𝑋 | > 𝜀}, we can
conclude that almost sure convergence implies convergence in probability. However,
the converse is not true in general. For instance, consider the sequence 𝑋1, 𝑋2, . . .
of independent random variables with marginal distributions

P(𝑋𝑛 = 1) = 1 − P(𝑋𝑛 = 0) = 1/𝑛, 𝑛 = 1, 2, . . . .
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Clearly, 𝑋𝑛 P→ 0. However, for 𝜀 < 1 and any 𝑛 = 1, 2, . . . we have,

P
(
sup
𝑛≥𝑚

|𝑋𝑛 | ≤ 𝜀
)
= P(𝑋𝑚 ≤ 𝜀, 𝑋𝑚+1 ≤ 𝜀, . . .)

= P(𝑋𝑚 ≤ 𝜀) P(𝑋𝑚+1 ≤ 𝜀) × · · · (using independence)

= lim
𝑛→∞

𝑛∏
𝑘=𝑚

P(𝑋𝑘 ≤ 𝜀) = lim
𝑛→∞

𝑛∏
𝑘=𝑚

(
1 − 1

𝑘

)
= lim
𝑛→∞

𝑚 − 1
𝑚

× 𝑚

𝑚 + 1
× · · · × 𝑛 − 1

𝑛
= 0.

It follows that P(sup𝑛≥𝑚 |𝑋𝑛 − 0| > 𝜀) = 1 for any 0 < 𝜀 < 1 and all 𝑚 ≥ 1. In
other words, it is not true that 𝑋𝑛 a.s.→ 0.

Proposition 3.17: Convergence of a Subsequence

If (𝑋𝑛) converges to 𝑋 in probability, there is a subsequence (𝑋𝑛𝑘 ) that
converges to 𝑋 almost surely.

Proof. Let 𝜀𝑘 = 1/𝑘, 𝑘 ≥ 1. Put 𝑛0 := 0 and for 𝑘 ≥ 1, let 𝑛𝑘 be the first time
after 𝑛𝑘−1 such that P( |𝑋𝑛𝑘 − 𝑋 | > 𝜀𝑘 ) ≤ 2−𝑘 . There are such (𝑛𝑘 ) because (𝑋𝑛)
converges to 𝑋 in probability by assumption. Setting 𝑌𝑚 := 𝑋𝑛𝑚 , 𝑚 ≥ 0, we have
for any 𝜀 > 0 and 𝑘 > 1/𝜀:

P(sup
𝑚≥𝑘

|𝑌𝑚 − 𝑋 | > 𝜀) ≤
∑︁
𝑚≥𝑘

P( |𝑌𝑚 − 𝑋 | > 𝜀𝑘 ) ≤ 21−𝑘 .

Taking the limit for 𝑘 → ∞ shows that (𝑌𝑘 ) converges almost surely to 𝑋 , by
Theorem 3.4. □

Sometimes we do not know the limiting random variable 𝑋 . The following
Cauchy criterion for convergence in probability is then useful:

Proposition 3.18: Cauchy Criterion for Convergence in Probability

The sequence of random variables (𝑋𝑛) converges in probability if and only
if for every 𝜀 > 0,

(3.19) lim
𝑚,𝑛→∞

P( |𝑋𝑚 − 𝑋𝑛 | > 𝜀) = 0.

Proof. Necessity is shown as follows. Suppose that 𝑋𝑛 P→ 𝑋 . For any 𝜀 > 0, we
have {|𝑋𝑚 − 𝑋 | ≤ 𝜀} ∩ {|𝑋𝑛 − 𝑋 | ≤ 𝜀} ⊆ {|𝑋𝑚 − 𝑋𝑛 | ≤ 2𝜀}, so that

P( |𝑋𝑚 − 𝑋𝑛 | > 𝜀) ≤ P( |𝑋𝑚 − 𝑋 | > 𝜀/2) + P( |𝑋𝑛 − 𝑋 | > 𝜀/2),
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where the right-hand side tends to 0 as 𝑚, 𝑛→ ∞.
For sufficiency, assume that (3.19) holds. Put 𝑛0 := 0. For 𝑘 = 1, 2, . . . define

𝑛𝑘 as the smallest 𝑛 > 𝑛𝑘−1 such that P( |𝑋𝑚 − 𝑋𝑛 | > 𝜀𝑘 ) ≤ 𝜀𝑘 for all 𝑚, 𝑛 ≥ 𝑛𝑘 ,

with 𝜀𝑘 := 2−𝑘 , so that
∑
𝑘 𝜀𝑘 < ∞. Let 𝑌𝑘 := 𝑋𝑛𝑘 , 𝑘 ∈ N. The above shows that

P( |𝑌𝑘+1 − 𝑌𝑘 | > 𝜀𝑘 ) ≤ 𝜀𝑘 for all 𝑘 ∈ N.

By the first part of the Borel–Cantelli Lemma 3.14, we have almost surely that∑
𝑘 1{|𝑌𝑘+1−𝑌𝑘 |>𝜀𝑘} < ∞. Define 𝑦𝑘 := 𝑌𝑘 (𝜔) for an 𝜔 for which the above holds.

Then, (𝑦𝑘 ) is a Cauchy sequence by part three of Proposition 3.2, and hence it
converges to some limit. Thus, the random sequence (𝑌𝑘 ) converges almost surely
to some limit — call it 𝑋 . Observe that, for any 𝜀 > 0, 𝑛, and 𝑘 ,

P( |𝑋𝑛 − 𝑋 | > 𝜀) ≤ P( |𝑋𝑛 − 𝑋𝑛𝑘 | > 𝜀/2) + P( |𝑌𝑘 − 𝑋 | > 𝜀/2).

Now take the limit for 𝑛, 𝑘 → ∞ and the right-hand side converges to 0 because of
the assumption (3.19) and the fact that (𝑌𝑘 ) converges almost surely and hence in
probability to 𝑋 .

□

3.4 Convergence in Distribution
Another important type of convergence is useful when we are interested in estimating
expectations or multidimensional integrals via Monte Carlo methodology.

Definition 3.20: Convergence in Distribution

The sequence of random variables (𝑋𝑛) is said to converge in distribution to
a random variable 𝑋 with cdf 𝐹 provided that:

(3.21) limP(𝑋𝑛 ≤ 𝑥) = 𝐹 (𝑥) for all 𝑥 such that lim
𝑎→𝑥

𝐹 (𝑎) = 𝐹 (𝑥).

We denote the convergence in distribution by 𝑋𝑛 d→ 𝑋 .

The generalization to random vectors (or more generally, topological spaces)
replaces (3.21) with

(3.22) limP(𝑿𝑛 ∈ 𝐴) = P(𝑿 ∈ 𝐴) for all Borel sets 𝐴 with P(𝑿 ∈ 𝜕𝐴) = 0,

where 𝜕𝐴 denotes the boundary of the set 𝐴.
A useful tool for demonstrating convergence in distribution is the characteristic

function; see Section 2.6.2. For a 𝑑-dimensional random vector 𝑿, it is defined as:

𝜓𝑿 (𝒓) := Eei 𝒓⊤𝑿 , 𝒓 ∈ R𝑑 .
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Example 3.23 (Characteristic Function of a Gaussian Random Vector) The
density of the multivariate standard normal distribution is given by

𝑓𝒁 (𝒛) :=
𝑑∏
𝑘=1

1
√

2𝜋
e−

1
2 𝑧

2
𝑘 = (2𝜋)− 𝑑2 e−

1
2 𝒛⊤𝒛, 𝒛 ∈ R𝑑 ,

and thus the characteristic function of 𝒁 ∼ N(0, I𝑑) is

𝜓𝒁 (𝒓) := Eei 𝒓⊤𝒁 = (2𝜋)−𝑑/2
∫
R𝑑

d𝑧 ei 𝒓⊤𝒛− 1
2 ∥𝒛∥

2

= e−∥𝒓∥
2/2(2𝜋)−𝑑/2

∫
R𝑑

d𝑧 e−
1
2 ∥𝒛−i 𝒓∥2

= e−∥𝒓∥
2/2, 𝒓 ∈ R𝑑 .

Hence, the characteristic function of the random vector 𝑿 = 𝝁+B𝒁with multivariate
normal distribution N(𝝁,𝚺) is given by

𝜓𝑿 (𝒓) := Eei 𝒓⊤𝑿 = Eei 𝒓⊤ (𝝁+B𝒁)

= ei 𝒓⊤𝝁Eei (B⊤𝒓)⊤𝒁 = ei 𝒓⊤𝝁𝜓𝒁 (B⊤𝒓)

= ei 𝒓⊤𝝁−∥B⊤𝒓∥2/2 = ei 𝒓⊤𝝁−𝒓⊤𝚺𝒓/2.

The importance of the characteristic function is mainly derived from the fol-
lowing result, for which a proof can be found, for example, in Billingsley (1995,
Sections 26 and 29).

Theorem 3.24: Characteristic Function and Convergence in Distribution

Suppose that 𝜓𝑿1 (𝒓), 𝜓𝑿2 (𝒓), . . . are the characteristic functions of the se-
quence of 𝑑-dimensional random vectors 𝑿1, 𝑿2, . . . and 𝜓𝑿 (𝒓) is the char-
acteristic function of 𝑿. Then, the following three statements are equivalent:

1. lim𝜓𝑿𝑛 (𝒓) = 𝜓𝑿 (𝒓) for all 𝒓 ∈ R𝑑 .
2. 𝑿𝑛

d→ 𝑿.
3. limEℎ(𝑿𝑛) = Eℎ(𝑿) for all bounded continuous functions ℎ : R𝑑 → R.

The theorem can be slightly extended. It can be shown that any function 𝜓 that
is the pointwise limit of characteristic functions is itself a characteristic function
of a real-valued random variable/vector if and only if 𝜓 is continuous at 0. This
is useful in the case where we do not know the distribution of the limiting random
variable 𝑋 from the outset.
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Example 3.25 (Random Series Continued) Continuing Example 3.13, consider
the random series

𝑌𝑛 :=
𝑛∑︁
𝑘=1

𝐵𝑘

(
1
2

) 𝑘
, 𝑛 = 1, 2, . . . ,

where 𝐵1, 𝐵2, . . .
iid∼ Ber( 1

2 ). We already established that (𝑌𝑛) converges almost
surely to 𝑌 :=

∑∞
𝑘=1 𝐵𝑘 ( 1

2 )
𝑘 . We now show that 𝑌𝑛 d→ 𝑌 ∼ U(0, 1). First, note that

E exp(i 𝑟𝑌𝑛) =
𝑛∏
𝑘=1

E exp(i 𝑟𝐵𝑘/2𝑘 ) = 2−𝑛
𝑛∏
𝑘=1

(1 + exp(i 𝑟/2𝑘 )).

Second, from the collapsing product, (1 − exp(i 𝑟/2𝑛))∏𝑛
𝑘=1(1 + exp(i 𝑟/2𝑘 )) =

1 − exp(i 𝑟), we have

E exp(i 𝑟𝑌𝑛) = (1 − exp(i 𝑟)) 1/2𝑛
1 − exp(i 𝑟/2𝑛) .

It follows that limE exp(i 𝑟𝑌𝑛) = (exp(i 𝑟) − 1)/(i 𝑟), which we recognize as the
characteristic function of theU(0, 1) distribution. Because almost sure convergence
implies convergence in distribution (which will be shown in Theorem 3.40), we
conclude that 𝑌 ∼ U(0, 1).

3.5 Convergence in 𝐿𝑝 Norm
Yet another mode of convergence can be found in 𝐿𝑝 spaces; see Section 2.5 for the
definition and properties of 𝐿𝑝 spaces.

Definition 3.26: Convergence in 𝐿𝑝 Norm

The sequence of random variables (𝑋𝑛) converges in 𝐿𝑝 norm (for some
𝑝 ∈ [1,∞]) to a random variable 𝑋 , if ∥𝑋𝑛∥𝑝 < ∞ for all 𝑛, ∥𝑋 ∥𝑝 < ∞, and

lim ∥𝑋𝑛 − 𝑋 ∥𝑝 = 0.

We denote the convergence in 𝐿𝑝 norm by 𝑋𝑛 𝐿𝑝→ 𝑋 .

For 𝑝 = 2 this type of convergence is sometimes referred to as convergence in
mean squared error. The following example illustrates that convergence in 𝐿𝑝 norm
is qualitatively different from convergence in distribution:

Example 3.27 (Comparison of Modes of Convergence) Define 𝑋𝑛 := 1 − 𝑋 ,
where 𝑋 ∼ U(0, 1); thus, clearly, 𝑋𝑛 d→ U(0, 1). However, E |𝑋𝑛 − 𝑋 | → E |1 −
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2𝑋 | = 1/2 and so the sequence does not converge in 𝐿1 norm. In addition,
P( |𝑋𝑛 − 𝑋 | > 𝜀) → 1 − 𝜀 ≠ 0 and so 𝑋𝑛 does not converge in probability either.
Thus, in general 𝑋𝑛 d→ 𝑋 implies neither 𝑋𝑛 P→ 𝑋 nor 𝑋𝑛 𝐿1→ 𝑋 .

Again, when the limiting random variable 𝑋 is not known, the following Cauchy
criterion is useful:

Proposition 3.28: Cauchy Criterion for Convergence in 𝐿𝑝 Norm

The sequence of random variables (𝑋𝑛) converges in 𝐿𝑝 norm for 𝑝 ∈ [1,∞]
if and only if ∥𝑋𝑛∥𝑝 < ∞ for all 𝑛 and

lim
𝑚,𝑛→∞

∥𝑋𝑚 − 𝑋𝑛∥𝑝 = 0.

Proof. If 𝑋𝑛 𝐿𝑝→ 𝑋 , then ∥𝑋 − 𝑋𝑛∥𝑝 → 0 for 𝑛 → ∞, and using Minkowski’s
inequality in Theorem 2.47 shows that (𝑋𝑛) is a Cauchy sequence in 𝐿𝑝, because

∥𝑋𝑚 − 𝑋𝑛∥𝑝 ≤ ∥𝑋𝑚 − 𝑋 ∥𝑝 + ∥𝑋𝑛 − 𝑋 ∥𝑝 → 0

as 𝑚, 𝑛 → ∞. Showing the converse is not as straightforward and we first consider
the case with 1 ≤ 𝑝 < ∞.

Assume that (𝑋𝑛) is Cauchy convergent and ∥𝑋𝑛∥𝑝 < ∞. For 𝑘 = 1, 2, . . .
define 𝑛0 := 0 and 𝑛𝑘 as the smallest 𝑛 > 𝑛𝑘−1 such that ∥𝑋𝑚 − 𝑋𝑛∥𝑝 ≤ 2−2𝑘 for all
𝑚, 𝑛 ≥ 𝑛𝑘 . Let 𝑌𝑘 := 𝑋𝑛𝑘 and 𝐻𝑘 := {|𝑌𝑘+1 − 𝑌𝑘 | > 2−𝑘 } for all 𝑘 . It follows from
Markov’s inequality (3.9) that P(𝐻𝑘 ) ≤ 2𝑝𝑘 ∥𝑌𝑘+1 − 𝑌𝑘 ∥𝑝𝑝, and thus∑︁

𝑘

P(𝐻𝑘 ) ≤
∑︁
𝑘

2−𝑘 < ∞.

Hence, by the first part of Borel–Cantelli’s Lemma 3.14, we have almost surely
that

∑
𝑘 1𝐻𝑘 < ∞. If 𝑦𝑘 := 𝑌𝑘 (𝜔) for an 𝜔 for which the above holds, then (𝑦𝑘 )

is a Cauchy sequence by part three of Proposition 3.2 (with 𝜀𝑛 := 2−𝑛). Hence,
the random sequence (𝑌𝑘 ) thus converges almost surely to some limit, say 𝑋 . By
Fatou’s Lemma 2.35

E |𝑋𝑛 − 𝑋 |𝑝 = E lim inf
𝑘

|𝑋𝑛 − 𝑋𝑛𝑘 |𝑝 ≤ lim inf
𝑘

E |𝑋𝑛 − 𝑋𝑛𝑘 |𝑝 → 0,

where we take 𝑛→ ∞ and use the Cauchy convergence assumption. In other words,
for a given 𝜀 > 0, there exists a large enough 𝑁𝜀 such that ∥𝑋 − 𝑋𝑛∥𝑝 < 𝜀 for all
𝑛 ≥ 𝑁𝜀. Since ∥𝑋𝑛∥𝑝 < ∞ and |∥𝑋 ∥𝑝 − ∥𝑋𝑛∥𝑝 | ≤ ∥𝑋 − 𝑋𝑛∥𝑝 < 𝜀 for all 𝑛 ≥ 𝑁𝜀,
this shows that ∥𝑋 ∥𝑝 < ∞, and completes the proof for 𝑝 ∈ [1,∞).

For the case 𝑝 = ∞, we have ∥𝑋𝑛∥∞ = inf{𝑥 : P( |𝑋𝑛 | ≤ 𝑥) = 1}. Define 𝐴𝑚,𝑛 :=
{|𝑋𝑚 − 𝑋𝑛 | > ∥𝑋𝑚 − 𝑋𝑛∥∞} and 𝐴 := ∪𝑚,𝑛𝐴𝑚,𝑛. Then, P(𝐴) ≤ ∑

𝑚,𝑛 P(𝐴𝑚,𝑛) = 0.
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Thus, for all 𝜔 ∈ 𝐴𝑐 and any 𝜀 > 0 we can find a large enough 𝑁𝜀 such that

(3.29) |𝑋𝑚 (𝜔) − 𝑋𝑛 (𝜔) | ≤ ∥𝑋𝑚 − 𝑋𝑛∥∞ < 𝜀, 𝑚, 𝑛 ≥ 𝑁𝜀,

which implies that (𝑥𝑛), with 𝑥𝑛 := 𝑋𝑛 (𝜔), is a Cauchy sequence in R. The com-
pleteness of R implies that the limit 𝑋 (𝜔) := lim𝑛 𝑋𝑛 (𝜔) exists for each 𝜔 ∈ 𝐴𝑐,
and we may set 𝑋 (𝜔) := 0 for 𝜔 ∈ 𝐴. Taking the limit as 𝑚 → ∞ in (3.29)
yields sup𝜔∈𝐴𝑐 |𝑋𝑛 (𝜔) − 𝑋 (𝜔) | < 𝜀 and therefore ∥𝑋𝑛 − 𝑋 ∥∞ < 𝜀 for all 𝑛 ≥ 𝑁𝜀.
Finally, ∥𝑋 ∥∞ ≤ ∥𝑋𝑛 − 𝑋 ∥∞ + ∥𝑋𝑛∥∞ < 𝜀 + ∥𝑋𝑛∥∞ for all 𝑛 ≥ 𝑁𝜀 showing that
∥𝑋 ∥∞ < ∞. □

3.5.1 Uniform Integrability
Recall that a numerical random variable 𝑋 is said to be integrable if E𝑋 exists and
is a real number; equivalently, if E |𝑋 | < ∞. Uniform integrability is a condition
on the joint integrability of a collection of random variables. We will see that this
concept ties together the notions of 𝐿1 convergence and convergence in probability.
This will be particularly relevant for the convergence of martingales; see Chapter 5.

We now give an equivalent definition of integrability, whose proof is left for
Exercise 14.

Proposition 3.30: Integrable Random Variable

A real-valued random variable 𝑋 is integrable if and only if

(3.31) lim
𝑏→∞

E |𝑋 | 1{|𝑋 |>𝑏} = 0.

Uniform integrability extends property (3.31) to an arbitrary collection of ran-
dom variables.

Definition 3.32: Uniform Integrability

A collection K of random variables is said to be uniformly integrable (UI) if

lim
𝑏→∞

sup
𝑋∈K

E |𝑋 | 1{|𝑋 |>𝑏} = 0.

Example 3.33 (Sum of two UI sequences) Let (𝑋𝑛) and (𝑌𝑛) be two UI
sequences of random variables. Then, the collection {𝑍𝑚,𝑛}, where 𝑍𝑚,𝑛 := 𝑋𝑚 +𝑌𝑛,
is also UI. To see this, note that 1{𝑥>𝑏} is an increasing function for 𝑥 ≥ 0, so that
(𝑥 − 𝑦) (1{𝑥>𝑏} − 1{𝑦>𝑏}) ≥ 0 for 𝑥, 𝑦 ≥ 0. In other words, after rearrangement:

(𝑥 + 𝑦) (1{𝑥>𝑏} + 1{𝑦>𝑏}) ≤ 2𝑥1{𝑥>𝑏} + 2𝑦1{𝑦>𝑏} .
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Using 1{|𝑥+𝑦 |>2𝑏} ≤ 1{|𝑥 |>𝑏} + 1{|𝑦 |>𝑏}, we obtain the following inequality for any 𝑥
and 𝑦:

|𝑥 + 𝑦 |1{|𝑥+𝑦 |>2𝑏} ≤ (|𝑥 | + |𝑦 |) (1{|𝑥 |>𝑏} + 1{|𝑦 |>𝑏}) ≤ 2|𝑥 |1{|𝑥 |>𝑏} + 2|𝑦 |1{|𝑦 |>𝑏} .

Therefore, as 𝑏 ↑ ∞ we have:

sup
𝑚,𝑛

E |𝑍𝑚,𝑛 |1{|𝑍𝑚,𝑛 |>2𝑏} ≤ 2 sup
𝑚

E |𝑋𝑚 |1{|𝑋𝑚 |>𝑏} + 2 sup
𝑛

E |𝑌𝑛 |1{|𝑌𝑛 |>𝑏} → 0 + 0,

which shows that {𝑍𝑚,𝑛} is also UI.

Proposition 3.34: Conditions for Uniform Integrability

Let K be a collection of random variables.

1. If K is a finite collection of integrable random variables, then it is UI.
2. If |𝑋 | ≤ 𝑌 for all 𝑋 ∈ K and some integrable 𝑌 , then K is UI.
3. K is UI if and only if there is an increasing convex function 𝑓 such that

lim
𝑥→∞

𝑓 (𝑥)
𝑥

= ∞ and sup
𝑋∈K

E 𝑓 ( |𝑋 |) < ∞.

4. K is UI if sup𝑋∈K E |𝑋 |1+𝜀 < ∞ for some 𝜀 > 0.
5. K is UI if and only if

(a) sup𝑋∈K E |𝑋 | < ∞, and
(b) for every 𝜀 > 0 there is a 𝛿 > 0 such that for every event 𝐻:

(3.35) P(𝐻) ≤ 𝛿 ⇒ sup
𝑋∈K

E |𝑋 |1𝐻 ≤ 𝜀.

Proof.

1. Let K := {𝑋1, . . . , 𝑋𝑛}. Then,

lim
𝑏→∞

sup
𝑛

E |𝑋𝑛 | 1{|𝑋𝑛 |>𝑏} = sup
𝑛

lim
𝑏→∞

E |𝑋𝑛 | 1{|𝑋𝑛 |>𝑏} = sup
𝑛

0 = 0,

since (3.31) holds for each integrable random variable.

2. We have
lim
𝑏→∞

sup
𝑋∈K

E |𝑋 | 1{|𝑋 |>𝑏} ≤ lim
𝑏→∞

E𝑌 1{𝑌>𝑏} = 0,

since 𝑌 is integrable.
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3. Without loss of generality, we may assume that all 𝑋 ∈ K are positive and that
𝑓 ≥ 1. Define 𝑔(𝑥) := 𝑥/ 𝑓 (𝑥). Then,

𝑋1{𝑋>𝑏} = 𝑓 (𝑋)𝑔(𝑋)1{𝑋>𝑏} ≤ 𝑓 (𝑋) sup
𝑥>𝑏

𝑔(𝑥).

Hence,
sup
𝑋∈K

E𝑋1{𝑋>𝑏} ≤ sup
𝑋∈K

E 𝑓 (𝑋) sup
𝑥>𝑏

𝑔(𝑥).

The proof of sufficiency is completed by observing that the right-hand side of
the above inequality goes to 0 as 𝑏 → ∞. To show necessity, suppose K is UI.
For every 𝑋 ∈ K we have

E𝑋1{𝑋>𝑏} =
∫ ∞

0
d𝑦 P(𝑋1{𝑋>𝑏} > 𝑦) =

∫ ∞

0
d𝑦 P(𝑋 > 𝑏 ∨ 𝑦)

≥
∫ ∞

𝑏

d𝑦 P(𝑋 > 𝑦).

It follows from the UI assumption of K that

lim
𝑏→∞

sup
K

∫ ∞

𝑏

d𝑦 P(𝑋 > 𝑦)︸                      ︷︷                      ︸
=: ℎ(𝑏)

= 0.

Thus, there exists a sequence 0 = 𝑏0 < 𝑏1 < · · · increasing to ∞ such that
ℎ(𝑏𝑛) ≤ ℎ(0)2−𝑛 for all 𝑛 ∈ N, where ℎ(0) < sup𝑋∈K E𝑋 < ∞. Now define
𝑔 as the step function which starts at 1 and increases by 1 at each point 𝑏𝑛,
and let 𝑓 (𝑥) :=

∫ 𝑥

0 d𝑦 𝑔(𝑦) be the area underneath the graph of 𝑓 in [0, 𝑥].
Then, 𝑓 is increasing and convex and lim𝑥 𝑓 (𝑥)/𝑥 = ∞. It remains to show that
supK E 𝑓 (𝑋) < ∞. This follows from

E 𝑓 (𝑋) =
∞∑︁
𝑛=0

E
∫ ∞

𝑏𝑛

d𝑦 1{𝑋>𝑦} ≤
∞∑︁
𝑛=0

ℎ(𝑏𝑛) ≤ 2ℎ(0) < ∞

for all 𝑋 ∈ K.

4. This is a consequence of Point 3, by taking 𝑓 (𝑥) = 𝑥1+𝜀.

5. To simplify the notation, we can assume that 𝑋 ≥ 0. Take any 𝜀 > 0 and event
𝐻. Let 𝑏 ≥ 0. We have

(3.36) sup
𝑋∈K

E𝑋1𝐻 = sup
𝑋∈K

E𝑋1𝐻 (1{𝑋≤𝑏}+1{𝑋>𝑏}) ≤ 𝑏 P(𝐻) +

𝑠(𝑏)︷            ︸︸            ︷
sup
𝑋∈K

E𝑋1{𝑋>𝑏} .
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In particular, E𝑋 ≤ 𝑏 + 𝑠(𝑏) for all 𝑋 ∈ K. If K is UI, the last term is finite
for 𝑏 large enough. This shows that 𝑠(0) = sup𝑋∈K E𝑋 < ∞. Moreover, if K
is UI, there is a 𝑏 such that 𝑠(𝑏) < 𝜀/2. So if we take 𝛿 < 𝜀/(2𝑏), then
sup𝑋∈K E𝑋1𝐻 < 𝜀. This shows sufficiency.
To show necessity, suppose that (3.35) holds and 𝑠(0) < ∞. We must show that
for every 𝜀 > 0 there exists a 𝑏 such that 𝑠(𝑏) ≤ 𝜀. To show this, in (3.35) take
𝑏 ≥ 𝑠(0)/𝛿 < ∞ and 𝐻 = {𝑋′ > 𝑏} for an arbitrary 𝑋′ ∈ K. Then, by Markov’s
inequality (3.9),

P(𝑋′ > 𝑏) ≤ 𝑠(0)
𝑏

≤ 𝛿,

which in combination with (3.35) implies that E𝑋′
1𝐻 = E𝑋′

1{𝑋 ′>𝑏} ≤ 𝜀 for
𝑋′ ∈ K. Since 𝑋′ is an arbitrary choice in K, the inequality E𝑋1{𝑋>𝑏} ≤ 𝜀 is
true for all 𝑋 ∈ K. In other words, 𝑠(𝑏) ≤ 𝜀, as had to be shown.

□

Example 3.37 (Failure of UI) When uniform integrability fails to hold, then
𝑋𝑛

P→ 𝑋 does not necessarily imply that E𝑋𝑛 → E𝑋 . For example, consider
the sequence of random variables (𝑋𝑛) with P(𝑋𝑛 = 𝑛) = 1/𝑛 = 1 − P(𝑋𝑛 = 0),
𝑛 = 1, 2, . . .. Then, 𝑋𝑛 P→ 0, because

P( |𝑋𝑛 − 0| > 𝜀) = P(𝑋𝑛 = 𝑛) = 1/𝑛→ 0,

but E𝑋𝑛 = 1 ≠ 0 for all 𝑛. This is not surprising, since

E |𝑋𝑛 |1{|𝑋𝑛 |≥𝑏} =
{

1, 𝑏 ≤ 𝑛,
0, 𝑏 > 𝑛;

that is, lim𝑏→∞ sup𝑛 E |𝑋𝑛 |1{|𝑋𝑛 |≥𝑏} = 1, implying that (𝑋𝑛) is not UI.

Theorem 3.38: 𝐿1 Convergence and Uniform Integrability

A sequence (𝑋𝑛) of real-valued integrable random variables converges in 𝐿1

if and only if it converges in probability and is uniformly integrable.

Proof. Suppose that (𝑋𝑛) is UI and converges in probability. Let 𝜀 > 0 be an
arbitrarily small number. Since (𝑋𝑛) is UI, then so is the collection {𝑍𝑚,𝑛} with
𝑍𝑚,𝑛 := 𝑋𝑚 − 𝑋𝑛. In other words, for the given 𝜀 we can find a large enough 𝑏𝜀 such
thatE |𝑍𝑚,𝑛 |1{|𝑍𝑚,𝑛 |>𝑏𝜀} ≤ 𝜀/3 for all𝑚, 𝑛. Note that the uniform integrability means
that 𝑏𝜀 does not depend on 𝑚 and 𝑛. Next, for the given 𝜀 > 0 and 𝛿 := 𝜀/(3𝑏𝜀),
Proposition 3.18 tells us that we can find a large enough 𝑁𝜀 such that P( |𝑋𝑚 − 𝑋𝑛 | >
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𝜀/3) ≤ 𝛿 for all 𝑚, 𝑛 ≥ 𝑁𝜀. Combining these results for 𝑚, 𝑛 ≥ 𝑁𝜀, we obtain

E |𝑋𝑚 − 𝑋𝑛 | = E |𝑍𝑚,𝑛 |
(
1{|𝑍𝑚,𝑛 |≤𝜀/3} + 1{𝜀/3< |𝑍𝑚,𝑛 |≤𝑏𝜀} + 1{|𝑍𝑚,𝑛 |>𝑏𝜀}

)
≤ 𝜀/3 + 𝑏𝜀 P( |𝑍𝑚,𝑛 | > 𝜀/3) + E |𝑍𝑚,𝑛 |1{|𝑍𝑚,𝑛 |>𝑏𝜀}
≤ 𝜀/3 + 𝑏𝜀 𝜀/(3𝑏𝜀) + 𝜀/3 = 𝜀,

which implies that (𝑋𝑛) is a Cauchy sequence in 𝐿1. By Proposition 3.28 there
exists an integrable 𝑋 such that E |𝑋𝑛 − 𝑋 | → 0. This completes the first part of the
proof.

Now, assume that E |𝑋𝑛 − 𝑋 | → 0 with 𝑋 and (𝑋𝑛) being integrable. From
Markov’s inequality (3.9) we have that P( |𝑋𝑛 − 𝑋 | > 𝜀) ≤ 𝜀−1E |𝑋𝑛 − 𝑋 | → 0,
proving convergence in probability. Next, we show that (𝑋𝑛 − 𝑋) is UI. For a given
𝜀 > 0, we can choose a large enough 𝑁𝜀 so that E |𝑋𝑛 − 𝑋 | < 𝜀 for all 𝑛 ≥ 𝑁𝜀.
Therefore, for all 𝑏 we have

sup
𝑛≥𝑁𝜀

E |𝑋𝑛 − 𝑋 |1{|𝑋𝑛−𝑋 |>𝑏} ≤ sup
𝑛≥𝑁𝜀

E |𝑋𝑛 − 𝑋 | < 𝜀.

However, since all 𝑋𝑛 and 𝑋 are integrable, the finite sequence 𝑋1 − 𝑋, 𝑋2 −
𝑋, . . . , 𝑋𝑁𝜀 − 𝑋 is uniformly integrable. Thus, there exists a large enough 𝑏𝜀 such
that sup𝑛≤𝑁𝜀 E |𝑋𝑛 − 𝑋 |1{|𝑋𝑛−𝑋 |>𝑏} < 𝜀 for all 𝑏 ≥ 𝑏𝜀. Combining all the results
thus far, we obtain sup𝑛 E |𝑋𝑛 − 𝑋 |1{|𝑋𝑛−𝑋 |>𝑏} < 𝜀 for all 𝑏 ≥ 𝑏𝜀.

Since (𝑋𝑛− 𝑋) is UI and 𝑋 is integrable (and hence UI), then the sequence (𝑋𝑛)
is also UI, because it is the sum of two UI sequences. □

Example 3.39 (Squeezing For Random Variables) Suppose that 𝑋𝑛 P→ 𝑋 and
that (𝑋𝑛) is “squeezed” between (𝑊𝑛) and (𝑌𝑛), in the sense that for all 𝑛:

𝑊𝑛 ≤ 𝑋𝑛 ≤ 𝑌𝑛.

If 𝑌𝑛 𝐿1→ 𝑌 and𝑊𝑛
𝐿1→ 𝑊 , then 𝑋𝑛 𝐿1→ 𝑋 .

To see this, define 𝑇𝑛 := 𝑋𝑛 − 𝑊𝑛 and 𝑉𝑛 := 𝑌𝑛 − 𝑊𝑛 ≥ 𝑇𝑛 ≥ 0. From the
𝐿1 convergence of (𝑌𝑛) and (𝑊𝑛), we have 𝑉𝑛 𝐿1→ 𝑉 := 𝑌 −𝑊 . By Theorem 3.38
we then know that (𝑉𝑛) is UI, and since |𝑇𝑛 | ≤ 𝑉𝑛 for all 𝑛, (𝑇𝑛) is also UI. Since
𝑋𝑛

P→ 𝑋 and 𝑊𝑛
P→ 𝑊 , we have that 𝑇𝑛 P→ 𝑇 := 𝑋 −𝑊 . From (𝑇𝑛) being UI,

another application of Theorem 3.38 allows us to conclude that 𝑇𝑛 𝐿1→ 𝑇 . In other
words, 𝑋𝑛 = 𝑇𝑛 +𝑊𝑛

𝐿1→ 𝑇 +𝑊 = 𝑋 , because both 𝑇𝑛 𝐿1→ 𝑇 and𝑊𝑛
𝐿1→ 𝑊 .

3.6 Relations Between Modes of Convergence
The next theorem shows how the different types of convergence are related to each
other. For example, in the diagram below, the notation 𝑞≥𝑝

⇒ means that 𝐿𝑞-norm
convergence implies 𝐿𝑝-norm convergence under the assumption that 𝑞 ≥ 𝑝 ≥ 1.
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Theorem 3.40: Modes of Convergence

The most general relationships among the various modes of convergence for
numerical random variables are shown below.

𝑋𝑛
cpl.→ 𝑋 ⇒ 𝑋𝑛

a.s.→ 𝑋

⇓
𝑋𝑛

P→ 𝑋 ⇒ 𝑋𝑛
d→ 𝑋

⇑
𝑋𝑛

𝐿𝑞→ 𝑋
𝑞≥𝑝
⇒ 𝑋𝑛

𝐿𝑝→ 𝑋

Proof.

1. We show that 𝑋𝑛 P→ 𝑋 ⇒ 𝑋𝑛
d→ 𝑋 by considering the cdfs 𝐹𝑋𝑛 and 𝐹𝑋 of 𝑋𝑛

and 𝑋 , respectively. We have:

𝐹𝑋𝑛 (𝑥) = P(𝑋𝑛 ≤ 𝑥) = P(𝑋𝑛 ≤ 𝑥, |𝑋𝑛 − 𝑋 | > 𝜀) + P(𝑋𝑛 ≤ 𝑥, |𝑋𝑛 − 𝑋 | ≤ 𝜀)
≤ P( |𝑋𝑛 − 𝑋 | > 𝜀) + P(𝑋𝑛 ≤ 𝑥, 𝑋 ≤ 𝑋𝑛 + 𝜀)
≤ P( |𝑋𝑛 − 𝑋 | > 𝜀) + P(𝑋 ≤ 𝑥 + 𝜀).

Now, in the arguments above we can switch the roles of 𝑋𝑛 and 𝑋 (there is a
symmetry) to deduce that: 𝐹𝑋 (𝑥) ≤ P( |𝑋−𝑋𝑛 | > 𝜀) +P(𝑋𝑛 ≤ 𝑥+𝜀). Therefore,
making the switch 𝑥 → 𝑥 − 𝜀 gives 𝐹𝑋 (𝑥 − 𝜀) ≤ P( |𝑋 − 𝑋𝑛 | > 𝜀) + 𝐹𝑋𝑛 (𝑥).
Putting it all together gives:

𝐹𝑋 (𝑥 − 𝜀) − P( |𝑋 − 𝑋𝑛 | > 𝜀) ≤ 𝐹𝑋𝑛 (𝑥) ≤ P( |𝑋𝑛 − 𝑋 | > 𝜀) + 𝐹𝑋 (𝑥 + 𝜀).

Taking 𝑛→ ∞ on both sides yields for any 𝜀 > 0:

𝐹𝑋 (𝑥 − 𝜀) ≤ lim
𝑛→∞

𝐹𝑋𝑛 (𝑥) ≤ 𝐹𝑋 (𝑥 + 𝜀).

Since 𝐹𝑋 is continuous at 𝑥 by assumption we can take 𝜀 ↓ 0 to conclude that
lim𝑛→∞ 𝐹𝑋𝑛 (𝑥) = 𝐹𝑋 (𝑥).

2. We show that 𝑋𝑛 𝐿𝑞→ 𝑋 ⇒ 𝑋𝑛
𝐿𝑝→ 𝑋 for 𝑞 ≥ 𝑝 ≥ 1. This is immediate from

the monotonicity property of the 𝐿𝑝 norm in Theorem 2.47, which shows that
∥𝑋𝑛 − 𝑋 ∥𝑝 ≤ ∥𝑋𝑛 − 𝑋 ∥𝑞 → 0, proving the statement of the theorem.

3. To show 𝑋𝑛
𝐿𝑝→ 𝑋 ⇒ 𝑋𝑛

P→ 𝑋 , we need only show that 𝑋𝑛 𝐿1→ 𝑋 ⇒ 𝑋𝑛
P→ 𝑋 ,

by the monotonicity property of the 𝐿𝑝 norm in Theorem 2.47. The result now
follows from Theorem 3.38. More directly, we can use Markov’s inequality (3.9)
and 𝑋𝑛 𝐿1→ 𝑋 , to conclude that for every 𝜀 > 0,

P( |𝑋𝑛 − 𝑋 | > 𝜀) ≤
E |𝑋𝑛 − 𝑋 |

𝜀
→ 0 as 𝑛→ ∞.
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4. Finally, 𝑋𝑛
cpl.→ 𝑋 ⇒ 𝑋𝑛

a.s.→ 𝑋 ⇒ 𝑋𝑛
P→ 𝑋 is proved in Examples 3.6 and 3.16.

□

Under certain conditions, the converse statements can be established as follows:

Theorem 3.41: Modes of Convergence under Additional Assumptions

Converse relationships among the various modes of convergence are:

𝑋𝑛
cpl.→ 𝑋

pairwise ind.
⇐ 𝑋𝑛

a.s.→ 𝑋

⇑subseq.

𝑋𝑛
P→ 𝑋

𝑋 const.⇐ 𝑋𝑛
d→ 𝑋

⇓(𝑋𝑛) is UI

𝑋𝑛
𝐿𝑞→ 𝑋

( |𝑋𝑛 |𝑞) is UI
⇐ 𝑋𝑛

𝐿1→ 𝑋

Proof.

1. We prove that 𝑋𝑛 d→ 𝑐 ⇒ 𝑋𝑛
P→ 𝑐 for some constant 𝑐. To this end, let

𝐹 (𝑥) :=

{
1, 𝑥 ≥ 𝑐,
0, 𝑥 < 𝑐

be the cdf of a random variable 𝑋 such that P(𝑋 = 𝑐) = 1. Then, 𝑋𝑛 d→ 𝑐 stands
for P(𝑋𝑛 ≤ 𝑥) =: 𝐹𝑛 (𝑥) → 𝐹 (𝑥) for all 𝑥 ≠ 𝑐. In other words,

lim 𝐹𝑛 (𝑥) =
{

1, 𝑥 > 𝑐,

0, 𝑥 < 𝑐,

and we can write:

P( |𝑋𝑛−𝑐 | > 𝜀) ≤ 1−P(𝑋𝑛 ≤ 𝑐+𝜀) +P(𝑋𝑛 < 𝑐−𝜀) → 1−1+0 = 0, 𝑛→ ∞,

which shows that 𝑋𝑛 P→ 𝑐 by definition.

2. Theorem 3.38 shows that if 𝑋𝑛 P→ 𝑋 and (𝑋𝑛) is UI, then 𝑋𝑛 𝐿1→ 𝑋 .

3. We show that 𝑋𝑛 𝐿1→ 𝑋 and ( |𝑋𝑛 |𝑞) being UI for 𝑞 ≥ 1 implies that 𝑋𝑛 𝐿𝑞→ 𝑋 .
Since 𝑋𝑛 𝐿1→ 𝑋 ⇒ 𝑋𝑛

P→ 𝑋 , it follows from Proposition 3.18 that |𝑋𝑚 −𝑋𝑛 | P→ 0
as𝑚, 𝑛→ ∞, and therefore𝑌𝑚,𝑛 := |𝑋𝑚 −𝑋𝑛 |𝑞 P→ 0. Since 𝑢 ↦→ |𝑢 |𝑞 is a convex
function, it holds that ( 1

2 |𝑢 | +
1
2 |𝑣 |)

𝑞 ≤ 1
2 |𝑢 |

𝑞 + 1
2 |𝑣 |

𝑞. Hence,

𝑌𝑚,𝑛 ≤ (|𝑋𝑚 | + |𝑋𝑛 |)𝑞 ≤ 2𝑞−1( |𝑋𝑚 |𝑞 + |𝑋𝑛 |𝑞).
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It follows that the collection {𝑌𝑚,𝑛} is UI, because ( |𝑋𝑚 |𝑞 + |𝑋𝑛 |𝑞) is the sum
of two UI sequences. Theorem 3.38 then implies that 𝑌𝑚,𝑛 = |𝑋𝑚 − 𝑋𝑛 |𝑞 𝐿1→ 0
or, equivalently, that (𝑋𝑛) is a Cauchy sequence in 𝐿𝑞. Therefore, 𝑋𝑛 𝐿𝑞→ 𝑋 by
Proposition 3.28.

4. Proposition 3.17 established that if 𝑋𝑛 P→ 𝑋 , then a subsequence 𝑋𝑛𝑘
a.s.→ 𝑋 .

5. Finally, we show that if 𝑋𝑛 a.s.→ 𝑋 and (𝑋𝑛) are pairwise independent, then
𝑋𝑛

cpl.→ 𝑋 . Since 𝑋𝑛 a.s.→ 𝑋 ⇒ 𝑋𝑛
P→ 𝑋 , Exercise 30 shows that under these

assumptions P(𝑋 = 𝑐) = 1 for some constant 𝑐. Thus, we can define the events

𝐻𝑘 := {|𝑋𝑘 − 𝑐 | > 𝜀}, 𝑘 = 1, 2, . . . ,

and we then need to prove that the pairwise independence of 𝐻1, 𝐻2, . . . and
P(∑𝑛 1𝐻𝑛 < ∞) = 1 implies that

∑
𝑘 P(𝐻𝑘 ) =: 𝑠 < ∞. To prove this, we

argue by contradiction. Suppose that 𝑠 = ∞ and 𝐻1, 𝐻2, . . . are pairwise in-
dependent, then the second part of the Borel–Cantelli Lemma 3.14 tells us
that P(∑𝑛 1𝐻𝑛 < ∞) = 0, which is in contradiction with P(∑𝑛 1𝐻𝑛 < ∞) = 1.
Therefore, 𝑠 < ∞, which by definition means that 𝑋𝑛

cpl.→ 𝑋 .

□

3.7 Law of Large Numbers and Central Limit The-
orem

Two main results in probability are the Law of Large Numbers and the Central
Limit Theorem. Both are limit theorems involving sums of independent random
variables. In particular, consider a sequence 𝑋1, 𝑋2, . . . of iid random variables
with finite expectation 𝜇 and finite variance 𝜎2. For each 𝑛 define

𝑋𝑛 := (𝑋1 + · · · + 𝑋𝑛)/𝑛.

What can we say about the (random) sequence of averages 𝑋1, 𝑋2, 𝑋3, . . .? By the
properties of the expectation and variance we have E 𝑋𝑛 = 𝜇 and Var 𝑋𝑛 = 𝜎2/𝑛.
Hence, as 𝑛 increases, the variance of the (random) average 𝑋𝑛 goes to 0. This
means that, by Definition 3.5, the average 𝑋𝑛 converges to 𝜇 in 𝐿2 norm as 𝑛→ ∞;
that is, 𝑋𝑛 𝐿2→ 𝜇.

In fact, to obtain convergence in probability the variance need not be finite — it
is sufficient to assume that 𝜇 := E𝑋 < ∞.



112 3.7. Law of Large Numbers and Central Limit Theorem

Theorem 3.42: Weak Law of Large Numbers

If 𝑋1, 𝑋2, . . . are iid with finite expectation 𝜇, then for all 𝜀 > 0

lim
𝑛→∞

P
(
|𝑋𝑛 − 𝜇 | > 𝜀

)
= 0.

In other words, 𝑋𝑛 P→ 𝜇.

The theorem has a natural generalization for random vectors. Namely, if 𝝁 :=
E𝑿 < ∞, then P

(
∥𝑿𝑛 − 𝝁∥ > 𝜀

)
→ 0, where ∥ · ∥ is the Euclidean norm. We give

a proof in the scalar case and leave the multivariate case for Exercise 37.

Proof. Let 𝑍𝑘 := 𝑋𝑘 − 𝜇 for all 𝑘 , so that E𝑍𝑘 = 0. We thus need to show that
𝑍𝑛

P→ 0. We use the properties of the characteristic function of 𝑍 ∼ 𝑍𝑘 denoted by
𝜓𝑍 . Due to the iid assumption, we have

(3.43) 𝜓
𝑍𝑛
(𝑟) := Eei 𝑟𝑍𝑛 = E

𝑛∏
𝑘=1

ei 𝑟𝑍𝑘/𝑛 =
𝑛∏
𝑖=1

𝜓𝑍 (𝑟/𝑛) = [𝜓𝑍 (𝑟/𝑛)]𝑛.

An application of Taylor’s theorem (see Proposition 2.61) in the neighborhood of
𝑟 = 0 yields

𝜓𝑍 (𝑟/𝑛) = 𝜓𝑍 (0) +
𝑟

𝑛
𝜓′
𝑍 (0) + 𝑜(1/𝑛).

Since 𝜓𝑍 (0) = 1 and 𝜓′
𝑍
(0) = iE𝑍 = 0, we have:

𝜓
𝑍𝑛
(𝑟) = [𝜓𝑍 (𝑟/𝑛)]𝑛 = [1 + 𝑜(1/𝑛)]𝑛 → 1, 𝑛→ ∞.

The characteristic function of a random variable that always equals 0 is 1. There-
fore, Theorem 3.24 implies that 𝑍𝑛 d→ 0. However, according to Theorem 3.41,
convergence in distribution to a constant implies convergence in probability. Hence,
𝑍𝑛

P→ 0. □

There is also a stronger version of the Law of Large Numbers, given in The-
orem 3.44. It is stated and proved here under the condition that E𝑋2 < ∞. We will
give a martingale-based proof in Section 5.5.2 that does away with this condition.
The mildest condition known today is that the variables 𝑋1, 𝑋2, . . . are pairwise
independent and identically distributed with E |𝑋𝑘 | < ∞. The corresponding proof,
however, is significantly more difficult; see Exercise 35.
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Theorem 3.44: Strong Law of Large Numbers

If 𝑋1, 𝑋2, . . . are iid with expectation 𝜇 and E𝑋2 < ∞, then for all 𝜀 > 0

lim
𝑚→∞

P
(

sup
𝑛≥𝑚

|𝑋𝑛 − 𝜇 | > 𝜀
)
= 0.

In other words, 𝑋𝑛 a.s.→ 𝜇.

Proof. Because 𝑋 can be written as the difference of its positive and negative part,
𝑋 = 𝑋+ − 𝑋−, we may assume without loss of generality that the {𝑋𝑛} are positive.
Next, from the sequence 𝑋1, 𝑋2, 𝑋3, . . . we can pick the subsequence 𝑋1, 𝑋4, 𝑋9,
𝑋16, . . . =: (𝑋𝑛2). From Chebyshev’s inequality (3.10) and the iid condition, we
have

∞∑︁
𝑛=1

P
(��𝑋𝑛2 − 𝜇

�� > 𝜀) ≤ Var 𝑋
𝜀2

∞∑︁
𝑛=1

1
𝑛2 < ∞.

Therefore, 𝑋𝑛2
cpl.→ 𝜇 and from Theorem 3.40 we conclude that 𝑋𝑛2

a.s.→ 𝜇.
For any arbitrary 𝑛, we can find a 𝑘 , say 𝑘 = ⌊

√
𝑛⌋, such that 𝑘2 ≤ 𝑛 ≤ (𝑘 + 1)2.

For such a 𝑘 and positive 𝑋1, 𝑋2, . . ., it holds that

𝑘2

(𝑘 + 1)2 𝑋 𝑘2 ≤ 𝑋𝑛 ≤ 𝑋 (𝑘+1)2
(𝑘 + 1)2

𝑘2 .

Since 𝑋 𝑘2 and 𝑋 (𝑘+1)2 converge almost surely to 𝜇 as 𝑘 (and hence 𝑛) goes to infinity,
we conclude that 𝑋𝑛 a.s.→ 𝜇. □

The Central Limit Theorem describes the approximate distribution of 𝑋𝑛.
Loosely, it states that the average of a large number of iid random variables ap-
proximately has a normal distribution. Specifically, the random variable 𝑋𝑛 has a
distribution that is approximately normal, with expectation 𝜇 and variance 𝜎2/𝑛.

Theorem 3.45: Central Limit Theorem

If 𝑋1, 𝑋2, . . . are iid with finite expectation 𝜇 and finite variance 𝜎2, then for
all 𝑥 ∈ R,

lim
𝑛→∞

P

(
𝑋𝑛 − 𝜇
𝜎/

√
𝑛

≤ 𝑥
)
= Φ(𝑥),

where Φ is the cdf of the standard normal distribution. In other words,√
𝑛(𝑋𝑛 − 𝜇)/𝜎 d→ N(0, 1).

Proof. Let 𝑍𝑘 := (𝑋𝑘 − 𝜇)/𝜎 for all 𝑘 , so that E𝑍𝑘 = 0 and E𝑍2
𝑘
= 1. We thus need

to show that
√
𝑛 𝑍𝑛

d→ N(0, 1). We again use the properties of the characteristic
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function. Let 𝜓𝑍 be the characteristic function of a generic 𝑍 ∼ 𝑍𝑘 . A similar
calculation to the one in (3.43) yields:

𝜓√
𝑛 𝑍𝑛

(𝑟) = Eei 𝑟
√
𝑛 𝑍𝑛 = [𝜓𝑍 (𝑟/

√
𝑛)]𝑛.

An application of Taylor’s theorem (see Proposition 2.61) in the neighborhood of
𝑟 = 0 yields

𝜓𝑍 (𝑟/
√
𝑛) = 1 + 𝑟

√
𝑛
𝜓′
𝑍 (0) +

𝑟2

2𝑛
𝜓′′
𝑍 (0) + 𝑜(𝑟2/𝑛).

Since 𝜓′
𝑍
(0) = E d

d𝑟 e
i 𝑟𝑍

��
𝑟=0 = i E𝑍 = 0 and 𝜓′′

𝑍
(0) = i2 E𝑍2 = −1, we have:

𝜓√
𝑛 𝑍𝑛

(𝑟) =
[
𝜓𝑍 (𝑟/

√
𝑛)

]𝑛
=

[
1 − 𝑟2

2𝑛
+ 𝑜(1/𝑛)

]𝑛
→ e−𝑟

2/2, 𝑛→ ∞.

From Example 3.23, we recognize e−𝑟2/2 as the characteristic function of the standard
normal distribution. Thus, from Theorem 3.24 we conclude that

√
𝑛 𝑍𝑛

d→ N(0, 1).
□

Example 3.46 (CLT and Sums of Random Variables) Figure 3.47 shows the
Central Limit Theorem in action. The left part shows the pdfs of 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛
for 𝑛 = 1, . . . , 4, where 𝑋1, . . . , 𝑋4 ∼iid U(0, 1). The right part shows the same for
the case where 𝑋1, . . . , 𝑋4 ∼iid Exp(1), so that 𝑆𝑛 ∼ Gamma(𝑛, 1). In both cases,
we clearly see convergence to a bell-shaped curve, characteristic of the normal
distribution.
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Figure 3.47: Illustration of the Central Limit Theorem for (left) the uniform distri-
bution and (right) the exponential distribution.
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Exercises
1. Let (𝑥𝑘 ) and (𝑦𝑘 ) be two sequences of real numbers such that lim𝑛→∞ 𝑥𝑛/𝑦𝑛 = 𝑙.
Prove the Stolz–Cesàro limit:

(3.48) lim
𝑛→∞

𝑥1 + · · · + 𝑥𝑛
𝑦1 + · · · + 𝑦𝑛

= 𝑙

under either one of the following conditions:

(a) lim𝑛→∞
∑𝑛
𝑘=1 𝑦𝑘 = ∞ and 𝑦𝑘 > 0 for all 𝑘 ≥ 𝑛1 and some integer 𝑛1;

(b) lim𝑛→∞
∑𝑛
𝑘=1 𝑥𝑘 = lim𝑛→∞

∑𝑛
𝑘=1 𝑦𝑘 = 0 and 𝑦𝑘 < 0 for all 𝑘 ≥ 𝑛1 and some

integer 𝑛1.

2. Suppose that 𝑥𝑛 → 𝑥 as 𝑛 → ∞, and that 𝑓 : R → R is a continuous function.
Further, let (𝑤𝑛) be positive weights such that

∑𝑛
𝑘=1 𝑤𝑘 → ∞.

(a) Use the Stolz–Cesàro limit (3.48) to prove the convergence of the Cesàro
average as 𝑛→ ∞:

(3.49)
𝑤1 𝑓 (𝑥1) + · · · + 𝑤𝑛 𝑓 (𝑥𝑛)

𝑤1 + · · · + 𝑤𝑛
→ 𝑓 (𝑥).

(b) Suppose that 0 < 𝑏1 ≤ 𝑏2 ≤ 𝑏3 ≤ · · · with 𝑏𝑛 ↑ ∞ and lim𝑛→∞
∑𝑛
𝑘=1 𝑎𝑘 = 𝑥 <

∞. Use the Cesàro average (3.49) to prove the Kronecker lemma

(3.50) lim
𝑛→∞

1
𝑏𝑛

𝑛∑︁
𝑘=1

𝑏𝑘𝑎𝑘 = 0.

3. Modify the proof of Proposition 3.2 to demonstrate that the results also hold for
any convergent sequence (𝑥𝑛) in a Banach space equipped with a norm ∥ · ∥.

4.∗ To prove Kolmogorov’s inequality (3.12) from first principles, we define for a
fixed 𝑎 > 0 and a fixed 𝑛 ≥ 1 the random variable

𝑁 := inf{𝑘 ≥ 1 : |𝑆𝑘 | > 𝑎}.

(a) Show that {𝑁 ≤ 𝑛} is the same event as {max𝑘≤𝑛 |𝑆𝑘 | > 𝑎}.
(b) For 𝑘 < 𝑛, the random variable 𝑆𝑘1{𝑁=𝑘} depends only on 𝑋1, . . . , 𝑋𝑘 , and the

random variable 𝑆𝑛 − 𝑆𝑘 depends only on 𝑋𝑘+1, . . . , 𝑋𝑛. Prove this.
(c) Show that E𝑆𝑘 (𝑆𝑛 − 𝑆𝑘 )1{𝑁=𝑘} = 0 for all 𝑘 ≤ 𝑛.
(d) Using 𝑆2

𝑛 ≥ 𝑆2
𝑘
+ 2𝑆𝑘 (𝑆𝑛 − 𝑆𝑘 ), show that

E[𝑆2
𝑛1{𝑁=𝑘}] ≥ 𝑎2 P(𝑁 = 𝑘).
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(e) Summing the previous inequality over 𝑘 ≤ 𝑛, finish the proof of Kolmogorov’s
inequality.

5. Let 𝑋1, 𝑋2, . . . be a sequence of random variables (not necessarily independent),
with

𝑋𝑛 :=

{
𝑛2 − 1 with probability 1/𝑛2

−1 with probability 1 − 1/𝑛2.

Let 𝑆𝑛 be the sum of the first 𝑛 of the {𝑋𝑖}.

(a) Show that E𝑋𝑛 = 0 for all 𝑛 = 1, 2, . . ..
(b) Prove that, almost surely,

∞∑︁
𝑛=1

1{𝑋𝑛>−1} < ∞.

(c) Prove that (𝑆𝑛/𝑛) converges to −1 almost surely.

6. Suppose 𝑋2, 𝑋3, . . . is a sequence of pairwise independent random variables with

P(𝑋𝑘 = ±𝑘) :=
1

2𝑘 ln 𝑘
, P(𝑋𝑘 = 0) := 1 − 1

𝑘 ln 𝑘
, 𝑘 ≥ 2.

Show that 𝑋𝑛 P→ 0, but not almost surely (that is, it is not true that 𝑋𝑛 a.s.→ 0).

7. Let 𝑋1, 𝑋2, . . . be independent random variables with means 𝜇1, 𝜇2, . . ..

(a) If
∑∞
𝑘=1 𝑘

−1 Var 𝑋𝑘 < ∞, show that 𝑍𝑛 := 1
𝑛

∑𝑛
𝑘=1(𝑋𝑘 − 𝜇𝑘 )

cpl.→ 0.
(b) If

∑∞
𝑘=1 𝑏

−2
𝑘

Var 𝑋𝑘 < ∞, for some 0 < 𝑏1 ≤ 𝑏2 ≤ · · · and 𝑏𝑛 ↑ ∞, show that
𝑆𝑛 :=

∑𝑛
𝑘=1(𝑋𝑘 − 𝜇𝑘 )/𝑏𝑘 converges almost surely. Hence, using the Kronecker

lemma (3.50), deduce that 𝑍𝑛 := 1
𝑏𝑛

∑𝑛
𝑘=1(𝑋𝑘 − 𝜇𝑘 )

a.s.→ 0.

8. Let 𝑀 be the space of all real-valued random variables that are defined on a
probability space (Ω,H , P), where random variables that are almost surely equal
are considered to be one and the same. On 𝑀 we can introduce a metric 𝑑, by
defining

𝑑 (𝑋,𝑌 ) := E( |𝑋 − 𝑌 | ∧ 1).

(a) Prove that 𝑑 is indeed a metric (see Definition B.1 for the properties of a metric).
(b) Show that a sequence (𝑋𝑛) converges to 𝑋 in probability if and only if the

sequence (𝑑 (𝑋𝑛, 𝑋)) converges to 0 as 𝑛→ ∞. Hint: show that for 𝜀 ∈ (0, 1),

𝜀1{𝑧>𝜀} ≤ 𝑧 ∧ 1 ≤ 𝜀 + 1{𝑧>𝜀}

for all 𝑧 ≥ 0.
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9. Let 𝑋, 𝑋1, 𝑋2, . . . be random variables that take values in a metric space 𝐸 with
metric 𝑟. We say that (𝑋𝑛) converges in probability to 𝑋 if for every 𝜀 > 0.

(3.51) limP(𝑟 (𝑋𝑛, 𝑋) > 𝜀) = 0.

On the space of random variables taking values in 𝐸 , define the metric

𝑑 (𝑋,𝑌 ) := E(𝑟 (𝑋,𝑌 ) ∧ 1),

where 𝑋 and 𝑌 are identified if P(𝑋 = 𝑌 ) = 1. Show that (3.51) holds if and only if
lim 𝑑 (𝑋𝑛, 𝑋) = 0.

10. Below 𝑋1, 𝑋2, . . . are assumed to be independent random variables. Use The-
orem 3.24 to prove the following results:

(a) If 𝑋𝑛 ∼ Bin(𝑛, 𝜆/𝑛), then, as 𝑛 → ∞, 𝑋𝑛 converges in distribution to a Poi(𝜆)
random variable.

(b)∗ If 𝑋𝑛 ∼ Geom(𝜆/𝑛), then, as 𝑛 → ∞, 1
𝑛
𝑋𝑛 converges in distribution to an

Exp(𝜆) random variable.
(c) If 𝑋𝑛 ∼ U(0, 1) and 𝑀𝑛 = max{𝑋1, 𝑋2, . . . , 𝑋𝑛}, then, as 𝑛 → ∞, 𝑛(1 − 𝑀𝑛)

converges in distribution to an Exp(1) random variable. Can you also find a
proof without using characteristic functions?

11.∗ Let 𝑋1, 𝑋2, . . . be an iid sequence of random variables. Define 𝑆0 := 0 and
𝑆𝑛 :=

∑𝑛
𝑖=1 𝑋𝑖 for 𝑛 = 1, 2, . . .. Suppose that each 𝑋𝑖 has a Cauchy distribution; i.e.,

it has probability density function 𝑓 (with respect to the Lebesgue measure) given
by

𝑓 (𝑥) :=
1
𝜋

1
1 + 𝑥2 , 𝑥 ∈ R.

(a) Using characteristic functions, show that (𝑆𝑛/𝑛) converges in distribution.
Identify the limiting distribution.

(b) Find the limiting distribution of 𝑀𝑛 := 𝜋max{𝑋1, . . . , 𝑋𝑛}/𝑛 as 𝑛→ ∞.

12. Let 𝑋1, 𝑋2, . . . be iid random variables with pdf

𝑓 (𝑥) :=
1 − cos(𝑥)

𝜋𝑥2 , 𝑥 ∈ R.

Define 𝑆𝑛 :=
∑𝑛
𝑖=1 𝑋𝑖 for 𝑛 = 1, 2, . . ..

(a) Show that the characteristic function of each 𝑋𝑖 is:

𝜓(𝑟) :=

{
1 − |𝑟 | if |𝑟 | ≤ 1,
0 if |𝑟 | > 1.
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(b) Prove that (𝑆𝑛/𝑛) converges in distribution to a Cauchy random variable as
𝑛→ ∞.

(c) Show that
lim
𝑛→∞

P(𝑆𝑛 ≤ 𝑛) =
3
4
.

13. Suppose that 𝑋1, 𝑋2, . . . are iid with E𝑋 𝑝 =: 𝜇𝑝 < ∞ for 𝑝 = 1, 2, 3, 4, and
characteristic function 𝜓𝑋 . Using the fact that 𝜓 (𝑘)

𝑋
(0) = i𝑘 E𝑋 𝑘 , find an explicit

formula for E(𝑋𝑛 − 𝜇1)4 in terms of 𝜇1, 𝜇2, 𝜇3, 𝜇4, and 𝑛.

14. Prove Proposition 3.30 using the Dominated Convergence Theorem 2.36.

15. Suppose that the random variables 𝑋,𝑌 , (𝑋𝑛, 𝑛 ∈ N), and (𝑌𝑛, 𝑛 ∈ N) satisfy
the following conditions:

C1. 𝑋𝑛 a.s.→ 𝑋 .
C2. |𝑋𝑛 | ≤ 𝑌𝑛.
C3. 𝑌𝑛 a.s.→ 𝑌 and E𝑌𝑛 → E𝑌 < ∞.

Using Fatou’s Lemma 2.35 on 𝑌𝑛 ± 𝑋𝑛, prove that E𝑋𝑛 → E𝑋 . We refer to this
result as the extended dominated convergence theorem.

16. Suppose that 𝑋𝑛 𝐿1→ 0 and𝑌𝑛 𝐿1→ 0, but that the sum 𝑋𝑛 +𝑌𝑛 =: 𝑍 is independent
of 𝑛. Show that 𝑍 must be almost surely 0.

17. Suppose 𝑋𝑛 a.s.→ 𝑋 , where ∥𝑋 ∥𝑝 < ∞ and ∥𝑋𝑛∥𝑝 < ∞ for all 𝑛 and 𝑝 ∈ [1,∞).
Prove that ∥𝑋𝑛 − 𝑋 ∥𝑝 → 0 if and only if ∥𝑋𝑛∥𝑝 → ∥𝑋 ∥𝑝.

18. Let 𝜉1, 𝜉2, . . . be a sequence of iid zero-mean random variables. Let (𝛼𝑛) be
a sequence of positive constants such that

∑∞
𝑛=1 𝛼𝑛 = 1. Define the sequence of

random variables 𝑋0, 𝑋1, 𝑋2, . . . via the recursion

𝑋0 := 0, 𝑋𝑛 := (1 − 𝛼𝑛)𝑋𝑛−1 + 𝛼𝑛 𝜉𝑛, 𝑛 = 1, 2, . . .

(a) Show that the sequence (𝜉𝑛) is uniformly integrable.
(b) Use Proposition 3.34 to show that (𝑋𝑛) is uniformly integrable. Hint: For a

convex function 𝑓 : R → R and 𝛼 ∈ (0, 1), 𝑓 (𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼 𝑓 (𝑥) + (1 −
𝛼) 𝑓 (𝑦).

19. Let (𝑋𝑛) be a sequence of uncorrelated random variables (i.e., Cov(𝑋𝑖, 𝑋 𝑗 ) = 0
for 𝑖 ≠ 𝑗) with expectation 0 and variance 1. Prove that for any bounded random
variable 𝑌 , we have limE[𝑋𝑛𝑌 ] = 0. Hint: With 𝛼𝑛 := E[𝑋𝑛𝑌 ], first consider

E

(
𝑌 −

𝑛∑︁
𝑘=1

𝛼𝑘𝑋𝑘

)2

.
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20. Show that a collection K of random variables 𝑋 is UI if

sup
𝑋∈K

P( |𝑋 | ≥ 𝑥) ≤ P( |𝑌 | ≥ 𝑥)

for all 𝑥 ∈ R, where 𝑌 is an integrable random variable (E|𝑌 | < ∞).

21.∗ Show that a collection of random variables K is UI, provided there exists a
function 𝑓 such that 𝑓 (𝑥)/𝑥 ↑ ∞ as 𝑥 ↑ ∞ and sup𝑋∈K E 𝑓 ( |𝑋 |) = 𝑐1 < ∞.

22. Suppose C1 and C2 are two uniformly integrable families of random variables.
Define C := {𝑋 + 𝑌 : 𝑋 ∈ C1, 𝑌 ∈ C2}. Show that C is uniformly integrable.

23. If 𝑋𝑛 d→ 𝑋 and (𝑋𝑚 − 𝑌𝑛) P→ 0 as 𝑚, 𝑛→ ∞, show that 𝑌𝑛 d→ 𝑋 .

24. If 𝑔 : R → R is a continuous function, show that:

(a) 𝑋𝑛 d→ 𝑋 ⇒ 𝑔(𝑋𝑛) d→ 𝑔(𝑋).
(b) 𝑋𝑛 P→ 𝑋 ⇒ 𝑔(𝑋𝑛) P→ 𝑔(𝑋).
(c) 𝑋𝑛 a.s.→ 𝑋 ⇒ 𝑔(𝑋𝑛) a.s.→ 𝑔(𝑋).

25. Suppose that (𝑋𝑛) is UI and 𝑋𝑛 d→ 𝑋 . Show that E|𝑋𝑛 | → E|𝑋 | < ∞.

26. Suppose 𝑋𝑛 d→ 𝑋 and sup𝑛 E|𝑋𝑛 |𝛼 < ∞ for 𝛼 > 1. Show that E|𝑋𝑛 |𝛽 → E|𝑋 |𝛽
for any 𝛽 ∈ [1, 𝛼).

27. Consider 𝑌𝑛 := 1 − cos(2𝜋𝑛𝑈), where 𝑈 ∼ U(0, 𝑥) for 𝑥 ∈ [0, 1]. Verify
Fatou’s Lemma 2.35 by showing that

E lim inf
𝑛

𝑌𝑛 = 0 ≤ 1 = lim inf
𝑛

E𝑌𝑛.

You may use Dirichlet’s approximation theorem, which states that for any real
numbers 𝑟 and 0 < 𝜀 ≤ 1, we can find integers 𝑛 and 𝑘 such that 𝑛 ∈ [1, 𝜀−1] and
|𝑛𝑟 − 𝑘 | < 𝜀.

28. Show that if sup𝑛 𝑋𝑛 ≤ 𝑌 and E𝑌 < ∞, then the reverse Fatou inequality holds:

lim sup
𝑛

E𝑋𝑛 ≤ E lim sup
𝑛

𝑋𝑛.

29. Consider the following two statements:

(a) 𝑥𝑟P( |𝑋 | > 𝑥) → 0 for 𝑟 > 0, as 𝑥 ↑ ∞.
(b) E|𝑋 |𝑠 < ∞ for 𝑠 > 0.

Show that (a) implies (b), provided that 𝑠 < 𝑟. Then, show that (b) implies (a),
provided that 𝑠 = 𝑟.
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30. If 𝑋𝑛 P→ 𝑋 and 𝑋1, 𝑋2, . . . are pairwise independent, show that 𝑋 is almost
surely constant.

31.∗ Let 𝑔(𝑥, 𝑦) be a continuous real-valued function of 𝑥 and 𝑦. Suppose that
𝑋𝑛

d→ 𝑋 and 𝑌𝑛 P→ 𝑐 for some finite constant 𝑐. Then,

𝑔(𝑋𝑛, 𝑌𝑛) d→ 𝑔(𝑋, 𝑐).

This is Slutsky’s theorem. We can prove it as follows. Let

𝜓𝑋𝑛,𝑌𝑛 (𝒓) := E ei(𝑟1𝑋𝑛+𝑟2𝑌𝑛) and 𝜓𝑋,𝑐 (𝒓) := ei𝑟2𝑐 Eei𝑟1𝑋 , ∀𝒓 ∈ R2

be the characteristic functions of 𝒁𝑛 := [𝑋𝑛, 𝑌𝑛]⊤ and 𝒁 := [𝑋, 𝑐]⊤. We wish to
show that 𝜓𝑋𝑛,𝑌𝑛 converges to 𝜓𝑋,𝑐 which, by Theorem 3.24, implies that 𝒁𝑛 d→ 𝒁.

(a) First, show that

(3.52) |𝜓𝑋𝑛,𝑌𝑛 (𝒓) − 𝜓𝑋,𝑐 (𝒓) | ≤ |𝜓𝑋𝑛 (𝑟1) − 𝜓𝑋 (𝑟1) | + E |ei𝑟2 (𝑌𝑛−𝑐) − 1|.

(b) Second, show that for any 𝜀 > 0,

E|ei𝑟2 (𝑌𝑛−𝑐) − 1| ≤ 2P[|𝑌𝑛 − 𝑐 | > 𝜀] + |𝑟2 |𝜀.

(c) Third, using (a) and (b) prove that 𝒁𝑛 d→ 𝒁 and consequently, that 𝑔(𝑋𝑛, 𝑌𝑛) d→
𝑔(𝑋, 𝑐).

32. Suppose that 𝑍𝑛 ≤ 𝑋𝑛 ≤ 𝑌𝑛 for all 𝑛, 𝑋𝑛 d→ 𝑋 , and 𝑌𝑛 𝐿1→ 𝑌, 𝑍𝑛
𝐿1→ 𝑍 . Show

that E|𝑋𝑛 | → E|𝑋 | < ∞.

33. Suppose that 𝑓 : [0, 1] → R is a continuous function on [0, 1] and define the
𝑛-degree polynomial function:

𝑓𝑛 (𝑡) :=
𝑛∑︁
𝑘=0

𝑓 (𝑘/𝑛)
(
𝑛

𝑘

)
𝑡𝑘 (1 − 𝑡)𝑛−𝑘 , 𝑡 ∈ [0, 1] .

(a) Show that 𝑓𝑛 (𝑡) = E 𝑓 (𝑌 𝑛), where𝑌 𝑛 is the average of 𝑛 iid Bernoulli variables
with success probability 𝑡.

(b) Use the Bolzano–Weierstrass theorem to prove that there exists a constant
𝑐 < ∞ such that sup𝑡∈[0,1] | 𝑓 (𝑡) | ≤ 𝑐.

(c) Show that 𝑓𝑛 (𝑡) → 𝑓 (𝑡) for every 𝑡 ∈ [0, 1].
(d) Use the Heine–Cantor theorem (see Example B.6) to prove that

sup
𝑡∈[0,1]

| 𝑓𝑛 (𝑡) − 𝑓 (𝑡) | → 0.

This proves the Weierstrass approximation theorem — any continuous function
on [0, 1] can be approximated arbitrarily well (in the supremum norm) by a
polynomial function.
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34. Suppose that 𝑋1, 𝑋2, . . . are iid with finite mean 𝜇 := E𝑋 < ∞, and let 𝑌𝑘 :=
𝑋𝑘1{|𝑋𝑘 |≤𝑘} be a truncated version of 𝑋𝑘 for all 𝑘 .

(a) Show that 𝑌 𝑛 − 𝑋𝑛 a.s.→ 0.
(b) Using the identity E𝑌2

𝑘
=

∫ ∞
0 d𝑡 2𝑡1{𝑡≤𝑘}P( |𝑋𝑘 | > 𝑡), show that

∞∑︁
𝑘=1

E𝑌2
𝑘

𝑘2 ≤ 4𝜇.

(c) Define the variable 𝑆𝑛 :=
∑𝑛
𝑘=1

𝑌𝑘−E𝑌𝑘
𝑘

. Use the result in Example 3.13 to prove
that 𝑆𝑛 converges with probability 1.

(d) Use the Kronecker lemma (3.50) to show that 𝑌 𝑛 − E𝑌 𝑛
a.s.→ 0. Hence, deduce

that 𝑋𝑛 a.s.→ 𝜇.

35. Let 𝑋1, 𝑋2, . . . be a sequence of positive pairwise independent and identically
distributed random variables with mean E𝑋 =: 𝜇 < ∞. The following exercises
culminate in a proof that 𝑋𝑛 a.s.→ 𝜇. We may drop the positivity requirement by
considering the positive and negative parts of the random variables separately.

(a) Let𝑌𝑛 := 𝑋𝑛 1{𝑋𝑛<𝑛} be a truncated version of each 𝑋𝑛. Show that 𝑋𝑛−𝑌 𝑛 a.s.→ 0.

(b) Use the fact that
∑𝑘
𝑗=1 1{ 𝑗−1≤𝑌𝑘< 𝑗} = 1 and {𝑋𝑘 < 𝑘} ⇒ {𝑋𝑘 = 𝑌𝑘 } to show

that

E𝑌2
𝑘 ≤

𝑘∑︁
𝑗=1

𝑗2P( 𝑗 − 1 ≤ 𝑋1 < 𝑗) and
∞∑︁
𝑗=1

𝑗 P( 𝑗 − 1 ≤ 𝑋1 < 𝑗) ≤ 1 + 𝜇.

(c) Let 𝛽𝑘 := ⌈𝛼𝑘⌉ for 𝛼 > 1 be a subsequence of 𝑘 = 1, 2, . . .. Show that∑︁
𝑛:𝛽𝑛≥𝑘

1
𝛽2
𝑛

≤ 𝑐𝛼

𝑘2 ,

where 𝑐𝛼 < ∞ is some constant depending on 𝛼.
(d) By changing the order of summation, deduce the following bounds:

∞∑︁
𝑛=1

1
𝛽2
𝑛

𝛽𝑛∑︁
𝑘=1

E𝑌2
𝑘 ≤ 𝑐𝛼

∑︁
𝑘≥1

E𝑌2
𝑘

𝑘2 ≤ 2𝑐𝛼 (1 + 𝜇).

(e) Using the previous result to deduce that 𝑌 𝛽𝑘 − E𝑌 𝛽𝑘
a.s.→ 0.

(f) Use the Cesàro average in (3.49) to show that E𝑌 𝛽𝑘 → 𝜇. Hence, deduce that
𝑌 𝛽𝑘

a.s.→ 𝜇.
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(g) Show that for 𝛽𝑘 ≤ 𝑛 ≤ 𝛽𝑘+1, we have:

𝑌 𝛽𝑘
𝛽𝑘

𝛽𝑘+1
≤ 𝑌 𝑛 ≤

𝛽𝑘+1
𝛽𝑘

𝑌 𝛽𝑘+1 .

Hence, using all of the previous results deduce that 𝑋𝑛 a.s.→ 𝜇.

36.∗ Suppose 𝑋1, 𝑋2, . . . are independent random variables with

P(𝑋𝑘 = 𝑘) = P(𝑋𝑘 = −𝑘) :=
1

2𝑘2 ,

P(𝑋𝑘 = 1) = P(𝑋𝑘 = −1) :=
1
2

(
1 − 1

𝑘2

)
.

Show that, whileE𝑋𝑛 = 0 andVar(
√
𝑛 𝑋𝑛) → 2, it is not true that

√
𝑛(𝑋𝑛−0)/

√
2 d→

N(0, 1).

37. Prove that if 𝑿1, 𝑿2, 𝑿3, . . . are iid 𝑑-dimensional random vectors with finite
expectation 𝝁 := E𝑿 < ∞ (or equivalently ∥𝝁∥ < ∞), then for all 𝜀 ∈ (0, 1) we
have P(∥𝑿𝑛 − 𝝁∥ > 𝜀) → 0 as 𝑛→ ∞.



CHAPTER 4

CONDITIONING

The concept of conditioning in the theory of probability and stochastic
processes aims to model in a precise way the (additional) information that
we have about a random experiment. In this chapter, we define the concepts of
conditional expectation and conditional probability and explore their properties.
A main application is in the study of Markov processes.

4.1 A Basic Example
Let (Ω,H , P) be a probability space for a random experiment. Think of the random
experiment of drawing a uniform point in Ω := (0, 1] and let H be the Borel 𝜎-
algebra on (0, 1] and P the (restriction of the) Lebesgue measure to (0, 1]. Let 𝑋
be a numerical random variable that describes a measurement on this experiment.
In particular, suppose that 𝑋 represents the squared value of the point drawn; so
𝑋 (𝜔) = 𝜔2, 𝜔 ∈ Ω.

What would be your “best guess” for 𝑋 if you had to guess a number between 0
and 1? It would have to be the expectation E𝑋 = ∫ 1

0 d𝑥 𝑥2 = 1/3.
Now, let F be the 𝜎-algebra generated by the sets (0, 1/3], (1/3, 2/3], (2/3, 1].

Suppose we have extra information that 𝜔 ∈ (2/3, 1]. What is now your best guess
for 𝑋? It would be 3 ∫ 1

2/3 d𝑥 𝑥2 = 57/81. Similarly, if we knew that 𝜔 ∈ (0, 1/3]
our guess would be 3/81, and knowing 𝜔 ∈ (1/3, 2/3] would give the guess 21/81.

In terms of 𝜎-algebras of information, our initial guess of 1/3 was based on the
trivial 𝜎-algebra {Ω, ∅}; i.e., no information where the outcome of the experiment
will lie other than that it lies somewhere in (0, 1]. However, we can “refine” our
initial guess of 1/3 based on the information in the 𝜎-algebra F , to give the set of
guesses {3/81, 21/81, 57/81}. Or, equivalently, we can define a function 𝑋 via:

𝑋 (𝜔) :=
3
81
1(0,1/3] (𝜔) +

21
81
1(1/3,2/3] (𝜔) +

57
81
1(2/3,1] (𝜔).
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Figure 4.1: The conditional expectation is a random variable.

This will be our definition for the conditional expectation of 𝑋 given F in this
case. Written EF 𝑋 . Note that 𝑋 is F -measurable.

4.2 Conditional Expectation
In elementary probability, we define the conditional expectation after defining con-
ditional probability. In advanced probability, it is more convenient to reverse the
order, as we often want to condition on 𝜎-algebras. In what follows, (Ω,H , P) is
a probability space, 𝑋 a random variable, and F a sub-𝜎-algebra of H ; that is a
𝜎-algebra whose every member (i.e., set) belongs to H as well. Recall the notation
𝑉 ∈ F+ to mean that 𝑉 ≥ 0 and is F -measurable.

Definition 4.2: Conditional Expectation

The conditional expectation of 𝑋 given F , denoted EF 𝑋 , is defined in two
steps:

1. For 𝑋 ≥ 0, EF 𝑋 is defined as any random variable 𝑋 with
(a) 𝑋 ∈ F+.
(b) E𝑉𝑋 = E𝑉𝑋 for every 𝑉 ∈ F+ (projection property).

2. For arbitrary 𝑋 , if E𝑋 exists (possibly ±∞), EF 𝑋 := EF 𝑋
+ − EF 𝑋

−.
Otherwise, the conditional expectation is left undefined.

Note that the conditional expectation is defined almost surely. That is, there are
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in general many functions 𝑋 that satisfy the conditions in the definition above. How-
ever, fortunately all these versions are equal to each other up to a set of probability
0. This is a consequence of the following theorem:

Theorem 4.3: Existence and Uniqueness of the Conditional Expectation

Let 𝑋 ≥ 0 be a random variable and let F be a sub-𝜎-algebra of H . Then,
EF 𝑋 exists and is unique up to equivalence.

Proof. This is an application of the Radon–Nikodym Theorem 1.59. For each event
𝐻 ∈ F , define

𝑃(𝐻) := P(𝐻) and 𝑄(𝐻) := E1𝐻𝑋 =

∫
𝐻

𝑋 dP.

Both 𝑃 and𝑄 define measures on (Ω, F ) and𝑄 ≪ 𝑃 (i.e., 𝑄 is absolutely continu-
ous with respect to 𝑃). Hence, by Theorem 1.59 there exists up to equivalence a
unique density 𝑋 = d𝑄/d𝑃 such that∫

𝑉 d𝑄 =

∫
𝑉𝑋 d𝑃

for every 𝑉 ∈ F+. That is, E𝑉𝑋 = E𝑉𝑋 . □

The properties of conditional expectation, such as monotonicity and linearity,
derive directly from the properties of the expectation in Theorem 2.34. To illustrate,
suppose that 𝑋 ≤ 𝑌 . Let 𝑋 and𝑌 be versions of the conditional expectation of 𝑋 and
𝑌 with respect to F . Take any 𝑉 ∈ F+. Then, E𝑉𝑋 ≤ E𝑉𝑌, by the monotonicity
of the (ordinary) expectation. Hence, by the definition of conditional expectation,
we have E𝑉𝑋 ≤ E𝑉𝑌 ; i.e., E𝑉 (𝑋 − 𝑌 ) ≤ 0 for all 𝑉 ∈ F+. This can only be true
if 𝑋 ≤ 𝑌 almost surely; that is, EF 𝑋 ≤ EF𝑌 . In a similar way, we can show that
the other properties of the ordinary expectation in Theorem 2.34 also hold for the
conditional expectation.

Two important new properties emerge as well, as given in the following theorem:

Theorem 4.4: Additional Properties of the Conditional Expectation

Let F and G be sub-𝜎-algebras of H . Let 𝑊 and 𝑋 be random variables
such that E𝑋 and E𝑊𝑋 exist. Then, the following hold:

1. (Taking out what is known): If𝑊 ∈ F , then EF𝑊𝑋 = 𝑊 EF 𝑋 .
2. (Repeated conditioning): If F ⊆ G, then

(4.5) EFEG𝑋 = EGEF 𝑋 = EF 𝑋.
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Proof. It suffices to consider only positive𝑊 and 𝑋 .

1. Suppose𝑊 ∈ F+. Let 𝑋 := EF 𝑋 . By definition, 𝑋 ∈ F+ and for all 𝑉 ∈ F+:

E𝑉 (𝑊𝑋) = E𝑉𝑊𝑋 = E𝑉 (𝑊𝑋).

In other words,𝑊𝑋 = 𝑊EF 𝑋 is a version of EF (𝑊𝑋).
2. Let F ⊆ G. Define𝑊 := EF 𝑋 . We have𝑊 ∈ F+ and hence also𝑊 ∈ G+. So by

part 1 (taking out what is known) we have EG𝑊 = 𝑊 ; that is, EGEF 𝑋 = EF 𝑋 .

To prove the first equality in (4.5), define 𝑌 := EG𝑋 and 𝑋 := EF 𝑋 ∈ F+. Take
any𝑉 ∈ F+ (and hence𝑉 ∈ G+ as well). By definition of 𝑋 , we haveE𝑉𝑋 = E𝑉𝑋
and by the definition of 𝑌 , we have E𝑉𝑌 = E𝑉𝑋 . Hence, E𝑉𝑋 = E𝑉𝑌 ; that is,
EFEG𝑋 = EF 𝑋 .

□

There is an amusing way to remember the repeated conditioning: The𝜎-algebras
F and G represent the information about the measurement on a random experiment
by a fool and a genius. The fool has no use for the genius’ information: EFEG𝑋 =

EF 𝑋 , and, sadly, the genius cannot further improve on the poor information of the
fool: EGEF 𝑋 = EF 𝑋 .

In many applications of conditioning, we wish to take the expectation of a
random variable 𝑋 conditional on one or more random variables or, in general, on
a stochastic process 𝑌 := {𝑌𝑡 , 𝑡 ∈ T}, in which case F = 𝜎𝑌 = 𝜎{𝑌𝑡 , 𝑡 ∈ T}. In this
case we often write

EF 𝑋 = E[𝑋 |𝑌𝑡 , 𝑡 ∈ T] = E[𝑋 |𝑌 ] .

When conditioning on a random variable 𝑌 , we can use the fact (see Theorem 2.65)
that any random variable in 𝜎𝑌 , in particular E[𝑋 |𝑌 ], must be a deterministic
measurable function of 𝑌 ; that is, E[𝑋 |𝑌 ] = ℎ(𝑌 ) for some measurable function
ℎ. This is in accordance with our use of conditional expectations in elementary
probability: We first determine ℎ(𝑦) := E[𝑋 |𝑌 = 𝑦] and then use E[𝑋 |𝑌 ] = ℎ(𝑌 )
in computations. Here are some examples.

Example 4.6 (Bernoulli Process) Let 𝑋1, 𝑋2, . . . be a Bernoulli process with
success parameter 𝑝. Let, 𝑆1 := 𝑋1 and 𝑆𝑛 := 𝑋1 + · · · + 𝑋𝑛 for 𝑛 = 2, 3 . . .. Given
the event {𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛}, the only values that 𝑆𝑛+1 can take are 𝑠𝑛 :=
𝑥1 + · · · + 𝑥𝑛 and 𝑠𝑛 + 1, with probability 1 − 𝑝 and 𝑝, respectively. Consequently,

(4.7) E[𝑆𝑛+1 | 𝑋1, . . . , 𝑋𝑛] = 𝑆𝑛 (1 − 𝑝) + (𝑆𝑛 + 1) 𝑝 = 𝑆𝑛 + 𝑝.

In a similar way, we can derive that

(4.8) E[𝑆𝑛+1 | 𝑆1, . . . , 𝑆𝑛] = 𝑆𝑛 + 𝑝.
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Intuitively, we know that (4.7) and (4.8) should be the same because the amount of
information that 𝑋1, . . . , 𝑋𝑛 and 𝑆1, . . . , 𝑆𝑛 carry is exactly the same. In particular, if
we know the outcomes of 𝑋1, . . . , 𝑋𝑛 then we can deduce the outcomes of 𝑆1, . . . , 𝑆𝑛
and vice versa.

Example 4.9 (Poisson Count of Exponential Interarrivals) Suppose that
𝐴1, 𝐴2, . . . is an iid sequence of Exp(𝜆) random variables. Think of 𝐴𝑖 as the time
interval between the arrival of the 𝑖th and (𝑖 − 1)st customer to a post office; thus,
𝑇1 := 𝐴1, 𝑇2 := 𝐴1 + 𝐴2, and so on, are the actual arrival times. Let 𝑁𝑡 be the
number of customers that arrive during the interval [0, 𝑡]. Note that 𝑁𝑡 is a random
variable with values in N. What is the distribution of 𝑁𝑡?

Let us solve this using generating functions and conditioning. First, consider
the probability generating function of 𝑁𝑡 ; in particular, let 𝑔(𝑡) := E 𝑠𝑁𝑡 . By condi-
tioning on 𝑇1, the time the first customer arrives, we have

𝑔(𝑡) = E 𝑠𝑁𝑡 = E E[𝑠𝑁𝑡 | 𝑇1]︸      ︷︷      ︸
ℎ(𝑇1)

=

∫ ∞

0
d𝑥 E[𝑠𝑁𝑡 | 𝑇1 = 𝑥]︸            ︷︷            ︸

ℎ(𝑥)

𝜆 e−𝜆𝑥 ,

where we have defined the function ℎ implicitly above. For 𝑥 > 𝑡, we have ℎ(𝑥) =
E[𝑠𝑁𝑡 | 𝑇1 = 𝑥] = 𝑠0 = 1, because in that case there are no arrivals in [0, 𝑡]. For
𝑥 ≤ 𝑡, the conditional distribution of 𝑁𝑡 given 𝑇1 = 𝑥 is the same as the distribution
of the number of arrivals in (𝑥, 𝑡] plus 1, which in turn has the same distribution as
𝑁𝑡−𝑥 + 1. Hence, in this case ℎ(𝑥) = 𝑠 E 𝑠𝑁𝑡−𝑥 = 𝑠 𝑔(𝑡 − 𝑥). Combining these cases,
we have

𝑔(𝑡) =
∫ ∞

𝑡

d𝑥 𝜆 e−𝜆𝑥 +
∫ 𝑡

0
d𝑥 𝑠 𝑔(𝑡 − 𝑥) 𝜆 e−𝜆𝑥

= e−𝜆𝑡 + e−𝜆𝑡
∫ 𝑡

0
d𝑦 𝑠 𝑔(𝑦) 𝜆 e𝜆𝑦 .

Differentiating 𝑔 with respect to 𝑡 thus gives

𝑔′(𝑡) = −𝜆 e−𝜆𝑡 − 𝜆 e−𝜆𝑡
∫ 𝑡

0
d𝑦 𝑠 𝑔(𝑦) 𝜆 e𝜆𝑦 + e−𝜆𝑡𝑔(𝑡) 𝜆 e𝜆𝑡𝑠

= −𝜆𝑔(𝑡) + 𝑠𝜆𝑔(𝑡) = −𝜆(1 − 𝑠) 𝑔(𝑡).

Since 𝑔(0) = 1, by definition, it follows that

𝑔(𝑡) = e−𝜆(1−𝑠)𝑡 .

In other words, 𝑁𝑡 ∼ Poi(𝜆𝑡).
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For random variables in an 𝐿2 Hilbert space (see Section 2.5), the conditional
expectation can be defined as a projection, in which case the “projection property”
in Definition 4.2 becomes evident. Recall that the inner product of 𝑋 and 𝑌 in 𝐿2

is ⟨𝑋,𝑌⟩ = E𝑋𝑌 , and hence ∥𝑋 − 𝑌 ∥2
2 = E(𝑋 − 𝑌 )2.

Theorem 4.10: Conditional Expectation in 𝐿2

For 𝑋 ∈ 𝐿2, the conditional expectation EF 𝑋 is the orthogonal projection of
𝑋 onto the subspace V of F -measurable random variables in 𝐿2.

Proof. Let 𝑋 be the orthogonal projection of 𝑋 onto the subspace V. That is,

𝑋 := argmin
𝑉∈V

∥𝑋 −𝑉 ∥2.

Then, 𝑋 can be written as 𝑋 = 𝑋 + 𝑋⊥, where 𝑋⊥ := 𝑋 − 𝑋 is perpendicular to any
𝑉 ∈ V, meaning that

⟨𝑉, 𝑋⊥⟩ = 0.

But this is just another way of saying that E𝑉 (𝑋 − 𝑋) = 0. This shows that the
projection property in Definition 4.2 holds. Since 𝑋 ∈ V, we have that 𝑋 =

EF 𝑋 . □

4.3 Conditional Probability and Distribution
A basic treatment of conditional probability starts with the following definition:

Definition 4.11: Conditional Probability for Events

Let 𝐴 and 𝐵 be two events with P(𝐵) > 0. The conditional probability that
𝐴 occurs given that 𝐵 occurs is denoted by

(4.12) P(𝐴 | 𝐵) :=
P(𝐴 ∩ 𝐵)
P(𝐵) .

Definition 4.11 is sufficient to derive a slew of useful results, summarized in
Theorem 4.13. The proofs are elementary; see Exercise 1.
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Theorem 4.13: Properties Involving Conditional Probabilities

Let (Ω,H , P) be a probability space and 𝐴, 𝐴1, 𝐴2, . . . , 𝐴𝑛, 𝐵1, 𝐵2, . . . events
such that P(𝐴1∩· · ·∩𝐴𝑛) > 0 and {𝐵𝑖} form a partition of Ω, with P(𝐵𝑖) > 0
for all 𝑖. Then, the following hold:

1. Law of total probability: P(𝐴) = ∑
𝑖 P(𝐴 | 𝐵𝑖) P(𝐵𝑖).

2. Bayes’ rule: P(𝐵 𝑗 | 𝐴) =
P(𝐵 𝑗 ) P(𝐴|𝐵 𝑗 )∑
𝑖 P(𝐵𝑖) P(𝐴|𝐵𝑖)

.

3. Chain or product rule:

P
(
∩𝑛𝑖=1 𝐴𝑖

)
= P(𝐴1) P(𝐴2 | 𝐴1) · · · P(𝐴𝑛 | 𝐴1 ∩ · · · ∩ 𝐴𝑛−1).

Example 4.14 (Memoryless Property) The single most important property of
the exponential distribution is that it is memoryless. By this we mean the following.
Let 𝑋 ∼ Exp(𝜆). Then, for any 𝑥, 𝑦 > 0,

P(𝑋 > 𝑥 + 𝑦 | 𝑋 > 𝑥) = P(𝑋 > 𝑥 + 𝑦, 𝑋 > 𝑥)
P(𝑋 > 𝑥) =

P(𝑋 > 𝑥 + 𝑦)
P(𝑋 > 𝑥)

=
e−𝜆(𝑥+𝑦)

e−𝜆𝑥
= e−𝜆𝑦 = P(𝑋 > 𝑦).

For example, if 𝑋 denotes the lifetime of a machine, then, knowing that the machine
at time 𝑥 is still operating, the remaining lifetime of the machine is the same as that
of a brand new machine.

We can view the exponential distribution as a continuous version of the geometric
distribution. The latter also has the memoryless property: in a coin flip experiment,
knowing that the first 𝑛 tosses yielded tails, does not give you extra information
about the remaining number of tosses that you have to throw until heads appears;
the coin does not have a “memory”.

How do we define the conditional probability of an event 𝐴 given the information
contained in a𝜎-algebra F , denoted P(𝐴 | F ) or PF (𝐴)? The answer is both simple
and complicated. It is simple, because we can define

(4.15) PF (𝐴) := EF1𝐴.

When F is the 𝜎-algebra generated by an event 𝐵, i.e., F = {𝐵, 𝐵𝑐,Ω, ∅}, and
0 < P(𝐵) < 1, then PF (𝐴) is the random variable

P(𝐴 | 𝐵)1𝐵 + P(𝐴 | 𝐵𝑐)1𝐵𝑐 ,

using Definition 4.11. This agrees with our intuitive notion of a conditional probab-
ility: if we know that the outcome lies in 𝐵, then our best guess for the probability
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that it (also) lies in 𝐴 is P(𝐴∩ 𝐵)/P(𝐵). If on the other hand, we know the outcome
does not lie in 𝐵, then our best guess is P(𝐴 ∩ 𝐵𝑐)/P(𝐵𝑐).

Things get complicated when conditioning on events that have 0 probability.
We can still use (4.15), as this is well-defined. However, the definition specifies the
conditional probability up to equivalence. Hence, in general there may be many
versions of PF (𝐴) = EF1𝐴 that are equal to each other with probability 1. Take
one such version and call it 𝑄(·, 𝐴). By definition, it is an F -measurable random
variable taking values in [0, 1]; denote its value at 𝜔 by 𝑄(𝜔, 𝐴). We can take
𝑄(·,Ω) = 1 and 𝑄(·, ∅) = 0. It appears that 𝑄 is a probability transition kernel
from (Ω, F ) into (Ω,H), as defined in Definition 1.63; in particular, a mapping
from Ω ×H to [0, 1] such that:

1. 𝑄(·, 𝐴) is F -measurable for every event 𝐴 ∈ H .
2. 𝑄(𝜔, ·) is a probability measure on (Ω,H) for every 𝜔 ∈ Ω.

Unfortunately, most versions 𝑄 are not transition kernels, due to the “up to equival-
ence” definition. Nevertheless, and fortunately, most measurable spaces (Ω,H) of
practical interest admit a version of the conditional probability that are regular, in
the sense that 𝑄 is a proper probability transition kernel. We will prove this after
we discuss the concepts of conditional distribution and standard measurable space.

Definition 4.16: Conditional Distribution

Let 𝑌 be a random variable on the probability space (Ω,H , P) taking values
in the measurable space (𝐸, E). Let F be a sub-𝜎-algebra of H . The
conditional distribution of 𝑌 given F is any probability transition kernel 𝐿
from (Ω, F ) to (𝐸, E) such that

PF (𝑌 ∈ 𝐵) = 𝐿 (·, 𝐵), 𝐵 ∈ E .

A measurable space (𝐸, E) is said to be standard, if there exists a Borel subset
𝑅 ⊆ [0, 1] and a bĳection 𝑔 : 𝐸 → 𝑅 with inverse ℎ : 𝑅 → 𝐸 such that 𝑔 is E/R-
measurable and ℎ is R/E-measurable, where R is the restriction of the Borel
𝜎-algebra to 𝑅.

Theorem 4.17: Existence of the Conditional Distribution

For every standard measurable space (𝐸, E) there exists a version of the
conditional distribution of 𝑌 given F .

Proof. Let 𝑔, ℎ, and 𝑅 be as defined above. If 𝑌 takes values in (𝐸, E), then the
random variable 𝑌 := 𝑔 ◦𝑌 is real-valued; it takes values in (𝑅,R). Suppose 𝑌 has
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conditional distribution 𝐿̃. Define,

𝐿 (𝜔, 𝐴) := 𝐿̃ (𝜔, ℎ−1𝐴), 𝜔 ∈ Ω, 𝐴 ∈ E .

Then, 𝐿 (·, 𝐴) is a positive random variable for every 𝐴 ∈ E; and for every 𝐻 ∈ F+,

E1𝐻1{𝑌∈𝐴} = E1𝐻1{𝑌∈ℎ−1𝐴} = E1𝐻 𝐿̃ (·, ℎ−1𝐴) = E1𝐻𝐿 (·, 𝐴).

Consequently, 𝐿 is a transition probability kernel from (Ω, F ) to (𝐸, E), with

𝐿 (·, 𝐴) = EF1{𝑌∈𝐴} = PF (𝑌 ∈ 𝐴), 𝐴 ∈ E .

In other words, 𝐿 is a conditional distribution of 𝑌 given F .
Thus, to prove the theorem, it remains to show the existence of 𝐿̃; that is, to

prove the theorem for the case 𝐸 := R and E := B. To this end, for each rational
number 𝑞 ∈ Q define

𝐶𝑞 := PF (𝑌 ≤ 𝑞)
and

Ω𝑞<𝑟 := {𝐶𝑞 < 𝐶𝑟}, 𝑞, 𝑟 ∈ Q, 𝑞 < 𝑟.

Obviously, Ω𝑞<𝑟 ∈ F and P(Ω𝑞<𝑟) = 1. Let Ω0 be the intersection of all the Ω𝑞<𝑟 .
Then, Ω0 ∈ F and P(Ω0) = 1. For a fixed 𝜔 ∈ Ω0 consider the function 𝐶𝑞 (𝜔) :
Q → [0, 1]. It is increasing and so for each 𝑡 ∈ R the limit 𝐶𝑡 (𝜔) exists, resulting
in a cdf 𝐶𝑡 (𝜔), 𝑡 ∈ R. Corresponding to this cdf is a unique probability measure
𝐿𝜔 on (R,B). Define

𝐿 (𝜔, 𝐵) := 1Ω0 (𝜔) 𝐿𝜔 (𝐵) + 1Ω\Ω0 (𝜔) 𝛿0(𝐵), 𝜔 ∈ Ω, 𝐵 ∈ B,

where 𝛿0 is the Dirac measure at 0. We show that 𝐿 is a probability transition kernel
from (Ω, F ) to (R,B). Obviously, for each 𝜔 ∈ Ω, 𝐿 (𝜔, ·) is a probability measure
on (R,B). To show that 𝐿 (·, 𝐵) is B/F -measurable, we invoke the Monotone Class
Theorem. Let

D := {𝐵 ∈ B : 𝐿 (·, 𝐵) ∈ F+}.
This is a monotone class (check this yourself). Hence, by the Monotone Class
Theorem 1.12, D = B if intervals of the form [−∞, 𝑡] belong to D. Let (𝑟𝑛) be a
sequence of rationals strictly decreasing to 𝑡. Then,

𝐿 (𝜔, [−∞, 𝑡]) = 1Ω0 (𝜔) lim
𝑛
𝐶𝑟𝑛 (𝜔) + 1Ω\Ω0 (𝜔) 𝛿0( [−∞, 𝑡]).

Both1Ω0 and1Ω\Ω0 are inF+, as are𝐶𝑟𝑛 ∈ F+ for all 𝑛, and hence also their monotone
limit 𝐶𝑡 . It follows that 𝐿 (·, [−∞, 𝑡]) is also in F+. Consequently, 𝐿 (·, 𝐵) ∈ F+ for
any 𝐵 ∈ B. Thus, 𝐿 is a genuine probability transition kernel.

The only thing that remains to be verified is that 𝐿 is the conditional distribution
of 𝑌 given F ; in other words, that

E1𝐻1{𝑌∈𝐵} = E1𝐻𝐿 (·, 𝐵), 𝐵 ∈ B, 𝐻 ∈ F+.
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By the same monotone class argument as above, it suffices to check this for 𝐵 :=
[−∞, 𝑡], in which case we have indeed

E1𝐻1{𝑌≤𝑡} = lim
𝑛

E1𝐻1{𝑌≤𝑟𝑛} = lim
𝑛

E1𝐻𝐶𝑟𝑛

= E1𝐻∩Ω0𝐿 (·, [−∞, 𝑡]) = E1𝐻𝐿 (·, [−∞, 𝑡]),

where the third equality follows from the facts that 1𝐻 = 1𝐻∩Ω0 with probability 1
and that 𝐶𝑟𝑛 (𝜔) converges pointwise to 𝐿 (𝜔, [−∞, 𝑡]) for 𝜔 ∈ Ω0. □

We are now in the position to prove that regular conditional probabilities exist.

Theorem 4.18: Regular Version of a Conditional Probability

Let (Ω,H) be a standard measurable space and F a sub-𝜎-algebra of H .
Then, there exists a regular version of the conditional probability PF .

Proof. Consider the random variable 𝑌 (𝜔) := 𝜔, 𝜔 ∈ Ω. Theorem 4.17, with
𝐸 := Ω and E := H , guarantees the existence of the conditional distribution of 𝑌
given F in the form of a probability transition kernel 𝐿. In particular,

PF (𝐵) = PF (𝑌 ∈ 𝐵) = 𝐿 (·, 𝐵), 𝐵 ∈ H .

This shows that 𝐿 is a regular version of the conditional probability. □

We now consider the situation where we have two random variables 𝑋 and
𝑌 , taking values in measurable spaces (𝐷,D) and (𝐸, E), respectively. We can
think of the random point (𝑋,𝑌 ) as the result of two random experiments: first
draw 𝑋 according to some distribution 𝜇 on (𝐷,D) and then, given 𝑋 = 𝑥, draw
𝑌 according to the distribution 𝐾 (𝑥, d𝑦) on (𝐸, E) for some probability transition
kernel 𝐾 . The joint distribution 𝜋 of 𝑋 and 𝑌 is then given (see (1.65)) by

𝜋(𝐴 × 𝐵) =
∫
𝐴

𝜇(d𝑥)𝐾 (𝑥, 𝐵), 𝐴 ∈ D, 𝐵 ∈ E

or in terms of integrals:

𝜋 𝑓 =

∫
𝜋(d𝑥, d𝑦) 𝑓 (𝑥, 𝑦) =

∫
𝐷

𝜇(d𝑥)
∫
𝐸

𝐾 (𝑥, d𝑦) 𝑓 (𝑥, 𝑦), 𝑓 ∈ D ⊗ E .

Recall from (1.66) that we can also write

(4.19) 𝜋(d𝑥, d𝑦) = 𝜇(d𝑥)𝐾 (𝑥, d𝑦).

Using 𝜇 and 𝐾 in this way is a convenient method for constructing joint distribu-
tions on product spaces. Moreover, the probability kernel (𝜔, 𝐵) ↦→ 𝐾 (𝑋 (𝜔), 𝐵) is
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the obvious candidate for the conditional distribution of 𝑌 given 𝑋 (more precisely,
given 𝜎𝑋), as confirmed by the following theorem:

Theorem 4.20: Conditional Distribution

If 𝜋 is of the form (4.19), then the kernel 𝐿 defined by

𝐿 (𝜔, 𝐵) := 𝐾 (𝑋 (𝜔), 𝐵), 𝜔 ∈ Ω, 𝐵 ∈ E

is a version of the conditional distribution of 𝑌 given 𝑋 .

Proof. Since 𝐾 is a kernel, 𝐿 is one as well, and hence 𝐿 has the two defining
properties of a kernel. Moreover, for every 𝐵 ∈ E the random variable 𝐿 (·, 𝐵) is a
D-measurable function of 𝑋 and hence it belongs to 𝜎𝑋 . It remains to verify that
for all 𝑔 ∈ D+ and 𝐵 ∈ E:

E 𝑔(𝑋)1{𝑌∈𝐵} = E 𝑔(𝑋)𝐿 (·, 𝐵).

But this follows from

E 𝑔(𝑋)1{𝑌∈𝐵} =
∫
𝐷

𝜇(d𝑥) 𝑔(𝑥)
∫
𝐵

𝐾 (𝑥, d𝑦)

=

∫
𝐷

𝜇(d𝑥)𝑔(𝑥)𝐾 (𝑥, 𝐵) = E 𝑔(𝑋)𝐾 (𝑋, 𝐵).

□

Conversely, if we are given a general joint probability measure 𝜋, we can
“disintegrate” it into the form (4.19) by finding the marginal distribution of 𝑋 and
the conditional distribution of 𝑌 given 𝑋 . Here is the precise statement:

Theorem 4.21: Disintegration

Let 𝜋 be a probability measure on the product space (𝐷 × 𝐸,D ⊗ E), where
(𝐸, E) is a standard measurable space. Then, there exists a probability
measure 𝜇 on (𝐷,D) and a transition kernel 𝐾 from (𝐷,D) to (𝐸, E) such
that

𝜋(d𝑥, d𝑦) = 𝜇(d𝑥) 𝐾 (𝑥, d𝑦), 𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸.

Proof. This is in essence a corollary of Theorem 4.17. On the probability space
(𝐷 × 𝐸,D ⊗ E, 𝜋) define random variables 𝑋 and 𝑌 via 𝑋 (𝜔) := 𝑥 and 𝑌 (𝜔) := 𝑦,
where 𝜔 = (𝑥, 𝑦). Let 𝜇 be the distribution of 𝑋; that is 𝜇(𝐴) = 𝜋(𝐴 × 𝐸),
𝐴 ∈ D. Since 𝑌 takes values in a standard measurable space, by Theorem 4.17
there exists a regular version 𝐿 of the conditional distribution of 𝑌 given 𝑋 . A
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random variable 𝑉 that takes values in the product space belongs to (𝜎𝑋)+ if and
only if 𝑉 ((𝑥, 𝑦)) = 𝑣(𝑥) for some function 𝑣 ∈ D+. It follows that 𝐿 (𝜔, 𝐵) must
be of the form 𝐾 (𝑋 (𝜔), 𝐵). Writing E for the integration under the probability
measure 𝜋, we have by the projection property in Definition 4.2:

𝜋(𝐴 × 𝐵) = E1𝐴 (𝑋) 1𝐵 (𝑌 ) = E1𝐴 (𝑋) 𝐾 (𝑋, 𝐵)︸                                          ︷︷                                          ︸
projection property

=

∫
𝐴

𝜇(d𝑥) 𝐾 (𝑥, 𝐵).

As this holds for any 𝐴 ∈ D and 𝐵 ∈ E, the theorem is proved. □

In Theorem 4.21, we viewed 𝜋 as the distribution of a random vector (𝑋,𝑌 ),
𝜇 as the distribution of 𝑋 , and 𝐾 (𝑋, ·) as the conditional distribution of 𝑌 given
𝑋 . When (𝑋,𝑌 ) has a density 𝑝 with respect to some product measure 𝜇0 ⊗ 𝜈0 on
(𝐷 × 𝐸,D ⊗ E), i.e., 𝜋(d𝑥, d𝑦) = 𝑝(𝑥, 𝑦) 𝜇0(d𝑥) 𝜈0(d𝑦), then the distribution 𝜇 of
𝑋 has density

𝑚(𝑥) :=
∫
𝐸

𝜈0(d𝑦) 𝑝(𝑥, 𝑦), 𝑥 ∈ 𝐷

with respect to 𝜇0. Moreover, 𝐾 is the kernel

𝐾 (𝑥, d𝑦) := 𝑘 (𝑥, 𝑦) 𝜈0(d𝑦)

with

(4.22) 𝑘 (𝑥, 𝑦) :=

{
𝑝(𝑥, 𝑦)/𝑚(𝑥) if 𝑚(𝑥) > 0,∫
𝜇0(d𝑥′) 𝑝(𝑥′, 𝑦) if 𝑚(𝑥) = 0.

The function 𝑦 ↦→ 𝑘 (𝑥, 𝑦) is called the conditional density (with respect to 𝜈0) of 𝑌
given 𝑋 = 𝑥. This includes the case where the distribution of (𝑋,𝑌 ) is discrete and
the case where it is absolutely continuous with respect to the Lebesgue measure.

Note that for 𝑥 where𝑚(𝑥) = 0, 𝑘 (𝑥, ·) is simply the marginal density of𝑌 . This
ensures that 𝑘 (𝑥, 𝑦) is defined for every (𝑥, 𝑦) ∈ 𝐷 × 𝐸 .

Example 4.23 (Density of a Product of Random Variables) Let (𝑋,𝑌 ) have a
density 𝑝 with respect to the Lebesgue measure on (R2,B2). What is the density
of the product 𝑍 := 𝑋𝑌?

Let 𝑘 (𝑥, ·) be the conditional density of 𝑌 given 𝑋 = 𝑥 and let 𝑚 be the density
of 𝑋 . The conditional density of 𝑍 at 𝑧, given 𝑋 = 𝑥, is the same as the conditional
density of 𝑥 𝑌 given 𝑋 = 𝑥, which is 𝑘 (𝑥, 𝑧

𝑥
)/|𝑥 |, using the transformation rule (The-

orem 2.38). The density of (𝑋, 𝑍) at (𝑥, 𝑧) is thus 𝑚(𝑥)𝑘 (𝑥, 𝑧
𝑥
)/|𝑥 | = 𝑝(𝑥, 𝑧

𝑥
)/|𝑥 |.

By integrating out 𝑥, we obtain that 𝑍 has density 𝑓 , given by

𝑓 (𝑧) :=
∫
R

d𝑥
𝑝(𝑥, 𝑧

𝑥
)

|𝑥 | .
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An alternative approach to derive this is to apply Theorem 2.38 to the transformation
𝑍1 = 𝑋1𝑋2 and 𝑍2 = 𝑋1, writing (𝑋1, 𝑋2) for (𝑋,𝑌 ). Let 𝑓𝑍1,𝑍2 be the density of
(𝑍1, 𝑍2). The matrix of partial derivatives for the mapping 𝒙 ↦→ 𝒛 is

𝜕𝒛

𝜕𝒙
=

[
𝑥2 𝑥1
1 0

]
,

which gives the Jacobian |𝑥1 | (= |𝑧2 |). It follows that for (𝑧1, 𝑧2) ∈ R2:

𝑓𝑍1,𝑍2 (𝑧1, 𝑧2) =
𝑝(𝑧2, 𝑧1/𝑧2)

|𝑧2 |
.

The probability density function of 𝑍1 is obtained by integrating out 𝑧2.

We finally mention the important notion of conditional independence.

Definition 4.24: Conditional Independence

Let F , F1, . . . , F𝑛 be sub-𝜎-algebras of H . The {F𝑖} are said to be condi-
tionally independent given F if

EF𝑉1 · · ·𝑉𝑛 = EF𝑉1 · · ·EF𝑉𝑛

for all positive random variables 𝑉1, . . . , 𝑉𝑛 in F1, . . . , F𝑛, respectively.

For example, if F = 𝜎𝑋 , F1 = 𝜎𝑌 , and F2 = 𝜎𝑍 , the meaning is that, as far
as predicting the value of any function of 𝑌 is concerned, the extra knowledge
provided by 𝑍 loses all its significance once the value of 𝑋 is known. The following
proposition puts this in mathematical terms:

Proposition 4.25: Conditional Independence

F1 and F2 are conditionally independent given F if and only if

EF∨F1𝑉2 = EF𝑉2 for all positive 𝑉2 ∈ F2.

Proof. By Definition 4.24, F1 and F2 are conditionally independent given F if and
only if for all positive 𝑉1 ∈ F1 and 𝑉2 ∈ F2,

EF [𝑉1𝑉2] = (EF𝑉1) (EF𝑉2) = EF [𝑉1EF𝑉2],

where the second equality follows from the “taking out what is known” property of
the conditional expectation (see Theorem 4.4). Using the definition of conditional
expectation (see Definition 4.2), the above equation holds if and only if

E[𝑉𝑉1𝑉2] = E[𝑉𝑉1EF𝑉2]
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for all positive 𝑉 ∈ F . Since random variables of the form 𝑉𝑉1 generate the 𝜎-
algebra F ∨ F1, this is equivalent to

EF∨F1𝑉2 = EF𝑉2.

□

4.4 Existence of Probability Spaces
Consider a random experiment modelled via a random variable 𝑋 that takes values
in some measurable space (𝐸, E) with distribution 𝜇. Given (𝐸, E) and 𝜇, does
there indeed exist a probability space (Ω,H , P) and random variable 𝑋 such that 𝑋
has distribution 𝜇? The answer is affirmative: take Ω := 𝐸 , P := 𝜇 and 𝑋 (𝜔) := 𝜔,
𝜔 ∈ Ω.

What if we specify the random experiment in terms of the following “chained”
simulation experiment?

1. Draw 𝑋0 from 𝜇, which is a probability measure on (𝐸0, E0).

2. Given 𝑋0 = 𝑥0, draw 𝑋1 from 𝐾1(𝑥0, ·), where 𝐾1 is a probability transition
kernel from (𝐸0, E0) to (𝐸1, E1).

3. Given (𝑋0, 𝑋1) = (𝑥0, 𝑥1), draw 𝑋2 from 𝐾2((𝑥0, 𝑥1), ·), where 𝐾2 is a prob-
ability transition kernel from (𝐸0 × 𝐸1, E0 ⊗ E1) to (𝐸2, E2).

4. And so on.

Does there exist a probability space (Ω,H , P) and a random process (𝑋0, 𝑋1, . . .)
that models this experiment? Motivated by our “trivial” construction at the begin-
ning of this section, we take Ω as the space of all possible sequences (𝑥0, 𝑥1, . . .),
with each 𝑥𝑛 in 𝐸𝑛. Thus, Ω := 𝐸1 × 𝐸2 × · · · . On Ω we put the product 𝜎-algebra,
so H := 𝐸0 ⊗ 𝐸1 ⊗ · · · . We define the random variables 𝑋0, 𝑋1, . . . as coordinate
functions: for 𝜔 := (𝑥0, 𝑥1, . . .), let 𝑋𝑛 (𝜔) := 𝑥𝑛, 𝑛 ∈ N.

The main thing now is to construct a probability measure P on (Ω,H) that
matches our experiment. Let

𝑿𝑛 := (𝑋0, 𝑋1, . . . , 𝑋𝑛)

be the random vector obtained after the 𝑛th step of the simulation experiment. The
probability measure P should be such that the distribution of 𝑿0 = 𝑋0 is 𝜇, and the
distribution of 𝑿𝑛 is

(4.26) 𝜋𝑛 (d𝒙𝑛) := 𝜇(d𝑥0)𝐾1(𝑥0, d𝑥1) · · ·𝐾𝑛 (𝒙𝑛−1, d𝑥𝑛).
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Let F𝑛 := 𝜎𝑿𝑛. Every set in F𝑛 is of the form

(4.27) {𝑿𝑛 ∈ 𝐵} = 𝐵 × 𝐸𝑛+1 × · · · , 𝐵 ∈ E0 ⊗ · · · ⊗ E𝑛.

Thus, P must be such that

(4.28) P(𝐵0 × · · · × 𝐵𝑛 × 𝐸𝑛+1 × · · · ) = 𝜋𝑛 (𝐵0 × · · · × 𝐵𝑛), 𝐵𝑖 ∈ E𝑖, 𝑖 = 0, . . . , 𝑛.

The following theorem shows that such a P exists and is unique:

Theorem 4.29: Ionescu–Tulcea’s Existence Theorem

There exists a unique probability measure P on (Ω,H) such that (4.28) holds.

Proof. The goal is to use Carathéordory’s extension Theorem 1.40. First, note
that the union A := ∪𝑛F𝑛 is an algebra that generates H . Consider the mapping
P0 : A → [0, 1] defined by (4.28). This mapping is finitely additive on A, as each
𝜋𝑛 is a probability measure. If we can show that this mapping P0 is countably
additive on A, then Carathéordory’s extension theorem applies to conclude that
P0 can be extended to a probability measure P on the 𝜎-algebra H . Since finite
additivity already holds, showing that P0 is countably additive is equivalent (see
Exercise 1.11) to showing that for every sequence of sets (𝐻𝑘 ) in A it holds that

(𝐻𝑘 ) ↓ ∅ implies P0(𝐻𝑘 ) ↓ 0.

Take 𝒙 := (𝑥0, 𝑥1, . . .) ∈ Ω and 𝐻 ∈ A. Note that each 𝐻 ∈ A is of the form (4.27)
for some 𝑛 ∈ N. For this 𝑛 and 𝐻, define

𝑄𝑚 (𝒙𝑚, 𝐻) := 1𝐻 (𝒙) = 1𝐵 (𝒙𝑛), 𝑚 ≥ 𝑛,

where 𝒙𝑚 and 𝒙𝑛 are the truncated versions of 𝒙. Then, define recursively for
𝑚 = 𝑛 − 1, . . . , 0:

(4.30) 𝑄𝑚 (𝒙𝑚, 𝐻) :=
∫
𝐸𝑚+1

𝐾𝑚+1(𝒙𝑚, d𝑥𝑚+1)𝑄𝑚+1(𝒙𝑚+1, 𝐻).

We can think of 𝑄𝑚 (𝒙𝑚, 𝐻) as the probability that the outcome 𝒙 ∈ Ω lies in 𝐻,
after specifying the first 𝑚 + 1 coordinates 𝑥0, . . . , 𝑥𝑚. In fact, (4.30) holds for
all 𝑚 ∈ N. This is by definition true for 𝑚 < 𝑛, but it holds also for 𝑚 ≥ 𝑛. For
example,

𝑄𝑛 (𝒙𝑛, 𝐻) =
∫
𝐸𝑛+1

𝐾𝑛+1(𝒙𝑛, d𝑥𝑛+1)𝑄𝑛+1(𝒙𝑛+1, 𝐻) =
∫
𝐸𝑛+1

𝐾𝑛+1(𝒙𝑛, d𝑥𝑛+1)1𝐻 (𝒙)

= 𝐾𝑛+1(𝒙𝑛, 𝐻) = 1𝐻 (𝒙).
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Moreover, by expanding all the recursive integrals, we have∫
𝐸0

𝜇0(d𝑥0)𝑄0(𝑥0, 𝐻) =
∫
𝐸0

∫
𝐸1

𝜇0(d𝑥0)𝐾1(𝑥0, d𝑥1)𝑄1(𝒙1, 𝐻) = · · ·

=

∫
𝐸0×···×𝐸𝑛

𝜇0(d𝑥0)𝐾1(𝑥0, d𝑥1)𝐾2(𝒙1, d𝑥2) · · ·𝐾𝑛 (𝒙𝑛−1, d𝑥𝑛)1𝐻 (𝒙) = P0(𝐻).

Let (𝐻𝑘 ) ↓ ∅. Then, (P0(𝐻𝑘 )) is a decreasing sequence, as P0 is a finitely
additive set function on A. Suppose that this last sequence does not converge to 0.
We want to show that this leads to a contradiction where ∩𝑘𝐻𝑘 is not empty.

The function 𝑓𝑘 : 𝑥0 ↦→ 𝑄0(𝑥0, 𝐻𝑘 ) is bounded by 1 and so, by the Bounded
Convergence Theorem 2.36,

limP0(𝐻𝑘 ) = lim
∫
𝐸0

𝜇0(d𝑥0)𝑄0(𝑥0, 𝐻𝑘 ) = lim 𝜇0 𝑓𝑘

= 𝜇0 lim 𝑓𝑘 =

∫
𝐸0

𝜇0(d𝑥0) lim𝑄0(𝑥0, 𝐻𝑘 ).

Since limP0(𝐻𝑘 ) > 0 by our assumption (which we hope to prove wrong), there
must exist 𝑥∗0 ∈ 𝐸0 such that lim𝑄0(𝑥∗0, 𝐻𝑘 ) > 0. Similarly, because

𝑄0(𝑥0, 𝐻𝑘 ) =
∫
𝐸1

𝐾1(𝑥0, d𝑥1)𝑄1(𝒙1, 𝐻𝑘 ),

we deduce, following the same line of reasoning, that there must be a 𝑥∗1 such that
lim𝑄1((𝑥∗0, 𝑥

∗
1), 𝐻𝑘 ) > 0, and by induction we conclude that there is a 𝒙∗ ∈ Ω such

that lim1𝐻𝑘 (𝒙∗) > 0; that is, lim1𝐻𝑘 (𝒙∗) = 1. That means that 𝒙∗ ∈ ∩𝑘𝐻𝑘 , which
contradicts the assumption that 𝐻𝑘 ↓ ∅. □

Theorem 4.29 pertains only to stochastic processes with countable index sets.
The next theorem extends this to arbitrary index sets. Below 𝐼, 𝐽, and 𝐾 are index
sets, with 𝐼 ⊆ 𝐽 ⊆ 𝐾 — mimicking their alphabetic order. Let proj𝐽𝐼 denote the
natural projection from 𝐸 𝐽 to 𝐸 𝐼 .

Theorem 4.31: Kolmogorov’s Extension Theorem

Let (𝐸, E) be a standard measurable space and 𝐾 an index set. For each finite
subset 𝐽 of 𝐾 , let 𝜋𝐽 be a probability measure on the product space (𝐸 𝐽 , E𝐽).
If the (𝜋𝐽) are consistent in the sense that

𝜋𝐼 = 𝜋𝐽 ◦ proj−1
𝐽𝐼 , 𝐼 ⊆ 𝐽, |𝐽 | < ∞,

then there exists a unique probability measure P on (Ω,H) and a stochastic
process 𝑋 taking values in (𝐸, E)𝐾 such that, with 𝑋𝐽 := (𝑋 𝑗 ) 𝑗∈𝐽 :

P(𝑋𝐽 ∈ 𝐴) = 𝜋𝐽 (𝐴), 𝐴 ∈ E𝐽 , |𝐽 | < ∞.
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Proof. As usual, we take Ω := 𝐸𝐾 , H := E𝐾 , and let 𝑋𝑡 by the 𝑡th coordinate
variable, i.e., 𝑋𝑡 (𝜔) := 𝜔(𝑡) for all 𝑡 and 𝜔. Obviously, H = 𝜎{𝑋𝑡 , 𝑡 ∈ 𝐾} and each
𝑋𝑡 is H/E-measurable.

Take any countably infinite set of indexes 𝐽 := {𝑡0, 𝑡1, . . .}. Let 𝐽𝑛 := {𝑡0, . . . , 𝑡𝑛}.
By the disintegration Theorem 4.21, 𝜋𝐽𝑛 is of the form (4.26), and so Theorem 4.29
guarantees the existence of a unique probability measure 𝑃𝐽 on (𝐸, E)𝐽 such that
for all 𝑛:

𝜋𝐽𝑛 = 𝑃𝐽 ◦ proj−1
𝐽𝐽𝑛
.

Moreover, for any countably infinite subset of indexes 𝐼 ⊆ 𝐽, it holds that 𝑃𝐼 =

𝑃𝐽 ◦ proj−1
𝐽𝐼 .

Now consider any 𝐻 ∈ E𝐾 . By Theorem 2.66, the indicator 1𝐻 must be a
function of 𝑋 𝑗 , 𝑗 ∈ 𝐽 for some countably infinite set of indexes 𝐽. In other words,
𝐻 = {𝑋𝐽 ∈ 𝐴} for some 𝐴 ∈ E𝐽 . Now define

P(𝐻) := 𝑃𝐽 (𝐴).

The consistency requirements ensure that this definition is without ambiguity. It
remains to show that P is a probability measure. Countable additivity is shown
as follows. Take (𝐻𝑛) disjoint with union 𝐻, with 𝐻𝑛 = {𝑋𝐽𝑛 ∈ 𝐴𝑛} for some 𝐽𝑛
and 𝐴𝑛 ∈ E𝐽𝑛 . We may assume that the 𝐽𝑛 are all the same, by replacing 𝐽𝑛 with
𝐽 := ∪𝑛𝐽𝑛. Then, 𝐻 = ∪𝑛𝐻𝑛 = ∪𝑛{𝑋𝐽 ∈ 𝐴𝑛} = {𝑋𝐽 ∈ 𝐴}, with 𝐴 := ∪𝑛𝐴𝑛, the
(𝐴𝑛) being disjoint. Hence, by countable additivity of 𝑃𝐽 :

P(𝐻) = 𝑃𝐽 (𝐴) =
∑︁
𝑛

𝑃𝐽 (𝐴𝑛) =
∑︁
𝑛

P(𝐻𝑛).

Since P(Ω) = 1, P is a probability measure. Uniqueness follows from the fact that
events {𝑋𝐽 ∈ 𝐴} form a p-system that generates H . □

Example 4.32 (Existence of Gaussian Processes) We show that for any given
covariance function 𝛾 on R+ × R+, there exists a probability space (Ω,H , P) and a
zero-mean Gaussian process 𝑋 := (𝑋𝑡 , 𝑡 ≥ 0) that has this covariance function.

Let Ω := RR+ be the set of all mappings from R+ to R, let H := BR+ be the Borel
𝜎-algebra thereon, and let (𝑋𝑡) be the coordinate mappings; that is, 𝑋𝑡 (𝜔) := 𝜔(𝑡)
for 𝜔 ∈ Ω. For each finite subset 𝐽 ⊂ R+, let 𝜋𝐽 be the |𝐽 |-dimensional Gaussian
distribution on R𝐽 with mean vector 0 and covariance matrix induced by 𝛾. To
apply Kolmogorov’s extension Theorem 4.31, we need to verify that the (𝜋𝐽) form
a consistent family, but this is immediate by the properties of the multidimensional
Gaussian distribution. Thus, there exists a probability measure P on (Ω,H) such
that 𝑋 is a zero-mean Gaussian process with covariance function 𝛾.

The above example holds in particular for the covariance function 𝛾𝑠,𝑡 = 𝑠 ∧ 𝑡
of the Wiener process. However, Kolmogorov’s extension theorem does not say
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anything about the path properties of the Gaussian process. Fortunately, path
continuity can be established without too much difficulty using the concept of
Hölder continuous modifications.

Definition 4.33: Hölder Continuity

A function 𝑓 : R+ → R is said to be Hölder continuous of order 𝛼 > 0 on
𝐵 ⊆ R+ if there is a constant 𝑘 such that

| 𝑓 (𝑡) − 𝑓 (𝑠) | ≤ 𝑘 |𝑡 − 𝑠 |𝛼, 𝑠, 𝑡, ∈ 𝐵.

A Hölder continuous function is evidently continuous. It is even uniformly
continuous; that is, for every 𝜀 > 0 there is a 𝛿 > 0 such that for every 𝑥 it holds
that if 𝑦 satisfies |𝑦 − 𝑥 | < 𝛿, then | 𝑓 (𝑦) − 𝑓 (𝑥) | < 𝜀.

A stochastic process 𝑋 := {𝑋𝑡 , 𝑡 ∈ T} is said to be a modification of 𝑋 :=
{𝑋𝑡 , 𝑡 ∈ T} if P(𝑋𝑡 = 𝑋𝑡) = 1 for all 𝑡 ∈ T. The following theorem gives sufficient
moment conditions for a stochastic process to have a modification that is Hölder
continuous:

Theorem 4.34: Hölder Continuous Modification

Let 𝑋 := (𝑋𝑡 , 𝑡 ∈ [0, 1]) be a stochastic process with state space R. If there
exist constants 𝑐, 𝑝, 𝑞 in (0,∞) such that

(4.35) E |𝑋𝑡 − 𝑋𝑠 |𝑝 ≤ 𝑐 |𝑡 − 𝑠 |1+𝑞, 𝑠, 𝑡 ∈ [0, 1],

then for every 𝛼 ∈ (0, 𝑞/𝑝) there is a modification 𝑋 of 𝑋 that is almost
surely Hölder continuous of order 𝛼 on [0, 1].

Proof. Let 𝐷 be the set of dyadic numbers:

(4.36) 𝐷 := ∪∞
𝑛=0𝐷𝑛 with 𝐷𝑛 :=

{
𝑘

2𝑛
, 𝑘 = 0, 1, . . . , 2𝑛

}
.

Define, for 𝛼 ∈ [0, 𝑞/𝑝], the random variable 𝐾 by

𝐾 := sup
𝑠,𝑡 ∈𝐷
𝑠≠𝑡

|𝑋𝑡 − 𝑋𝑠 |
|𝑡 − 𝑠 |𝛼 .

Then, by the definition of 𝐾 ,

(4.37) |𝑋𝑡 − 𝑋𝑠 | ≤ 𝐾 |𝑡 − 𝑠 |𝛼, 𝑠, 𝑡 ∈ 𝐷.
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In particular, if 𝐾 (𝜔) < ∞, then the path 𝑋 (𝜔) is Hölder continuous of order 𝛼
on 𝐷. We want to show that 𝐾 is almost surely finite. We do this by proving that
E𝐾 𝑝 < ∞. Consider

𝑀𝑛 := max
𝑠,𝑡 ∈𝐷𝑛
𝑡−𝑠=2−𝑛

|𝑋𝑡 − 𝑋𝑠 |.

Note that the maximum is taken here over 2𝑛 variables. We now want to bound
E𝑀 𝑝

𝑛 using the elementary bound for the expectation of the maximum of positive
random variables {𝑈𝑖},

Emax
𝑖
𝑈𝑖 ≤ E

∑︁
𝑖

𝑈𝑖 =
∑︁
𝑖

E𝑈𝑖,

and the assumption (4.35). This gives:

∥𝑀𝑛∥𝑝𝑝 = E𝑀 𝑝
𝑛 ≤ 2𝑛 𝑐 (2−𝑛)1+𝑞 = 𝑐 2−𝑛𝑞 .

Next, take 𝑠, 𝑡 ∈ 𝐷 with 𝑠 < 𝑡. Let 𝑠𝑛 := inf 𝐷𝑛 ∩ [𝑠, 1], so that 𝑠𝑛 ↓ 𝑠. Similarly,
let 𝑡𝑛 := sup𝐷𝑛 ∩ [0, 𝑡], so that 𝑡𝑛 ↑ 𝑡. Since 𝑠, 𝑡 ∈ 𝐷, we have 𝑠𝑛 = 𝑠 and 𝑡𝑛 = 𝑡 for
all 𝑛 large enough. Thus, for every 𝑚, we can write

𝑋𝑡 − 𝑋𝑠 =
∑︁
𝑛≥𝑚

(𝑋𝑡𝑛+1 − 𝑋𝑡𝑛) + 𝑋𝑡𝑚 − 𝑋𝑠𝑚 +
∑︁
𝑛≥𝑚

(𝑋𝑠𝑛 − 𝑋𝑠𝑛+1).

Now consider an arbitrary pair (𝑠, 𝑡) in 𝐷 with 0 < 𝑡 − 𝑠 ≤ 2−𝑚. Then, 𝑡𝑚 − 𝑠𝑚 is
either 0 or 2−𝑚. Hence,

|𝑋𝑡 − 𝑋𝑠 | ≤
∑︁
𝑛≥𝑚

𝑀𝑛+1 + 𝑀𝑚 +
∑︁
𝑛≥𝑚

𝑀𝑛+1 ≤ 2
∑︁
𝑛≥𝑚

𝑀𝑛.

By the definition of 𝐾 , we have

𝐾 = sup
𝑠,𝑡 ∈𝐷
𝑠≠𝑡

|𝑋𝑡 − 𝑋𝑠 |
|𝑡 − 𝑠 |𝛼 ≤ sup

𝑚

sup
𝑠,𝑡 ∈𝐷

2−𝑚−1< |𝑡−𝑠 |≤2−𝑚

|𝑋𝑡 − 𝑋𝑠 |
|𝑡 − 𝑠 |𝛼 ≤ sup

𝑚

(2𝑚+1)𝛼 2
∑︁
𝑛≥𝑚

𝑀𝑛

= sup
𝑚

21+𝛼
∑︁
𝑛≥𝑚

(2𝑚)𝛼 𝑀𝑛 ≤ 21+𝛼
∑︁
𝑛≥0

2𝑛𝛼 𝑀𝑛.

We now prove that E𝐾 𝑝 < ∞ for all 𝑝 ≥ 0. For 𝑝 ≥ 1, we have

(E𝐾 𝑝)1/𝑝 = ∥𝐾 ∥𝑝 ≤ 21+𝛼
∑︁
𝑛≥0

2𝑛𝛼∥𝑀𝑛∥𝑝 ≤ 21+𝛼
∑︁
𝑛≥0

2𝑛𝛼𝑐1/𝑝 2−𝑛𝑞/𝑝 < ∞,

since 𝛼 < 𝑞/𝑝 < 1. For 𝑝 < 1, we use the fact that (∑𝑛 𝛽𝑛)𝑝 ≤ ∑
𝑛 𝛽

𝑝
𝑛 for positive

{𝛽𝑛}. Hence,
E𝐾 𝑝 ≤ 2𝑝(1+𝛼)

∑︁
𝑛≥0

2𝑛𝛼𝑝𝑐2−𝑛𝑞 < ∞,
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since 𝛼 < 𝑞/𝑝.
Since E𝐾 𝑝 < ∞, the event Ω0 := {𝐾 < ∞} is almost sure. Outside Ω0 define

𝑋 (𝜔) := 0. For 𝜔 ∈ Ω0, 𝑋 (𝜔) satisfies (4.37) and is thus Hölder continuous of
order 𝛼 on 𝐷. For 𝜔 ∈ Ω0 put

𝑋𝑡 (𝜔) := lim
𝑠→𝑡
𝑠∈𝐷

𝑋𝑠 (𝜔), 𝑡 ∈ [0, 1] .

Then, for those 𝜔, the path 𝑋 (𝜔) is Hölder continuous of order 𝛼 on [0,1], and the
same holds trivially for 𝜔 ∉ Ω0. Finally, for each 𝑡 ∈ [0, 1] we have 𝑋𝑡 = 𝑋𝑡 almost
surely, so 𝑋 is the sought modification. □

Example 4.38 (Existence of the Wiener Process) For the Gaussian process
(𝑋𝑡 , 𝑡 ∈ [0, 1]) in Example 4.32 with 𝛾𝑠,𝑡 := 𝑠 ∧ 𝑡, the conditions of Theorem 4.34
apply with, for instance, 𝑝 := 4, 𝑞 := 1, and 𝑐 := 3. Thus, there exists a continuous
modification (𝑊𝑡 , 𝑡 ∈ [0, 1]) of (𝑋𝑡 , 𝑡 ∈ [0, 1]). Doing the same for (𝑋𝑡 , 𝑡 ∈ [𝑛, 𝑛 +
1]), we obtain a process𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) that is continuous and has the same finite-
dimensional distribution as 𝑋 . This is the Wiener process whose existence had to
be shown.

4.5 Markov Property
One of the most studied stochastic processes is the Markov process. In a way it
can be viewed as the probabilistic analogue of a difference or differential equation,
in the sense that, conditional on the past history, future increments depend only on
the present state. The concepts of conditional probability and expectation are thus
essential to the analysis.

Throughout this section,T is some subset ofR and 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) is a stochastic
process on some probability space (Ω,H , P), taking values in some measurable
space (𝐸, E).

Definition 4.39: Adaptedness

A stochastic process 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) taking values in some measurable space
(𝐸, E) is said to be adapted to a filtration F := (F𝑡 , 𝑡 ∈ T) if for all 𝑡 ∈ T, 𝑋𝑡
is F𝑡/E-measurable.

In what follows, we assume that the process 𝑋 is adapted to some filtration
F := (F𝑡 , 𝑡 ∈ T) — for example, the natural filtration of 𝑋 , in which case F𝑡 :=
𝜎(𝑋𝑢, 𝑢 ≤ 𝑡, 𝑢 ∈ T). Let G𝑡 := 𝜎(𝑋𝑢, 𝑢 ≥ 𝑡, 𝑢 ∈ T) be the future 𝜎-algebra of 𝑋
for time 𝑡.
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Definition 4.40: Markov Property

𝑋 is said to be Markovian relative to F if for every 𝑡, the past F𝑡 and the
future G𝑡 are conditionally independent, given the present state 𝑋𝑡 .

This means, by Proposition 4.25, that for every 𝑡 and positive 𝑉 ∈ G𝑡 , it holds
that E[𝑉 | F𝑡] = E[𝑉 | 𝑋𝑡], which in turn can be shown (e.g., see Çinlar (2011,
Section IX.1)) to be equivalent to the requirement that for every time 𝑢 > 𝑡 and
𝑓 ∈ E+,

(4.41) E[ 𝑓 (𝑋𝑢) | F𝑡] = E[ 𝑓 (𝑋𝑢) | 𝑋𝑡] .

Markov processes are often associated with a family of probability transition
kernels; see Definition 1.63 for the meaning of the latter.

Definition 4.42: Markovian Transition Function

A Markovian transition function on (𝐸, E) is a family (𝑃𝑡,𝑢, 𝑡, 𝑢 ∈ T, 𝑡 < 𝑢)
of probability transition kernels on (𝐸, E) that satisfy the Chapman–
Kolmogorov equations:

(4.43) 𝑃𝑠,𝑡𝑃𝑡,𝑢 = 𝑃𝑠,𝑢, 𝑠 < 𝑡 ≤ 𝑢.

A Markovian process 𝑋 is said to admit (𝑃𝑡,𝑢) as a transition function if

E[ 𝑓 (𝑋𝑢) | 𝑋𝑡] = (𝑃𝑡,𝑢 𝑓 ) (𝑋𝑡), 𝑡 < 𝑢, 𝑓 ∈ E+.

For 𝑓 = 1𝐴, 𝐴 ∈ E, this means

P(𝑋𝑢 ∈ 𝐴 | 𝑋𝑡 = 𝑥) = 𝑃𝑡,𝑢 (𝑥, 𝐴),

giving an intuitive meaning to the transition functions. Define 𝑃𝑡 := 𝑃0,𝑡 . If
𝑃𝑡,𝑢 = 𝑃𝑢−𝑡 for all 𝑡 ≤ 𝑢, the associated Markovian process 𝑋 is said to be time-
homogeneous and 𝑃𝑡 satisfies the semi-group property

𝑃𝑡+𝑠 = 𝑃𝑠𝑃𝑡 , 𝑠, 𝑡 ≥ 0.

Markov processes can be classified according to the nature (discrete or continuous)
of their state space 𝐸 and time set T. We call a Markovian process a Markov chain1

if T is discrete.
The Markov process par excellence in continuous time is the Lévy process; this

includes the Wiener, Poisson, compound Poisson, and pure-jump Lévy processes

1There is no consensus on this nomenclature. Some call a Markovian process a Markov chain
if 𝐸 is discrete.
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discussed in Section 2.8. If (𝑿𝑡 , 𝑡 ≥ 0) is a 𝑑-dimensional Lévy process, then,
writing 𝑿𝑢 = 𝑿𝑡 + (𝑿𝑢 − 𝑿𝑡) for 0 ≤ 𝑡 < 𝑢, we have that 𝑿𝑢 is the sum of 𝑿𝑡 ∈ F𝑡
and a random increment that is independent of F𝑡 . Hence, (4.41) holds, and by
combining this with the stationarity of increments, we conclude that a Lévy process
is a time-homogeneous Markov process. Indeed, if 𝑿𝑡 has a probability distribution
𝜋𝑡 on R𝑑 , then it admits the transition function

𝑃𝑡 (𝒙, 𝐴) = 𝜋𝑡 (𝐴 − 𝒙), 𝒙 ∈ R𝑑 , 𝐴 ∈ B𝑑 ,

where 𝐴 − 𝒙 denotes the set {𝒚 − 𝒙 : 𝒚 ∈ 𝐴}. For example, for a Poisson process
with rate 𝑐, we have

𝑃𝑡 (𝑥, 𝐴) =
∑︁
𝑦∈𝐴−𝑥

e−𝑐𝑡 (𝑐𝑡)𝑦
𝑦!

.

In Section 4.5.2 we generalize the pure-jump Lévy processes to pure-jump Markov
processes.

4.5.1 Time-homogeneous Markov Chains
We defined a Markov chain as a Markovian process with a discrete, i.e., countable,
time set. Without loss of generality, we may take T = N for the time set. The state
space 𝐸 may be countable or uncountable. Let 𝜇 be a probability distribution on
𝐸 and let 𝐾 be a probability transition kernel on (𝐸, E). Consider the following
random experiment:

1. Draw 𝑋0 from 𝜇.
2. Given 𝑋0 = 𝑥0, draw 𝑋1 from 𝐾 (𝑥0, ·).
3. Given (𝑋0, 𝑋1) = (𝑥0, 𝑥1), draw 𝑋2 from 𝐾 (𝑥1, ·).
4. Given (𝑋0, 𝑋1, 𝑋2) = (𝑥0, 𝑥1, 𝑥2), draw 𝑋3 from 𝐾 (𝑥2, ·).
5. And so on.

The first part of Section 4.4 proves the existence of the resulting stochastic process
(𝑋𝑛, 𝑛 ∈ N), which, by construction, is a Markov chain. Starting with an initial
distribution 𝜇, each 𝑋𝑛+1 is drawn from the conditional distribution of 𝑋𝑛+1 given
𝑋𝑛, which is 𝐾 (𝑋𝑛, ·). The Markov chain admits the Markovian transition function

𝑃𝑚,𝑛 = 𝐾
𝑛−𝑚, 𝑚 ≤ 𝑛, 𝑚, 𝑛 ∈ N,

where 𝐾𝑛−𝑚 is the (𝑛 − 𝑚)-fold product of 𝐾 . Thus, 𝑋 is time-homogeneous and

P(𝑋𝑛 ∈ 𝐴 | 𝑋0 = 𝑥) = 𝐾𝑛 (𝑥, 𝐴).

In typical applications, the conditional distribution of 𝑋𝑛+1 given 𝑋𝑛 can be
specified in two common ways as follows:
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• An explicit expression for 𝐾 (𝑥, d𝑦) is known, and it is easy to sample from
𝐾 (𝑥, ·) for all 𝑥 ∈ 𝐸 .

• The process (𝑋𝑛, 𝑛 ∈ N) satisfies a recurrence relation

(4.44) 𝑋𝑛+1 := 𝑔(𝑋𝑛,𝑈𝑛) , 𝑛 ∈ N,

where 𝑔 is an easily evaluated function and 𝑈𝑛 is an easily generated random
variable whose distribution may depend on 𝑋𝑛.

An important instance of the first case occurs when the Markov chain 𝑋 has a
discrete state space 𝐸 . Its distribution is then completely specified by the distribution
of 𝑋0 (the initial distribution) and the matrix of one-step transition probabilities
P = [𝑝𝑖 𝑗 ], where

𝑝𝑖 𝑗 := P(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖), 𝑖, 𝑗 ∈ 𝐸.
The conditional distribution of 𝑋𝑛+1 given 𝑋𝑛 = 𝑖 is therefore the discrete distribution
given by the 𝑖th row of P. This leads to the following algorithm:

Algorithm 4.45 (Simulating a Markov Chain on a Discrete State Space)

1. Draw 𝑋0 from the initial distribution. Set 𝑛 := 0.

2. Draw 𝑋𝑛+1 from the discrete distribution corresponding to the 𝑋𝑛th row of P.

3. Set 𝑛 := 𝑛 + 1 and go to Step 2.

Example 4.46 (A Markov Chain Maze) At time 𝑛 = 0 a robot is placed in
compartment 3 of the maze in Figure 4.47. At each time 𝑛 = 1, 2, . . . the robot
chooses one of the adjacent compartments with equal probability. Let 𝑋𝑛 be the
robot’s compartment at time 𝑛. Then, (𝑋𝑛) is a time-homogeneous Markov chain
with transition matrix P given in Figure 4.47.
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Figure 4.47: A maze and the corresponding transition matrix.
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The following MATLAB program implements Algorithm 4.45. The first 101
states of the process are given in Figure 4.48.

nmax = 101; a = 0.5; b = 1/3;
P = [0, 1, 0, 0, 0, 0, 0, 0; a, 0, a, 0, 0, 0, 0, 0;

0, b, 0, b, 0, 0, b, 0; 0, 0, a, 0, a, 0, 0, 0;
0, 0, 0, b, 0, b, b, 0; 0, 0, 0, 0, 1, 0, 0, 0;
0, 0, b, 0, b, 0, 0, b; 0, 0, 0, 0, 0, 0, 1, 0 ]

x = zeros(1,nmax); x(1)= 3;
for n=1:nmax-1

x(n+1) = min(find(cumsum(P(x(n),:))> rand));
end
hold on, plot(0:nmax-1,x,'.'), plot(0:nmax-1,x), hold off

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

Figure 4.48: Realization of the maze process.

Next is a typical example of a Markov chain that is specified by a recurrence
relation such as (4.44).

Example 4.49 (Random Walk) In a random walk process (𝑋𝑛, 𝑛 ∈ N), the
recurrence is

𝑋𝑛+1 := 𝑋𝑛 +𝑈𝑛 , 𝑛 ∈ N,

where 𝑋0 := 0 and𝑈0,𝑈1, . . . is a sequence of iid random variables. The following
MATLAB program simulates a random walk where the {𝑈𝑖} are standard normal. A
typical path is given in Figure 4.50.

n=200;
U = randn(n,1);
X = cumsum(U);
plot(1:n,X)
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Figure 4.50: Realization of a random walk with standard normal increments.

4.5.2 Markov Jump Processes
The easiest way to create a Markov jump process is to “subordinate” a Markov chain,
in the following sense. Let 𝑋 := (𝑋𝑛, 𝑛 ∈ N) be a Markov chain with probability
transition kernel𝐾 , as in Section 4.5.1, and let (𝑁𝑡 , 𝑡 ≥ 0) be a homogeneous Poisson
process with rate 0 < 𝑐 < ∞, independent of 𝑋 . Then, the process 𝑌 := (𝑌𝑡 , 𝑡 ≥ 0)
defined by

(4.51) 𝑌𝑡 := 𝑋𝑁𝑡 , 𝑡 ≥ 0,

is a pure-jump Markov process. We say that (𝑁𝑡) is subordinated to 𝑋 . Think of 𝑁𝑡
as the time on a clock which moves 1 unit forward at each jump time of the Poisson
process. The transition function of 𝑌 is given by

𝑃𝑡 (𝑥, 𝐴) =
∞∑︁
𝑛=0

e−𝑐𝑡 (𝑐𝑡)𝑛
𝑛!

𝐾𝑛 (𝑥, 𝐴),

where 𝐾𝑛 is the 𝑛th power of the Markov kernel 𝐾 .

Example 4.52 (Markov Jump Process) Let 𝑋 be a Markov chain with state
space {1, 2, 3} and one-step transition matrix P = [𝑝𝑖 𝑗 ], given by

P :=

1/3 1/3 1/3
1/2 1/2 0
3/4 0 1/4

 ,
and let (𝑁𝑡 , 𝑡 ≥ 0) be a Poisson process with rate 𝑐 := 1. Figure 4.53 shows a
typical realization of the Markov jump process (𝑌𝑡 , 𝑡 ≥ 0) := (𝑋𝑁𝑡 , 𝑡 ≥ 0).
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Figure 4.53: Realization of a Markov jump process.

When the process is in state 𝑖, the holding or sojourn time 𝑆𝑖 at 𝑖 is distributed
according to the random sum

∑𝑀
𝑖=1𝑉𝑖, where the {𝑉𝑖} are iid Exp(𝑐) distributed and

𝑀 ∼ Geom(1 − 𝑝𝑖𝑖), independently. Consequently, 𝑆𝑖 ∼ Exp(𝑐(1 − 𝑝𝑖𝑖)). When
the process leaves state 𝑖 at the end of the sojourn time 𝑆𝑖, it jumps to state 𝑗 ≠ 𝑖

with probability 𝑝𝑖 𝑗/(1 − 𝑝𝑖𝑖).

A time-homogeneous Markov jump process (𝑋𝑡 , 𝑡 ≥ 0) taking values in a count-
able set 𝐸 := {1, 2, . . .} is often defined via its 𝑄-matrix,

(4.54) Q :=
©­­­­«
−𝑞1 𝑞12 𝑞13 . . .

𝑞21 −𝑞2 𝑞23 . . .

𝑞31 𝑞32 −𝑞3 . . .
...

...
...

. . .

ª®®®®¬
,

where 𝑞𝑖 𝑗 is the transition rate from 𝑖 to 𝑗 :

𝑞𝑖 𝑗 := lim
ℎ↓0

P(𝑋𝑡+ℎ = 𝑗 | 𝑋𝑡 = 𝑖)
ℎ

, 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ 𝐸

and 𝑞𝑖 is the holding rate in 𝑖:

𝑞𝑖 := lim
ℎ↓0

1 − P(𝑋𝑡+ℎ = 𝑖 | 𝑋𝑡 = 𝑖)
ℎ

, 𝑖 ∈ 𝐸.

In Example 4.52, we have 𝑞𝑖 = 𝑐(1 − 𝑝𝑖𝑖) and 𝑞𝑖 𝑗 = 𝑞𝑖 𝑝𝑖 𝑗/(1 − 𝑝𝑖𝑖) = 𝑐𝑝𝑖 𝑗 .
Subordination, as in (4.51), provides the simplest way to create and study Markov

jump processes, but the most general way uses stochastic integrals with respect to
Poisson random measures, in a similar way as in the construction of pure-jump
Lévy processes in Section 2.8.4.

In contrast to the Lévy process construction, we will employ a homogeneous
Poisson random measure 𝑁 on R+ × R+, rather than a Poisson random measure on
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R+ × R𝑑 with mean measure Leb ⊗ 𝜈. In particular, the mean measure of 𝑁 is the
Lebesgue measure on R+×R+. We construct a 𝑑-dimensional Markov jump process
𝑿 := (𝑿𝑡 , 𝑡 ≥ 0) based on 𝑁 by imposing that any atom (𝑡, 𝑢) of 𝑁 creates a jump
of 𝑿 at time 𝑡 of magnitude 𝒋 (𝑿𝑡 , 𝑢), where 𝒋 : R𝑑 × R+ → R𝑑 is a jump function.
Specifically,

(4.55) 𝑿𝑡 :=
∫
[0,𝑡]×R+

𝑁 (d𝑠, d𝑢) 𝒋 (𝑿𝑠−, 𝑢), 𝑡 ≥ 0,

where 𝑿𝑠− := lim𝑟↑𝑠 𝑿𝑟 . This is a stochastic integral equation, which is pathwise
defined; i.e., for every realization of 𝑁 . Define the corresponding Lévy kernel by

(4.56) 𝐿 (𝒙, 𝐵) := Leb{𝑢 ≥ 0 : 𝒋 (𝒙, 𝑢) ≠ 0, 𝒙 + 𝒋 (𝒙, 𝑢) ∈ 𝐵}, 𝐵 ∈ B𝑑 .

The Lévy kernel is a transition kernel from (R𝑑 ,B𝑑) into (R𝑑 ,B𝑑). Think of it
as a generalization of a Lévy measure that depends on 𝒙. For a pure-jump Lévy
process 𝑿 with Lévy measure 𝜈, we have 𝒋 (𝒙, 𝑢) = 𝒋 (𝑢), and 𝐿 (𝒙, 𝐵) = 𝜈(𝐵 − 𝒙).
Heuristically, 𝐿 (𝒙, 𝐵) represents the rate at which 𝑿 jumps from 𝒙 into 𝐵, in
the sense that in a small time interval [𝑡, 𝑡 + 𝛿] this probability is approximately
𝛿 𝐿(𝒙, 𝐵). In particular, 𝑘 (𝒙) := 𝐿 (𝒙,R𝑑) is the rate at which 𝑿 leaves state 𝒙 —
also called the killing rate. This rate can be finite or infinite. If 𝑘 (𝒙) < ∞, then
we can write 𝐿 (𝒙, 𝐵) = 𝑘 (𝒙)𝐾 (𝒙, 𝐵), where 𝐾 is a probability transition kernel,
and 𝐾 (𝒙, 𝐵) denotes the probability that the killed particle at state 𝒙 is reborn in set
𝐵 ∈ B𝑑 .

The behavior of the process is similar to what was discussed in Example 4.52.
When at state 𝒙, the process stays there an exponential amount of time with parameter
𝑘 (𝒙) and then jumps to a new state 𝒚 with probability 𝐾 (𝒙, d𝒚), independent of the
sojourn time in 𝒙. If the process hits a state 𝒙 for which 𝑘 (𝒙) = 0, it will stay there
forever. Such a state is called an absorbing state.

Similar to the construction of pure-jump Lévy processes, some restriction must
be placed on the size of the jumps. The least restrictive condition is∫ ∞

0
d𝑢 (∥ 𝒋 (𝒙, 𝑢)∥ ∧ 1) < ∞ for all 𝒙.

4.5.3 Infinitesimal Generator
We conclude this chapter with the derivation of the infinitesimal generator of the
Markov jump process 𝑿 defined by (4.55). Suppose 𝑿 has transition function 𝑃𝑡 .
This can be viewed as an operator which acts on a function 𝑓 via

(𝑃𝑡 𝑓 ) (𝒙) = E𝒙 𝑓 (𝑿𝑡),

where E𝒙 denotes the expectation under which the process starts from state 𝒙. By
the right-continuity of the paths, as 𝑡 ↓ 0, 𝑃𝑡 tends to the identity operator 𝐼, with
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𝐼 𝑓 = 𝑓 . It makes sense to consider the operator 𝑃𝑡 − 𝐼 for small 𝑡, scaled by 𝑡. This
gives the infinitesimal generator (or simply generator) 𝐺 of the Markov process:

(𝐺 𝑓 ) (𝒙) := lim
𝑡↓0

(𝑃𝑡 𝑓 ) (𝒙) − 𝑓 (𝒙)
𝑡

= lim
𝑡↓0

E𝒙 𝑓 (𝑿𝑡) − 𝑓 (𝒙)
𝑡

,

provided the limit exists. The following specifies the generator:

Theorem 4.57: Generator of a Markov Jump Process

The infinitesimal generator of a Markov jump process with Lévy kernel 𝐿 is
given by

(𝐺 𝑓 ) (𝒙) =
∫
R𝑑
𝐿 (𝒙, d𝒚) [ 𝑓 (𝒚) − 𝑓 (𝒙)], 𝑓 ∈ B𝑑 (bounded).

The proof is given after we have introduced some new concepts and a useful
result on Poisson integration. Let 𝑁 be a Poisson random measure on R+ × 𝐸 with
mean measure 𝜇. The 𝜎-algebra on 𝐸 is E. We think of an atom (𝑡, 𝒙) of 𝑁 as
representing the time 𝑡 where a “mark” 𝒙 enters. Define F := (F𝑡 , 𝑡 ≥ 0) as the
“natural” filtration associated with 𝑁 , in the sense that

F𝑡 := 𝜎(𝑁 ((𝑎, 𝑏] × 𝐵) : 0 ≤ 𝑎 < 𝑏 ≤ 𝑡, 𝐵 ∈ E), 𝑡 ∈ R+.

Thus, F𝑡 contains all the information about 𝑁 up to time 𝑡, specifically with regard
to the positions of its atoms that arrive before or at time 𝑡.

Suppose 𝑌 := (𝑌 (𝑡), 𝑡 ≥ 0) is some real-valued stochastic process associated
with 𝑁 . The process 𝑌 is said to be F -predictable if for any interval (𝑎, 𝑏] the
information about (𝑌 (𝑡), 𝑡 ∈ (𝑎, 𝑏]) is already contained in F𝑎. More precisely, 𝑌
is F -predictable if it is F 𝑝/B-measurable2, where F 𝑝 is the 𝜎-algebra on R+ × Ω

defined by

(4.58) F 𝑝 := 𝜎((𝑎, 𝑏] × 𝐻 : 𝑎, 𝑏 ∈ R+, 𝐻 ∈ F𝑎) ∨ 𝜎({0} × 𝐻 : 𝐻 ∈ F0),

where ∨ signifies that we take the smallest 𝜎-algebra that contains the union — as
the union of two 𝜎-algebras is not usually a 𝜎-algebra itself.

The following proposition says that, under suitable predictability conditions, the
expected value of the stochastic integral

𝑁𝑅 :=
∫

𝑁 (d𝑡, d𝒛)𝑅(𝑡, 𝒛)

only depends on the mean measure of 𝑁:

2Recall that this is the same as saying that the process lies in F 𝑝 .
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Proposition 4.59: Poisson Integrals

Let𝑁 be a Poisson random measure onR+×𝐸 with mean measure 𝜇 satisfying
𝜇({0} × 𝐸) = 0. Let 𝑅 := (𝑅(𝑡, 𝒛), 𝑡 ≥ 0, 𝒛 ∈ 𝐸) be a positive stochastic
process in F 𝑝 ⊗ E. Then,

(4.60) E 𝑁 𝑅 = E 𝜇 𝑅.

Proof. The collection of all functions 𝑅 : Ω × R+ × 𝐸 → R+ that are (F 𝑝 ⊗ 𝐸)-
measurable and satisfy (4.60) forms a monotone class, and so by the Monotone
Class Theorem 1.33 it suffices to show (4.60) only for indicators of sets 𝐻 × 𝐴 × 𝐵,
where either

1. 𝐻 ∈ F𝑎, 𝐴 = (𝑎, 𝑏], and 𝐵 ∈ E, or

2. 𝐻 ∈ F0, 𝐴 = {0}, and 𝐵 ∈ E.

In the first case, we have

E 𝑁 𝑅 = E1𝐻 𝑁 (𝐴 × 𝐵) = E1𝐻 E𝑎𝑁 (𝐴 × 𝐵)
= E1𝐻 E 𝑁 (𝐴 × 𝐵) = E1𝐻 𝜇(𝐴 × 𝐵) = E 𝜇 𝑅,

where E𝑎 denotes the conditional expectation given F𝑎. In the second case, 𝜇(𝐴 ×
𝐸) = 0, which implies 𝑁 (𝐴 × 𝐸) = 0 almost surely, so that both sides of (4.60) are
0. □

Proof of Theorem 4.57. Let 𝑔 be a bounded positive Borel function on R𝑑 × R𝑑 .
Consider the stochastic process

𝑅(𝑠, 𝑢) := 1[0,𝑡] (𝑠) 𝑔
(
𝑿𝑠−, 𝑿𝑠− + 𝒋 (𝑿𝑠−, 𝑢)

)
1{ 𝒋 (𝑿𝑠− ,𝑢)≠0}, 𝑠, 𝑢 ≥ 0.

Verify that it satisfies the predictability conditions of Proposition 4.59. Thus, we
have

E𝒙
∑︁
𝑠≤𝑡

𝑔(𝑿𝑠−, 𝑿𝑠)1{𝑿𝑠−≠𝑿𝑠} = E𝒙

∫
R+×R+

𝑁 (d𝑠, d𝑢)𝑅(𝑠, 𝑢)

= E𝒙

∫
R+×R+

d𝑠 d𝑢 𝑅(𝑠, 𝑢).

Writing out 𝑅(𝑠, 𝑢) in the expected integral on the right-hand side gives

E𝒙

∫
[0,𝑡]

d𝑠
∫
R+

d𝑢 𝑔
(
𝑿𝑠−, 𝑿𝑠− + 𝒋 (𝑿𝑠−, 𝑢)

)
1{ 𝒋 (𝑿𝑠− ,𝑢)≠0}

= E𝒙

∫ 𝑡

0
d𝑠

∫
R𝑑
𝐿 (𝑿𝑠−, 𝒚)𝑔

(
𝑿𝑠−, 𝒚),
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where the equality follows from the definition of 𝐿 in (4.56). In the last integral we
may replace 𝑠− with 𝑠, as 𝑿𝑠 = 𝑿𝑠− for all but a countable set of times 𝑠. Now, as
a special case, take 𝑔(𝒙, 𝒚) := 𝑓 (𝒚) − 𝑓 (𝒙) and apply the previous to find

E𝒙 ( 𝑓 (𝑿𝑡) − 𝑓 (𝑿0)
)
= E𝒙

∑︁
𝑠≤𝑡

(
𝑓 (𝑿𝑠) − 𝑓 (𝑿𝑠−)

)
= E𝒙

∫ 𝑡

0
d𝑠

∫
R𝑑
𝐿 (𝑿𝑠, 𝒚)

(
𝑓 (𝒚) − 𝑓 (𝑿𝑠)

)
= E𝒙

∫ 𝑡

0
d𝑠 𝐺 𝑓 (𝑿𝑠) =

∫ 𝑡

0
d𝑠 E𝒙𝐺 𝑓 (𝑿𝑠),

assuming we can swap the integral and expectation (by Fubini). Consequently,

lim
𝑡↓0

(𝑃𝑡 𝑓 ) (𝒙) − 𝑓 (𝒙)
𝑡

=
d
d𝑡
𝑃𝑡 𝑓 (𝒙)

����
𝑡=0

= E𝒙𝐺 𝑓 (𝑿0) = 𝐺 𝑓 (𝒙).

□

Exercises
1. Prove Theorem 4.13, using the properties of the probability measure P and the
definition of a conditional probability given an event in (4.12).

2. Let 𝑋1, 𝑋2, . . . be a Bernoulli process with success parameter 𝑝. Let, 𝑆𝑛 :=
𝑋1 + · · · + 𝑋𝑛 and 𝑍𝑛 := 𝑆𝑛 − 𝑛𝑝, for 𝑛 = 1, 2, . . .. Find the following:

(a) E[𝑆𝑛+1 | 𝑋1, . . . , 𝑋𝑛]
(b) E[𝑆𝑛+1 | 𝑆1, . . . , 𝑆𝑛]
(c) E[𝑍𝑛+1 | 𝑋1, . . . , 𝑋𝑛]
(d) E[𝑍𝑛+1 | 𝑍1, . . . , 𝑍𝑛]

3. Let 𝑋 be a positive random variable and 𝑌 a random variable that takes values
in a countable set 𝐷. Show that E𝜎𝑌𝑋 = ℎ(𝑌 ), where ℎ is defined by

ℎ(𝑦) := E[𝑋 |𝑌 = 𝑦] =
∫ ∞

0
d𝑥 P(𝑋 > 𝑥 |𝑌 = 𝑦), 𝑦 ∈ 𝐷.

4.∗ If 𝑋 ∼ Poi(𝜆) and𝑌 ∼ Poi(𝜇) are independent, show that, conditional on 𝑋+𝑌 =

𝑧, the distribution of 𝑋 is Bin(𝑧, 𝜆/(𝜇 + 𝜆)).

5. Suppose that (𝑋,𝑌 ) has a density 𝑓𝑋,𝑌 with respect to the Lebesgue measure
on (R2,B2). The (marginal) densities of 𝑋 and 𝑌 with respect to the Lebesgue
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measure of (R,B) are denoted by 𝑓𝑋 and 𝑓𝑌 , respectively. Show that 𝑍 = 𝑋 +𝑌 has
density 𝑓𝑍 given by

(4.61) 𝑓𝑍 (𝑧) :=
∫
R

d𝑥 𝑘 (𝑥, 𝑧 − 𝑥) 𝑓𝑋 (𝑥), 𝑧 ∈ R,

where 𝑘 (𝑥, ·) is the conditional density of 𝑌 given 𝑋 = 𝑥. When 𝑋 and 𝑌 are
positive and independent, show that

𝑓𝑍 (𝑧) :=
∫ 𝑧

0
d𝑥 𝑓𝑌 (𝑧 − 𝑥) 𝑓𝑋 (𝑥), 𝑧 ∈ R.

6. Let (𝑋1, 𝑋2) have density 𝑓𝑿 with respect to the Lebesgue measure on (R2,B2).
Using conditioning and/or transformation arguments, express the pdf of 𝑋1/𝑋2 in
terms of 𝑓𝑿 .

7.∗ Let 𝑋1, 𝑋2, . . . be an iid sequence of random variables. Define 𝑆0 := 0 and
𝑆𝑛 :=

∑𝑛
𝑖=1 𝑋𝑖 for 𝑛 = 1, 2, . . .. Suppose that each 𝑋𝑖 has a Ber(𝑝) distribution. For

𝑘 ∈ N, let
𝑁𝑘 := inf{𝑛 : 𝑆𝑛 = 𝑘}

be the first time that the process {𝑆𝑛, 𝑛 ∈ N} hits level 𝑘 . By conditioning on 𝑆 𝑗−1,
derive P(𝑁𝑘 = 𝑗), 𝑗 = 𝑘, 𝑘 + 1, . . ..

8. Let 𝑋1, 𝑋2, . . . be an iid sequence of random variables. Define 𝑆0 := 0 and
𝑆𝑛 :=

∑𝑛
𝑖=1 𝑋𝑖 for 𝑛 = 1, 2, . . .. Suppose that each 𝑋𝑖 takes the value 1 or −1,

with probability 𝑝 and 𝑞 = 1 − 𝑝, respectively. Let 𝑁 := inf{𝑛 : 𝑆𝑛 = 1}. By
conditioning on 𝑋1, determine the probability generating function 𝑧 ↦→ E𝑧𝑁 of
𝑁 . From this, find P(𝑁 = 𝑛), 𝑛 ∈ N. Hint: you may use Newton’s formula:
(1 + 𝑡)𝛼 =

∑∞
𝑖=0

(𝛼
𝑖

)
𝑡𝑖, where 𝛼 ∈ R and

(𝛼
𝑖

)
is the generalized binomial coefficient;

i.e.,
(𝛼
𝑖

)
:= 𝛼(𝛼 − 1) · · · (𝛼 − 𝑖 + 1)/𝑖! for 𝑖 = 1, 2, . . . and

(𝛼
0
)

:= 1.

9. Let 𝑌 and 𝑍 be independent, with 𝑌 ∼ Gamma(𝑎, 𝑐) and 𝑍 ∼ Gamma(𝑏, 𝑐).
Define 𝑋 := 𝑌+𝑍 . Find the kernel𝐾 such that the conditional distribution of𝑌 given
𝑋 is 𝐾 (𝑋, ·). For the case where 𝑎 = 𝑏 = 1, show that 𝐾 (𝑥, d𝑦) = 1

𝑥
d𝑦, 𝑦 ∈ (0, 𝑥).

10. Let 𝑋 ∼ Gamma(𝑛, 𝑝/(1 − 𝑝)) for some 𝑝 ∈ (0, 1) and integer 𝑛. Suppose
that, conditionally on 𝑋 = 𝑥, the random variable 𝑍 has a Poi(𝑥) distribution. What
is the distribution of 𝑍? Hint: use the MGF Tables 2.4 and 2.5 and the repeated
conditioning property of conditional expectations.

11.∗ Using MGFs and repeated conditioning, show that 𝑍 := (𝑋1+𝑋2𝑋3)/
√︃

1 + 𝑋2
3 ,

where 𝑋1, 𝑋2, 𝑋3 are iid N(0, 1) distributed, has a standard normal distribution.

12. Let 𝑍 := 𝑋/𝑌 , where 𝑋 ∼ U[−1
2 ,

1
2 ] and 𝑌 ∼ U[0, 1] independently. What is

the distribution of 𝑍 conditional on 𝑋2 + 𝑌2 ≤ 1?
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13. Let 𝑍 := 𝑋/(𝑋 +𝑌 ), where 𝑋 ∼ Beta(𝛼, 1) and 𝑌 ∼ Beta(𝛽, 1) independently.
What is the conditional distribution of 𝑍 given 𝑋 + 𝑌 ≤ 1?

14. Let 𝑈1, . . . ,𝑈𝑛 ∼iid U[0, 1]. Sorting these in ascending order, gives the order
statistics𝑈(1) < · · · < 𝑈(𝑛) . Show that𝑈(𝑘) ∼ Beta(𝑘, 𝑛 − 𝑘 + 1).

15. Suppose that 𝑈1,𝑈2, . . . ∼iid U[0, 1] and 𝑁 ∼ Poi(𝜆), independently. Denote
the order statistics of 𝑈1, . . . ,𝑈𝑁 as 𝑈(1) < 𝑈(2) < · · · < 𝑈(𝑁) and let 𝑟 be a fixed
integer. Conditional on 𝑁 ≥ 𝑟, find the distribution of𝑈(𝑟) .

16.∗ Suppose that {𝑋𝑡 , 𝑡 ∈ Z} is a Gaussian process. Show that the following two
statements are equivalent:

(a) (Markov Property): E[ 𝑓 (𝑋𝑡+1) | 𝑋 𝑗 ,∀ 𝑗 ≤ 𝑡] = E[ 𝑓 (𝑋𝑡+1) | 𝑋𝑡] for any positive
measurable function 𝑓 .

(b) E[𝑋𝑡+1 | 𝑋 𝑗 ,∀ 𝑗 ≤ 𝑡] = E[𝑋𝑡+1 | 𝑋𝑡] for all 𝑡 ∈ Z.

17. Suppose that {𝑋𝑡 , 𝑡 ∈ Z} is a Gaussian process satisfying:

(a) E[𝑋𝑡+1 | 𝑋 𝑗 , 𝑗 ≤ 𝑡] = E[𝑋𝑡+1 | 𝑋𝑡].
(b) (Stationarity): For all integers 𝑡, 𝑠, there holds E𝑋𝑡 = 𝜇 and Cov(𝑋𝑡 , 𝑋𝑠) =

𝜚(𝑡 − 𝑠) for some even function 𝜚(𝑥) = 𝜚(−𝑥) with 𝜚(0) = 1.

Show that 𝜚 must satisfy the recursion 𝜚(𝑡) = 𝜚(1)𝜚(𝑡 − 1) for 𝑡 = 1, 2, 3, . . ..

18. Show that a Markov jump process that is defined by a 𝑄-matrix (4.54) has the
form (4.51) provided that sup𝑖 𝑞𝑖 < ∞.



CHAPTER 5

MARTINGALES

Martingales form a mainstay of modern probability. In this chapter, we
introduce (sub)martingales and show their use. Stopping times, filtrations, and
uniform integrability play important roles in the analysis. The key results are
Doob’s stopping theorem and the martingale convergence theorem. Example
applications include proofs for the Law of Large Numbers and the Radon–
Nikodym theorem.

Martingales are real-valued stochastic processes in continuous or discrete time that
model “fair” betting games, in which at any time the expected future profit is
always 0, irrespective of any information about the past of the game. Many proofs
in probability theory are facilitated by the use of martingales. In the analysis of
martingales, it will be useful to consider the process at certain random times, called
stopping times (also referred to as optional times). We introduce these next.

5.1 Stopping Times
In what follows, (Ω,H , P) is a probability space, T a subset of R, and F := (F𝑡 , 𝑡 ∈
T) a filtration of sub 𝜎-algebras of H . We add a point of infinity to T to define
T := T ∪ {∞}. Recall that each F𝑡 is a sub 𝜎-algebra of H that models all the
information on a random experiment (described by the probability space) that is
available at time 𝑡. If 𝑋 describes our measurements on the random experiment,
then the information we have available at time 𝑡 is given by 𝜎(𝑋𝑠, 𝑠 ≤ 𝑡). However,
F𝑡 could have more information than 𝜎(𝑋𝑠, 𝑠 ≤ 𝑡); that is, F could be “finer” than
the natural filtration of 𝑋 .
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Definition 5.1: Stopping Time

A random time 𝑇 : Ω → T is called a stopping time of F if

{𝑇 ≤ 𝑡} ∈ F𝑡 for each 𝑡 ∈ T.

Consider the stochastic process (𝑍𝑡) := (1{𝑇≤𝑡}, 𝑡 ∈ T). Imagine that 𝑇 is the
time when a “catastrophe” happens in the random experiment, at which time the
process (𝑍𝑡) jumps from 0 to 1. If F𝑡 is the available information at time 𝑡, then 𝑇
is a stopping time if and only if we can tell, at time 𝑡, using only the information
available in F𝑡 , whether the catastrophe has occurred yet or not. In other words,
for a stopping time 𝑇 we are able to construct an alarm system that uses only the
information in F and that for every 𝜔 ∈ Ω sounds exactly at the time of catastrophe
𝑇 (𝜔).

Example 5.2 (Hitting Time for a Symmetric Random Walk) Let {𝐵𝑛, 𝑛 =

1, 2, . . .} be a collection of iid Ber(1/2) random variables. Consider the symmetric
random walk on the integers 𝑋 := (𝑋𝑛, 𝑛 ∈ N), defined by 𝑋𝑛+1 := 𝑋𝑛 + 2𝐵𝑛 − 1 for
𝑛 = 1, 2, . . . and 𝑋0 := 0; see also Example 2.31 and Figure 2.32. Define the hitting
time of state 1 by

𝑇 := inf{𝑛 : 𝑋𝑛 = 1}.
Then, 𝑇 is a stopping time with respect to the natural filtration of 𝑋 . At each time
𝑛 we are able to tell, based on the history of 𝑋 up to and including time 𝑛, whether
the process has hit state 1 at or before time 𝑛 or not.

An example of a random time that is not a stopping time is:

𝑅 := min{𝑛 : 𝑋𝑛 = max
0≤𝑖≤100

𝑋𝑖},

that is, the first time that the maximum of 𝑋 up to time 100 is reached. For
example, to assess whether the event {𝑅 ≤ 50} occurs or not, we have to take into
consideration the whole history of 𝑋 up to time 100.

Let F be a filtration on T. Because we typically extend T to T by including the
point ∞, it makes sense to extend F to a filtration with index set T. The way to do
this is to define

F∞ :=
∨
𝑡∈T

F𝑡 .

That is, the 𝜎-algebra generated by the union of all the F𝑡 . Then, (F𝑡 , 𝑡 ∈ T) is a
filtration on T. We may use the same notation, F , for this extended filtration, as
it carries the same information as the original F . The advantage, however, is that
we can extend any adapted process 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) to a process (𝑋𝑡 , 𝑡 ∈ T) by
appending a random variable 𝑋∞ to 𝑋 . Moreover, every stopping time 𝑇 of the
extended F is a stopping time of the original F , and vice versa.
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Definition 5.3: Past until 𝑇

Let F be a filtration on T, and let 𝑇 be a stopping time of it. The 𝜎-algebra
of past information until 𝑇 is defined as

F𝑇 := {𝐻 ∈ H : 𝐻 ∩ {𝑇 ≤ 𝑡} ∈ F𝑡 for every 𝑡 ∈ T}.

We can think of F𝑇 as the information on a random experiment that is available
at a random stopping time 𝑇 . If 𝑇 is constant, 𝑇 = 𝑡, then F𝑇 is simply F𝑡 . As usual,
we will use the notation F𝑇 also for the collection of numerical random variables
that are F𝑇/B-measurable.

Theorem 5.4: F𝑇 Random Variables

A random variable 𝑉 belongs to F𝑇 if and only if

𝑋𝑡 := 𝑉 1{𝑇≤𝑡} ∈ F𝑡 for every 𝑡 ∈ T.

Proof. Without loss of generality we may assume that 𝑉 ≥ 0. For all 𝑣 ≥ 0 and
𝑡 ∈ T, we have:

{𝑉 > 𝑣} ∩ {𝑇 ≤ 𝑡} = {𝑋𝑡 > 𝑣}.
Hence, {𝑉 > 𝑣} ∈ F𝑇 for all 𝑣 ≥ 0 if and only if 𝑋𝑡 ∈ F𝑡 for every 𝑡 ∈ T. □

Intuitively, 𝑉 ∈ F𝑇 means that for every 𝜔, the value 𝑉 (𝜔) can be discovered at
time 𝑇 (𝜔).

5.2 Martingales
We have already mentioned that a martingale can be thought of as a process that
models a fair game. We now make this more precise. Let (𝑋𝑡 , 𝑡 ∈ T) be a stochastic
process that describes the profit 𝑋𝑡 at each time 𝑡 in a betting game that is ruled
by chance. Suppose that the information available to us at time 𝑡 is given by the
𝜎-algebra F𝑡 . If for any 𝑠 < 𝑡 the expected incremental profit 𝑋𝑡 − 𝑋𝑠 is 0 given F𝑠,
then the game is “fair”, in the sense that we cannot win, whatever betting strategy we
devise. The process is then a martingale. As martingale analysis heavily relies on
conditional expectations given a filtration F = (F𝑡 , 𝑡 ∈ T), we will use the following
notation convention:

E𝑠𝑉 = EF𝑠𝑉 = E[𝑉 | F𝑠],
the first notation being the most economical and elegant. If we do not specify the
filtration, the natural filtration is assumed.
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Definition 5.5: (Sub/Super)Martingale

Let 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) be a real-valued stochastic process that is adapted to a
filtration F , and for which each 𝑋𝑡 is integrable. The process 𝑋 is called an
F -(sub/super)martingale if for all 𝑡 > 𝑠:

E𝑠 [𝑋𝑡 − 𝑋𝑠] ≥ 0 (submartingale),
E𝑠 [𝑋𝑡 − 𝑋𝑠] = 0 (martingale),(5.6)
E𝑠 [𝑋𝑡 − 𝑋𝑠] ≤ 0 (supermartingale).

When specifying (sub/super)martingales, we will often drop the quantifier “F -”
if the corresponding filtration is obvious; for example, when it is the natural filtration
of the process.

Using the betting game analogy, for submartingales the expected incremental
profit is positive and for supermartingales it is negative. Think of a sub martingale
as a process that starts low and has the tendency to increase. You want your
betting game to be a submartingale! It suffices to only consider submartingales
and martingales for further analysis, as the negative of a supermartingale is a
submartingale. Note that in the definition we may replaceE𝑠 [𝑋𝑡−𝑋𝑠] withE𝑠𝑋𝑡−𝑋𝑠,
as E𝑠𝑋𝑠 = 𝑋𝑠, by the “taking out what is known” property of the conditional
expectation; see Theorem 4.4. From the same theorem we will frequently use
the “repeated conditioning” property of the conditional expectation. In particular,
taking the expectation ofE𝑠𝑋𝑡−𝑋𝑠 shows that a martingale has constant expectations:

E𝑋𝑡 = E𝑋𝑠 .

Here are some more easy properties of (sub)martingales.

Theorem 5.7: Properties of (Sub)Martingales

1. When T = N, the martingale equality E𝑠 [𝑋𝑡 − 𝑋𝑠] = 0 holds if and only if
E𝑘 [𝑋𝑘+1 − 𝑋𝑘 ] = 0, 𝑘 ∈ N.

2. If 𝑋 and 𝑌 are F -submartingales, then so is 𝑎𝑋 + 𝑏𝑌 for 𝑎, 𝑏 ≥ 0.

3. If 𝑋 and 𝑌 are F -submartingales, then so is 𝑋 ∨ 𝑌 .

4. Let 𝑓 be a convex function on R and 𝑋 an F -martingale. If 𝑓 (𝑋𝑡) is
integrable for all 𝑡, then 𝑓 (𝑋) := ( 𝑓 (𝑋𝑡)) is an F -submartingale.
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Proof.
1. Necessity is obvious. For sufficiency, suppose that E𝑘 [𝑋𝑘+1 − 𝑋𝑘 ] = 0 for all
𝑘 ∈ N. Take any 𝑚, 𝑛 ∈ N with 𝑛 > 𝑚. Then,

E𝑚 [𝑋𝑛 − 𝑋𝑚] = E𝑚 [(𝑋𝑛 − 𝑋𝑛−1) + · · · + (𝑋𝑚+1 − 𝑋𝑚)]
= E𝑚E𝑛−1 [𝑋𝑛 − 𝑋𝑛−1] + · · · + E𝑚E𝑚 [𝑋𝑚+1 − 𝑋𝑚] = 0,

where we have used the repeated conditioning rule E𝑚E𝑘 = E𝑚 for 𝑘 ≥ 𝑚, as well
as the linearity of the conditional expectation.

2. This follows from the linearity of the conditional expectation and the submartin-
gale properties of 𝑋 and 𝑌 : for any 𝑡 > 𝑠, E𝑠 [𝑎𝑋𝑡 + 𝑏𝑌𝑡] = 𝑎 E𝑠𝑋𝑡 + 𝑏 E𝑠𝑌𝑡 ≥
𝑎𝑋𝑠 + 𝑏𝑌𝑠 .

3. This is immediate from E𝑠 [𝑋𝑡 ∨ 𝑌𝑡] ≥ (E𝑠𝑋𝑡) ∨ (E𝑠𝑌𝑡) ≥ 𝑋𝑠 ∨ 𝑌𝑠 .

4. This is a consequence of Jensen’s inequality (Lemma 2.45). Namely, for 𝑡 > 𝑠,
we have

E𝑠 𝑓 (𝑋𝑡) ≥ 𝑓 (E𝑠𝑋𝑡) = 𝑓 (𝑋𝑠). □

Example 5.8 (Random Walk) Consider the random walk 𝑋 := (𝑋𝑛, 𝑛 ∈ N)
defined by 𝑋0 := 0 and

𝑋𝑛+1 := 𝑋𝑛 +𝑈𝑛, 𝑛 ∈ N,

where {𝑈𝑛, 𝑛 ∈ N} is a collection of iid random variables. If E𝑈𝑛 = 0, then 𝑋 is a
martingale (with respect to its natural filtration). Namely, each E𝑋𝑛 = 0, so every
𝑋𝑛 is integrable, and

E𝑛𝑋𝑛+1 = E𝑛 [𝑋𝑛 +𝑈𝑛] = 𝑋𝑛 + E𝑛𝑈𝑛 = 𝑋𝑛.

More generally, if E𝑈𝑛 = 𝑐 is finite, then (𝑋𝑛 − 𝑛𝑐, 𝑛 ∈ N) is a martingale.

Example 5.9 (Sum of Bernoullis) Let 𝐵1, 𝐵2, . . . be a Bernoulli process
with success parameter 𝑝, and define 𝑆𝑛 := 𝐵1 + · · · + 𝐵𝑛 and 𝑍𝑛 := 𝑆𝑛 − 𝑛𝑝, for
𝑛 = 1, 2, . . ., with 𝑆0 := 0. From the previous example, we see that (𝑍𝑛) is a mar-
tingale. However, there are more martingales that can be constructed from the
Bernoulli process. For example, with 𝑞 := 1 − 𝑝, define

𝑀𝑛 :=
(𝑞/𝑝)𝑆𝑛
(2𝑞)𝑛 , 𝑛 ∈ N.

Then, 𝑀𝑛 is obviously integrable, and

E𝑛𝑀𝑛+1 = 𝑀𝑛 E𝑛
(𝑞/𝑝)𝐵𝑛+1

2𝑞
= 𝑀𝑛

(𝑞 + (𝑞/𝑝)𝑝)
2𝑞

= 𝑀𝑛,

so that (𝑀𝑛) is a martingale.
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Example 5.10 (Poisson Process) Let (𝑁𝑡 , 𝑡 ≥ 0) be a Poisson (counting) process
with rate 𝑐. Then,

𝑀𝑡 := 𝑁𝑡 − 𝑐𝑡, 𝑡 ≥ 0,

is a martingale. Adaptedness and integrability are evident, and the martingale
property follows from the stationarity and independence of the increments of the
Poisson process:

E𝑠 [𝑀𝑡 − 𝑀𝑠] = E𝑠 [𝑁𝑡 − 𝑁𝑠] − 𝑐(𝑡 − 𝑠) = E[𝑁𝑡 − 𝑁𝑠] − 𝑐(𝑡 − 𝑠) = 0.

A stochastic process 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) is said to be a uniformly integrable mar-
tingale with respect to a filtration F if 𝑋 is both a martingale and is uniformly
integrable (UI). See Definition 3.32 for the definition and Proposition 3.34 for suf-
ficient and necessary conditions for uniform integrability. The main example of a
UI martingale is given next.

Example 5.11 (Standard UI Martingale) Let 𝑍 be an integrable random
variable. Then, the stochastic process 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) defined by

(5.12) 𝑋𝑡 := E𝑡 𝑍

is an UI martingale. We can check this as follows:

1. 𝑋𝑡 ∈ F𝑡 by the definition of conditional expectation. So 𝑋 is adapted to the
filtration F .

2. Using Jensen’s inequality (see Lemma 2.45) and repeated conditioning, we have

E|𝑋𝑡 | = E |E𝑡𝑍 | ≤ EE𝑡 |𝑍 | = E |𝑍 | < ∞,

which shows that 𝑋𝑡 is integrable for every 𝑡.

3. Again using repeated conditioning, we have for 𝑠 < 𝑡:

E𝑠𝑋𝑡 = E𝑠E𝑡𝑍 = E𝑠𝑍 = 𝑋𝑠,

so that 𝑋 is a martingale.

4. Proving uniform integrability is a bit more involved and requires Proposition 3.34,
Point 3; that is, (𝑋𝑡) is UI if and only if there is an increasing convex function 𝑓

such that 𝑓 (𝑥)/𝑥 → ∞ and

sup
𝑡

E 𝑓 ( |𝑋𝑡 |) < ∞.
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Since the random variable 𝑍 is UI (since 𝑍 is integrable), there exists an 𝑓 with
the above property such that

E 𝑓 ( |𝑍 |) < ∞.

Since 𝑋𝑡 = E𝑡𝑍 , we have by Jensen’s inequality (Lemma 2.45):

|𝑋𝑡 | = |E𝑡𝑍 | ≤ E𝑡 |𝑍 |,

and since 𝑓 is increasing and convex,

𝑓 ( |𝑋𝑡 |) ≤ 𝑓 (E𝑡 |𝑍 |) ≤︸︷︷︸
Jensen

E𝑡 𝑓 ( |𝑍 |).

Taking the supremum of the expectations on both sides (unconditioning) gives:

sup
𝑡

E 𝑓 ( |𝑋𝑡 |) < ∞,

so that (𝑋𝑡) is uniformly integrable by Proposition 3.34, Point 3.

5.3 Optional Stopping
The main result of this section is Doob’s “optional” stopping theorem, which, under
certain conditions, extends the martingale property (5.6) to stopping times 𝑆 < 𝑇 ,
to give

(5.13) E𝑆 [𝑋𝑇 − 𝑋𝑆] = 0,

and consequently (assuming 0 ∈ T):

(5.14) E𝑋𝑇 = E𝑋0.

This is certainly not true for all stopping times, as the following example illustrates:

Example 5.15 (Symmetric Random Walk Continued) Let 𝑋 be a symmetric
random walk on the integers, as in Example 5.2 and, as in that example, let 𝑇 be the
first time that 𝑋 hits level 1; this is a stopping time. Then,

1 = E𝑋𝑇 ≠ E𝑋0 = 0.

Note that 𝑇 is not bounded, because P(𝑇 > 𝑎) > 0 for all 𝑎 > 0. Exercise 10 shows
that, interestingly, P(𝑇 < ∞) = 1 but E𝑇 = ∞.

The question is under what conditions (5.13) and (5.14) do hold. For this it will
be convenient to first study certain integral transformations of martingales. Indeed,
such stochastic integration techniques underpin many elegant proofs in probability.
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5.3.1 Stochastic Integration
Stochastic analysis often involves the evaluation of a stochastic integral; that is, an
integral of the form

(5.16)
∫ 𝑡

0
𝐹𝑠 d𝑋𝑠,

where the integrator 𝑋 := (𝑋𝑡) and integrand 𝐹 := (𝐹𝑡) are real-valued stochastic
processes on some probability space (Ω,H , P). Let 𝑓𝑡 := 𝐹𝑡 (𝜔) be the realization
of 𝐹𝑡 for a specific 𝜔 ∈ Ω — and similarly let 𝑥𝑡 := 𝑋𝑡 (𝜔), but with the additional
assumption that 𝑥 := (𝑥𝑡) is right-continuous and left-limited.

If for each 𝜔 ∈ Ω the real-valued function 𝑥 is increasing, and if the function
𝑓 := ( 𝑓𝑡) is measurable, then the integral (5.16) can be defined pathwise; that is, for
each 𝜔 the integral

(5.17)
∫ 𝑡

0
𝑓𝑠 d𝑥𝑠

is well-defined. Namely, since there corresponds to the increasing function 𝑥 a
unique measure 𝜇, we can define (5.17) as the Lebesgue integral

∫ 𝑡

0 𝜇(d𝑠) 𝑓𝑠. An
example of such a stochastic integral is (2.81) in Section 2.8.2, where the integrator
is the Poisson random measure.

The arguments above can be extended to the case when the function 𝑥 can be
written as the difference of two increasing functions, say 𝑥 = 𝑦 − 𝑧. Then, (5.16)
can again be defined pathwise as∫ 𝑡

0
𝑓𝑠 d𝑦𝑠 −

∫ 𝑡

0
𝑓𝑠 d𝑧𝑠 .

The corresponding pathwise integral is called the Lebesgue–Stieltjes integral.
It is not too difficult to show that such functions 𝑥 are of bounded variation on

[0, 𝑡], meaning that their total variation on [0, 𝑡] is finite. The latter is defined as

(5.18) 𝑉𝑥 (𝑡) := sup
(Π𝑛)

𝑛−1∑︁
𝑘=0

|𝑥𝑠𝑘+1 − 𝑥𝑠𝑘 |,

where the supremum is taken over any segmentation1 Π𝑛 of the interval [0, 𝑡],
(5.19) Π𝑛 := {𝑠0, . . . , 𝑠𝑛 : 0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑛 = 𝑡}, 𝑛 ∈ N,

such that the mesh of Π𝑛, defined as ∥Π𝑛∥ := max0≤𝑘≤𝑛−1(𝑠𝑘+1 − 𝑠𝑘 ), goes to 0 as
𝑛→ ∞. Any right-continuous function of bounded variation can be written as a
difference of two increasing functions; see Exercise 11 for a proof.

The upshot of this is that for a process 𝑋 that does not “wiggle” too much, the
stochastic integral can be defined pathwise as a Lebesgue–Stieltjes integral.

1Also called partition. However, note that in our usage a partition is a collection of sets, whereas
a segmentation is a collection of points.
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Example 5.20 (Integral With Respect to a Poisson Process) As an example of
a stochastic integral that can be evaluated pathwise like (5.17), consider the integral∫ 𝑡

0
𝑁𝑠− d𝑁𝑠,

where (𝑁𝑡 , 𝑡 ≥ 0) is a Poisson counting process with rate 1 and 𝑁𝑠− denotes
the left limit lim𝑟↑𝑠 𝑁𝑟 . For each 𝜔 ∈ Ω, the integral is readily evaluated as
a Lebesgue integral. In particular, denoting the arrival times during [0, 𝑡] by
𝑇1(𝜔), 𝑇2(𝜔), . . . , 𝑇𝑁𝑡 (𝜔) (𝜔), let 𝜇 be the corresponding counting measure. At
these 𝑁𝑡 arrival times, the integrand (𝑁𝑠−) takes the values 0, 1, . . . , 𝑁𝑡 −1, respect-
ively. Hence, the integral is 0 + 1 + · · · + 𝑁𝑡 − 1 = 𝑁𝑡 (𝑁𝑡 − 1)/2. In the same way,∫ 𝑡

0 𝑁𝑠 d𝑁𝑠 = (𝑁𝑡 + 1)𝑁𝑡/2, so the two integrals are not the same. In particular, we
see that the elementary “change of variable” rule

∫ 𝑡

0 𝑔(𝑠) d𝑔(𝑠) = 𝑔2(𝑡)/2 does not
hold here. Next, consider the integral

𝑍𝑡 :=
∫ 𝑡

0
𝑁𝑠− d𝑀𝑠 =

∫ 𝑡

0
𝑁𝑠− d𝑁𝑠 −

∫ 𝑡

0
𝑁𝑠− d𝑠, 𝑡 ≥ 0,

where 𝑀𝑠 := 𝑁𝑠 − 𝑠. We have already evaluated the first integral on the right-
hand side. Likewise, the second integral can be evaluated pathwise as a Lebesgue
integral. Due to the insensitivity of the integral (Proposition 1.54), we may replace
𝑠− with 𝑠 in the second integral. In terms of the {𝑇𝑛}, the integral can be expressed
as the area below the graph of (𝑁𝑠, 0 ≤ 𝑠 ≤ 𝑡):

𝑁𝑡∑︁
𝑘=1

(𝑘 − 1) (𝑇𝑘 − 𝑇𝑘−1) + (𝑡 − 𝑇𝑁𝑡 )𝑁𝑡 ,

where the sum is assumed to be empty if 𝑁𝑡 ≤ 1. A typical path of the integral-
transform process (𝑍𝑡) is given in Figure 5.21.

Figure 5.21: The integral-transform process (𝑍𝑡) is a martingale.
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We saw in Example 5.10 that (𝑀𝑡 , 𝑡 ≥ 0) is a martingale with respect to the nat-
ural filtration (F𝑡) of (𝑁𝑡). It turns out that the process (𝑍𝑡 , 𝑡 ≥ 0) is also a martingale
with respect to (F𝑡). To prove the martingale property (that is, E𝑟 (𝑍𝑡 − 𝑍𝑟) = 0 for
every 0 ≤ 𝑟 ≤ 𝑡, where E𝑟 denotes the conditional expectation given F𝑟), we need
to show that

E𝑟

∫ 𝑡

𝑟

𝑁𝑠− d𝑁𝑠 = E𝑟

∫ 𝑡

𝑟

[𝑁𝑟 + (𝑁𝑠 − 𝑁𝑟)] d𝑠.

Since 𝑍𝑡 = (𝑁2
𝑡 − 𝑁𝑡)/2, the left-hand side yields E𝑟 [(𝑁2

𝑡 − 𝑁𝑡) − (𝑁2
𝑟 − 𝑁𝑟)]/2 =

𝑁𝑟 (𝑡 − 𝑟) + (𝑡 − 𝑟)2/2, where we used the independence and stationarity of the
Poisson process increments. Similarly, for the right-hand side we have 𝑁𝑟 (𝑡 − 𝑟) +∫ 𝑡

𝑟
E𝑟 (𝑁𝑠 − 𝑁𝑟) d𝑠 = 𝑁𝑟 (𝑡 − 𝑟) +

∫ 𝑡

𝑟
(𝑠 − 𝑟) d𝑠 = 𝑁𝑟 (𝑡 − 𝑟) + (𝑡 − 𝑟)2/2, so the two

expected integrals are equal given F𝑟 , and hence the martingale property holds. This
example illustrates an important recurring theme in stochastic integration: if the
integrator process is a martingale, and the integrand is adapted and left-continuous,
then the resulting integral forms again a martingale.

When 𝑋 has infinite variation, such as the Wiener process, then the pathwise
definition of stochastic integration is no longer applicable. In this case, the most
used stochastic integral is the Itô integral, which we will discuss in more detail in
Chapter 7; a brief mention suffices at this point. For the Wiener process (𝑊𝑡 , 𝑡 ≥ 0),
the Itô integral on the interval [0, 𝑡] can be defined as the limit∫ 𝑡

0
𝐹𝑠 d𝑊𝑠 := lim

𝑛→∞

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 ),

where (Π𝑛) is again of the form (5.19) with ∥Π𝑛∥ → 0. For this integral to be
well-defined, some conditions must be placed on the integrand. In particular, if 𝐹
is adapted and left-continuous on (0, 𝑡], then it can be shown to be a predictable
process in the following sense; see also (4.58).

Definition 5.22: Predictable Process

Let F := (F𝑡 , 𝑡 ≥ 0) be a filtration. A real-valued stochastic process 𝐹 is said
to be F -predictable (or simply predictable) if it is measurable with respect
to the 𝜎-algebra

F 𝑝 := 𝜎(𝐻 × (𝑎, 𝑏] : 𝑎, 𝑏 ∈ R+, 𝐻 ∈ F𝑎) ∨ 𝜎(𝐻 × {0} : 𝐻 ∈ F0).

Loosely speaking, this means that we are able to predict the value of 𝐹𝑡 from all
the information available before 𝑡.
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For discrete processes 𝑋 := (𝑋𝑛, 𝑛 ∈ N) and 𝐹 := (𝐹𝑛, 𝑛 ∈ N), the treatment of
stochastic integration becomes much easier. We simply define

(5.23)
∫ 𝑛

0
𝐹𝑘 d𝑋𝑘 := 𝐹0𝑋0 + 𝐹1(𝑋1 − 𝑋0) + · · · + 𝐹𝑛 (𝑋𝑛 − 𝑋𝑛−1), 𝑛 = 1, 2, . . . .

For 𝑛 = 0, the integral is defined as 𝐹0𝑋0. The justification is as follows. If 𝑋 is
an increasing process, then for any 𝜔 ∈ Ω, there corresponds to 𝑋 (𝜔) a discrete
measure with mass𝑚(𝑘) := 𝑋𝑘 (𝜔) −𝑋𝑘−1(𝜔), at 𝑘 = 1, . . . , 𝑛, and𝑚(0) := 𝑋0(𝜔).
The corresponding Lebesgue integral with respect to 𝐹 (𝜔) is then given by (5.23), as
a function of 𝜔. If 𝑋 is arbitrary, we can write 𝑋 as the difference of two increasing
processes and then take the integral as the difference between the positive and
negative part. This is equivalent to associating with 𝑋 (𝜔) a signed measure (i.e.,
the difference of two measures) with the same masses 𝑚(𝑘), 𝑘 = 0, . . . , 𝑛, given
above. This thus defines the Lebesgue–Stieltjes integral in the discrete case; i.e.,
the Stieltjes integral interpreted as a Lebesgue integral.

Note that (5.23) defines a new stochastic process

(5.24) 𝑍𝑛 :=
∫ 𝑛

0
𝐹𝑘 d𝑋𝑘 , 𝑛 ∈ N.

Think of 𝐹𝑛 as the number of shares owned at period 𝑛 — say the time interval
(𝑛−1, 𝑛] in years — and 𝑋𝑛 as the price at the end of period 𝑛. Then, (𝑋𝑛−𝑋𝑛−1)𝐹𝑛
is the profit made during period 𝑛. Moreover, 𝑍𝑛 is the total capital at the end of
period 𝑛, starting with an initial capital of 𝑋0𝐹0. If (𝑋𝑛) is a martingale, then, by
definition, conditional on the past until time 𝑛 − 1, the expected increase in share
price is 0; that is, E𝑛−1(𝑋𝑛 − 𝑋𝑛−1) = 0. We shall see that if 𝐹 is a predictable
process, then the expected profit during period 𝑛, given the information up to period
𝑛 − 1 is also 0. Here is the precise definition of predictability for the discrete case.

Definition 5.25: Discrete Predictable Process

Given a filtration F := (F𝑛, 𝑛 ∈ N), a process 𝐹 := (𝐹𝑛, 𝑛 ∈ N) is said to be
predictable if 𝐹0 ∈ F0 and 𝐹𝑛 ∈ F𝑛−1, 𝑛 = 1, 2, . . ..

Continuing the financial analogy, if the shares process 𝐹 is predictable with
respect to the natural filtration of the share price — that is, if the number of shares
owned at period 𝑛 is completely determined by the evolution of the share price
in the preceding periods, then E𝑛−1(𝑋𝑛 − 𝑋𝑛−1)𝐹𝑛 = 𝐹𝑛 E𝑛−1(𝑋𝑛 − 𝑋𝑛−1) = 0, as
reported. The total capital process (𝑍𝑛) defined in (5.24) is in fact a martingale, as
the following theorem shows:
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Theorem 5.26: Integral Transform of a Martingale

Let 𝐹 be a bounded predictable process and 𝑋 a martingale adapted to a
filtration F . Then, the integral transform 𝑍𝑛 :=

∫ 𝑛

0 𝐹𝑘 d𝑋𝑘 , 𝑛 ∈ N is an F -
martingale as well.

Proof. Obviously, the process 𝑍 := (𝑍𝑛) is adapted to F , as both 𝐹 and 𝑋 are. The
boundedness assumption on 𝐹 ensures that 𝑍 is integrable. Finally, 𝑍 satisfies the
martingale property:

E𝑛 (𝑍𝑛+1 − 𝑍𝑛) = E𝑛 [(𝑋𝑛+1 − 𝑋𝑛)𝐹𝑛+1] = 𝐹𝑛+1 E𝑛 (𝑋𝑛+1 − 𝑋𝑛) = 0

for all 𝑛 ∈ N. □

Example 5.27 (Isometry Property) Let 𝑋 := (𝑋𝑛, 𝑛 ∈ N) be an 𝐿2-martingale
and let 𝐹 := (𝐹𝑛, 𝑛 ∈ N) be a bounded predictable process, both with respect to
some filtration (F𝑛, 𝑛 ∈ N). Consider the integral process

𝑍𝑛 :=
∫ 𝑛

0
𝐹𝑘 d𝑋𝑘 = 𝑍0 +

𝑛∑︁
𝑘=1

𝐹𝑘 (𝑋𝑘 − 𝑋𝑘−1), 𝑛 ∈ N,

with 𝑍0 := 𝐹0𝑋0. By Theorem 5.26, the expectation of 𝑍𝑛 is E𝑍0 = E𝐹0𝑋0 for all
𝑛. What is the variance of 𝑍𝑛? Expanding 𝑍2

𝑛 , we have

𝑍2
𝑛 − 𝑍2

0 =

𝑛∑︁
𝑘=1

𝐹2
𝑘 (𝑋𝑘 − 𝑋𝑘−1)2 + 2𝑍0

𝑛∑︁
𝑘=1

𝐹𝑘 (𝑋𝑘 − 𝑋𝑘−1)

+ 2
𝑛−1∑︁
𝑗=1

𝑛∑︁
𝑘= 𝑗+1

𝐹𝑗𝐹𝑘 (𝑋 𝑗 − 𝑋 𝑗−1) (𝑋𝑘 − 𝑋𝑘−1).

For 𝑗 < 𝑘 ,

E[𝐹𝑗𝐹𝑘 (𝑋 𝑗 − 𝑋 𝑗−1) (𝑋𝑘 − 𝑋𝑘−1)] = EE𝑘−1𝐹𝑗𝐹𝑘 (𝑋 𝑗 − 𝑋 𝑗−1) (𝑋𝑘 − 𝑋𝑘−1)
= 𝐹𝑗𝐹𝑘 (𝑋 𝑗 − 𝑋 𝑗−1)E𝑘−1(𝑋𝑘 − 𝑋𝑘−1) = 0,

where we used repeated conditioning in the first equality, “taking out what is known”
in the second equality, and the martingale property of 𝑋 in the final equality. A
similar argument shows E[𝑍0(𝑋𝑘 − 𝑋𝑘−1)] = 0 for all 𝑘 ≥ 1. Therefore,

(5.28) E
[
𝑍2
𝑛 − 𝑍2

0
]
=

𝑛∑︁
𝑘=1

E
[
𝐹2
𝑘 (𝑋𝑘 − 𝑋𝑘−1)2] .

This is the isometry property of the discrete integral (𝑍𝑛). We will encounter its
continuous-time equivalent for Itô integrals in Theorem 7.6.
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For the special case 𝐹𝑘 = 1, 𝑘 ∈ N, we have 𝑍𝑛 = 𝑋𝑛, 𝑛 ∈ N, and

(5.29) E
[
𝑋2
𝑛 − 𝑋2

0
]
=

𝑛∑︁
𝑘=1

E(𝑋𝑘 − 𝑋𝑘−1)2.

If, in addition, E𝑋0 = 0, then (5.29) simply states that the variance of 𝑋𝑛 is the sum
of the variances of its increments:

Var 𝑋𝑛 = Var 𝑋0 +
𝑛∑︁
𝑘=1

Var(𝑋𝑘 − 𝑋𝑘−1),

even though the increments are not necessarily independent.

It is sometimes useful to consider a stochastic process that is stopped at some
random time 𝑇 .

Definition 5.30: Stopped Stochastic Process

Let 𝑋 := (𝑋𝑡 , 𝑡 ∈ T) be a stochastic process and 𝑇 a random time with values
in T. By the process 𝑋 stopped at time 𝑇 we mean the process (𝑋†

𝑡 , 𝑡 ∈ T)
defined by

𝑋
†
𝑡 (𝜔) := 𝑋𝑇 (𝜔)∧𝑡 (𝜔) =

{
𝑋𝑡 (𝜔) if 𝑡 ≤ 𝑇 (𝜔),
𝑋𝑇 (𝜔) (𝜔) if 𝑡 > 𝑇 (𝜔).

Stopping a martingale at a random stopping time, gives again a martingale.

Theorem 5.31: Stopped Martingale

Let 𝑀 := (𝑀𝑛, 𝑛 ∈ N) be a martingale and 𝑇 a stopping time with values in
N. Then, the process 𝑀 stopped at time 𝑇 is again a martingale.

Proof. We can write the stopped process 𝑀† as a stochastic integral 𝑀† :=
∫
𝐹d𝑀

with respect to the predictable process 𝐹𝑛 := 1{𝑇≥𝑛}, 𝑛 ∈ N. That (𝐹𝑛) is predictable
follows from the fact that each 𝐹𝑛 is a Bernoulli random variable with {𝐹𝑛 = 0} =

{𝑇 ≤ 𝑛 − 1} ∈ F𝑛−1. Now apply Theorem 5.26 to complete the proof. □

Example 5.32 (Symmetric Random Walk Continued) We continue Ex-
ample 5.15, and consider the stopped martingale (𝑋𝑇∧𝑛, 𝑛 ∈ N). Since this is a
martingale, we have

E𝑋𝑇∧𝑛 = E𝑋𝑇∧0 = E𝑋0 = 0.
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We mentioned that 𝑇 can be shown to be almost surely finite. Hence, almost surely
𝑋𝑇∧𝑛 converges to 𝑋𝑇 . However,

0 = lim
𝑛

E𝑋𝑇∧𝑛 ≠ E lim
𝑛
𝑋𝑇∧𝑛 = E𝑋𝑇 = 1.

So, we may not swap the limit and expectation. Although 𝑋𝑇∧𝑛 converges to 𝑋𝑇 , it
does so in a non-monotone way; otherwise, we would have been able to invoke the
Monotone Convergence Theorem 2.34.

Example 5.33 (Asymmetric Random Walk) Let 𝑋 := (𝑋𝑛, 𝑛 ∈ N) be an asym-
metric random walk on the integers, defined by 𝑋0 := 𝑎 for some 𝑎 ∈ N, and

𝑋𝑛+1 := 𝑋𝑛 + 2𝐵𝑛 − 1, 𝑛 ∈ N,

where 𝐵0, 𝐵1, . . . ∼iid Ber(𝑝). Defining 𝑞 := 1 − 𝑝, let

𝑀𝑛 := (𝑞/𝑝)𝑋𝑛 , 𝑛 ∈ N.

This is a martingale, since each 𝑀𝑛 is integrable and

E𝑛𝑀𝑛+1 = 𝑀𝑛 E𝑛 (𝑞/𝑝)2𝐵𝑛−1 = 𝑀𝑛 [(𝑝/𝑞)𝑞 + (𝑞/𝑝)𝑝] = 𝑀𝑛.

Suppose 𝑎 is strictly positive and let 𝑇 be the first time at which either 0 or 𝑏 is
reached, for some 𝑏 ∈ N with 𝑏 > 𝑎; that is,

𝑇 := min{𝑛 : 𝑋𝑛 = 𝑏 or 0}.

We can think of 𝑋𝑛 as the fortune of a gambler after 𝑛 bets in a game of chance
that will either increase or decrease his/her earnings by 1 dollar, with probability 𝑝
and 𝑞 := 1 − 𝑝, respectively. The gambler plays until time 𝑇 ; that is, when she/he
goes bankrupt or reaches the level 𝑏. The gambler’s ruin problem is to calculate the
probability that level 𝑏 is reached before bankruptcy occurs.

Consider the stopped martingale 𝑀 := (𝑀𝑛∧𝑇 , 𝑛 ∈ N). By the martingale prop-
erty of 𝑀 , we have

E𝑀𝑛 = E𝑀0 = E𝑀0 = (𝑞/𝑝)𝑎, 𝑛 ∈ N.

Moreover, lim𝑀𝑛 = 𝑀𝑇 , almost surely, provided that P(𝑇 < ∞) = 1. Since 𝑀 is
bounded, the Bounded Convergence Theorem 2.36 lets us conclude that

E𝑀𝑇 = (𝑞/𝑝)𝑎 .

In particular,(
𝑞

𝑝

)𝑎
= E𝑀𝑇 = P(𝑋𝑇 = 𝑏)

(
𝑞

𝑝

)𝑏
+ (1 − P(𝑋𝑇 = 𝑏))

(
𝑞

𝑝

)0
.
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Rearranging gives

(5.34) P(𝑋𝑇 = 𝑏) =
1 −

(
𝑞

𝑝

)𝑎
1 −

(
𝑞

𝑝

)𝑏
for 𝑝 ≠ 𝑞. For the symmetric case 𝑝 = 𝑞, applying the same arguments to the
martingale (𝑋𝑛, 𝑛 ∈ N), we obtain P(𝑋𝑇 = 𝑏) = 𝑎/𝑏 by rearranging:

𝑎 = E𝑋𝑇 = P(𝑋𝑇 = 𝑏) 𝑏 + P(𝑋𝑇 = 𝑎) 0.

The only “loose end” in this derivation is that we have not shown that 𝑇 is almost
surely finite. We can prove it as follows. Consider the first 𝑛𝑏 Bernoulli random
variables that are used in the construction of 𝑋 , divided into 𝑛 batches of size 𝑏.
Define the events 𝐴𝑛 := {𝑇 > 𝑛𝑏}, 𝑛 = 1, 2, . . .. If the event 𝐴𝑛 occurs, then none
of the 𝑛 batches contain only successes or only failures — otherwise, 𝑇 would be
less than or equal to 𝑛𝑏. Thus,

P(𝐴𝑛) ≤
(
1 − 𝑝𝑏 − 𝑞𝑏

)𝑛
.

Consequently, we have by the continuity from above property of P (see (2.5)), that

P(𝑇 = ∞) = P
(
∩∞
𝑛=1𝐴𝑛

)
= lim
𝑛→∞

P(𝐴𝑛) ≤ lim
𝑛→∞

(
1 − 𝑝𝑏 − 𝑞𝑏

)𝑛
= 0,

since 𝐴1 ⊇ 𝐴2 ⊇ · · · .

For certain martingales in continuous time — for example, Poisson martingales
as in Example 5.10 — we can construct martingale transforms similar to (5.23).
Specifically, let 𝑁 := (𝑁𝑡 , 𝑡 ∈ R+) be an increasing right-continuous process adapted
to a filtration F . Suppose that 𝜈𝑡 := E𝑁𝑡 is finite, and that

𝑁 𝑡 := 𝑁𝑡 − 𝜈𝑡 , 𝑡 ≥ 0,

is an F -martingale. The following is closely related to Proposition 4.59. We use
the predictability Definition 5.22.

Proposition 5.35: Stochastic Integral for Predictable Integrands

Let 𝑁 be defined as above. Then, for any positive F -predictable process
(𝐹𝑡),

(5.36) E
∫
R+

𝐹𝑡 d𝑁𝑡 = E
∫
R+

𝐹𝑡 d𝜈𝑡 .
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Proof. As in the proof of Proposition 4.59, it suffices to prove (5.36) only for
indicators of sets 𝐻 × 𝐴, where either 𝐻 ∈ F𝑎 and 𝐴 := (𝑎, 𝑏], or 𝐻 ∈ F0 and
𝐴 := {0}. In the first case, we have

E
∫
(𝑎,𝑏]

1𝐻 d𝑁𝑡 = E1𝐻 (𝑁𝑏 − 𝑁𝑎) = E1𝐻 E𝑎 (𝑁𝑏 − 𝑁𝑎)

= E1𝐻 (𝜈𝑏 − 𝜈𝑎) = E
∫
(𝑎,𝑏]

1𝐻 d𝜈𝑡 .

In the second case, E1𝐻𝑁0 = E1𝐻E0𝑁0 = E1𝐻𝜈0. □

The following is a continuous version of Theorem 5.26. Note that we already
saw an illustration of the theorem in Example 5.20.

Theorem 5.37: Integral Transform of a Continuous Martingale

Let 𝑁 be an F -martingale, as defined above. For any bounded F -predictable
process 𝐹, the integral transform

𝑍𝑡 :=
∫ 𝑡

0
𝐹𝑠 d𝑁 𝑠, 𝑡 ≥ 0,

is a martingale.

Proof. Adaptedness and integrability are straightforward. For the martingale prop-
erty, write

E𝑠 [𝑍𝑡 − 𝑍𝑠] = E𝑠

∫
(𝑠,𝑡]

𝐹𝑢 d𝑁𝑢 = E𝑠

∫
R+

1(𝑠,𝑡] (𝑢)𝐹𝑢 d𝑁𝑢 − E𝑠

∫
R+

1(𝑠,𝑡] (𝑢)𝐹𝑢 d𝜈𝑢 .

To show that E𝑠 [𝑍𝑡 − 𝑍𝑠] = 0, it thus suffices to show that for any positive 𝑉 ∈ F𝑠
we have

E𝑉
∫
R+

1(𝑠,𝑡] (𝑢)𝐹𝑢 d𝑁𝑢 = E𝑉
∫
R+

1(𝑠,𝑡] (𝑢)𝐹𝑢 d𝜈𝑢,

which is equivalent to showing that

E
∫
R+

𝐺𝑢𝐹𝑢 d𝑁𝑢 = E
∫
R+

𝐺𝑢𝐹𝑢 d𝜈𝑢,

where 𝐺𝑢 := 𝑉1(𝑠,𝑡] (𝑢). The process 𝐺 is positive and predictable and so are 𝐺𝐹+

and 𝐺𝐹−. The result now follows from Proposition 5.35. □

Example 5.38 (Arrival Times of a Poisson Process) Let 𝑁 := (𝑁𝑡 , 𝑡 ≥ 0)
be a Poisson process with rate 𝑐. Denote the arrival times by 𝑇1, 𝑇2, . . . and set
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𝑇0 := 0. Let F := (F𝑡 , 𝑡 ≥ 0) be the natural filtration of 𝑁 . We want to prove that
the interarrival times are iid and Exp(𝑐) distributed; thus, that for each 𝑛 ∈ N,
𝑇𝑛+1 − 𝑇𝑛 is independent of F𝑇𝑛 and is Exp(𝑐) distributed. Consider thereto the
martingale 𝑁 𝑡 = 𝑁𝑡 − 𝑐𝑡, 𝑡 ≥ 0 and stopping times 𝑆 := 𝑇𝑛 and 𝑇 := 𝑇𝑛+1. For an
arbitrary positive 𝑉 ∈ F𝑆 and 𝑟 ≥ 0, define

𝐹𝑡 := 𝑉 1(𝑆,𝑇] (𝑡) 𝑟e−𝑟𝑡 , 𝑡 ≥ 0.

The process (𝐹𝑡) is positive and F -predictable. Thus, by Proposition 5.35,

E
∫

𝐹𝑡 d𝑁𝑡 = E
∫

𝐹𝑡 𝑐 d𝑡,

which is equivalent to

E𝑆

∫
(𝑆,𝑇]

𝑟e−𝑟𝑡 d𝑁𝑡 = E𝑆

∫
(𝑆,𝑇]

𝑟e−𝑟𝑡𝑐 d𝑡.

Evaluating both integrals (for the left-hand side, use the fact that (𝑁𝑡) only has one
jump of size 1 at time 𝑇 in the interval (𝑆, 𝑇]) gives

𝑟 E𝑆 e−𝑟𝑇 = 𝑐 E𝑆 (e−𝑟𝑆 − e−𝑟𝑇 ).

Multiplying both sides by e𝑟𝑆 and passing the latter inside the conditional expecta-
tion, we obtain after rearranging:

E𝑆 e−𝑟 (𝑇−𝑆) =
𝑐

𝑐 + 𝑟 , 𝑟 > 0,

showing that 𝑇 − 𝑆 = 𝑇𝑛+1 − 𝑇𝑛 is independent of F𝑇𝑛 and is Exp(𝑐) distributed.

5.3.2 Doob’s Stopping Theorem
The following treatment of Doob’s stopping theorem is restricted to the discrete
case and relies on the integral transformation technique of the previous section.
The stopping times involved are required to be bounded. For uniformly integrable
martingales this boundedness requirement is no longer necessary; see Theorem 5.59.

Theorem 5.39: Doob’s Stopping Theorem

A stochastic process 𝑀 := (𝑀𝑛, 𝑛 ∈ N) is a martingale if and only if for every
pair of bounded stopping times 𝑆 and 𝑇 with 𝑆 ≤ 𝑇 the random variables 𝑀𝑆

and 𝑀𝑇 are integrable, and

(5.40) E𝑆 (𝑀𝑇 − 𝑀𝑆) = 0.
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Proof. Let 𝑀 be a martingale. Take two bounded stopping times 𝑆 and 𝑇 , with
𝑆 ≤ 𝑇 ≤ 𝑛 for some fixed 𝑛. We want to show that (5.40) holds. Let𝑉 be a bounded
random variable in F𝑆. Consider the predictable process (𝐹𝑘 , 𝑘 ∈ N) defined by

𝐹𝑘 :=

{
𝑉 if 𝑆 < 𝑘 ≤ 𝑇,
0 otherwise.

Its integral with respect to 𝑀 is the process 𝑋 := (𝑋𝑛) =
(
∫ 𝑛0 𝐹𝑘 d𝑀𝑘

)
, with

𝑋𝑛 − 𝑋0︸︷︷︸
𝑀0𝐹0

= (𝑀𝑆+1 − 𝑀𝑆)𝑉 + · · · + (𝑀𝑇 − 𝑀𝑇−1)𝑉 = (𝑀𝑇 − 𝑀𝑆)𝑉.

Since 𝐹 is predictable and bounded, 𝑋 is a martingale, by Theorem 5.26. By taking
𝑉 := 1 and 𝑆 := 0, we see that 𝑀𝑇 is integrable, and 𝑉 := 1 and 𝑇 := 𝑛 shows 𝑀𝑆 is
integrable. Finally, since 𝑉 ∈ F𝑆, we have

E𝑉 E𝑆 (𝑀𝑇 − 𝑀𝑆) =︸︷︷︸
projection
property

E𝑉 (𝑀𝑇 − 𝑀𝑆) = E(𝑋𝑛 − 𝑋0) = 0.

Since 𝑉 is an arbitrary bounded random variable in F𝑆, (5.40) must hold.
Conversely, suppose that (5.40) holds for every pair of bounded stopping times

𝑆 and 𝑇 with 𝑆 ≤ 𝑇 and that 𝑀𝑆 and 𝑀𝑇 are integrable. We want to show
that 𝑀 := (𝑀𝑛, 𝑛 ∈ N) is a martingale; i.e., an adapted process, where each 𝑀𝑛 is
integrable and satisfying the martingale property. Adaptedness is by assumption
and integrability follows from the integrability assumption of 𝑀𝑇 , by taking 𝑇 := 𝑛.
To check the martingale property, take a pair (𝑚, 𝑛) with 𝑚 < 𝑛 and an event
𝐻 ∈ F𝑚. We want to show

E1𝐻E𝑚 (𝑀𝑛 − 𝑀𝑚) = 0.

Take 𝑆 := 𝑚, and 𝑇 := 𝑛 1𝐻 + 𝑚 1Ω\𝐻 . Obviously, 𝑆 is a stopping time. To see that
𝑇 is also a stopping time, apply the alarm test: For every 𝜔 we are able to construct
an alarm that sounds at 𝑇 (𝜔), because 𝑇 (𝜔) ≥ 𝑚 and at time 𝑚 we will be able
to determine whether 𝑇 (𝜔) = 𝑛 (when 𝐻 occurs) or 𝑇 (𝜔) = 𝑚 (when 𝐻 does not
occur). So, we have a pair of stopping times (𝑆, 𝑇) such that 𝑆 ≤ 𝑇 ≤ 𝑛 and, by
construction, 𝑀𝑇 − 𝑀𝑆 = 1𝐻 (𝑀𝑛 − 𝑀𝑚). Applying (5.40), we have

E1𝐻E𝑚 (𝑀𝑛 − 𝑀𝑚) = EE𝑚1𝐻 (𝑀𝑛 − 𝑀𝑚) = 0

for all 𝐻 ∈ F𝑚 and 𝑚 < 𝑛, which can only be true if E𝑚 (𝑀𝑛 − 𝑀𝑚) = 0, i.e., if 𝑀
has the martingale property. □
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Remark 5.41 (Submartingale Inequality) When 𝑀 is instead a submartingale,
we can repeat the above proof almost verbatim to conclude that

E𝑆 (𝑀𝑇 − 𝑀𝑆) ≥ 0

for bounded stopping times 𝑆 ≤ 𝑇 .

Akin to Markov’s inequality (3.9), the next lemma bounds the tail probability
of the running maximum of a positive submartingale in terms of the expected value
of its final member.

Lemma 5.42: Maximum Inequality for Positive Submartingales

Let (𝑌𝑘 , 𝑘 ∈ N) be a positive submartingale and define 𝑌 ∗
𝑛 := max𝑘≤𝑛𝑌𝑘 .

Then, for any 𝑏 > 0,

(5.43) 𝑏 P(𝑌 ∗
𝑛 ≥ 𝑏) ≤ E[𝑌𝑛1{𝑌 ∗≥𝑏}] ≤ E𝑌𝑛.

Proof. Define 𝑇 := inf{𝑛 ≥ 0 : 𝑌𝑛 ≥ 𝑏}. It holds that {𝑌 ∗
𝑛 ≥ 𝑏} = {𝑇 ≤ 𝑛} and

hence
𝑏 1{𝑇≤𝑛} ≤ 𝑌𝑇∧𝑛 1{𝑇≤𝑛} ≤ 1{𝑇≤𝑛} E𝑇∧𝑛𝑌𝑛 = E𝑇∧𝑛 [𝑌𝑛1{𝑇≤𝑛}],

where the second inequality is due to Doob’s stopping theorem for submartingales;
see Remark 5.41. Taking expectations, yields (5.43). □

Recall Kolmogorov’s inequality in Theorem 3.11: If 𝑋1, 𝑋2, . . . are independent
with zero mean, and 𝑆𝑛 :=

∑𝑛
𝑖=1 𝑋𝑖, then

P
(
max
𝑘≤𝑛

|𝑆𝑘 | > 𝑏
)
≤ Var 𝑆𝑛

𝑏2 .

The following extends this result to the maximum of a martingale:

Theorem 5.44: Doob–Kolmogorov Inequality

Let 𝑀 := (𝑀𝑘 ) be a martingale in 𝐿𝑝 for some 𝑝 ∈ [1,∞). Then, for 𝑏 > 0,

(5.45) P
(
max
𝑘≤𝑛

|𝑀𝑘 | > 𝑏
)
≤ E |𝑀𝑛 |𝑝

𝑏𝑝
.

Proof. If 𝑀 is a martingale in 𝐿𝑝, then 𝑌 := |𝑀 |𝑝 is a positive submartingale. Let
𝑎 := 𝑏𝑝. By Lemma 5.42, 𝑎 P(max𝑘≤𝑛𝑌𝑘 > 𝑎) ≤ E𝑌𝑛. Translated back, using 𝑀
and 𝑏, this gives (5.45). □
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To show that Kolmogorov’s inequality in Theorem 3.11 follows directly from
Theorem 5.44, note that (𝑆𝑛, 𝑛 ∈ N) is a martingale. In particular, if E𝑆2

𝑛 = ∞, then
the result holds trivially. And if E𝑆2

𝑛 < ∞ then 𝑆 is a square-integrable martingale,
so (5.45) holds with 𝑝 = 2.

5.4 (Sub)Martingale Convergence
The second major use of martingales is in proofs of convergence for stochastic
processes. A first step in the analysis is to characterize the number of times a
stochastic process “upcrosses” an interval.

5.4.1 Upcrossings
Let 𝑋 := (𝑋𝑘 , 𝑘 ∈ N) be an adapted process with respect to some filtration and
consider the integral transformation 𝑍𝑛 :=

∫ 𝑛

0 𝐹𝑘d𝑋𝑘 , 𝑛 ∈ N, where (𝐹𝑘 ) is a pre-
dictable process. Continuing the financial analogy in Section 5.3.1, think of 𝑋𝑘 as
the share price at time 𝑘 and 𝐹𝑘 as the number of shares owned at period 𝑘 . It is
completely determined by the share price history before period 𝑘 . That is, the share
buying strategy is determined by the information available before the 𝑘th period.
For example, the strategy could have the following rules: (1) we are allowed at most
one share, (2) when the share price drops to level 𝑎 or lower, we buy one share (if
our portfolio is empty), and (3) when the share price reaches 𝑏 or higher, for some
fixed 𝑏 > 𝑎, we sell the share, if we own one. The total profit at period 𝑛 is 𝑍𝑛 − 𝑍0.
If the share price at 𝑛 (if any) is higher than what it was bought for, then the total
profit 𝑍𝑛 − 𝑍0 is at least (𝑏 − 𝑎)𝑈𝑛, where𝑈𝑛 is the number of times the process 𝑋
has upcrossed the interval (𝑎, 𝑏) during the periods 0, 1, . . . , 𝑛.

As a special case, suppose that 𝑋 ≥ 0 is a positive submartingale and that 𝑎 = 0.
Thus, if at any time 𝑘 when the price drops to 0, we buy a share (if we have no
share), and we sell a share (if we own one) when the price hits 𝑏 or any price higher.
Again, we are allowed at most one share. We thus have

(5.46) 𝑍𝑛 − 𝑍0 ≥ 𝑏𝑈𝑛,

where 𝑈𝑛 is the number of upcrossings of (0, 𝑏); i.e., the total number of shares
sold up to period 𝑛. Now observe that for each 𝑘 = 0, 1, 2, . . ., we have:

E𝑘 [𝑍𝑘+1 − 𝑍𝑘 ] = E𝑘 [(𝑋𝑘+1 − 𝑋𝑘 )𝐹𝑘+1] = 𝐹𝑘+1︸︷︷︸
≤ 1

E𝑘 [𝑋𝑘+1 − 𝑋𝑘 ]︸            ︷︷            ︸
≥ 0

≤ E𝑘 [𝑋𝑘+1 − 𝑋𝑘 ] .

Summing the above terms from 𝑘 = 0 to 𝑛 − 1 and taking expectations gives

E[𝑍𝑛 − 𝑍0] ≤ E[𝑋𝑛 − 𝑋0] .
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Combining this with (5.46) gives:

(5.47) 𝑏 E𝑈𝑛 ≤ E[𝑋𝑛 − 𝑋0] .

For a general interval (𝑎, 𝑏) and a submartingale 𝑋 , the above result is general-
ized as follows. Recall that for a random variable 𝑉 , 𝑉+ := 𝑉 ∨ 0 = max{𝑉, 0}.

Theorem 5.48: Expected Upcrossings of a Submartingale

Suppose that 𝑋 is a submartingale. Then, the expected number of upcrossings
𝑈𝑛 (𝑎, 𝑏) of (𝑎, 𝑏) satisfies:

(5.49) (𝑏 − 𝑎) E𝑈𝑛 (𝑎, 𝑏) ≤ E[(𝑋𝑛 − 𝑎)+ − (𝑋0 − 𝑎)+] .

Proof. The number of upcrossings of (𝑎, 𝑏) for 𝑋 is the same as the number
of upcrossings of (0, 𝑏 − 𝑎) for the process (𝑋 − 𝑎)+. The latter is a positive
submartingale, for which, by (5.47), we have (5.49). □

The upcrossing theorem will be useful for proving convergence results for
(sub)martingales. Recall that submartingale has a tendency to increase. If this
increase is constrained in some way, it is reasonable that the process would con-
verge. The following theorem restrains the growth of the submartingale by means
of a finiteness condition on the supremum of the E𝑋+

𝑛 :

Theorem 5.50: (Sub)Martingale Convergence

Let 𝑋 := (𝑋𝑛, 𝑛 ∈ N) be a submartingale. Suppose that sup𝑛 E𝑋+
𝑛 < ∞. Then,

𝑋 converges almost surely to an integrable random variable 𝑋∞.

Proof. Suppose that the sequence (𝑋𝑛 (𝜔)) does not converge for some 𝜔. Then,
there exist 𝑎, 𝑏 ∈ Q with lim inf 𝑋𝑛 (𝜔) < 𝑎 < 𝑏 < lim sup 𝑋𝑛 (𝜔) such that the
total number of upcrossings of (𝑎, 𝑏) by (𝑋𝑛 (𝜔)) is ∞. The corresponding random
variable is defined as𝑈 (𝑎, 𝑏) := lim𝑈𝑛 (𝑎, 𝑏). Consider the event⋃

𝑎,𝑏∈Q
𝑎<𝑏

{𝑈 (𝑎, 𝑏) = ∞}.

We need to show that the probability of this event is in fact 0. Or, equivalently, that
P(𝑈 (𝑎, 𝑏) < ∞) = 1 for every 𝑎, 𝑏 ∈ Q with 𝑎 < 𝑏. Thus, it suffices to show that
E𝑈 (𝑎, 𝑏) < ∞ for any such a pair (𝑎, 𝑏). For this, we apply Theorem 5.48 and take
the supremum over 𝑛 on both sides of (5.49) to get

(𝑏 − 𝑎) sup
𝑛

E𝑈𝑛 (𝑎, 𝑏) ≤ sup
𝑛

E(𝑋𝑛 − 𝑎)+.
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Since (𝑈𝑛 (𝑎, 𝑏)) is increasing, we have sup𝑛 E𝑈𝑛 (𝑎, 𝑏) = E𝑈 (𝑎, 𝑏) by the Mono-
tone Convergence Theorem 2.34. Also, (𝑋𝑛− 𝑎)+ ≤ 𝑋+

𝑛 + |𝑎 |, so sup𝑛 E(𝑋𝑛− 𝑎)+ ≤
sup𝑛 E𝑋+

𝑛 + |𝑎 | < ∞ by the theorem assumption. Consequently, E𝑈 (𝑎, 𝑏) < ∞, so
that 𝑋∞ := lim 𝑋𝑛 exists almost surely. It remains to show that 𝑋∞ is integrable.
This follows from Fatou’s Lemma 2.35:

(5.51) E|𝑋∞ | = E lim inf |𝑋𝑛 | ≤ lim inf E|𝑋𝑛 | ≤ 2 sup
𝑛

E𝑋+
𝑛 − E𝑋0 < ∞.

The second-last inequality follows from the facts that

E|𝑋𝑛 | = E𝑋+
𝑛 + E𝑋−

𝑛 = 2E𝑋+
𝑛 − E𝑋𝑛

and that E𝑋𝑛 ≥ E𝑋0, since 𝑋 is a submartingale. □

A uniformly integrable submartingale satisfies the condition of Theorem 5.50.
This is because E𝑋+

𝑛 ≤ E|𝑋𝑛 |, and hence sup𝑛 E𝑋+
𝑛 ≤ sup𝑛 E|𝑋𝑛 | < ∞, by the

property of uniform integrability (see Proposition 3.34, Point 5). The following
affirms the central role of uniform integrability in connection with (sub)martingales.
We already saw in Theorem 3.38 that a sequence of real-valued random variables
converges in 𝐿1 if and only if it converges in probability and is uniformly integrable.

Theorem 5.52: (Sub)Martingale Convergence and Uniform Integrability

Let 𝑋 := (𝑋𝑛, 𝑛 ∈ N) be a submartingale. Then, 𝑋 converges almost surely
and in 𝐿1 if and only if it is uniformly integrable. Moreover, if 𝑋 converges,
setting 𝑋∞ := lim 𝑋𝑛 extends 𝑋 to a submartingale 𝑋 := (𝑋𝑛, 𝑛 ∈ N).

Proof. If 𝑋 converges almost surely (and hence in probability) and in 𝐿1, it must
be uniformly integrable by Theorem 3.38.

Conversely, suppose that 𝑋 is a UI submartingale. Then, as mentioned above, it
satisfies the condition of Theorem 5.50 and hence it converges almost surely to an
integrable random variable 𝑋∞. Again by Theorem 3.38, 𝑋 also converges to 𝑋∞ in
𝐿1 sense. To show that the extended process 𝑋 is a submartingale over N, we need
to show that:
1. 𝑋∞ ∈ F∞,
2. E|𝑋∞ | < ∞,
3. E𝑚 (𝑋∞ − 𝑋𝑚) ≥ 0 for all 𝑚 ∈ N.

The first point follows from the fact that 𝑋∞ is the limit of the 𝑋𝑛, all of whom
belong to F∞. The second point was already shown in (5.51). For the final point,
take 𝐻 ∈ F𝑚 for some arbitrary𝑚. By conditioning on F𝑚 we have for every 𝑛 ≥ 𝑚:

E1𝐻 (𝑋𝑛 − 𝑋𝑚) = E1𝐻E𝑚 (𝑋𝑛 − 𝑋𝑚) ≥ 0,
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where the last inequality follows from the submartingale property of 𝑋 . Since
𝑋𝑛 − 𝑋𝑚 converges in 𝐿1 to 𝑋∞ − 𝑋𝑚 as 𝑛→ ∞ and 1𝐻 is bounded, we have

(5.53) E1𝐻E𝑚 (𝑋∞ − 𝑋𝑚) =︸︷︷︸
cond.exp.

E1𝐻 (𝑋∞ − 𝑋𝑚) = lim
𝑛

E1𝐻 (𝑋𝑛 − 𝑋𝑚) ≥ 0.

If the random variable E𝑚 (𝑋∞−𝑋𝑚) were strictly negative on some set 𝐴 ∈ F𝑚 with
P(𝐴) > 0, then taking 𝐻 = 𝐴 would give E1𝐻E𝑚 (𝑋∞− 𝑋𝑚) < 0, which contradicts
(5.53). Hence, E𝑚 (𝑋∞ − 𝑋𝑚) ≥ 0 almost surely. □

We have seen in Example 5.11 that if 𝑍 is an integrable random variable, then
𝑀𝑛 := E𝑛𝑍, 𝑛 = 0, 1, 2, . . . defines a uniformly integrable martingale. We can think
of 𝑍 as some kind of ultimate truth that is revealed at the end of time. For any finite
time 𝑛, 𝑀𝑛 conveys what we know about 𝑍 based on the history up to time 𝑛. Any
UI martingale is actually of this form, as detailed in the following theorem:

Theorem 5.54: Uniformly Integrable Martingale

A process 𝑀 := (𝑀𝑛, 𝑛 ∈ N) is a UI martingale if and only if there exists an
integrable random variable 𝑍 such that

(5.55) 𝑀𝑛 = E𝑛𝑍, 𝑛 ∈ N.

Moreover, then 𝑀 converges almost surely and in 𝐿1 to an integrable random
variable

(5.56) 𝑀∞ := E∞𝑍,

and (𝑀𝑛, 𝑛 ∈ N) is again a UI martingale. If 𝑍 ∈ F∞, then 𝑀∞ = 𝑍 .

Proof. To prove sufficiency, suppose that 𝑀 satisfies (5.55). Then, it is a UI
martingale, as shown in Example 5.11. Hence, by Theorem 5.52, 𝑀 converges
almost surely and in 𝐿1 to a random variable 𝑀∞ and 𝑀 := (𝑀𝑛, 𝑛 ∈ N) is again a
martingale. It is in fact UI, because 𝑀 is UI and 𝑀∞ is integrable. We still need to
show that 𝑀∞ = E∞𝑍 , but we leave this to the end.

For the necessity part, suppose 𝑀 is an arbitrary UI martingale. Again, by
Theorem 5.52, 𝑀 converges almost surely and in 𝐿1 to a random variable 𝑀∞ and
𝑀 := (𝑀𝑛, 𝑛 ∈ N) is a UI martingale. In particular, by the martingale property,

E𝑛𝑀∞ = 𝑀𝑛, 𝑛 = 0, 1, 2, . . . ,

so (5.55) holds with 𝑍 = 𝑀∞.
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It remains to show that (5.56) holds if 𝑀𝑛 = E𝑛𝑍 , 𝑛 ∈ N. Take an arbitrary
𝐻 ∈ F∞. We want to show

(5.57) E1𝐻𝑀∞ = E1𝐻𝑍,

using a monotone class argument. Let D be the collection of all 𝐻 ∈ F∞ for which
(5.57) holds. This is a d-system (check yourself). Moreover, it contains F𝑛 for each
𝑛, because for any 𝐻 ∈ F𝑛, it holds that

E1𝐻𝑀∞ = E1𝐻 E𝑛𝑀∞︸ ︷︷ ︸
𝑀𝑛

= E1𝐻 E𝑛𝑍︸︷︷︸
𝑀𝑛

= E1𝐻𝑍.

Thus, D is a d-system that contains the p-system ∪𝑛F𝑛. It follows by the Monotone
Class Theorem 1.12 that D contains the 𝜎-algebra generated by ∪𝑛F𝑛, i.e., F∞. So
(5.57) holds for all 𝐻 ∈ F∞. Consequently, for all 𝐻 ∈ F∞,

E1𝐻E∞𝑍 =︸︷︷︸
cond.exp.

E1𝐻𝑍 = E1𝐻𝑀∞,

which can only be true if 𝑀∞ = E∞𝑍 . Finally, if 𝑍 ∈ F∞, then E∞𝑍 = 𝑍 , in which
case 𝑀∞ = 𝑍 . □

If the time set T = N and the martingale (𝑀𝑛 ∈ N) is UI, then we can think
of 𝑀𝑛 as our best estimate at time 𝑛 of the final truth 𝑀∞ that will be revealed at
the end of time. As time proceeds, more and more information becomes available
about this final truth.

What if the martingale has been going since time immemorial and we observe
it today at time 𝑛 = 0, using all the information of the past? To explore this,
consider the following martingale in reversed time. This is simply a martingale
𝑀 := (𝑀𝑛, 𝑛 ∈ T) with time setT := {. . . ,−2,−1, 0}. As before, we have a filtration
F := (F𝑛) that is increasing in 𝑛; that is, as time increases more information becomes
available.

Theorem 5.58: Convergence for Martingales in Reversed Time

For T = {. . . ,−2,−1, 0}, let 𝑀 := (𝑀𝑛, 𝑛 ∈ T) be a martingale with respect
to the filtration (F𝑛, 𝑛 ∈ T). Then, 𝑀 is UI and, moreover, as 𝑛 ↓ −∞ it
converges almost surely and in 𝐿1 to the integrable random variable 𝑀−∞ :=
E−∞𝑀0, where F−∞ := ∩𝑛∈TF𝑛.

Proof. From the martingale property, we have

𝑀𝑛 = E𝑛𝑀0, 𝑛 ∈ T.
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In Example 5.11 we saw that martingales of such form are uniformly integrable. So
𝑀0 is the “ground truth” that is revealed more and more as we go forward in time,
starting from the “beginning of time”. To show that the value of the martingale at
the beginning of time, say 𝑀−∞, has meaning, we repeat the proof of Theorem 5.54,
using the upcrossing theorem. In particular, by Theorem 5.48 the expected num-
ber of upcrossings of an interval (𝑎, 𝑏) by the martingale (𝑀𝑛, 𝑀𝑛+1, . . . , 𝑀0) is
bounded by

1
𝑏 − 𝑎E

[
(𝑀0 − 𝑎)+ − (𝑀𝑛 − 𝑎)+

]
≤ 1
𝑏 − 𝑎E(𝑀0 − 𝑎)+ < ∞.

This holds for any 𝑛 ∈ T. Thus, the number of upcrossings of (𝑎, 𝑏) by 𝑀 over T
is almost surely finite for any interval (𝑎, 𝑏), with 𝑎 < 𝑏. Just as in the proof of
Theorem 5.50, this implies that 𝑀 converges almost surely to a random variable
𝑀−∞ as 𝑛 ↓ −∞. By uniform integrability of 𝑀 , the convergence is in 𝐿1 as well.
Finally, as 𝑀𝑛 ∈ F𝑘 , 𝑘 = 𝑛, 𝑛 + 1, . . . , 0, the random variable 𝑀−∞ belongs to all
F𝑛, 𝑛 ∈ T, and hence it belongss to the intersection of these 𝜎-algebras. □

We now have gathered enough results to extend Doob’s stopping theorem for
UI martingales to arbitrary (not only bounded) stopping times.

Theorem 5.59: Stopping for Uniformly Integrable Martingales

If 𝑀 := (𝑀𝑛, 𝑛 ∈ N) is a uniformly integrable martingale, then for every pair
of stopping times 𝑆 and 𝑇 with 𝑆 ≤ 𝑇 it holds that

E𝑆𝑀𝑇 = 𝑀𝑆 .

In particular,
E𝑀𝑇 = E𝑀0.

Proof. Since 𝑀 is a UI martingale, we have

𝑀𝑛 = E𝑛 𝑍, 𝑛 ∈ N

for some integrable random variable 𝑍 . From Doob’s Stopping Theorem 5.39
applied to the bounded stopping times 𝑇 ∧ 𝑛 and 𝑛, we have

𝑀𝑇∧𝑛 = E𝑇∧𝑛 𝑀𝑛 = E𝑇∧𝑛 E𝑛 𝑍 = E𝑛 E𝑇 𝑍, 𝑛 ∈ N,

where we have used the repeated conditioning property of conditional expectations.
Since 𝑀 is UI on N, 𝑀𝑇 is integrable, even if 𝑇 can take the value ∞. By
Theorem 5.54, the random variable E𝑛 E𝑇 𝑍 converges to E𝑇𝑍 almost surely. But



180 5.5. Applications

𝑀𝑇∧𝑛 = E𝑛 E𝑇 𝑍 also converges almost surely to 𝑀𝑇 . Hence, 𝑀𝑇 = E𝑇 𝑍 . For any
stopping time 𝑆 ≤ 𝑇 we have by repeated conditioning:

E𝑆 𝑀𝑇 = E𝑆 E𝑇 𝑍 = E𝑆 𝑍 = 𝑀𝑆,

as had to be shown. Finally, by taking expectations (i.e., unconditioning) with 𝑆 = 0,
we have

E𝑀𝑇 = E𝑀0.

□

Example 5.60 (Asymmetric Random Walk Continued) Let (𝑋𝑛, 𝑛 ∈ N) be the
asymmetric random walk on the integers from Example 5.33, to which corresponds
the martingale

𝑀𝑛 = (𝑞/𝑝)𝑋𝑛 , 𝑛 ∈ N.

Let 𝑇 be the first time that (𝑋𝑛), starting at some strictly positive integer 𝑎, reaches
either 0 or 𝑏 > 𝑎. The stopped martingale (𝑀𝑛∧𝑇 , 𝑛 ∈ N) is uniformly integrable,
as all its values lie between 1 and (𝑞/𝑝)𝑏. So, we can immediately conclude from
Theorem 5.59 that E𝑀𝑇 = E𝑀0. In particular, there is no need to ascertain the
almost sure finiteness of 𝑇 , as we did in Example 5.33.

5.5 Applications
In this section, we discuss a number of beautiful applications of martingale theory.

5.5.1 Kolmogorov’s 0–1 Law
Let 𝑋1, 𝑋2, . . . be a sequence of independent random variables, with natural filtration
F := (F𝑛), where F𝑛 := 𝜎(𝑋1, . . . , 𝑋𝑛). Recall the notation E𝑛𝑍 = E[𝑍 | F𝑛] =

E[𝑍 | 𝑋1, . . . , 𝑋𝑛]. Define T𝑛 := 𝜎(𝑋𝑛+1, 𝑋𝑛+2, . . .) and T := ∩𝑛T𝑛. The 𝜎-algebra
T is called the tail𝜎-algebra of 𝑋1, 𝑋2, . . .. It consists of events that are not affected
by a finite number of the {𝑋𝑖}; for example, the event{

lim sup
1
𝑛
(𝑋1 + · · · + 𝑋𝑛) > 𝑥

}
belongs to T .

Theorem 5.61: Kolmogorov’s 0–1 Law

If 𝐻 ∈ T , then P(𝐻) is either 0 or 1. Consequently, a numerical random
variable 𝑍 that is T -measurable must be almost surely constant.
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Proof. For every event 𝐻,
E𝑛1𝐻

a.s.→ E∞1𝐻 ,

by Theorem 5.54. Suppose 𝐻 ∈ T . Since T is independent of F𝑛, we have

E𝑛1𝐻 = E1𝐻 = P(𝐻).

On the other hand, since T𝑛 ⊆ F∞ for all 𝑛, we have T ⊆ F∞, which implies that

E∞1𝐻 = 1𝐻 .

Combining the three displayed results gives

P(𝐻) = 1𝐻 , almost surely.

This means that P(𝐻) is either 0 or 1. Finally, suppose that 𝑍 is a numerical
random variable in T (i.e., 𝑍 is T/B-measurable). Then, {𝑍 = 𝑧} ∈ T has either
probability 0 or 1. Hence, there must be a 𝑐 ∈ R such that P(𝑍 = 𝑐) = 1. □

5.5.2 Strong Law of Large Numbers
We give a proof of the Law of Large Numbers (Theorem 3.44), under the condition
that 𝑋1, 𝑋2, . . . is an iid sequence of random variables with finite expectation 𝑐. We
thus want to prove that the sample mean process 𝑋𝑛, 𝑛 = 1, 2, . . ., with

𝑋𝑛 :=
𝑋1 + · · · + 𝑋𝑛

𝑛
,

converges almost surely to 𝑐 as 𝑛 → ∞. We consider thereto the filtration F :=
(F−𝑛, 𝑛 = 1, 2, . . .), where F−𝑛 := 𝜎(𝑋𝑛, 𝑋𝑛+1, . . .). Thus, F−𝑛 contains present
and future information of the sample means at time 𝑛. Because the (𝑋1, . . . , 𝑋𝑛) is
independent of 𝑋𝑛+1, 𝑋𝑛+2, . . ., we have for each 𝑘 ∈ {1, . . . , 𝑛}:

E−𝑛𝑋𝑘 := E[𝑋𝑘 | F−𝑛] = 𝑔𝑘 (𝑋𝑛)

for certain measurable numerical functions 𝑔𝑘 , 𝑘 = 1, . . . , 𝑛. In fact, since the
distribution of (𝑋1, . . . , 𝑋𝑛) is invariant under permutations, all {𝑔𝑘 } must be the
same. Moreover, as E−𝑛 (𝑋1 + · · · + 𝑋𝑛) = 𝑛 𝑋𝑛, we must have

E−𝑛𝑋𝑘 = 𝑋𝑛, 𝑘 = 1, . . . , 𝑛

and, in particular,
E−𝑛𝑋1 = 𝑋𝑛, 𝑛 = 1, 2, . . . .

This shows that (𝑋𝑛, 𝑛 = 1, 2, . . .) is a uniformly integrable martingale. By The-
orem 5.58 it converges almost surely and in 𝐿1 to an integrable random variable 𝑋∞
as 𝑛→ ∞. To show that 𝑋∞ = 𝑐 almost surely, note that

𝑋∞ = lim
𝑛

1
𝑛
(𝑋𝑘+1 + · · · + 𝑋𝑘+𝑛),
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which shows that 𝑋∞ belongs to the tail 𝜎-algebra 𝜎(𝑋𝑘+1, 𝑋𝑘+2, . . .) for every
𝑘 = 0, 1, . . . and hence it belongs to the intersection of these. By Kolmogorov’s 0–1
law, 𝑋∞ must be almost surely constant. Finally, by 𝐿1 convergence, this constant
must be 𝑐, as E𝑋∞ = limE𝑋𝑛 = 𝑐.

5.5.3 Radon–Nikodym Theorem
Recall that the Radon–Nikodym Theorem 1.59 is closely connected to the concept
of conditional expectation; see Section 4.2. We provide a proof of the theorem using
martingale techniques, under the condition of separability of the related 𝜎-algebra.

Definition 5.62: Separable 𝜎-Algebra

A 𝜎-algebra on Ω is said to be separable if it is generated by a sequence (𝐻𝑛)
of subsets of Ω.

Example 5.63 (The Borel𝜎-Algebra is Separable) LetΩ := (0, 1] and consider
the following sequence of partitions that become increasingly finer:

P0 := (0, 1]
P1 := (0, 1/2], (1/2, 1]
...

P𝑛 := (0, 1/2𝑛], (1/2𝑛, 2/2𝑛], . . . , (1 − 2−𝑛, 1]
...

Let (𝐻𝑛) be the sequence of intervals (0, 1], (0, 1/2], (1/2, 1], . . ., in the order in
which these sets appear above. Then, every interval (𝑎, 𝑏] ⊆ (0, 1] can be written
as a countable union of elements in (𝐻𝑛), and hence 𝜎(𝐻1, 𝐻2, . . .) = B(0,1] ; that
is, the Borel 𝜎-algebra on (0, 1] is separable.

The above example proffers the idea that the appropriate way to look at a
separable 𝜎-algebra G is through a sequence of ever-finer partitions P0,P1, . . ..
Given the sequence (𝐻𝑛), it is always possible to construct such a sequence of
partitions. Namely, for every 𝑛, the 𝜎-algebra F𝑛 defined as 𝜎(𝐻1, . . . , 𝐻𝑛) has
only a finite number of elements, and so we can find a finite partition P𝑛 such that
every element of F𝑛 can be written as a finite union of elements in P𝑛. In particular,
𝜎(P𝑛) = F𝑛. Now, (F𝑛) is a filtration and F∞ = limF𝑛 = ∨𝑛F𝑛 = G.

The following is a slightly restricted version — applied to a probability space
(Ω,H , P) — of the Radon–Nikodym Theorem 1.59, which we can prove rigorously
using martingale theory:
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Theorem 5.64: Radon–Nikodym

Let (Ω,H , P) be a probability space, where H is separable, and let 𝑄 be a
finite measure on (Ω,H) with 𝑄 ≪ P. Then, there exists a positive random
variable 𝑍 ∈ H , written 𝑍 = d𝑄/dP, such that 𝑄 = 𝑍 P; that is,

(5.65) 𝑄(𝐻) =
∫
𝐻

𝑍 dP = E1𝐻 𝑍, 𝐻 ∈ H .

Proof. The proof is mostly by construction, apart from a few technical points. Since
H is separable, we can find a sequence of ever-finer finite partitions (P𝑛) and a
filtration F := (F𝑛) with F𝑛 := 𝜎(P𝑛), as discussed after Example 5.63. We first
construct a stochastic process 𝑋 := (𝑋𝑛) as follows:

𝑋𝑛 :=
∑︁
𝐻∈P𝑛

𝑄(𝐻)
P(𝐻) 1𝐻 , 𝑛 ∈ N,

with the convention that 0/0 := 0. Since P𝑛 is a partition, there exists for each
specific 𝜔 ∈ Ω a unique set 𝐻𝜔 ∈ P𝑛 that contains 𝜔. The above definition thus
implies that 𝑋𝑛 (𝜔) = 𝑄(𝐻𝜔)/P(𝐻𝜔). Obviously, 𝑋𝑛 ≥ 0 for all 𝑛 ∈ N; and 𝑋𝑛 ∈ F𝑛,
since 𝑋𝑛 only takes finitely many values and the inverse image of each of these values
is a set in P𝑛. Since any𝐻 ∈ F𝑛 can be written as a finite union𝐻 = ∪𝑘𝐻𝑘 of disjoint
sets in P𝑛, we have

(5.66) E1𝐻𝑋𝑛 =
∑︁
𝑘

𝑄(𝐻𝑘 )
P(𝐻𝑘 )

P(𝐻𝑘 ) =
∑︁
𝑘

𝑄(𝐻𝑘 ) = 𝑄(𝐻).

We want to show that 𝑋 is a positive martingale with respect to the filtration
F and that it converges almost surely to a random variable 𝑍 ∈ H . Positivity
and adaptedness have already been shown, and taking 𝐻 = Ω in (5.66) shows
integrability, since E𝑋𝑛 = 𝑄(Ω) < ∞. The martingale property follows from

E1𝐻𝑋𝑛 = 𝑄(𝐻) = E1𝐻𝑋𝑛+1, 𝐻 ∈ F𝑛,

where we have used the fact that also 𝐻 ∈ F𝑛+1. Since 𝑋 is a positive martingale,
−𝑋 is a negative submartingale with sup𝑛 E(−𝑋+

𝑛 ) ≤ 0 < ∞, and we can apply The-
orem 5.52 immediately to conclude that 𝑋 converges almost surely to an integrable
random variable 𝑍 ∈ H .

In fact, 𝑋 is a uniformly integrable martingale, and thus the convergence to 𝑍 is
in 𝐿1 sense as well. To prove uniform integrability, we need to show that for every
𝜀 > 0 there is a 𝑏 such that

sup
𝑛

E𝑋𝑛1{𝑋𝑛>𝑏} ≤ 𝜀.
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By (5.66) we have
E𝑋𝑛1{𝑋𝑛>𝑏} = 𝑄(𝑋𝑛 > 𝑏).

So it suffices to show that for all 𝜀 > 0 there exists a 𝑏 such that 𝑄(𝑋𝑛 > 𝑏) ≤ 𝜀

for all 𝑛. Since 𝑄 is absolutely continuous with respect to P (i.e., P(𝐻) = 0 implies
𝑄(𝐻) = 0), a small value of P(𝐻) ought to imply a small value of 𝑄(𝐻). This
suggests that for every 𝜀 > 0 we seek a 𝛿 > 0 such that

(5.67) P(𝐻) ≤ 𝛿 ⇒ 𝑄(𝐻) ≤ 𝜀 for all 𝐻 ∈ H .

If for every 𝜀 > 0 (5.67) holds for some 𝛿 > 0, then take 𝑏 := 𝑄(Ω)/𝛿 and 𝐻 :=
{𝑋𝑛 > 𝑏}, so that by Markov’s inequality (3.9) and (5.66):

P(𝑋𝑛 > 𝑏) ≤
1
𝑏
E𝑋𝑛 =

1
𝑏
𝑄(Ω) = 𝛿

and hence 𝑄(𝐻) ≤ 𝜀. To prove (5.67), take an 𝜀 > 0 and suppose that (5.67) does
not hold. Thus, there exists 𝐻𝑛 ∈ H such that

P(𝐻𝑛) ≤ 2−𝑛 while 𝑄(𝐻𝑛) > 𝜀.

Define 𝐻 such that 1𝐻 = lim sup1𝐻𝑛 . By the Borel–Cantelli Lemma 3.14, we have
lim sup1𝐻𝑛 = 0, almost surely, which means that P(𝐻) = 0. But also, by Fatou’s
Lemma 2.35,∫

lim sup1𝐻𝑛d𝑄 = −
∫

lim inf(−1𝐻𝑛)d𝑄 ≥ − lim inf
∫

(−1𝐻𝑛)d𝑄

= lim sup
∫

1𝐻𝑛d𝑄 = lim sup𝑄(𝐻𝑛) ≥ 𝜀.

This is in contradiction to the absolute continuity of 𝑄 with respect to P, so there
does exist a 𝛿 such that (5.67) holds.

Thus, we have established that 𝑋 is uniformly integrable and that it converges
to 𝑍 in both almost sure and 𝐿1 sense. It remains to show (5.65). Define for every
event 𝐻:

𝑄(𝐻) :=
∫
𝐻

𝑍 dP = E1𝐻𝑍 = limE1𝐻𝑋𝑛,

where the last equality follows from 𝐿1 convergence of 𝑋 . But for 𝐻 ∈ F𝑛 we
have 𝑄(𝐻) = 𝑄(𝐻), by (5.66). Since 𝑄 and 𝑄 coincide on the p-system ∪𝑛F𝑛 that
generates H , they must coincide on H . □

5.6 Martingales in Continuous Time
We conclude this chapter with a preparatory discussion of martingales in continuous
time. We already encountered an important example in the form of the process (𝑁𝑡−
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𝑐𝑡, 𝑡 ≥ 0), where (𝑁𝑡) is a Poisson counting process with rate 𝑐; see Example 5.10.
In a similar way, we can obtain martingales from other Lévy processes by subtracting
their mean.

Chapters 6 and 7 will showcase many continuous-time martingales related to
the Wiener process. The Wiener process itself provides the main example of a
continuous-time martingale.

Example 5.68 (Wiener Process is a Martingale) Let (𝑊𝑡 , 𝑡 ≥ 0) be the Wiener
process, as previously examined in Examples 2.77 and 2.96. It is adapted to its
natural filtration, integrable (as E|𝑊𝑡 | < ∞ for all 𝑡) and satisfies the martingale
property

E𝑠𝑊𝑡 = E𝑠 [𝑊𝑠 +𝑊𝑡 −𝑊𝑠] = 𝑊𝑠 + E𝑠 [𝑊𝑡 −𝑊𝑠]︸         ︷︷         ︸
= 0

= 𝑊𝑠

for all 𝑠 < 𝑡.

The objective of this section is to extend the results for discrete-time martingales
to the continuous-time case. To that end, recall the main findings for a martingale
𝑀 := (𝑀𝑛, 𝑛 ∈ T) with time set T = N or N:

1. Doob’s Stopping Theorem: For every pair of bounded stopping times 𝑆 ≤ 𝑇 ,

(5.69) E𝑆𝑀𝑇 = 𝑀𝑆,

provided 𝑀𝑆 and 𝑀𝑇 are integrable; see Theorem 5.39.

2. Doob’s Stopping Theorem for UI Martingales: For a UI martingale 𝑀 on T = N,
(5.69) holds for every pair of stopping times 𝑆 ≤ 𝑇 ; see Theorem 5.59.

3. Martingale Convergence for UI martingales: A UI martingale 𝑀 on N is of the
form

𝑀𝑛 = E𝑛𝑍, 𝑛 ∈ N.

It converges almost surely and in 𝐿1 to an integrable random variable 𝑀∞ and
can be extended to a UI martingale on N; see Theorem 5.54.

5.6.1 Local Martingales and Doob Martingales

When analysing a stochastic process 𝑀 := (𝑀𝑡 , 𝑡 ∈ T) with T = R+ or R+ for some
filtration F on a probability space (Ω,H , P), it is often convenient (and sometimes
necessary) to impose various regularity conditions on the process itself, the underly-
ing probability space, and/or the filtration that is used. Typical regularity conditions
are:

1. The probability space (Ω,H , P) be complete, meaning that H contains every
negligible set; that is, if 𝐴 ⊂ 𝐻 with P(𝐻) = 0, then 𝐴 ∈ H .
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2. The filtration F be augmented, meaning that (Ω,H , P) is complete and all the
negligible events in H are also in F0 (and hence in all F𝑡).

3. The paths of 𝑀 be right-continuous and have left-limits.

Even when these regularity assumptions are in place, it is sometimes necessary
to extend the notion of the natural filtration of a process ever so slightly, as illustrated
by the following example:

Example 5.70 (Not a Stopping Time) Let 𝑋𝑡 be the position of a particle that
starts at position 0 and moves with velocity 1. At a random time 𝑇 it stops. A
typical trajectory is shown in Figure 5.71. As we cannot say at any time 𝑡 whether
the particle has actually stopped, 𝑇 is not a stopping time for the natural filtration
of (𝑋𝑡). However, if we were able to look an infinitesimal amount of time ahead at
every 𝑡, then we would be able to discern whether the particle has stopped at time 𝑡.

0

Figure 5.71: 𝑇 is not a stopping time.

The previous example suggests that we use filtrations for which the information
at time 𝑡 is exactly the same as the information at time 𝑡 if we can also “peek ahead”
an infinitesimal amount of time. This leads to the following definition:

Definition 5.72: Right-continuous Filtration

A filtration F := (F𝑡) is said to be right-continuous if for all 𝑡,⋂
𝜀>0

F𝑡+𝜀 = F𝑡 .

It is easy to construct a right-continuous filtration, F + from a natural filtration
F , by defining

(5.73) F +
𝑡 :=

⋂
𝑢>𝑡

F𝑢 .
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In Example 5.70, 𝑇 is a stopping time of F +, but not of the natural filtration F of
the process (𝑋𝑡).

From Theorem 5.83 we have seen that a martingale (𝑀𝑡 , 𝑡 ≥ 0) that is stopped at
a random stopping time 𝑇 , i.e., (𝑀𝑡∧𝑇 , 𝑡 ≥ 0), is again a martingale. The converse
is generally not true: a stopped process that is a martingale may itself not be a
martingale.

Definition 5.74: Local Martingale

A process (𝑍𝑡 , 𝑡 ≥ 0) is called a local martingale if there exists a sequence of
stopping times (𝑇𝑛, 𝑛 ∈ N), called a localizing sequence, such that 𝑇𝑛 → ∞
almost surely and each stopped process (𝑍𝑡∧𝑇𝑛 , 𝑡 ≥ 0) is a martingale.

Similarly, a process (𝑍𝑡 , 𝑡 ≥ 0) is said to be of locally bounded variation if each
(𝑍𝑡∧𝑇𝑛 , 𝑡 ≥ 0) is of bounded variation.

Example 5.75 (Local Martingale) Suppose that 𝑋 ∼ t1 has a Cauchy distribution
and is independent of the Wiener process (𝑊𝑡 , 𝑡 ≥ 0). Then, the process 𝑍 :=
(𝑋 𝑊𝑡 , 𝑡 ≥ 0) is not a martingale, because E |𝑋 𝑊𝑡 | = ∞. Nevertheless, 𝑍 is a local
martingale with respect to the filtration (F𝑡 , 𝑡 ≥ 0) with F𝑡 := 𝜎{𝑊𝑠, 𝑠 ≤ 𝑡} ∨ 𝜎𝑋 .
A particular localizing sequence is 𝑇𝑛 := inf{𝑡 ≥ 0 : |𝑋 𝑊𝑡 | ≥ 𝑛}, 𝑛 ∈ N.

Theorem 5.76: Properties of Local Martingales

Let 𝑍 := (𝑍𝑡 , 𝑡 ≥ 0) be a local martingale with localizing sequence (𝑇𝑛, 𝑛 ∈
N). Then, the following hold:

1. If 𝑍 ≥ 0 and E𝑍0 < ∞, then 𝑍 is a supermartingale.

2. If for each 𝑡 ≥ 0 the sequence (𝑍𝑡∧𝑇𝑛 , 𝑛 ∈ N) is uniformly integrable, then
𝑍 is a martingale.

Proof. Define 𝑍 (𝑛)
𝑡 := 𝑍𝑡∧𝑇𝑛 , 𝑡 ≥ 0, 𝑛 ∈ N. By the martingale property of (𝑍 (𝑛)

𝑡 , 𝑡 ≥
0), we have E𝑠𝑍

(𝑛)
𝑡 = 𝑍

(𝑛)
𝑠 for 𝑠 ≤ 𝑡. Since 𝑇𝑛 a.s.→ ∞, we also have 𝑍 (𝑛)

𝑡
a.s.→ 𝑍𝑡 as

𝑛→ ∞. Hence, applying Fatou’s Lemma 2.35 with regard to E𝑠, we find

E𝑠𝑍𝑡 = E𝑠 lim inf
𝑛

𝑍
(𝑛)
𝑡 ≤ lim inf

𝑛
E𝑠𝑍

(𝑛)
𝑡 = lim inf

𝑛
𝑍
(𝑛)
𝑠 = 𝑍𝑠,

so the supermartingale property holds for 𝑍 . In addition, the process is adapted to
its natural filtration, and integrability follows from E|𝑍𝑡 | ≤ E E0 |𝑍𝑡 | = E 𝑍0 < ∞,
so 𝑍 is a supermartingale. This proves property 1.

For property 2, almost sure convergence 𝑍 (𝑛)
𝑡

a.s.→ 𝑍𝑡 (and thus 𝑍 (𝑛)
𝑡

P→ 𝑍𝑡) com-
bined with the uniform integrability of (𝑍 (𝑛)

𝑡 , 𝑛 ∈ N) imply that 𝑍 (𝑛)
𝑡

𝐿1→ 𝑍𝑡 , by



188 5.6. Martingales in Continuous Time

Theorem 3.38. In other words, E𝑠 |𝑍𝑡∧𝑇𝑛 − 𝑍𝑡 | → 0, which shows that the limit
of E𝑠𝑍

(𝑛)
𝑡 exists and is equal to E𝑠𝑍𝑡 . However, taking limits on both sides of

the martingale equality E𝑠𝑍
(𝑛)
𝑡 = 𝑍

(𝑛)
𝑠 also shows that lim𝑛 E𝑠𝑍

(𝑛)
𝑡 = 𝑍𝑠. Thus,

E𝑠𝑍𝑡 = 𝑍𝑠, so that 𝑍 has the martingale property. Adaptedness is again automatic,
and integrability follows from Fatou and the uniform integrability of (𝑍 (𝑛)

𝑡 , 𝑛 ∈ N):

E |𝑍𝑡 | = E lim inf
𝑛

|𝑍 (𝑛)
𝑡 | ≤ lim inf

𝑛
E|𝑍 (𝑛)

𝑡 | ≤ sup
𝑛

E |𝑍 (𝑛)
𝑡 | < ∞.

□

Example 5.77 (Continuous Local Martingale) If 𝑍 := (𝑍𝑡 , 𝑡 ≥ 0) is a con-
tinuous local martingale with 𝑍0 = 0, then we can always choose the localizing
sequence (𝑇𝑛, 𝑛 ∈ N) to be:

𝑇𝑛 := inf{𝑡 ≥ 0 : |𝑍𝑡 | ≥ 𝑛}, 𝑛 ∈ N.

To see this, let (𝜏𝑚) be the localizing sequence for 𝑍 . Since (𝑍𝑡∧𝜏𝑚 , 𝑡 ≥ 0) is a
continuous martingale, the stopped process (𝑍𝑡∧𝜏𝑚∧𝑇𝑛 , 𝑡 ≥ 0) is also a martingale by
Theorem 5.83. The bound E |𝑍𝑡∧𝜏𝑚∧𝑇𝑛 | ≤ 𝑛 implies that (𝑍𝑡∧𝜏𝑚∧𝑇𝑛 , 𝑛 ∈ N) is UI for
each fixed 𝑛. Therefore, the second part of Theorem 5.76 implies that (𝑍𝑡∧𝑇𝑛 , 𝑡 ≥ 0)
is a martingale for each 𝑛.

Below, T = R+ or R+. For simplicity, we assume that 𝑀 := (𝑀𝑡 , 𝑡 ∈ T) is a
martingale with respect to an augmented and right-continuous filtration, and has
right-continuous and left-limited paths.

Definition 5.78: Doob Martingale

Let 𝜁 be a stopping time. A process 𝑀 := (𝑀𝑡 , 𝑡 ∈ T) is called a Doob
martingale on [0, 𝜁] if for all stopping times 0 ≤ 𝑆 ≤ 𝑇 ≤ 𝜁 it holds that

(5.79) E𝑆𝑀𝑇 = 𝑀𝑆,

where 𝑀𝑆 and 𝑀𝑇 are integrable.

The following provides an equivalent description of a Doob martingale:

Theorem 5.80: Characterization of a Doob Martingale

Let 𝜁 be a stopping time. A process 𝑀 := (𝑀𝑡 , 𝑡 ∈ T) is a Doob martingale
on [0, 𝜁] if and only if for every stopping time 𝑇 ≤ 𝜁 ,

(5.81) E𝑀𝑇 = E𝑀0.
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Proof. Suppose 𝑀 is a Doob martingale on [0, 𝜁]. From (5.79), with (𝑆, 𝑇) :=
(𝑇, 𝜁), we have

(5.82) E𝑇𝑀𝜁 = 𝑀𝑇 .

This holds true for any 𝑇 ≤ 𝜁 . Taking expectations in (5.82) with (𝑇, 𝜁) := (0, 𝑇)
then gives (5.81).

To show necessity, suppose that (5.81) is true for any stopping time 𝑇 ≤ 𝜁 . We
want to show that (5.82) holds. Take an event 𝐻 ∈ F𝑇 and define

𝑈 := 𝑇1𝐻 + 𝜁 (1 − 1𝐻).

Then,𝑈 is a stopping time with 𝑇 ≤ 𝑈 ≤ 𝜁 , and

𝑀𝜁 − 𝑀𝑈 = (𝑀𝜁 − 𝑀𝑇 )1𝐻 .

It follows, using the assumed property (5.81), that

0 = E𝑀𝜁 − E𝑀𝑈 = E[𝑀𝜁 − 𝑀𝑈] = E(𝑀𝜁 − 𝑀𝑇 )1𝐻

for any 𝐻 ∈ F𝑇 ; that is, (5.82) holds. By applying the latter property to stopping
times 𝑆 and 𝑇 with 𝑆 ≤ 𝑇 ≤ 𝜁 , we find

E𝑆𝑀𝑇 = E𝑆E𝑇𝑀𝜁 = E𝑆𝑀𝜁 = 𝑀𝑆 .

That is, 𝑀 is a Doob martingale on [0, 𝜁]. □

The following is the continuous-time version of Doob’s Stopping Theorem 5.39:

Theorem 5.83: Doob’s Stopping Theorem for Continuous Martingales

A martingale 𝑀 := (𝑀𝑡 , 𝑡 ∈ R+) is a Doob martingale on [0, 𝑏] for every
𝑏 ∈ R+ and satisfies

(5.84) E𝑆𝑀𝑇 = 𝑀𝑆

for every pair (𝑆, 𝑇) of bounded stopping times with 𝑆 ≤ 𝑇 .

Proof. Let 𝑀 be a martingale and take 𝑏 ∈ R+. To show that it is a Doob martingale
on [0, 𝑏], we need to show (using Theorem 5.80) thatE𝑀𝑇 = E𝑀0 for every stopping
time 𝑇 ≤ 𝑏. We do this by applying Doob’s Stopping Theorem 5.39 to a discrete-
time martingale (𝑀𝑇𝑛), where (𝑇𝑛) is a sequence of stopping times decreasing to
𝑇 , as defined in Exercise 26. For each 𝑛, define T𝑛 as the countable time set
{𝑘/2𝑛, 𝑘 ∈ N, 𝑛 ∈ N}∪ {𝑏+1} and note that 𝑇𝑛 is bounded by 𝑏+1 and takes values
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in a finite subset of T𝑛. Now, consider the discrete-time martingale (𝑀𝑡 , 𝑡 ∈ T𝑛).
By Theorem 5.39, with (𝑆, 𝑇) := (𝑇𝑛, 𝑏 + 1), we have

(5.85) 𝑀𝑇𝑛 = E𝑇𝑛𝑀𝑏+1.

Defining 𝑋−𝑛 := 𝑀𝑇𝑛 , 𝑛 ∈ N, (5.85) shows that (𝑋−𝑛, 𝑛 ∈ N) is a reversed-time (and
hence uniformly integrable) martingale with respect to the filtration (F𝑇𝑛) — noting
that . . . ≤ 𝑇2 ≤ 𝑇1 ≤ 𝑇0. It follows from Theorem 5.58 that 𝑀𝑇𝑛 converges almost
surely and in 𝐿1 to an integrable random variable. But since (𝑇𝑛) decreases to 𝑇
and 𝑀 is (assumed to be) right-continuous, this limiting random variable must be
𝑀𝑇 . Finally, by 𝐿1 convergence, we have, in view of (5.85),

E𝑀𝑇 = limE𝑀𝑇𝑛 = E𝑀𝑏+1 = E𝑀0.

Thus, 𝑀 is a Doob martingale on [0, 𝑏] for any 𝑏 ∈ R+ and, by definition, (5.84)
holds for any pair (𝑆, 𝑇) of bounded stopping times with 𝑆 ≤ 𝑇 . □

As in the discrete case (see Remark 5.41), when 𝑀 is instead a submartingale,
the above theorem and proof can be modified slightly to yield the inequality:

E𝑆 (𝑀𝑇 − 𝑀𝑆) ≥ 0.

5.6.2 Martingale Inequalities
It is possible to formulate inequalities for the maxima of continuous submartin-
gales, similar to the Doob–Kolmogorov inequality in Theorem 5.44. The following
inequality is of particular use:

Proposition 5.86: Doob’s Maximal Inequality

Let 𝑋 := (𝑋𝑡 , 𝑡 ≥ 0) be a submartingale that is positive and continuous.
Then, for 𝑝 ≥ 1 and 𝑏 > 0,

(5.87) P
(

max
0≤𝑠≤𝑡

𝑋𝑠 ≥ 𝑏
)
≤

E𝑋 𝑝𝑡
𝑏𝑝

.

Proof. First, note that by the Extreme Value Theorem the continuous process 𝑋
attains its maximum on the closed bounded set [0, 𝑡], so that here sup0≤𝑠≤𝑡 𝑋𝑠 =
max0≤𝑠≤𝑡 𝑋𝑠. Second, since 𝑋 is a submartingale, 𝑋 𝑝 is also a submartingale for any
𝑝 ≥ 1, provided that E𝑋 𝑝𝑡 < ∞; see Theorem 5.7. Third, let 𝐷𝑛,𝑡 := {𝑡𝑘2−𝑛, 𝑘 =

0, 1, . . . , 2𝑛} and 𝑀𝑛,𝑡 := max𝑠∈𝐷𝑛,𝑡 𝑋𝑠. Applying Lemma 5.42 to the positive
discrete-time submartingale (𝑋 𝑝𝑠 , 𝑠 ∈ 𝐷𝑛,𝑡), we obtain the inequality:

P(𝑀𝑛,𝑡 ≥ 𝑏) = P( max
𝑠∈𝐷𝑛,𝑡

𝑋
𝑝
𝑠 ≥ 𝑏𝑝) ≤ E𝑋 𝑝𝑡 /𝑏𝑝 .
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Next, if 𝐴𝑛 := {𝑀𝑛,𝑡 ≥ 𝑏}, then (𝐴𝑛) is an increasing sequence of events, so that

lim
𝑛

P(𝐴𝑛) = P(∪∞
𝑘=1𝐴𝑘 ) = P(lim

𝑛
𝑀𝑛,𝑡 ≥ 𝑏) ≤ E𝑋 𝑝𝑡 /𝑏𝑝 .

Finally, the continuity of 𝑋 implies that lim𝑛 𝑀𝑛,𝑡 = max0≤𝑠≤𝑡 𝑋𝑠, giving (5.87). □

Sometimes we want to bound the 𝐿𝑝 norm of the maximum of a continuous
martingale. The following inequality then becomes useful. Note that it can be easily
modified to the discrete-time case.

Proposition 5.88: Doob’s Norm Inequality

Let 𝑀 := (𝑀𝑡 , 𝑡 ≥ 0) be a continuous martingale in 𝐿𝑝 for some 𝑝 > 1 and
let 𝑍𝑡 := max𝑠≤𝑡 |𝑀𝑠 |. Then,

(5.89) E 𝑍 𝑝𝑡 ≤ 𝑞𝑝 E |𝑀𝑡 |𝑝, with 𝑞 := 𝑝/(𝑝 − 1).

Proof. To simplify the notation, let 𝑍 := 𝑍𝑡 . Because |𝑀 | is a positive submartin-
gale, we can apply the inequality (5.43) (which obviously holds for the continuous-
time case as well) to conclude that for all 𝑥 ≥ 0,

E 𝑥1{𝑍≥𝑥} ≤ E |𝑀𝑡 |1{𝑍≥𝑥} .

Using this inequality, we have

E𝑍 𝑝 =
∫ ∞

0
d𝑥 𝑝𝑥𝑝−2E𝑥1{𝑍≥𝑥}

≤ E |𝑀𝑡 |
∫ ∞

0
d𝑥 𝑝𝑥𝑝−2

1{𝑍≥𝑥} = E |𝑀𝑡 |𝑞𝑍 𝑝−1.

Finally, with 𝑋 := |𝑀𝑡 | and 𝑌 := 𝑍 𝑝−1, we have by Hölder’s inequality ∥𝑋𝑌 ∥1 ≤
∥𝑋 ∥𝑝 ∥𝑌 ∥𝑞, with 1/𝑝 + 1/𝑞 = 1:

E |𝑀𝑡 |𝑞𝑍 𝑝−1 ≤ 𝑞(E |𝑀𝑡 |𝑝)1/𝑝 (E𝑍 𝑝)1/𝑞,

where we have used that (𝑝 − 1)𝑞 = 𝑝. Since the left-hand side is greater than or
equal to 𝑎 := E𝑍 𝑝, we have 𝑎 ≤ 𝑞 (E |𝑀𝑡 |𝑝)1/𝑝𝑎1/𝑞; that is, 𝑎 ≤ 𝑞𝑝 E |𝑀𝑡 |𝑝. □

As an application of Doob’s norm inequality, the following lemma shows that
the only interesting continuous-time martingales with continuous sample paths are
the ones whose paths have infinite total variation:

Lemma 5.90: Continuous Martingales with Finite Variation

Let 𝑋 := (𝑋𝑡 , 𝑡 ≥ 0) be a martingale with continuous paths and total variation
𝑉𝑡 < ∞ on each interval [0, 𝑡]. Then, 𝑋 is almost surely constant.
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Proof. Without loss of generality, we assume that E𝑋0 = 0, and so E𝑋𝑡 = 0 for all
𝑡 ≥ 0, by the martingale property. Take an 𝑚 ∈ N, and let 𝑇 := inf{𝑡 ≥ 0 : 𝑉𝑡 ≥ 𝑚}.
Note that the function 𝑡 ↦→ 𝑉𝑡 is continuous. Take a sequence (Π𝑛) of segmentations
of [0, 𝑡], whose mesh goes to 0 as 𝑛 → ∞; as in (5.19). Applying (5.89) to the
martingale (𝑋𝑡∧𝑇 ), with 𝑝 = 2 (and hence 𝑞 = 2), gives Emax𝑠≤𝑡 𝑋2

𝑠∧𝑇 ≤ 4E𝑋2
𝑡∧𝑇 ,

so that

1
4
Emax

𝑠≤𝑡
𝑋2
𝑠∧𝑇 ≤ E

𝑛−1∑︁
𝑘=0

[
𝑋2
𝑠𝑘+1∧𝑇 − 𝑋

2
𝑠𝑘∧𝑇

]
= E

𝑛−1∑︁
𝑘=0

(
𝑋𝑠𝑘+1∧𝑇 − 𝑋𝑠𝑘∧𝑇

)2

≤ E
[
𝑉𝑇 max

𝑘

��𝑋𝑠𝑘+1∧𝑇 − 𝑋𝑠𝑘∧𝑇
��︸                      ︷︷                      ︸

=:𝑍𝑛

]
≤ 𝑚 E𝑍𝑛,

where we have used (5.29) in the equality above. Since the paths of 𝑋 are continuous,
they are uniformly continuous on [0, 𝑡], and hence 𝑍𝑛 → 0 almost surely as 𝑛→ ∞.
Since 𝑍𝑛 ≤ 𝑉𝑡∧𝑇 ≤ 𝑚, the Bounded Convergence Theorem 2.36 implies that E𝑍𝑛 →
0 as 𝑛→ ∞, and hence that Emax𝑠≤𝑡 𝑋2

𝑠∧𝑇 = 0. It follows that 𝑋𝑠 = 0, 𝑠 ∈ [0, 𝑡∧𝑇]
for an arbitrary 𝑡. Since 𝑇 → ∞ as 𝑚 → ∞, almost surely 𝑋𝑠 = 0 for all 𝑠. □

5.6.3 Martingale Extensions
In various applications of continuous-time martingales, we are given a martingale
𝑀 on R and a stopping time 𝑇 that is allowed to take the value ∞; for example, 𝑇
could be the time that 𝑀 enters some set, which may never happen. The question is
then whether the Doob’s stopping theorem still holds for 𝑇 . The following shows
that indeed it does, as long as 𝑀 is a martingale on R+:

Proposition 5.91: Doob Martingale on R+

A process 𝑀 is a Doob martingale on R+ if and only if it is a martingale on
R+. If so, then

E𝑆𝑀𝑇 = 𝑀𝑆

for arbitrary stopping times with 𝑆 ≤ 𝑇 .

Proof. Necessity is obvious. To prove sufficiency, suppose that 𝑀 is a martingale
on R+. We shall show that

(5.92) 𝑀𝑇 = E𝑇𝑀∞

for every stopping time 𝑇 . The characterization Theorem 5.80 then shows that 𝑀
is a Doob martingale on R+. Also, for any 𝑆 ≤ 𝑇 , taking expectations with respect
to E𝑆 in (5.92) gives E𝑆𝑀𝑇 = 𝑀𝑆, which then completes the proof.
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To show (5.92), first observe that for any 𝑛 ∈ N:

(5.93) 𝑀𝑇∧𝑛 = E𝑇∧𝑛𝑀𝑛.

This follows from Theorem 5.83, with (𝑆, 𝑇) := (𝑇 ∧ 𝑛, 𝑛). Next, because 𝑀 is
a martingale on R+, the process (𝑀𝑛, 𝑛 ∈ N) is a martingale. In particular, by the
martingale property,

(5.94) 𝑀𝑛 = E𝑛𝑀∞.

Combining (5.93) and (5.94) and using the rules for repeated conditioning, we
conclude that

𝑀𝑇∧𝑛 = E𝑇∧𝑛E𝑛𝑀∞ = E𝑛E𝑇𝑀∞.

Taking 𝑛→ ∞, 𝑀𝑇∧𝑛 converges almost surely to 𝑀𝑇 , whereas E𝑛E𝑇𝑀∞ converges
to E∞E𝑇𝑀∞; that is, the conditional expectation of the random variable E𝑇𝑀∞,
given F̃∞ := ∨𝑛∈NF𝑛. The latter is the same as F∞ := ∨𝑡∈RF𝑡 , so that E∞E𝑇𝑀∞ =

E𝑇𝑀∞, which establishes (5.92). □

The following is the continuous-time version of Theorem 5.54:

Theorem 5.95: Extension of UI Martingales

A martingale 𝑀 on R+ can be extended to a Doob martingale 𝑀 on R+ if and
only if it is uniformly integrable; that is, if and only if

𝑀𝑡 = E𝑡𝑍, 𝑡 ∈ R+

for some integrable random variable 𝑍 . Moreover, then, it converges almost
surely and in 𝐿1 to an integrable random variable 𝑀∞ and can be extended
to a UI martingale on R+.

Proof. Suppose that the martingale 𝑀 on R+ can be extended to a Doob martingale
𝑀 on R+. In particular, there exists a random variable 𝑀∞ in F∞ such that

𝑀𝑡 = E𝑡𝑀∞

for every 𝑡 ∈ R+. Thus, by Example 5.11, 𝑀 is a uniformly integrable martingale.
Conversely, suppose that 𝑀 is UI on R+, then also (𝑀𝑛, 𝑛 ∈ N) is UI on N and

by Theorem 5.54 this sequence converges almost surely and in 𝐿1 to an integrable
random variable 𝑀∞ ∈ F∞, and 𝑀𝑛 = E𝑛𝑀∞ for all 𝑛. To show that the same holds
in continuous time, pick any 𝑡 ∈ R+ and 𝑛 > 𝑡. Then, by the martingale property of
𝑀 , and using the properties of repeated conditioning, we have for 𝑡 ∈ R+:

𝑀𝑡 = E𝑡𝑀𝑛 = E𝑡E𝑛𝑀∞ = E𝑡𝑀∞,

which shows that (𝑀𝑡 , 𝑡 ∈ R+) is a martingale and, in view of Proposition 5.91, a
Doob martingale on R+. □
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Proposition 5.96: Sufficient Condition for Being Doob

Let 𝑀 be a martingale on R+ and 𝜁 a stopping time. If, almost surely,

sup
𝑡∈[0,𝜁]∩R+

|𝑀𝑡 | ≤ 𝑍,

where E𝑍 < ∞ (i.e., 𝑀 is dominated by an integrable random variable 𝑍),
then 𝑀𝜁 = lim𝑀𝜁∧𝑡 exists and is integrable. Moreover, 𝑀 is a Doob martin-
gale on [0, 𝜁].

Proof. Let 𝑀 := (𝑀𝑡∧𝜁 , 𝑡 ∈ R+) be the process 𝑀 stopped at time 𝜁 . Then, 𝑀 is a
martingale on R+ — we leave the proof as Exercise 27.

By assumption, 𝑀 ≤ 𝑍 , almost surely, so that 𝑀 is uniformly integrable and
hence it converges almost surely and in 𝐿1 to lim𝑀𝑡 = lim𝑀𝜁∧𝑡 = 𝑀𝜁 , which must
be integrable. By Theorem 5.95, 𝑀 can be extended to a Doob martingale on R+ by
defining 𝑀∞ := 𝑀𝜁 . Then, for every stopping time 𝑇 ≤ 𝜁 , we have 𝑀𝑇 = 𝑀𝑇 and

E𝑀𝑇 = E𝑀𝑇 = E𝑀0 = E𝑀0.

Theorem 5.80 then implies that 𝑀 is a Doob martingale on [0, 𝜁]. □

Exercises
1. Show that F𝑇 in Definition 5.3 is a 𝜎-algebra on Ω that is contained in F∞. Show
also that the stopping time 𝑇 itself is F𝑇 -measurable.

2. Let 𝑇 be a stopping time of a filtration F := (F𝑛, 𝑛 ∈ N). We say that the
stochastic process 𝑋 := (𝑋𝑛, 𝑛 ∈ N) belongs to F if 𝑋𝑛 ∈ F𝑛 for all 𝑛; we write
𝑋 ∈ F . Show that

F𝑇 = {𝑋𝑇 : 𝑋 ∈ F }.

3.∗ Let 𝑋 be the asymmetric random walk starting at 𝑎 and 𝑇 the hitting time of 0
or 𝑏, as defined in Example 5.33. Assume again that 𝑝 ≠ 𝑞 and that 𝑎, 𝑏 ∈ N, with
0 < 𝑎 < 𝑏. Consider the process 𝑍𝑛 := 𝑋𝑛 − 𝑛(𝑝 − 𝑞), 𝑛 ∈ N.

(a) Prove that (𝑍𝑛) is a martingale.
(b) Show that E𝑍𝑇 = E𝑍0, and use this together with (5.34) to find an explicit

expression for E𝑇 in terms of 𝑝, 𝑞, 𝑎, and 𝑏.

4.∗ Let 𝑋 be a symmetric random walk, as in Example 5.2, and define 𝑇 := inf{𝑛 :
|𝑋𝑛 | = 𝑎} for some positive integer 𝑎.

(a) Show that (𝑋2
𝑛 − 𝑛, 𝑛 ∈ N) is a martingale.
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(b) Prove that E𝑇 = 𝑎2.

5.∗ The stochastic process 𝑋 := (𝑋𝑛, 𝑛 ∈ N) is such that (𝑋𝑛+1 | 𝑋0, . . . , 𝑋𝑛) ∼
U(𝑋𝑛, 1), 𝑛 ∈ N, with 𝑋0 := 0. Show that 𝑌 := (𝑌𝑛), with 𝑌𝑛 := 2𝑛 (1 − 𝑋𝑛), is a
martingale with respect to the natural filtration of 𝑋 .

6. Let 𝜉1, 𝜉2, . . . be a sequence of independent Exp(1) random variables. Define
𝑆𝑛 :=

∑𝑛
𝑘=1 𝜉𝑘 (with 𝑆0 := 0) and 𝑇 := inf{𝑛 : 𝜉𝑛 > 1}. Show that 𝑇 is a stopping

time with respect to the natural filtration of the {𝜉𝑛} and use martingale arguments
to compute E 𝑆𝑇 .

7. Let 𝜉1, 𝜉2, . . . be a sequence of independent random variables with P(𝜉𝑘 =

1) = P(𝜉𝑘 = −1) = 1/2 for all 𝑘 . Define 𝑆𝑛 :=
∑𝑛
𝑘=1 𝜉𝑘 (with 𝑆0 := 0) and

𝑇 := inf{𝑛 : 𝑆𝑛 ∈ {−1, 9}}.

(a) Use martingale arguments to compute the distribution of 𝑆𝑇 .
(b) Use martingale arguments to compute the expected value of 𝑇 . Hint: (𝑆2

𝑛 − 𝑛)
is also a martingale.

8. Let 𝑀 := (𝑀𝑛, 𝑛 ∈ N) be a martingale for which E𝑀2
𝑛 < ∞ for every 𝑛 ∈ N.

Show that sup𝑛 E𝑀2
𝑛 < ∞ if and only if

∑∞
𝑘=1 E(𝑀𝑘 − 𝑀𝑘−1)2 < ∞. Hint: write

𝑀𝑛 = 𝑀0 +
∑𝑛
𝑘=1(𝑀𝑘 − 𝑀𝑘−1).

9. Building upon Example 5.10, let 𝑋 be a real-valued compound Poisson process
with Lévy measure 𝜈, satisfying

∫
𝜈(d𝑥) |𝑥 | < ∞. Show that

𝑀𝑡 := 𝑋𝑡 − 𝑡
∫

𝜈(d𝑥) 𝑥, 𝑡 ≥ 0,

is a martingale.

10.∗ In Example 5.15, denote the probability generating function of 𝑇 by 𝐺; in
particular, 𝐺 (𝑧) = E 𝑧𝑇 for |𝑧 | ≤ 1.

(a) By conditioning on 𝑋1, show that

𝐺 (𝑧) = 1 −
√

1 − 𝑧2
𝑧

.

(b) Expanding 𝐺 (𝑧) via Newton’s formula (see Exercise 4.8) deduce that 𝑇 < ∞
with probability 1, but that E𝑇 = ∞.

11. This is to show that a right-continuous function 𝑓 is of bounded variation on
an interval [0, 𝑡] if and only if 𝑓 = 𝑔 − ℎ, where 𝑔 and ℎ are real-valued positive
functions that are increasing on [0, 𝑡]. Let𝑉 𝑓 (𝑡) be the total variation of 𝑓 on [0, 𝑡],
as defined in (5.18).
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(a) Show that if 𝑓 is increasing, then 𝑉 𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (0).
(b) Prove that if 𝑓 and 𝑔 are of bounded variation, then 𝑓 − 𝑔 and 𝑓 + 𝑔 are also of

bounded variation.
(c) Suppose that 𝑓 is of bounded variation on [0, 𝑡]. Consider the functions 𝑔 and

ℎ, defined for 𝑟 ∈ [0, 𝑡] by

𝑔(𝑟) := 𝑉 𝑓 (𝑟) and ℎ(𝑟) := 𝑉 𝑓 (𝑟) − 𝑓 (𝑟).

Show that 𝑔 and ℎ are increasing and that 𝑓 = 𝑔 − ℎ.

12. Let (𝑍𝑘 , 𝑘 = 1, 2, . . .) be a sequence of iid random variables with P(𝑍𝑘 = 1) =
𝑝 > 1

2 and P(𝑍𝑘 = −1) = 1 − 𝑝. Let F𝑛 := 𝜎(𝑍1, . . . , 𝑍𝑛) and F := (F𝑛). Define
𝑋0 := 1 and

𝑋𝑛+1 := 𝑋𝑛 + 𝐶𝑛+1𝑍𝑛+1, 𝑛 ∈ N,

where 𝐶 := (𝐶𝑛) is an F -predictable process such that 𝐶𝑛 ∈ [0, (1 − 𝜀)𝑋𝑛−1] for
some 𝜀 > 0. Show that the process 𝑀 := (ln 𝑋𝑛 − 𝑛𝛼, 𝑛 ∈ N), where

𝛼 := 𝑝 ln 𝑝 + (1 − 𝑝) ln(1 − 𝑝) + ln 2

is an F -supermartingale. For which predictable process 𝐶 is 𝑀 an F -martingale?

13.∗ Let 𝑀 := (𝑀𝑛) be a martingale with 𝑀0 = 0 and such that, for some sequence
of constants 𝑐𝑛, |𝑀𝑛 − 𝑀𝑛−1 | ≤ 𝑐𝑛 for all 𝑛. Then, for 𝑥 > 0:

P
(
max
𝑘≤𝑛

𝑀𝑘 ≥ 𝑥
)
≤ exp

(
−𝑥2

2
∑𝑛
𝑘=1 𝑐

2
𝑘

)
.

This is the Azuma–Hoeffding inequality. We can prove it using the following steps:

(a) Show that the process (𝑌𝑛) with 𝑌𝑛 := e𝜃𝑀𝑛 is a positive submartingale for any
𝜃 ∈ R.

(b) Apply (a) and (5.43) to conclude that

P
(
max
𝑘≤𝑛

𝑀𝑘 ≥ 𝑥
)
≤ e−𝜃𝑥 E e𝜃𝑀𝑛 .

(c) Write 𝑀𝑛 = 𝑀0 +
∑𝑛
𝑘=1(𝑀𝑘 − 𝑀𝑘−1) and use the condition |𝑀𝑛 − 𝑀𝑛−1 | ≤ 𝑐𝑛

and the exponential bound in Exercise 2.17 to show that

E e𝜃𝑀𝑛 ≤ E e𝜃𝑀𝑛−1 e
1
2 𝜃

2𝑐2
𝑛 .

(d) Complete the proof.
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14. Let 𝑋1, 𝑋2, . . . be a sequence of independent binomial random variables such
that 𝑋𝑘 ∼ Bin(𝑘, 1/𝑘). Define 𝑀𝑛 :=

∏𝑛
𝑘=1 𝑋𝑘 for 𝑛 = 1, 2, . . ..

(a) Show that 𝑀 := (𝑀𝑛, 𝑛 ≥ 1) is martingale with respect to the natural filtration
F := (F𝑛, 𝑛 ≥ 1) of the process (𝑋𝑛, 𝑛 ≥ 1).

(b) Show that 𝑀𝑛 converges almost surely and find its limit.
(c) Show that (𝑀𝑛, 𝑛 ≥ 1) is not an UI martingale.

15.∗ In Example 5.60, because (𝑀𝑛∧𝑇 , 𝑛 ∈ N) is uniformly integrable, it converges
almost surely and in 𝐿1 to some integrable random variable. What is the probability
distribution of this random variable?

16. Assume C is a family of uniformly integrable random variables on some prob-
ability space (Ω,H , P). Let D be the family of random variables where 𝑌 ∈ D if
there exists an 𝑋 ∈ C and sub 𝜎-algebra G ⊂ H such that 𝑌 = EG𝑋 . Show that the
family D is uniformly integrable.

17. Suppose𝑄 and 𝑃 are finite measures, with𝑄 ≪ 𝑃 and 𝑃 ≪ 𝑄. Such measures
𝑃 and 𝑄 are said to be equivalent. Show that the Radon–Nikodym derivative
𝑍 = d𝑄/d𝑃 satisfies 𝑃(𝑍 ≤ 0) = 0.

18. Consider the measure space ((0, 1],B(0,1] ,Leb(0,1]). Let F𝑛 be the sub-𝜎-
algebra of H that is generated by the partition P𝑛 given in Example 5.63, and let
F := (F𝑛) be the corresponding filtration. Let 𝐹 be a bounded increasing function
on (0, 1]. Define

𝑓𝑛 (𝑥) := 2𝑛
(
𝐹

(
⌈2𝑛𝑥⌉

2𝑛

)
− 𝐹

(
⌊2𝑛𝑥⌋

2𝑛

))
,

where ⌈𝑎⌉ rounds 𝑎 up to the nearest integer and ⌊𝑎⌋ rounds 𝑎 down to the nearest
integer.

(a) Show that ( 𝑓𝑛) is a martingale with respect to F and show that it converges
almost surely.

(b) Show that ( 𝑓𝑛) converges in 𝐿1 when 𝐹 (𝑥) := 𝑥1/2. Hint: It may be useful to
recall

√
𝑏 −

√
𝑎 = (𝑏 − 𝑎)/(

√
𝑏 +

√
𝑎).

19. Let 𝑀 := (𝑀𝑛) be a martingale with E𝑀2
𝑛 < ∞ for each 𝑛. Prove that if

sup𝑛 E𝑀2
𝑛 < ∞, then 𝑀𝑛 → 𝑀∞ almost surely and in 𝐿2. Hint: use Exercise 8.

20. Show that if (𝜉𝑛) is a martingale and 𝜉𝑛 𝐿1→ 𝑎 for some 𝑎 ∈ R , then 𝜉𝑛 = 𝑎
almost surely for each 𝑛.
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21. Let {𝑋𝑛,𝑘 , 𝑛 = 1, 2, . . . , 𝑘 = 1, 2, . . .} be a collection of iid random variables
taking values inN. Assume that E𝑋𝑛,𝑘 = 𝜇 < ∞ andVar 𝑋𝑛,𝑘 = 𝜎2 < ∞ for all 𝑛, 𝑘 .
Define the process (𝑍𝑛) such that 𝑍0 := 1 and

𝑍𝑛+1 :=
𝑍𝑛∑︁
𝑘=1

𝑋𝑛+1,𝑘 , 𝑛 ∈ N.

If 𝑍𝑛 = 0, then 𝑍𝑚 = 0 for all 𝑚 ≥ 𝑛. The process (𝑍𝑛) is called a branching
process, as illustrated in Figure 5.97.

0 1 2 3 4

generation

0 1 2 3 4 5

generation

Figure 5.97: Left: population grows exponentially. Right: population dies out.

It can be used to model population dynamics: 𝑍𝑛 is the total number of indi-
viduals in the 𝑛th generation. At each generation, each individual of that generation
creates offspring according to a common offspring distribution, with expectation
𝜇 and variance 𝜎2, independently of the other individuals in the present and past
generations. The number of offspring of the 𝑘th individual in the 𝑛th genera-
tion is 𝑋𝑛+1,𝑘 . Depending on the offspring distribution, the population can grow
exponentially or can become extinct.

(a) Show that the process (𝑀𝑛) defined by 𝑀𝑛 := 𝑍𝑛/𝜇𝑛 is a martingale with
respect to the natural filtration of (𝑍𝑛).

(b) Show that E𝑛𝑍2
𝑛+1 = 𝜇2𝑍2

𝑛 + 𝜎2𝑍𝑛.

(c) Prove that if 𝜇 > 1, then supE𝑀2
𝑛 < ∞ .

(d) Prove that if 𝜇 > 1, then 𝑀𝑛
𝐿1→ 𝑀∞ and Var𝑀∞ = 𝜎2(𝜇(𝜇 − 1))−1.

22. Let (𝑋𝑛, 𝑛 ∈ N) be a sequence of positive integrable random variables on some
probability space (Ω,H , P) with filtration F𝑛 := 𝜎(𝑋0, . . . , 𝑋𝑛), 𝑛 ∈ N. Suppose
that E𝑛𝑋𝑛+1 ≤ 𝑋𝑛 + 𝑦𝑛, where (𝑦𝑛, 𝑛 ∈ N) is a sequence of positive constants such
that

∑∞
𝑛=0 𝑦𝑛 < ∞. Show that 𝑋𝑛 a.s.→ 𝑋∞, where 𝑋∞ is some integrable random

variable.
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23.∗ Let (𝑋𝑛, 𝑛 = 1, 2, . . .) be a sequence of independent random variables such
that P(𝑋𝑛 = −1) = P(𝑋𝑛 = 1) = 1

2 . Show that the sequence of random variables
𝑀𝑛 =

∑𝑛
𝑗=1 𝑋 𝑗 𝑗

−1, 𝑛 = 1, 2, . . . converges almost surely and in 𝐿1 to an integrable
random variable 𝑀∞.

24. Let 𝜉1, 𝜉2, . . . be a sequence of independent random variables with

P
(
𝜉𝑛 =

𝑛 + 1
𝑛

)
= 1 − P

(
𝜉𝑛 =

𝑛

𝑛 + 1

)
=

𝑛

2𝑛 + 1
.

Define 𝑎𝑛 := E 𝜉1/2
𝑛 , 𝑁0 := 1, and

𝑁𝑛 :=
𝑛∏
𝑘=1

𝜉
1/2
𝑘

𝑎𝑘
.

(a) Show that (𝑁𝑛) is a martingale with respect to the natural filtration, satisfying
E 𝑁2

𝑛 < ∞ for all 𝑛.

(b) Use 𝑁𝑛 and the discrete version of Doob’s norm inequality (5.89) to show that
the martingale (𝑀𝑛) defined by

𝑀0 := 1, 𝑀𝑛 :=
𝑛∏
𝑘=1

𝜉𝑘 , 𝑛 = 1, 2, . . . ,

converges almost surely and in 𝐿1 to a random variable 𝑀∞ with E𝑀∞ = 1.

25. Check that F + defined by (5.73) is indeed a right-continuous filtration.

26. Let 𝑇 be a stopping time with respect to some filtration (F𝑡). Define for each
𝑛 ∈ N:

𝑑𝑛 (𝑡) :=
𝑘 + 1
2𝑛

if
𝑘

2𝑛
≤ 𝑡 < 𝑘 + 1

2𝑛
for some 𝑘 ∈ N.

Define 𝑇𝑛 := 𝑑𝑛 (𝑇), 𝑛 ∈ N. Show that 𝑇𝑛 ∈ F𝑇 and that (𝑇𝑛) is a sequence of
stopping times decreasing to 𝑇 .

27. Let 𝑀 be a martingale on R+ and 𝜁 a stopping time. Let 𝑀 := (𝑀𝑡∧𝜁 , 𝑡 ∈ R+).
Complete the proof of Proposition 5.96 by showing that 𝑀 is a martingale on R+.





CHAPTER 6

WIENER AND BROWNIAN MOTION
PROCESSES

In this chapter, we further explore the Wiener and Brownian motion pro-
cesses. We prove the existence of the Wiener process via Lévy’s construction,
and discuss many of its features, including its Gaussian, martingale, Markov,
and path properties. We discuss the close relation between Brownian motions
and the Laplace operator. We also show that the maximum and hitting time
processes have intimate connections with Lévy processes and Poisson random
measures.

6.1 Wiener Process
We already encountered the Wiener process in Chapters 2 and 4. In Example 2.77,
we defined the Wiener process as a Gaussian process as follows:

Definition 6.1: Wiener Process

The Wiener process (𝑊𝑡 , 𝑡 ≥ 0) is a zero-mean Gaussian process with con-
tinuous sample paths and covariance function

𝛾𝑠,𝑡 = min{𝑠, 𝑡} =: 𝑠 ∧ 𝑡 , 𝑠, 𝑡 ≥ 0.

In Example 2.96 we recognized that the Wiener process belongs to the family
of Lévy processes — Markov processes that have independent and identically dis-
tributed increments, and right-continuous and left-limited sample paths that start
from 0; see Sections 2.8.4 and 4.5. The compound Poisson process is an example
of a pure-jump Lévy process. In contrast, a Wiener process is a Lévy process with
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continuous sample paths, as shown in the following result, which can also serve as
an equivalent definition of the Wiener process:

Theorem 6.2: Wiener Process as a Lévy Process

𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) is a Wiener process if and only if the three properties hold:

1. (Independent increments): For any 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛, the increments𝑊𝑡2−
𝑊𝑡1 , . . . ,𝑊𝑡𝑛 −𝑊𝑡𝑛−1 are independent.

2. (Gaussian stationarity): For all 𝑡, 𝑢 ≥ 0,𝑊𝑡+𝑢 −𝑊𝑡 ∼ N(0, 𝑢).

3. (Continuity of paths): 𝑊 has continuous paths, with𝑊0 = 0.

Proof. The continuity of paths is already part of Definition 6.1 and therefore does
not need to be discussed further here.

Assuming that 𝑊 is a Wiener process, we now demonstrate the Gaussian sta-
tionarity and independent increments properties in a slightly different way from
Example 2.96, again only for the case of two increments. The general case, with
arbitrary many increments, can be shown in a similar way. Since the Wiener process
is a Gaussian process, any increment 𝑊𝑡+𝑢 −𝑊𝑡 has a Gaussian distribution. Its
expectation is 0 and its variance follows from:

Cov(𝑊𝑡+𝑢 −𝑊𝑡 ,𝑊𝑡+𝑢 −𝑊𝑡) = Cov(𝑊𝑡+𝑢,𝑊𝑡+𝑢) + Cov(𝑊𝑡 ,𝑊𝑡) − 2Cov(𝑊𝑡+𝑢,𝑊𝑡)
= 𝑡 + 𝑢 + 𝑡 − 2𝑡 = 𝑢.

This proves the Gaussian stationarity. To show the independence of the increments,
take 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4. The distribution of 𝑾 := [𝑊𝑡1 , . . . ,𝑊𝑡4]⊤ is multivariate
normal with mean vector 0 and covariance matrix

𝚺 :=


𝑡1 𝑡1 𝑡1 𝑡1
𝑡1 𝑡2 𝑡2 𝑡2
𝑡1 𝑡2 𝑡3 𝑡3
𝑡1 𝑡2 𝑡3 𝑡4

 .
We can easily verify that 𝚺 = LDL⊤, with

L :=


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 and D :=


𝑡1 0 0 0
0 𝑡2 − 𝑡1 0 0
0 0 𝑡3 − 𝑡2 0
0 0 0 𝑡4 − 𝑡3

 .
This means, from the theory of Gaussian random vectors, that 𝑾 has the same
distribution as LD1/2𝒁, where 𝒁 := [𝑍1, 𝑍2, 𝑍3, 𝑍4]⊤ is a vector of independent
standard Gaussians. Consequently, the increments 𝑊𝑡2 −𝑊𝑡1 and 𝑊𝑡4 −𝑊𝑡3 have
the same distribution as

√
𝑡2 − 𝑡1 𝑍2 and

√
𝑡4 − 𝑡3 𝑍4, which are independent of each

other.
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Next, assuming that the three properties hold, we prove that 𝑊 is a zero-mean
Gaussian process with covariance Cov(𝑊𝑠,𝑊𝑡) = 𝑠 ∧ 𝑡. This is equivalent to prov-
ing that for an arbitrary 𝑛 and 𝑡1 < 𝑡2 < · · · < 𝑡𝑛, the vector 𝑾 = [𝑊𝑡1 , . . . ,𝑊𝑡𝑛]⊤
has the characteristic function: 𝜓𝑾 (𝒓) := exp(−𝒓⊤𝚺𝒓/2), where 𝚺 is the 𝑛 × 𝑛
covariance matrix with (𝑖, 𝑗)-th entry 𝑡𝑖 ∧ 𝑡 𝑗 . To this end, let L ∈ R𝑛×𝑛 be a lower
triangular matrix with all entries equal to 1 and D ∈ R𝑛×𝑛 be a diagonal matrix with
entries 𝑡1, 𝑡2 − 𝑡1, . . . , 𝑡𝑛 − 𝑡𝑛−1 down the main diagonal. Then, 𝚺 = LDL⊤ and the
Gaussian stationarity and the independence of increments imply that

𝑿 := L−1𝑾 = [𝑊𝑡1 ,𝑊𝑡2 −𝑊𝑡1 , . . . ,𝑊𝑡𝑛 −𝑊𝑡𝑛−1]⊤ ∼ N(0,D).
The proof is then complete by the following calculation:

𝜓𝑾 (𝒓) = 𝜓𝑿 (L⊤𝒓) = exp(−(L⊤𝒓)⊤D(L⊤𝒓)/2) = exp(−𝒓⊤𝚺𝒓/2).
□

The following algorithm uses the same ideas as in the previous proof to simulate
the Wiener process at specific time points 𝑡1, . . . , 𝑡𝑛:

Algorithm 6.3 (Simulating a Wiener Process)
1. Let 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 be the times at which the process needs to be

simulated.

2. Simulate 𝑍1, . . . , 𝑍𝑛
iid∼ N(0, 1).

3. Return𝑊0 := 0 and𝑊𝑡𝑘 :=
∑𝑘
𝑖=1 𝑍𝑘

√
𝑡𝑘 − 𝑡𝑘−1, 𝑘 = 1, . . . , 𝑛.

The Wiener process plays a central role in probability and forms the basis
of many other stochastic processes. The Wiener process can also be viewed as a
continuous version of a random walk process. Two typical sample paths are depicted
in Figure 6.4.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

Figure 6.4: Two realizations of the Wiener process on the interval [0,1].
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Example 6.5 (Brownian Bridge) Suppose the values of a Wiener process at
times 𝑡1 and 𝑡2 > 𝑡1 are 𝑊𝑡1 := 𝑎 and 𝑊𝑡2 := 𝑏. We can then easily simulate 𝑊𝑡

at some 𝑡 ∈ [𝑡1, 𝑡2], conditional on 𝑊𝑡1 = 𝑎 and 𝑊𝑡2 = 𝑏, because the conditional
distribution of𝑊𝑡 is Gaussian with mean 𝑎 + (𝑏 − 𝑎) (𝑡 − 𝑡1)/(𝑡2 − 𝑡1) and variance
(𝑡 − 𝑡1) (𝑡2 − 𝑡)/(𝑡2 − 𝑡1).

To see this, consider the vector [𝑊𝑡1 ,𝑊𝑡2 ,𝑊𝑡]⊤. It is jointly Gaussian, with
mean vector 0 and covariance matrix

𝚺 :=

𝑡1 𝑡1 𝑡1
𝑡1 𝑡2 𝑡

𝑡1 𝑡 𝑡

 .
Its Cholesky factor is

B :=


√
𝑡1 0 0√
𝑡1

√
𝑡2 − 𝑡1 0

√
𝑡1

𝑡−𝑡1√
𝑡2−𝑡1

√︃
(𝑡−𝑡1) (𝑡2−𝑡)

𝑡2−𝑡1

 ,
so that𝑾 has the same distribution as B[𝑍1, 𝑍2, 𝑍3]⊤, where 𝑍1, 𝑍2, 𝑍3 ∼iid N(0, 1).
In other words, we can write

𝑊𝑡1 =
√
𝑡1 𝑍1

𝑊𝑡2 =
√
𝑡1 𝑍1 +

√
𝑡2 − 𝑡1 𝑍2

𝑊𝑡 =
√
𝑡1 𝑍1 +

𝑡 − 𝑡1√
𝑡2 − 𝑡1

𝑍2 +

√︄
(𝑡 − 𝑡1) (𝑡2 − 𝑡)

𝑡2 − 𝑡1
𝑍3

= 𝑊𝑡1 + (𝑊𝑡2 −𝑊𝑡1)
𝑡 − 𝑡1
𝑡2 − 𝑡1

+

√︄
(𝑡 − 𝑡1) (𝑡2 − 𝑡)

𝑡2 − 𝑡1
𝑍3,

which implies that, given𝑊𝑡1 = 𝑎 and𝑊𝑡2 = 𝑏,𝑊𝑡 has mean 𝑎+(𝑏−𝑎) (𝑡−𝑡1)/(𝑡2−𝑡1)
and variance (𝑡 − 𝑡1) (𝑡2 − 𝑡)/(𝑡2 − 𝑡1).

In Example 2.77, we defined a Brownian motion as an affine transformation of
a Wiener process.

Definition 6.6: Brownian Motion

A stochastic process (𝐵𝑡 , 𝑡 ≥ 0) satisfying

𝐵𝑡 = 𝐵0 + 𝜇 𝑡 + 𝜎𝑊𝑡 , 𝑡 ≥ 0,

where (𝑊𝑡) is a Wiener process independent of 𝐵0, is called a Brownian
motion with drift 𝜇 and diffusion coefficient 𝜎.

A standard Brownian motion is one where 𝜇 = 0 and 𝜎 = 1. The only difference
with a Wiener process is thus its (random) starting position.
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Many properties of the Brownian motion process follow directly from those of
the Wiener process. The generation of a Brownian motion at times 𝑡1, . . . , 𝑡𝑛 follows
directly from its definition.

Algorithm 6.7 (Simulating a Brownian Motion)
1. Simulate the starting position 𝐵0.
2. Simulate outcomes𝑊𝑡1 , . . . ,𝑊𝑡𝑛 of a Wiener process at times 𝑡1, . . . , 𝑡𝑛.
3. Return 𝐵𝑡𝑖 := 𝐵0 + 𝜇 𝑡𝑖 + 𝜎𝑊𝑡𝑖 , 𝑖 = 1, . . . , 𝑛 as the outcomes of the Brownian

motion at times 𝑡1, . . . , 𝑡𝑛.

Multidimensional Brownian motions are likewise obtained from an affine trans-
formation 𝑩𝑡 = 𝑩0 + 𝝁 𝑡 + 𝝈𝑾 𝑡 of a multidimensional Wiener process, where 𝝈 is
a matrix.

Definition 6.8: Multidimensional Wiener Process

Let (𝑊𝑡,𝑖, 𝑡 ≥ 0), 𝑖 = 1, . . . , 𝑑 be independent Wiener processes and let
𝑾 𝑡 := [𝑊𝑡,1, . . . ,𝑊𝑡,𝑑]⊤. The process (𝑾 𝑡 , 𝑡 ≥ 0) is called a 𝑑-dimensional
Wiener process.

If (𝑾 𝑡) is a 𝑑-dimensional Wiener process, then 𝑾 𝑡 has a N(0, 𝑡I𝑑) multivariate
normal distribution, where I𝑑 denotes the 𝑑-dimensional identity matrix.

Example 6.9 (Three-dimensional Wiener Process) The following MATLAB
program generates a realization of the three-dimensional Wiener process at times
0, 1/𝑁, 2/𝑁, . . . , 1, for 𝑁 = 104. Figure 6.10 shows a typical realization.

-0.2
0
0.2

0

z

0.4

0.5

0.6

-0.5

0.8

y x

0 -1
-1.5-0.5

Figure 6.10: Three-dimensional Wiener process. The arrow points to the origin.
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N=10^4; T=1; dt=T/N; %step size
X=cumsum([0,0,0;randn(N,3)*sqrt(dt)],1);
plot3(X(:,1),X(:,2),X(:,3))

We next prove a number of properties of the Wiener process 𝑊 := (𝑊𝑡 , 𝑡 ≥ 0);
there are many more to follow!

Theorem 6.11: Time-reversal and Time-shifting

If (𝑊𝑠, 𝑠 ∈ [0, 𝑡]) is a Wiener process on [0, 𝑡], then so is the time-reversed
process (𝑊𝑠, 𝑠 ∈ [0, 𝑡]) defined by𝑊𝑠 := 𝑊𝑡−𝑠 −𝑊𝑡 . Similarly, if (𝑊𝑠, 𝑠 ≥ 0)
is a Wiener process, then for any 𝑡 ≥ 0 the process (𝑊𝑠, 𝑠 ≥ 0) defined by
𝑊𝑠 := 𝑊𝑡+𝑠 −𝑊𝑡 is also a Wiener process.

Proof. Obviously, (𝑊𝑠, 𝑠 ∈ [0, 𝑡]) is a Gaussian process with zero mean and con-
tinuous sample paths, as these properties are inherited from𝑊 . It remains to check
that E𝑊𝑠𝑊𝑢 = 𝑠 for all 0 < 𝑠 < 𝑢 < 𝑡. This follows from

E𝑊𝑠𝑊𝑢 = E(𝑊𝑡−𝑠 −𝑊𝑡) (𝑊𝑡−𝑢 −𝑊𝑡)
= E𝑊𝑡−𝑠𝑊𝑡−𝑢 + E𝑊2

𝑡 − E𝑊𝑡𝑊𝑡−𝑢 − E𝑊𝑡−𝑠𝑊𝑡

= (𝑡 − 𝑢) + 𝑡 − (𝑡 − 𝑢) − (𝑡 − 𝑠)
= 𝑠.

A similar argument shows that (𝑊𝑠, 𝑠 ≥ 0) is a Wiener process. □

Theorem 6.12: Scaling

If (𝑊𝑡) is a Wiener process, then so is (𝑋𝑡), with 𝑋𝑡 := 𝑊𝑎 𝑡/
√
𝑎, 𝑡 ≥ 0 for

any 𝑎 > 0.

Proof. That the scaled process is continuous, Gaussian, and has zero-mean is
obvious. For 𝑠 < 𝑡, the covariance function satisfies

E𝑋𝑠𝑋𝑡 = E
𝑊𝑎 𝑠√
𝑎

𝑊𝑎 𝑡√
𝑎

=
𝑎𝑠

𝑎
= 𝑠,

and so is the same as for the Wiener process. □
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Lemma 6.13: Probability Bound on the Supremum

For a Wiener process (𝑊𝑡), it holds for every 𝜀 > 0 that

P
(

sup
0≤𝑡≤1

|𝑊𝑡 | > 𝜀
)
≤ 2 e−𝜀

2/2.

Proof. Let 𝑞0, 𝑞1, . . . be an enumeration of the rational numbers in [0, 1] and let 𝐷𝑛

be the first 𝑛 of these numbers, with {1} appended if not already in 𝐷𝑛. For some
fixed parameter 𝑟 > 0, let 𝑌𝑡 := e𝑟𝑊𝑡 , so that the process (𝑌𝑡 , 𝑡 ∈ 𝐷𝑛) is a positive
discrete-time submartingale. Then, an application of Lemma 5.42 immediately
yields the upper bound:

P
(

sup
𝑡∈𝐷𝑛

𝑌𝑡 > e𝑟𝜀
)
≤ E𝑌1

e𝑟𝜀
= e

1
2 𝑟

2−𝑟𝜀,

which is minimized at 𝑟 = 𝜀, giving the minimum e−𝜀2/2. Since 𝑡 ↦→ e𝑟𝑊𝑡 is con-
tinuous, sup𝑡∈𝐷𝑛 𝑌𝑡 ↑ sup𝑡∈[0,1] 𝑌𝑡 . Thus, using the continuity from below property
(2.3):

P
(

sup
𝑡∈[0,1]

𝑌𝑡 > e𝑟𝜀
)
= lim

𝑛
P
(

sup
𝑡∈𝐷𝑛

𝑌𝑡 > e𝑟𝜀
)
.

Hence, for 𝑟 := 𝜀 we obtain:

P
(

sup
𝑡∈[0,1]

𝑊𝑡 > 𝜀

)
= P

(
sup
𝑡∈[0,1]

𝑌𝑡 > e𝑟𝜀
)
≤ e−𝜀

2/2,

and the proof is complete by noting that P(sup𝑡 |𝑊𝑡 | > 𝜀) ≤ 2P(sup𝑡𝑊𝑡 > 𝜀). □

Theorem 6.14: Reciprocal Time

If (𝑊𝑡) is a Wiener process, then so is (𝑋𝑡), with 𝑋𝑡 := 𝑡 𝑊1/𝑡 , 𝑡 > 0, 𝑋0 := 0.

Proof. Evidently, (𝑋𝑡 , 𝑡 > 0) is a zero-mean Gaussian process with continuous paths
and with E𝑋𝑠𝑋𝑡 = 𝑠 for all 0 < 𝑠 < 𝑡. The only thing to check is that (𝑋𝑡 , 𝑡 ≥ 0) —
that is, including 𝑡 = 0 — has the same properties; in particular, that the process is
almost surely continuous at 0. In other words, we need to show that as 𝑡 → ∞:

(6.15)
𝑊𝑡

𝑡

a.s.→ 0.

Take any 𝑡 > 0 and let 𝑛 := ⌊𝑡⌋. Then, we can write

𝑊𝑡 =

𝑛∑︁
𝑘=1

𝑍𝑘 + (𝑊𝑡 −𝑊𝑛),



208 6.2. Existence

where the increments 𝑍𝑘 := 𝑊𝑘 −𝑊𝑘−1 ∼iid N(0, 1) are independent of 𝑊𝑡 −𝑊𝑛.
This leads to the bound����𝑊𝑡

𝑡

���� ≤ 1
𝑛

����� 𝑛∑︁
𝑘=1

𝑍𝑘 + (𝑊𝑡 −𝑊𝑛)
����� ≤

�����1𝑛 𝑛∑︁
𝑘=1

𝑍𝑘

����� + 1
𝑛

sup
0≤𝑠≤1

|𝑊𝑠 |,

where 𝑊𝑠 := 𝑊𝑛+𝑠 −𝑊𝑛. By the strong Law of Large numbers (Theorem 3.44),∑𝑛
𝑘=1 𝑍𝑘/𝑛 converges almost surely to 0. Since (𝑊𝑠, 𝑠 ≥ 0) is a Wiener process by

Theorem 6.11, we have by Lemma 6.13 that for any 𝜀 > 0:

P
(
1
𝑛

sup
0≤𝑠≤1

|𝑊𝑠 | > 𝜀
)
≤ 2e−𝑛

2𝜀2/2.

Since
∑
𝑛 e−𝑛2𝜀2/2 < ∞, it follows that 1

𝑛
sup0≤𝑠≤1 |𝑊𝑠 |

cpl.→ 0. Hence, Theorem 3.40
implies that 1

𝑛
sup0≤𝑠≤1 |𝑊𝑠 | a.s.→ 0 and consequently that (6.15) holds. □

Remark 6.16 (Starting Position) Since the Wiener process starts at position 0
by definition, it is sometimes useful to consider instead a standard Brownian motion
process starting from some arbitrary state 𝑥 under a probability measure P𝑥 . The
corresponding expectation operator is then denoted by E𝑥 .

6.2 Existence
In Example 4.32 and Theorem 4.34 we showed that there indeed exists a Wiener
process with the above properties. In this section, we show existence in a more
direct way, constructing the Wiener process on [0, 1] from a linear combination of
random variables 𝑍0, 𝑍1, . . . ∼iid N(0, 1). Suppose that

𝑊
(𝑛)
𝑡 :=

𝑛−1∑︁
𝑘=0

𝑐𝑘 (𝑡) 𝑍𝑘

for some sequence (𝑐𝑘 ) of continuous deterministic functions on [0, 1]. Then, each
sample path of the process 𝑊 (𝑛) := (𝑊 (𝑛)

𝑡 , 𝑡 ∈ [0, 1]) is continuous by construc-
tion and the random variable 𝑊 (𝑛)

𝑡 is normally distributed, because it is a linear
combination of Gaussian random variables. Further, E𝑊 (𝑛)

𝑡 =
∑𝑛−1
𝑘=0 𝑐𝑘 (𝑡) × 0 = 0

and

Cov(𝑊 (𝑛)
𝑠 ,𝑊

(𝑛)
𝑡 ) =

𝑛−1∑︁
𝑘=0

𝑛−1∑︁
𝑗=0
𝑐 𝑗 (𝑠) 𝑐𝑘 (𝑡) Cov(𝑍 𝑗 , 𝑍𝑘 )︸         ︷︷         ︸

= 1{ 𝑗=𝑘}

=

𝑛−1∑︁
𝑘=0

𝑐𝑘 (𝑠) 𝑐𝑘 (𝑡).

In other words, the approximation process 𝑊 (𝑛) is a zero-mean Gaussian process
with continuous sample paths and covariance function 𝛾 (𝑛)𝑠,𝑡 :=

∑𝑛−1
𝑘=0 𝑐𝑘 (𝑠)𝑐𝑘 (𝑡).
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This meets all the requirements in Definition 6.1, except that the covariance function
does not necessarily equal 𝛾𝑠,𝑡 := 𝑠 ∧ 𝑡 for all 𝑠, 𝑡 ∈ [0, 1]. This requirement can be
met if we choose the functions {𝑐𝑘 } such that 𝛾 (𝑛)𝑠,𝑡 → 𝑠 ∧ 𝑡 as 𝑛→ ∞, so that𝑊 (𝑛)

will have the correct covariance function as 𝑛→ ∞. However, since the continuity
of 𝑊 (𝑛) does not necessarily imply the continuity of the limiting process, we will
have to demonstrate that the limit𝑊 := lim𝑛𝑊

(𝑛) not only exists, but also retains the
continuity of its sample paths. This is the essence of the sought after construction,
and all that is needed is to make the argument rigorous.

Example 6.17 (Construction using Trigonometric Functions) The trigono-
metric expansion in (B.26) suggests that we can use the functions 𝑐0(𝑡) := 𝑡 and
𝑐𝑘 (𝑡) :=

√
2 sin(𝑘𝜋𝑡)/(𝑘𝜋), 𝑡 ∈ [0, 1] for 𝑘 = 1, 2, . . . to represent the covariance

function as the limit of

𝛾
(𝑛)
𝑠,𝑡 := 𝑠𝑡 +

𝑛−1∑︁
𝑘=1

√
2 sin(𝑘𝜋𝑠)
𝑘𝜋

√
2 sin(𝑘𝜋𝑡)
𝑘𝜋

→ 𝑠 ∧ 𝑡 = 𝛾𝑠,𝑡 .

This suggests that the sine series representation :

𝑊
(𝑛)
𝑡 := 𝑍0 𝑡 +

𝑛−1∑︁
𝑘=1

𝑍𝑘

√
2 sin(𝑘𝜋𝑡)
𝑘𝜋

, 𝑡 ∈ [0, 1]

converges to a Wiener process on [0, 1]. Similarly, the representation of the co-
variance function 𝑠 ∧ 𝑡 in (B.27) suggests the use of 𝑐𝑘 (𝑡) := 0 for even 𝑘 and
𝑐𝑘 (𝑡) := 2

√
2 sin(𝑘𝜋𝑡/2)/(𝑘𝜋), 𝑡 ∈ [0, 1] for odd 𝑘 . This choice of 𝑐0, 𝑐1, . . .

yields the Karhunen–Loève expansion of the Wiener process on [0, 1]:

𝑊𝑡 = lim
𝑛
𝑊

(𝑛)
𝑡 =

∑︁
𝑘=1,3,...

𝑍𝑘
2
√

2 sin(𝑘𝜋𝑡/2)
𝑘𝜋

, 𝑡 ∈ [0, 1] .

While the trigonometric expansions in the above example can be shown to
provide a valid construction of the Wiener process, the theoretical arguments are
much simpler if we instead work with the so-called Haar basis expansion.

Recall from Appendix B that we can choose the inner product (B.20) and an
orthonormal basis {𝑢𝑖} for the Hilbert space 𝐿2 [0, 1], so that any 𝑓 in this space
can be approximated arbitrarily well via 𝑓 (𝑛) (𝑥) :=

∑𝑛−1
𝑖=0 ⟨ 𝑓 , 𝑢𝑖⟩ 𝑢𝑖 (𝑥) in the sense

that ∥ 𝑓 − 𝑓 (𝑛) ∥2 → 0 for 𝑛→ ∞, where ∥ · ∥2 is the 𝐿2 norm. Since the constant 1
and the Haar functions,

ℎ𝑘, 𝑗 (𝑥) := 2𝑘/2
(
1[ 𝑗/2𝑘 , ( 𝑗+ 1

2 )/2𝑘)
(𝑥) − 1[( 𝑗+ 1

2 )/2𝑘 , ( 𝑗+1)/2𝑘] (𝑥)
)
,
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where 𝑗 = 0, 1, . . . , 2𝑘 − 1 and 𝑘 = 0, 1, 2, . . ., are a basis for 𝐿2 [0, 1], we can
approximate the indicator function 1[0,𝑡] via

1
(𝑛)
[0,𝑡] (𝑥) := ⟨1[0,𝑡] , 1⟩ +

𝑛−1∑︁
𝑘=0

2𝑘−1∑︁
𝑗=0

𝑐𝑘, 𝑗 (𝑡) ℎ𝑘, 𝑗 (𝑥), 𝑥 ∈ [0, 1],

where

(6.18) 𝑐𝑘, 𝑗 (𝑡) := ⟨1[0,𝑡] , ℎ𝑘, 𝑗 ⟩ = 2−𝑘/2−1 [1 − |2𝑘+1𝑡 − 2 𝑗 − 1|]+

are the tent-shaped Schauder functions depicted on Figure B.30. Observe that here
the notation uses a double index, rather than the single index as in the trigonometric
expansions in Example 6.17. The expansion of 1(𝑛)

[0,𝑡] shows that the covariance
function 𝑠 ∧ 𝑡 can be written as the limit

lim
𝑛
⟨1(𝑛)

[0,𝑠] , 1
(𝑛)
[0,𝑡]⟩ = ⟨1[0,𝑠] , 1[0,𝑡]⟩ = 𝑠 ∧ 𝑡, 𝑠, 𝑡 ∈ [0, 1],

and hence 𝑠∧𝑡 has the representation: 𝑠∧𝑡 = 𝑠𝑡+∑
𝑘, 𝑗 𝑐𝑘, 𝑗 (𝑠) 𝑐𝑘, 𝑗 (𝑡) for 𝑠, 𝑡 ∈ [0, 1] .

The foregoing discussion then suggests that the limit as 𝑛→ ∞ of

(6.19) 𝑊
(𝑛)
𝑡 := 𝑡 𝑍0 +

𝑛−1∑︁
𝑘=0

2𝑘−1∑︁
𝑗=0

𝑐𝑘, 𝑗 (𝑡) 𝑍 𝑗+2𝑘 , 𝑡 ∈ [0, 1]

will yield the desired Wiener process.
Let 𝐷 be the countable set of dyadic numbers as in (4.36):

𝐷 := ∪∞
𝑘=0𝐷𝑘 with 𝐷𝑘 :=

{
𝑗

2𝑘
, 𝑗 = 0, 1, . . . , 2𝑘

}
.

The set 𝐷 is dense in [0, 1]; that is, every point in [0, 1] can be approximated
arbitrarily well by a point in 𝐷.

The Haar basis construction𝑊 (𝑛) matches the properties of the Wiener process at
all 𝑡 ∈ 𝐷𝑛. In particular, (𝑊 (𝑛)

𝑡 , 𝑡 ∈ 𝐷𝑛) is a zero-mean Gaussian process; and, since
𝑊

(𝑛+𝑘)
𝑡 = 𝑊

(𝑛)
𝑡 , 𝑡 ∈ 𝐷𝑛 for 𝑘 = 1, 2, . . ., the process (𝑊 (𝑛)

𝑡 , 𝑡 ∈ 𝐷𝑛) has covariance
function E𝑊 (𝑛)

𝑠 𝑊
(𝑛)
𝑡 = 𝑠 ∧ 𝑡 for all 𝑠, 𝑡 ∈ 𝐷𝑛; see Exercise 3.

The Haar basis expansion (6.19) can be used to construct the Wiener process on
𝑡 ∈ 𝐷 by simply taking 𝑛 → ∞. This construction is usually referred to as Lévy’s
construction of the Wiener process on the set 𝐷. One way to visualize Lévy’s
construction is to consecutively generate the process at points in 𝐷0 = {0, 1}, then
𝐷1\𝐷0 = {1/2}, followed by𝐷2\∪1

𝑘=0𝐷𝑘 = {1/4, 3/4}, and so on. More precisely,
from the Brownian bridge in Example 6.5, if 𝑡1− 𝑡0 = 2−𝑘+1 and 𝑑 = (𝑡0+ 𝑡1)/2 ∈ 𝐷,
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then conditional on 𝑊𝑡0 = 𝑎 and 𝑊𝑡1 = 𝑏, we have 𝑊𝑑 ∼ N((𝑎 + 𝑏)/2, 2−𝑘−1), so
that Lévy’s construction on 𝐷 proceeds as:

𝑊0 := 0,

𝑊1 := 𝑍0,

𝑊1/2 :=
𝑊0 +𝑊1

2
+ 𝑍1

2(1+1)/2 ,

𝑊1/4 :=
𝑊0 +𝑊1/2

2
+ 𝑍2

2(2+1)/2 ,

𝑊3/4 :=
𝑊1/2 +𝑊1

2
+ 𝑍3

2(2+1)/2 ,

...

After completing the construction on 𝐷𝑛\ ∪𝑛−1
𝑘=0 𝐷𝑘 , we can linearly interpolate the

set of points (𝑊𝑑 , 𝑑 ∈ ∪𝑛
𝑘=0𝐷𝑘 ) to obtain the stochastic process 𝑊 (𝑛) := (𝑊 (𝑛)

𝑡 , 𝑡 ∈
[0, 1]) which, by construction, has continuous sample paths. In fact, this linear in-
terpolation can be represented via (6.19). Figure 6.20 shows a particular realization
of the paths of the processes𝑊 (1) (dotted) and𝑊 (2) .

Figure 6.20: Lévy’s construction for step 𝑛 = 1 (dotted) and 𝑛 = 2 (solid).

All that remains to validate the construction is to show that as 𝑛→ ∞ the
sequence of processes (𝑊 (𝑛)) converges almost surely in an appropriate norm to a
zero-mean Gaussian process on [0, 1] with continuous sample paths and covariance
function 𝑠∧𝑡. Such a norm is the supremum or uniform norm ∥ 𝑓 ∥ := sup𝑡∈[0,1] | 𝑓 (𝑡) |
on [0, 1], because if a continuous function 𝑓 (𝑛) converges in the uniform norm,
then the limit 𝑓 (𝑡) := lim𝑛 𝑓

(𝑛) (𝑡), 𝑡 ∈ [0, 1] is also a continuous function; see
Example B.13. The details are summarized in the following theorem:
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Theorem 6.21: Existence of the Wiener Process

There exists a probability space (Ω,H , P) and a zero-mean Gaussian process
𝑊 := (𝑊𝑡 , 𝑡 ∈ [0, 1]) with covariance function E𝑊𝑠𝑊𝑡 = 𝑠∧ 𝑡 and uniformly
continuous sample paths.

Proof. Let 𝜇 be the standard Gaussian distribution on (R,B) and take (Ω,H , P) :=
(R,B, 𝜇)N with 𝑍0, 𝑍1, . . . being the coordinate variables. Thus, on the probability
space (Ω,H , P) the 𝑍0, 𝑍1, . . . are iid N(0, 1) random variables that are used to
define the processes𝑊 (𝑛) , 𝑛 = 0, 1, 2, . . . via (6.19). Our goal is to show that (𝑊 (𝑛))
is almost surely a Cauchy sequence in the uniform norm: lim𝑚,𝑛→∞ ∥𝑊 (𝑚)−𝑊 (𝑛) ∥ =
0. This implies that (𝑊 (𝑛)

𝑡 ) is a Cauchy sequence for every 𝑡 ∈ [0, 1], which in turn,
due to the completeness ofR, implies the existence of its limit𝑊𝑡 for every 𝑡 ∈ [0, 1],
and hence the existence of a process𝑊 to which (𝑊 (𝑛)) converges almost surely in
the uniform norm.

First, let us show that for 𝑛 large enough, ∥𝑊 (𝑛+1) −𝑊 (𝑛) ∥ is small. The precise
relation between𝑊 (𝑛) and𝑊 (𝑛+1) for 𝑛 ≥ 1 is:

𝑊
(𝑛+1)
𝑡 = 𝑊

(𝑛)
𝑡 +

2𝑛−1∑︁
𝑗=0

𝑐𝑛, 𝑗 (𝑡) 𝑍 𝑗+2𝑛 , 𝑡 ∈ [0, 1] .

The function 𝑐𝑛, 𝑗 has its maximum at 𝑡 = (2 𝑗 + 1)/2𝑛+1, with maximum value
2−𝑛/2−1 < 2−𝑛/2. Thus,

∥𝑊 (𝑛+1) −𝑊 (𝑛) ∥ ≤ 2−𝑛/2 max
0≤ 𝑗≤2𝑛−1

|𝑍 𝑗+2𝑛 |︸             ︷︷             ︸
=: 𝑀𝑛

.

The random variable 𝑀𝑛 is thus the maximum of the absolute values of 2𝑛 iid
N(0, 1) random variables. It is not difficult to show (see Exercise 6) that

P( |𝑍 | > 𝑧) ≤ e−𝑧
2/2/𝑧,

so that P(𝑀𝑛 > 𝑧) ≤ 2𝑛P( |𝑍 | > 𝑧) ≤ e−𝑧2/2−ln 𝑧+𝑛 ln 2. Hence, for any 𝜀𝑛 > 0,

P(∥𝑊 (𝑛+1) −𝑊 (𝑛) ∥ > 𝜀𝑛) ≤ P(2− 𝑛2 𝑀𝑛 > 𝜀𝑛) ≤ e−(2
𝑛𝜀2
𝑛+ln 𝜀2

𝑛−𝑛 ln 2)/2.

If we choose 𝜀2
𝑛 := 𝑐 𝑛 2−𝑛 for some constant 𝑐 > 2 ln 2, then

∑
𝑘≥𝑛 𝜀𝑘 = O(

√
𝑛 2− 𝑛2 ),

because: ∫ ∞

𝑛

d𝑥
√
𝑥 2−

𝑥
2 =

∫ ∞

√
𝑛

d𝑥 2𝑥2e−
ln 2
2 𝑥

2 ≤ 2
ln 2

√
𝑛 e−

ln 2
2 𝑛.

Moreover, ∑︁
𝑛

P(∥𝑊 (𝑛+1) −𝑊 (𝑛) ∥ > 𝜀𝑛) ≤
∑︁
𝑛

e−(𝑐/2−ln 2)𝑛 < ∞.
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Consequently, by the Borel–Cantelli Lemma 3.14, there exists an almost sure event
Ω0 such that for every 𝜔 ∈ Ω0 there is a 𝑛𝜔 such that:

∥𝑊 (𝑛+1) (𝜔) −𝑊 (𝑛) (𝜔)∥ ≤ 𝜀𝑛 for all 𝑛 ≥ 𝑛𝜔.

As in part 3 of Proposition 3.2, it follows that for 𝜔 ∈ Ω0 and 𝑖, 𝑗 ≥ 𝑛 ≥ 𝑛𝜔:

(6.22) ∥𝑊 (𝑖) (𝜔) −𝑊 ( 𝑗) (𝜔)∥ ≤
∞∑︁
𝑘=𝑛

𝜀𝑘 = O(
√
𝑛 2−

𝑛
2 ),

where the right-hand side vanishes as 𝑛 → ∞. Hence, for 𝜔 ∈ Ω0, the sequence
(𝑊 (𝑛) (𝜔)) is Cauchy convergent in the uniform norm, and hence has a limit𝑊 (𝜔)
in this norm. By setting 𝑊 (𝜔) := 0 for 𝜔 ∉ Ω0, we have defined the process
𝑊 := (𝑊𝑡 , 𝑡 ∈ [0, 1]) for all 𝜔 ∈ Ω. Since the process𝑊 is the limit (in the uniform
norm) of a continuous process 𝑊 (𝑛) , its sample paths are continuous. Moreover,
since [0, 1] is a closed and bounded set, the continuity is uniform; see Example B.13
in the Appendix. To conclude that 𝑊 is a Wiener process, it remains to show that
for any choice of 𝑑 and 0 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡𝑑 ≤ 1, the 𝑑-dimensional vector
𝑿 := [𝑊𝑡1 , . . . ,𝑊𝑡𝑑 ]⊤ is multivariate Gaussian with mean vector 0 and a covariance
matrix with (𝑖, 𝑗)th element 𝑡𝑖∧ 𝑗 . We leave the proof to Exercise 4. □

Theorem 6.21 tells us how to construct a Wiener processes only on [0, 1]. Given
a sequence (𝑊𝑡,𝑘 , 𝑡 ∈ [0, 1]), 𝑘 = 0, 1, 2, . . . of independent Wiener processes on
[0, 1], we can combine them to construct a Wiener process𝑊 on [0,∞) via:

(6.23) 𝑊𝑡 := 𝑊𝑡−⌊𝑡⌋,⌊𝑡⌋ +
⌊𝑡⌋−1∑︁
𝑘=0

𝑊1,𝑘 for all 𝑡 ≥ 0,

where
∑−1
𝑘=0𝑊1,𝑘 := 0. Clearly, the process (𝑊𝑡 , 𝑡 ≥ 0) has continuous sample

paths and it is not difficult to verify (see Exercise 5) that it is a zero-mean Gaussian
process with covariance function E𝑊𝑠𝑊𝑡 = 𝑠 ∧ 𝑡.

6.3 Strong Markov Property
At the beginning of Section 5.6 we mentioned that for continuous-time processes
it is useful to complete the underlying probability space and to have an augmented
and right-continuous filtration. Let us briefly discuss how this is relevant for the
Wiener process 𝑊 on some probability space (Ω,H , P). Let F := (F𝑡) be the
natural filtration of 𝑊 . We can complete the probability space by (1) extending H
to H , where the latter includes all negligible sets of H , and (2) extending P to P,
where P(𝐻) = P(𝐻) for all 𝐻 ∈ H and P(𝐻) = 0 for all negligible sets in 𝐻 ∈ H .
This gives the probability space (Ω,H , P). Let N be the 𝜎-algebra generated by
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the negligible sets in H ; that is, all events in the extended probability space that
have probability 0. Define the augmentation, F := (F 𝑡) of F , by

(6.24) F 𝑡 := F𝑡 ∨ N .

The next theorem shows that this is a right-continuous filtration. That is, by peeking
ahead an infinitesimal amount of time at time 𝑡, we cannot learn more than we
already know at time 𝑡.

Theorem 6.25: Right-continuous Filtration

For the Wiener process, the augmentation (F 𝑡) of the natural filtration is
right-continuous; that is,

F 𝑡 = F +
𝑡 :=

⋂
𝜀>0

F 𝑡+𝜀 .

Proof. If 𝑊 is a Wiener process over (Ω,H , P), it is also a Wiener process over
(Ω,H , P), since P coincides with P on H . In particular, it has independent incre-
ments and continuous sample paths under this probability model. Let (𝜀𝑛) be a
strictly decreasing sequence to 0. Define

H𝑛 := 𝜎{𝑊𝑡 −𝑊𝑠 : 𝜀𝑛 ≤ 𝑠 < 𝑡 ≤ 𝜀𝑛−1};

that is, the history of the increment process during the time interval [𝜀𝑛, 𝜀𝑛−1]. By
the independence of the increments, the 𝜎-algebras H1,H2, . . . are independent.
By Kolmogorov’s 0−1 law, see Section 5.5.1, the tail 𝜎-algebra∩𝑛H𝑛 is trivial, i.e.,
contains only events 𝐻 with P(𝐻) = 0 or P(𝐻) = 1. In other words, ∩𝑛H𝑛 ⊆ N .
But also, H𝑛+1 ∨H𝑛+2 ∨ · · · = F𝜀𝑛 , so⋂

𝑛

H𝑛 =
⋂
𝑛

F𝜀𝑛 =
⋂
𝜀>0

F𝜀 =: F +
0 ,

showing that
F +

0 ⊆ N .

For general 𝑡, let F̂ be the filtration of the Wiener process𝑊𝑢 := 𝑊𝑡+𝑢 −𝑊𝑢, 𝑢 ≥ 0.
In particular, as we have just shown, F̂ +

0 ⊆ N . It follows that⋂
𝜀>0

F 𝑡+𝜀 =
⋂
𝜀>0

(F𝑡 ∨ N ∨ F̂𝜀) = F𝑡 ∨ N ∨ F̂ +
0 = F𝑡 ∨ N = F 𝑡 .

□
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The statement F +
0 ⊆ N in the proof above is referred to as Blumenthal’s 0 − 1

law. It states that any information that can be gleaned from peeking ahead is trivial
— it is either certain to happen or impossible. The following example gives a
striking application:

Example 6.26 (Set of Zeros of a Wiener Process) Let

𝑇 := inf{𝑡 > 0 : 𝑊𝑡 = 0}

and 𝐻𝑛 := {𝑊𝑡 = 0 for some 0 < 𝑡 < 1/𝑛} ∈ F1/𝑛. Then, {𝑇 = 0} = ∩∞
𝑛=1𝐻𝑛 ∈ F +

0
and hence it has probability 0 or 1. Suppose that P(𝑇 = 0) = 0. Then, almost
surely, there is an 𝜀 > 0 such that the Wiener process never hits 0 during the time
interval (0, 𝜀). But this is a contradiction, as P({𝑊𝜀/2 > 0} ∩ {𝑊𝜀 < 0}) > 0, and
thus, by the continuity of the paths,𝑊 hits 0 with positive probability during (0, 𝜀).
Consequently,

(6.27) P(𝑇 = 0) = 1.

Let 𝐶 be the (random) set of points where𝑊𝑡 = 0. By the path-continuity of𝑊 ,
if 𝑊𝑡 ≠ 0, then there will be points in an arbitrary neighborhood of 𝑡 for which the
process is not 0 either. Thus, the complement of 𝐶 is an open set, and hence, per
definition, 𝐶 is a closed1 set. Moreover, by (6.27), for any 𝑡 with 𝑊𝑡 = 0 and any
𝜀 > 0, there exists another 𝑠 < 𝜀 with 𝑊𝑠 = 0; that is, no points of 𝐶 are isolated.
The fractal-like properties of 𝐶 make it similar to the Cantor set in Example 1.1. It
can be shown that it is uncountable, and can be mapped 1-to-1 to the real line.

For the rest of the discussions in this chapter, we assume that the Wiener
process𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) has the right-continuous filtration F + := (F +

𝑡 , 𝑡 ≥ 0), with
F +
𝑡 := ∩𝜀>0F𝑡+𝜀. As Theorem 6.25 shows, F + is contained in F , defined in (6.24).

Take any time 𝑡 > 0 and define the process𝑊 := (𝑊𝑡+𝑢 −𝑊𝑡 , 𝑢 ≥ 0). Then,𝑊 is
again a Wiener process, as it is a zero-mean Gaussian process with E𝑊𝑢𝑊𝑠 = 𝑢 ∧ 𝑠.
Moreover, by the independence of increments,𝑊 is independent of F𝑡 . This shows
that 𝑊 is Markovian with respect to its natural filtration F . More importantly, we
have the following:

Theorem 6.28: Wiener Process is Markov w.r.t F +

Let𝑊 be a Wiener process. For every 𝑡 ≥ 0, the process (𝑊𝑡+𝑢 −𝑊𝑡 , 𝑢 ≥ 0)
is independent of F +

𝑡 . Consequently,𝑊 is Markovian with respect to F +.

Proof. Take a strictly decreasing sequence 𝑡𝑛 ↓ 𝑡. By the continuity of the paths,
𝑊𝑡+𝑢 −𝑊𝑡 = lim𝑛 (𝑊𝑡𝑛+𝑢 −𝑊𝑡𝑛). For any selection 𝑢1, . . . , 𝑢𝑚 ≥ 0 and 𝑛, the vector

1Another way to see that 𝐶 is closed, is that it is the pre-image of the closed set {0} under the
continuous function𝑊𝑡 , 𝑡 ≥ 0.
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(𝑊𝑡𝑛+𝑢1 −𝑊𝑡𝑛 , . . . ,𝑊𝑡𝑛+𝑢𝑚 −𝑊𝑡𝑛) is independent of F +
𝑡 , and so is its limit as 𝑛→ ∞.

In other words, the process𝑊𝑡+𝑢 −𝑊𝑡 , 𝑢 ≥ 0 is independent of F +
𝑡 . □

As a matter of fact, in the theorem above, we can replace 𝑡 with any (almost
surely) finite stopping time 𝑇 . This is the strong Markov property of the Wiener
process.

Theorem 6.29: Strong Markov Property

For any finite stopping time𝑇 with respect to F +, the process (𝑊𝑇+𝑢−𝑊𝑇 , 𝑢 ≥
0) is a Wiener process independent of F +

𝑇
.

Proof. Let 𝑇 be a stopping time with respect to F +. As in the proof of Doob’s
stopping theorem for continuous martingales, Theorem 5.83, we first consider a
sequence of stopping times (𝑇𝑛) decreasing to 𝑇 , by defining for each 𝑛 ∈ N:

𝑇𝑛 :=
𝑘 + 1
2𝑛

if
𝑘

2𝑛
≤ 𝑇 < 𝑘 + 1

2𝑛
for some 𝑘 ∈ N.

Note that 𝑇𝑛 takes values in the countable set {𝑘/2𝑛, 𝑘 = 1, 2, . . .} and that 𝑇𝑛 ∈ F +
𝑇

for all 𝑛. Fix 𝑛 and consider the processes 𝑋 (𝑛,𝑘) := (𝑊𝑘/2𝑛+𝑢 −𝑊𝑘/2𝑛 , 𝑢 ≥ 0) for
𝑘 = 1, 2, . . . and 𝑋 (𝑛) := (𝑊𝑇𝑛+𝑢 −𝑊𝑇𝑛 , 𝑢 ≥ 0). Each 𝑋 (𝑛,𝑘) is a Wiener process and
is independent of F +

𝑘/2𝑛 . In particular, the probability of each event {𝑋 (𝑛,𝑘) ∈ 𝐴}
does not depend on 𝑘 and is the same as the probability of the event {𝑋 (𝑛) ∈ 𝐴}.

We want to show that for any 𝑛, every event 𝐸 ∈ F +
𝑇𝑛

is independent of every
event {𝑋 (𝑛) ∈ 𝐴}. Using the properties of 𝑋 (𝑛,𝑘) and 𝑋 (𝑛) mentioned above, this
independence follows from

P({𝑋 (𝑛) ∈ 𝐴} ∩ 𝐸) =
∞∑︁
𝑘=1

P({𝑋 (𝑛,𝑘) ∈ 𝐴} ∩ 𝐸 ∩ {𝑇𝑛 = 𝑘/2𝑛})

=

∞∑︁
𝑘=1

P(𝑋 (𝑛,𝑘) ∈ 𝐴) P(𝐸 ∩ {𝑇𝑛 = 𝑘/2𝑛})

= P(𝑋 (𝑛) ∈ 𝐴)
∞∑︁
𝑘=1

P(𝐸 ∩ {𝑇𝑛 = 𝑘/2𝑛})

= P(𝑋 (𝑛) ∈ 𝐴) P(𝐸).

As 𝑇𝑛 ∈ F +
𝑇

, this shows that for each 𝑛, 𝑋 (𝑛) is a Wiener process independent of
F +
𝑇

. Hence, the increments

(6.30) 𝑊𝑇+𝑢+𝑣 −𝑊𝑇+𝑢 = lim
𝑛
(𝑊𝑇𝑛+𝑢+𝑣 −𝑊𝑇𝑛+𝑢) = lim

𝑛
(𝑋 (𝑛)

𝑢+𝑣 − 𝑋
(𝑛)
𝑢 )
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of the process (𝑊𝑇+𝑢 −𝑊𝑇 , 𝑢 ≥ 0) are independent and normally distributed with
mean 0 and variance 𝑣. As this process has continuous paths, it must be a Wiener
process. Moreover, all increments (6.30) are independent of F +

𝑇
as they are the limit

of random variables independent of F +
𝑇

. □

A neat corollary of the strong Markov process property is the reflection principle
for the Wiener process.

Theorem 6.31: Reflection Principle

Let 𝑇 be a stopping time. Then, (𝑊𝑡 , 𝑡 ≥ 0), defined by

(6.32) 𝑊𝑡 := 𝑊𝑡 1{𝑡≤𝑇} + (2𝑊𝑇 −𝑊𝑡) 1{𝑡>𝑇}, 𝑡 ≥ 0,

is a Wiener process.

Proof. The proof is illustrated in Figure 6.33, where 𝑇 is the time that (𝑊𝑡) hits
the level 𝑥 = 0.4 for the first time. If 𝑇 < ∞, then by the strong Markov property,
(𝑊𝑇+𝑡 −𝑊𝑇 , 𝑡 ≥ 0) is a Wiener process, and so is −(𝑊𝑇+𝑡 −𝑊𝑇 , 𝑡 ≥ 0). Moreover,
both processes are independent of F +

𝑇
. By concatenating (𝑊𝑡 , 𝑡 ≤ 𝑇) and −(𝑊𝑇+𝑡 −

𝑊𝑇 , 𝑡 ≥ 0), we obtain a Wiener process, and this process is (𝑊𝑡 , 𝑡 ≥ 0). □
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Figure 6.33: The reflected Wiener process is again a Wiener process.

The following is immediate by the independence and Gaussianity of increments
of the Wiener process:
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Theorem 6.34: Transition Kernel of the Wiener Process

The Wiener process𝑊 admits the transition function

𝑃𝑡,𝑢 (𝑥, 𝐴) = P(𝑊𝑢 ∈ 𝐴 |𝑊𝑡 = 𝑥) =
∫
𝐴

d𝑦 𝑝𝑢−𝑡 (𝑦 | 𝑥),

where the transition density 𝑝𝑡 (𝑦 | 𝑥) is given by

(6.35) 𝑝𝑡 (𝑦 | 𝑥) :=
1

√
2𝜋𝑡

e−
(𝑦−𝑥 )2

2𝑡 , 𝑡 ≥ 0, 𝑥, 𝑦 ∈ R.

Think of d𝑦 𝑝𝑡 (𝑦 | 𝑥) as the infinitesimally small probability that the process
goes from 𝑥 to a point in the interval (𝑦, 𝑦 + d𝑦) during an interval of length 𝑡. For
𝑑-dimensional Wiener processes we have, similarly, the transition density

(6.36) 𝑝𝑡 (𝒚 | 𝒙) = (2𝜋𝑡)−𝑑/2 e−
∥𝒚−𝒙∥2

2𝑡 , 𝑡 ≥ 0, 𝒙, 𝒚 ∈ R𝑑 .

Define the Laplace operator in the Cartesian coordinates 𝒙 ∈ R𝑑:

(6.37) Δ :=
𝑑∑︁
𝑖=1

𝜕𝑖𝑖 =

𝑑∑︁
𝑖=1

𝜕2

𝜕𝑥2
𝑖

.

We sometimes write Δ𝒙 for Δ to emphasize that the partial derivatives are taken
with respect to 𝒙. Then, direct substitution shows that the transition density (6.36)
satisfies the heat equation on R𝑑:

(6.38)
𝜕

𝜕𝑡
𝑝𝑡 (𝒚 | 𝒙) =

1
2
Δ𝒚𝑝𝑡 (𝒚 | 𝒙), 𝒚 ∈ R𝑑 , 𝑡 ≥ 0.

We can interpret 𝑝𝑡 (𝒚 | 𝒙) as the amount of heat at position 𝒚 at time 𝑡 > 0, if a heat
impulse is released at position 𝒙 at time 𝑡 = 0 and is then allowed to freely diffuse
through the medium.

6.4 Martingale Properties
Let 𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) be a Wiener process adapted to the filtration F +, and recall
that E𝑠 denotes the conditional expectation with respect to F +

𝑠 .
We can associate many martingales with the Wiener process. For a start, the

Wiener process itself is a martingale; see Example 5.68.
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A second martingale associated with 𝑊 is the process (𝑊2
𝑡 − 𝑡, 𝑡 ≥ 0). Adap-

tedness and integrability are again trivial. The martingale property follows from:

E𝑠 (𝑊2
𝑡 − 𝑡) = E𝑠 (𝑊𝑠 +𝑊𝑡 −𝑊𝑠)2 − 𝑡

= E𝑠 [𝑊2
𝑠 + 2𝑊𝑠 (𝑊𝑡 −𝑊𝑠) + (𝑊𝑡 −𝑊𝑠)2 − 𝑡]

= 𝑊2
𝑠 + 2𝑊𝑠E𝑠 (𝑊𝑡 −𝑊𝑠) + E𝑠 (𝑊𝑡 −𝑊𝑠)2 − 𝑡

= 𝑊2
𝑠 + 0 + (𝑡 − 𝑠) − 𝑡 = 𝑊2

𝑠 − 𝑠.

Another useful martingale is the exponential martingale (e𝑟𝑊𝑡−𝑟2𝑡/2, 𝑡 ≥ 0) for
any 𝑟 ∈ R. The exponential martingale characterizes the Wiener process.

Theorem 6.39: Exponential Martingale

A continuous process 𝑋 := (𝑋𝑡 , 𝑡 ≥ 0) is a Wiener process if and only if for
each 𝑟 ∈ R the process 𝑆 := (𝑆𝑡) defined by

(6.40) 𝑆𝑡 := e𝑟𝑋𝑡−
1
2 𝑟

2𝑡 , 𝑡 ≥ 0,

is a martingale.

Proof. Suppose 𝑋 = 𝑊 is a Wiener process. We have for all 𝑠 < 𝑡:

E𝑠
𝑆𝑡

𝑆𝑠
= E𝑠e𝑟 (𝑊𝑡−𝑊𝑠)−

1
2 𝑟

2 (𝑡−𝑠) = e−
1
2 𝑟

2 (𝑡−𝑠)E𝑠e𝑟 (𝑊𝑡−𝑊𝑠) = e−
1
2 𝑟

2 (𝑡−𝑠)e+
1
2 𝑟

2 (𝑡−𝑠) = 1,

since conditionally on𝑊𝑢, 𝑢 ≤ 𝑠, the increment𝑊𝑡−𝑊𝑠 has aN(0, 𝑡−𝑠) distribution
and its MGF is e 1

2 𝑟
2 (𝑡−𝑠) , 𝑟 ∈ R. Consequently, since E𝑆𝑡 < ∞ for all 𝑡, and

(6.41) E𝑠𝑆𝑡 = 𝑆𝑠 E𝑠𝑆𝑡/𝑆𝑠 = 𝑆𝑠,

it follows that 𝑆 is a martingale.
Conversely, suppose that 𝑆 is a martingale. Then, taking 𝑡 = 𝑠 + 𝑢 in (6.41), we

have that

(6.42) E𝑠e𝑟 (𝑋𝑠+𝑢−𝑋𝑠) = e
1
2 𝑟

2𝑢, 𝑢 ≥ 0,

which shows that 𝑋 has stationary and independent increments and 𝑋𝑠+𝑢 − 𝑋𝑠 ∼
N(0, 𝑢), so that it must be a Wiener process. □

Next, we give a typical example of how Wiener martingales can be employed.

Example 6.43 (Hitting Time) For some 𝑥 ≥ 0, let

𝑇𝑥 := inf{𝑡 > 0 : 𝑊𝑡 > 𝑥}
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be the hitting time of the open set (𝑥,∞). Recall that this is a stopping time of the
right-continuous filtration F +, but not a stopping time of the natural filtration F .
Consider the exponential martingale (6.40):

𝑆𝑡 := e𝑟𝑊𝑡−
1
2 𝑟

2𝑡 , 𝑡 ≥ 0.

Note that (𝑆𝑡) is bounded by e𝑟𝑥 on [0, 𝑇𝑥] ∩ R+. Thus, by Proposition 5.96, 𝑆𝑇𝑥
exists and is integrable, and (𝑆𝑡) is a Doob martingale on [0, 𝑇𝑥]. Consequently,
E0𝑆𝑇𝑥 = 𝑆0 and after taking expectations:

E𝑆𝑇𝑥 = E𝑆0 = 1.

Written out, this means

E
[
e𝑟𝑥−

1
2 𝑟

2𝑇𝑥1{𝑇𝑥<∞} + 01{𝑇𝑥=∞}
]
= 1,

which shows that, with 𝑠 := 𝑟2/2,

(6.44) E e−𝑠𝑇𝑥 = e−𝑟𝑥 = e−𝑥
√

2𝑠, 𝑠 ≥ 0,

yielding the Laplace transform of 𝑇𝑥 . It is straightforward to check that this is the
Laplace transform corresponding to the pdf

(6.45) 𝑓𝑇𝑥 (𝑡) =
𝑥 e−𝑥2/(2𝑡)
√

2𝜋𝑡3
, 𝑡 ≥ 0

and that the corresponding expectation is ∞. Finally,

1 = lim
𝑠→0

Ee−𝑠𝑇𝑥 = lim
𝑠→0

Ee−𝑠𝑇𝑥1{𝑇𝑥<∞} + lim
𝑠→0

Ee−𝑠𝑇𝑥1{𝑇𝑥=∞} = P(𝑇𝑥 < ∞) + 0,

which shows that 𝑇𝑥 is almost surely finite. Hence, starting from 0, the Wiener
process hits any point 𝑥 > 0 (and, by symmetry, any point 𝑥 < 0) almost surely, but
the expected hitting time is infinite.

Finally, many martingales can be constructed from the Wiener process via the
following theorem, involving the Laplace operator (6.37). In Chapter 7 we will
recognize this as a consequence of Itô’s formula. We formulate it in terms of a
standard Brownian motion (𝑩𝑡) rather than a Wiener process (𝑾 𝑡), to be able to
start the process from different states. Recall that E𝒙 is the expectation operator
under which the process starts at 𝒙.



Chapter 6. Wiener and Brownian Motion Processes 221

Theorem 6.46: Martingales from Functions of a Brownian Motion

Let 𝑓 : R𝑑 → R be twice continuously differentiable and let 𝑩 be a 𝑑-
dimensional standard Brownian motion. If for all 𝑡 > 0 and 𝒙 ∈ R𝑑 ,

E𝒙 | 𝑓 (𝑩𝑡) | < ∞ and E𝒙

∫ 𝑡

0
|Δ 𝑓 (𝑩𝑠) | d𝑠 < ∞,

then the process (𝑋𝑡 , 𝑡 ≥ 0) defined by

(6.47) 𝑋𝑡 := 𝑓 (𝑩𝑡) −
1
2

∫ 𝑡

0
Δ 𝑓 (𝑩𝑠) d𝑠

is a martingale.

Proof. Take 0 ≤ 𝑠 < 𝑡. The conditional expectation of 𝑋𝑡 given F +
𝑠 is, by the

Markov property,

E𝑠𝑋𝑡 = E𝑩𝑠 𝑓 (𝑩𝑡−𝑠) −
1
2

∫ 𝑠

0
Δ 𝑓 (𝑩𝑢) d𝑢 −

∫ 𝑡−𝑠

0
E𝑩𝑠

1
2
Δ 𝑓 (𝑩𝑢) d𝑢.

The integrand of the second integral can be written as

E𝑩𝑠
1
2
Δ 𝑓 (𝐵𝑢) =

1
2

∫
R𝑑
𝑝𝑢 (𝒙 | 𝑩𝑠)Δ 𝑓 (𝒙) d𝒙 =

1
2

∫
R𝑑

Δ𝑝𝑢 (𝒙 | 𝑩𝑠) 𝑓 (𝒙) d𝒙,

where we have used the fact that ∫ (𝑝Δ 𝑓 − 𝑓Δ𝑝) d𝒙 = ∫ ∇ · (𝑝∇ 𝑓 − 𝑓∇𝑝) d𝒙 = 0
because (𝑝∇ 𝑓 − 𝑓∇𝑝) vanishes at infinity. Next, since 𝑝 satisfies (6.38), we can
write

E𝑩𝑠
1
2
Δ 𝑓 (𝑩𝑢) =

∫
R𝑑

𝜕

𝜕𝑢
𝑝𝑢 (𝒙 | 𝑩𝑠) 𝑓 (𝒙) d𝒙.

Consequently, its integral from 0 to 𝑡 − 𝑠 is∫ 𝑡−𝑠

0

(∫
R𝑑

𝜕

𝜕𝑢
𝑝𝑢 (𝒙 | 𝑩𝑠) 𝑓 (𝒙) d𝒙

)
d𝑢 = lim

𝜀↓0

∫
R𝑑

(∫ 𝑡−𝑠

𝜀

𝜕

𝜕𝑢
𝑝𝑢 (𝒙 | 𝑩𝑠) d𝑢

)
𝑓 (𝒙) d𝒙

=

∫
R𝑑
𝑝𝑡−𝑠 (𝒙 | 𝑩𝑠) 𝑓 (𝒙) d𝒙 − lim

𝜀↓0

∫
𝑝𝜀 (𝒙 | 𝑩𝑠) 𝑓 (𝒙) d𝒙 = E𝑩𝑠 𝑓 (𝑩𝑡−𝑠) − 𝑓 (𝑩𝑠),

so that E𝑠𝑋𝑡 = 𝑋𝑠, showing that (𝑋𝑡) has the martingale property. Integrability of
each 𝑋𝑡 follows from the two conditions stated in the theorem, and adaptedness is
obvious. □

As an example of this theorem, taking 𝑓 (𝑥) = 𝑥2 in the one-dimensional case
gives the martingale (𝐵2

𝑡 − 𝑡).
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6.5 Maximum and Hitting Time
For 𝑥 ∈ R+, let 𝑇𝑥 be the hitting time of the open set (𝑥,∞); see Example 6.43. In
other words, we have

(6.48) 𝑇𝑥 := inf{𝑡 > 0 : 𝑊𝑡 > 𝑥}, 𝑥 ≥ 0.

Also, for 𝑡 ∈ R+, let 𝑀𝑡 be the running maximum of the Wiener process; that is,

(6.49) 𝑀𝑡 := max
0≤𝑠≤𝑡

𝑊𝑠 .

The two are related via

(6.50) {𝑀𝑡 > 𝑥} = {𝑇𝑥 < 𝑡}.
Indeed, we have

(6.51) 𝑇𝑥 = inf{𝑡 > 0 : 𝑀𝑡 > 𝑥} and 𝑀𝑡 = inf{𝑥 > 0 : 𝑇𝑥 > 𝑡},
so the processes 𝑇 := (𝑇𝑥 , 𝑥 ≥ 0) and 𝑀 := (𝑀𝑡 , 𝑡 ≥ 0) are functional inverses of
each other. To obtain the path of one, just swap the axes of the other, as illustrated
in Figure 6.52. Both processes are increasing and right-continuous. In fact, we will
see that 𝑇 is strictly increasing, whereas 𝑀 has continuous sample paths that can
remain constant in certain time intervals.

0 1 2 3 4

0

2

4

6

8

0 5 10

0

1

2

3

4

5

Figure 6.52: Processes 𝑀 and 𝑇 are functional inverses of each other.

By the continuity of 𝑊 , we have 𝑊𝑇𝑥 = 𝑥, and therefore, similar to (6.50), the
event {𝑇𝑥 ≤ 𝑡} is equivalent to the event {𝑀𝑡 ≥ 𝑥}. Consequently,

P(𝑀𝑡 ≥ 𝑥) = P(𝑇𝑥 ≤ 𝑡) = P(𝑇𝑥 ≤ 𝑡,𝑊𝑡 < 𝑥) + P(𝑇𝑥 ≤ 𝑡,𝑊𝑡 > 𝑥)

= 2P(𝑇𝑥 ≤ 𝑡,𝑊𝑡 > 𝑥) = 2P(𝑊𝑡 > 𝑥)

= 2 − 2Φ
(
𝑥
√
𝑡

)
, 𝑥 ≥ 0,(6.53)
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where Φ is the cdf of the standard normal distribution. The third equality above
is due to the reflection principle, as from 𝑇𝑥 onwards the Wiener process and its
reflection around 𝑥 have the same distribution. As 2P(𝑊𝑡 > 𝑥) = P(𝑊𝑡 > 𝑥) +
P(−𝑊𝑡 < −𝑥) = P( |𝑊𝑡 | > 𝑥), we have the following result:

Theorem 6.54: Distribution of 𝑀𝑡 and |𝑊𝑡 |

For each fixed 𝑡, 𝑀𝑡 and |𝑊𝑡 | have the same distribution.

By differentiating (6.53) with respect to 𝑥, it follows that 𝑀𝑡 has pdf

𝑓𝑀𝑡 (𝑥) :=
√︂

2
𝜋𝑡

exp
(
−1

2
𝑥2

𝑡

)
, 𝑥 ≥ 0.

That is, 𝑀𝑡 has a N(0, 𝑡) distribution truncated to [0,∞). Similarly, by differenti-
ating (6.53) with respect to 𝑡, we find that the pdf of 𝑇𝑥 is

(6.55) 𝑓𝑇𝑥 (𝑡) :=
1

√
2𝜋𝑡3

𝑥 exp
(
−𝑥

2

2𝑡

)
, 𝑡 ≥ 0,

which is in agreement with (6.45). Thus, 𝑇𝑥 ∼ InvGamma(1/2, 𝑥2/2). As, con-
sequently, 1/𝑇𝑥 ∼ Gamma(1/2, 𝑥2/2), this means that 1/𝑇𝑥 has the same distribu-
tion as 𝑍2/𝑥2 for 𝑥 > 0, where 𝑍 ∼ N(0, 1), so that𝑇𝑥 is distributed as 𝑥2/𝑍2. Either
from Example 6.43, or Exercise 12, we know that P(𝑇𝑥 < ∞) = 1 and E𝑇𝑥 = ∞ for
all 𝑥 > 0.

Finally, 𝑀𝑡 and𝑊𝑡 have joint cdf

(6.56) P(𝑀𝑡 ≤ 𝑥,𝑊𝑡 ≤ 𝑦) = Φ

(
2𝑥 − 𝑦
√
𝑡

)
−Φ

(
−𝑦
√
𝑡

)
, 𝑥 ≥ 0, 𝑥 ≥ 𝑦,

which can again be derived from the reflection principle, as

P(𝑀𝑡 ≥ 𝑥,𝑊𝑡 ≤ 𝑦) = P(𝑀𝑡 ≥ 𝑥,𝑊𝑡 ≥ 2𝑥 − 𝑦)

= P(𝑊𝑡 ≥ 2𝑥 − 𝑦) = 1 −Φ

(
2𝑥 − 𝑦
√
𝑡

)
.

To further explore the behavior of the maximum process, consider Figure 6.57.
The difference between the maximum process 𝑀 and the Wiener process 𝑊 — a
positive process — is depicted in the lower panel.
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Figure 6.57: The difference between the maximum and Wiener process is a reflected
Wiener process.

It turns out that this difference process has the same distribution as the process
|𝑊 | — called a reflected Wiener process.

Theorem 6.58: Difference Between 𝑀 and𝑊 is Reflected Wiener Process

Let 𝑌𝑡 := 𝑀𝑡 −𝑊𝑡 . The process 𝑌 := (𝑌𝑡 , 𝑡 ≥ 0) has the same distribution as
a reflected Wiener process |𝑊 | := ( |𝑊𝑡 |, 𝑡 ≥ 0).

Proof. Obviously 𝑌 has continuous sample paths. Define

𝑊𝑡 := 𝑊𝑠+𝑡 −𝑊𝑠, 𝑡 ≥ 0

and
𝑀𝑡 := max

0≤𝑢≤𝑡
𝑊𝑢, 𝑡 ≥ 0.

We want to show that, conditional on F +
𝑠 , the random variable 𝑌𝑠+𝑡 has the same

distribution as |𝑌𝑠 +𝑊𝑡 | for all 𝑡. This implies that 𝑌 is a Markov process with the
same transition density as |𝑊 |, and so must have the same probability distribution
as the latter. Fix 𝑠, 𝑡 ≥ 0 and write

𝑌𝑠+𝑡 = max{𝑀𝑠, 𝑊𝑠 + 𝑀𝑡} −𝑊𝑠 −𝑊𝑡

= max{𝑌𝑠, 𝑀𝑡} −𝑊𝑡 .
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Thus, the conditional distribution of 𝑌𝑠+𝑡 given F +
𝑠 is that of max{𝑌𝑠, 𝑀𝑡} −𝑊𝑡 ,

where 𝑀𝑡 and 𝑊𝑡 are independent of F +
𝑠 . Since 𝑀𝑡 and 𝑊𝑡 are distributed as 𝑀𝑡

and𝑊𝑡 , it therefore remains to be shown that for every 𝑦,

P(max{𝑦, 𝑀𝑡} −𝑊𝑡 > 𝑎) = P( |𝑦 +𝑊𝑡 | > 𝑎), 𝑎 > 0.

Write the first probability as the sum

P(𝑦 −𝑊𝑡 > 𝑎) + P(𝑦 −𝑊𝑡 ≤ 𝑎, 𝑀𝑡 −𝑊𝑡 > 𝑎) =: 𝑝1 + 𝑝2.

We want to show:

(6.59) 𝑝1 = P(𝑦 +𝑊𝑡 > 𝑎) and 𝑝2 = P(𝑦 +𝑊𝑡 < −𝑎),

so that then 𝑝1+𝑝2 = P( |𝑦+𝑊𝑡 | > 𝑎), as required. The first equality in (6.59) is easy,
since 𝑊𝑡 has the same distribution as −𝑊𝑡 . To prove the second equality in (6.59),
consider the time-reversed Wiener process 𝑅 := (𝑅𝑢) := (𝑊𝑡−𝑢 −𝑊𝑡 , 0 ≤ 𝑢 ≤ 𝑡).
Denote its maximum in [0, 𝑡] by 𝑀𝑅

𝑡 := max0≤𝑢≤𝑡 𝑅𝑢. Then, 𝑀𝑅
𝑡 = 𝑀𝑡 −𝑊𝑡 . Since

𝑅𝑡 = −𝑊𝑡 , we have
𝑝2 = P(𝑦 + 𝑅𝑡 ≤ 𝑎, 𝑀𝑅

𝑡 > 𝑎).
Proceeding in the same way as in the proof of Theorem 6.54, we now apply the
reflection principle to (𝑅𝑡) at the first time that the process hits 𝑎, to find (with 𝑅
the reflected Wiener process) that

𝑝2 = P(𝑅𝑡 ≥ 𝑎 + 𝑦),

which, by the Wiener properties of 𝑅, is equal to P(−𝑊𝑡 ≥ 𝑎+ 𝑦) = P(𝑦+𝑊𝑡 ≤ −𝑎),
which needed to be shown. □

We briefly touch on an interesting connection between the set of zeros of a
Wiener process and the local time at 0. Think of a clock which only moves when
the process is at 0 and stops every time when it is not. Consider the set of zeros for
a reflected Wiener process in the lower panel of Figure 6.57. This is also the set of
zeros for some Wiener process. Note that the path of the maximum process (𝑀𝑡)
in the upper panel increases every time (and only then) when the reflected Wiener
process hits 0. In this way we can think of 𝑀𝑡 as the time showing on the local
clock when the standard clock shows time 𝑡. The functional inverse of 𝑀 , i.e., 𝑇 ,
then describes the time intervals when the local clock is not moving forward.

We now turn our attention to the process 𝑇 = (𝑇𝑥 , 𝑥 ≥ 0). The right panel of
Figure 6.52 shows a typical path. This indicates that 𝑇 is a pure-jump process,
with a few large jumps and many very small jumps. We have already derived the
pdf of 𝑇𝑥 in (6.55). The process 𝑇 turns out to be an increasing pure-jump Lévy
process. In particular, 𝑇 is time-homogeneous Markov processes with stationary
and independent increments.
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Theorem 6.60: 𝑇 is a Lévy Subordinator

The process (𝑇𝑥 , 𝑥 ≥ 0) is a strictly increasing pure-jump Lévy process with
transition density

(6.61) 𝑝𝑥 (𝑡 | 𝑠) =
𝑥√︁

2𝜋(𝑡 − 𝑠)3
exp

(
− 𝑥2

2(𝑡 − 𝑠)

)
, 0 < 𝑠 < 𝑡, 𝑥 > 0.

Proof. Take any 𝑦 > 𝑥 > 0. To hit (𝑥 + 𝑦,∞) the process𝑊 has to hit (𝑥,∞) first,
and then starting from 𝑥 at time 𝑇𝑥 , the process has to hit (𝑥 + 𝑦,∞), which takes an
amount of time 𝑇𝑦. Hence,

𝑇𝑥+𝑦 = 𝑇𝑥 + 𝑇𝑦 .

By the strong Markov property for 𝑊 , 𝑇𝑦 is independent of F +
𝑇𝑥

and, by the sta-
tionarity of increments of 𝑊 , it has the same distribution as 𝑇𝑦. Thus, 𝑇 itself
has stationary and independent increments. As the paths are right-continuous and
left-limited and 𝑇0 = 0, 𝑇 is a Lévy process. In particular, 𝑇 is a time-homogeneous
Markov process. Its transition density to go from 𝑠 to 𝑡 in an interval of length 𝑥 is
exactly the pdf of 𝑇𝑥 at 𝑡 − 𝑠, so that (6.55) implies (6.61). □

The distribution of 𝑇1 is also called the Lévy distribution or Stable(1/2, 1) dis-
tribution. We mentioned before that distribution of 𝑇𝑥 is the same as the distribution
of 𝑥2/𝑍2, where 𝑍 ∼ N(0, 1). This implies that (𝑇𝑐𝑥/𝑐2, 𝑥 ≥ 0) has the same distri-
bution as (𝑇𝑥 , 𝑥 ≥ 0) for all 𝑐 > 0. A Lévy process (𝑋𝑡 , 𝑡 ≥ 0) is said to be 𝛼-stable
or stable with index 𝛼 if (𝑐−1/𝛼𝑋𝑐𝑡 , 𝑡 ≥ 0) has the same distribution as 𝑋𝑡 , 𝑡 ≥ 0 for
all 𝑐 > 0. The process (𝑇𝑥 , 𝑥 ≥ 0) is thus stable with index 𝛼 = 1/2 and the Wiener
process is stable with index 𝛼 = 2.

There is a fundamental association between pure-jump Lévy processes and
Poisson random measures, as explained in Section 2.8.4. In particular, the increasing
pure jump Lévy process (𝑇𝑥 , 𝑥 ≥ 0) is of the form

𝑇𝑥 :=
∫
[0,𝑥]×R+

𝑁 (d𝑢, d𝑦) 𝑦 =: 𝑁 𝑓 ,

where 𝑁 is a Poisson random measure on R+ × R+ and 𝑓 is the function 𝑓 (𝑢, 𝑦) :=
𝑦1[0,𝑥] (𝑢) for 𝑢, 𝑦 > 0; the corresponding integral is 𝑁 𝑓 . The mean measure of 𝑁
is 𝜆 := Leb ⊗ 𝜈, where 𝜈 is the Lévy measure of 𝑁 , which satisfies∫ ∞

0
𝜈(d𝑦) (𝑦 ∧ 1) < ∞.

The Laplace transform of 𝑇𝑥 can thus be written as

E e−𝑠𝑇𝑥 = E e−𝑠𝑁 𝑓 = e−𝜆(1−e−𝑠 𝑓 ) = e−
∫ 𝑥
0 d𝑢

∫ ∞
0 𝜈(d𝑦) (1−e−𝑠 𝑓 (𝑢,𝑦) ) = e−𝑥

∫ ∞
0 𝜈(d𝑦) (1−e−𝑠𝑦) .
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In (6.44), we found that the Laplace transform of 𝑇𝑥 is e−𝑥
√

2𝑠, 𝑠 ≥ 0. This shows
that the Lévy measure is

𝜈(d𝑦) = d𝑦
1√︁

2𝜋𝑦3
.

Figure 6.62 shows a typical realization of the atoms of 𝑁 . There are a few atoms
(𝑢, 𝑦) where 𝑦 is large, say of the order 1, but an infinity of atoms where 𝑦 is small
(close to 0). In fact, the atoms are accumulating near the horizontal axis. There is
a one-to-one correspondence between the atoms in Figure 6.62 and the realization
of 𝑇 := (𝑇𝑥 , 𝑥 ≥ 0) in Figure 6.52. Going from left to right (increasing 𝑥), every
time 𝑢 we hit an atom (𝑢, 𝑦), we increase the process 𝑇 by an amount 𝑦. Most of
the time these increases are minuscule, but sometimes they are large.
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Figure 6.62: The hitting time process (𝑇𝑥) can be constructed from the atoms of a
Poisson random measure.

6.6 Brownian Motion and the Laplacian Operator
There is a fundamental connection between the 𝑑-dimensional standard Brownian
motion process 𝑩 := (𝑩𝑡 , 𝑡 ≥ 0) = 𝑩0 +𝑾, where 𝑾 := (𝑾 𝑡 , 𝑡 ≥ 0) is a Wiener
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process, and the Laplacian operator Δ in (6.37). The key to this connection is
Theorem 6.46, which states that (under mild conditions stated in the theorem) the
process (𝑋𝑡 , 𝑡 ≥ 0) defined by

(6.63) 𝑋𝑡 := 𝑓 (𝑩𝑡) −
∫ 𝑡

0

1
2
Δ 𝑓 (𝑩𝑠) d𝑠

is a martingale. Let E𝒙 denote the expectation operator under which 𝑩 starts at state
𝒙. Also, for ease of notation, define 𝐿 := 1

2Δ. Because of the martingale property
of (𝑋𝑡), we have E𝒙𝑋𝑡 = E𝒙𝑋0 = 𝑓 (𝒙), which implies that

(6.64) E𝒙 𝑓 (𝑩𝑡) = 𝑓 (𝒙) +
∫ 𝑡

0
E𝒙𝐿 𝑓 (𝑩𝑠) d𝑠,

where the interchange of expectation and integral is allowed by Fubini’s theorem.

Example 6.65 (Exit Probability) For any 𝑞 ≥ 0, let 𝑇𝑞 be the first time that a
𝑑-dimensional standard Brownian motion hits the sphere centered at 0 with radius
𝑞. We are interested in the probability

𝑝 := P𝒙 (𝑇𝑙 < 𝑇𝑟),

when 𝒙 ∈ 𝐷 := {𝒙 ∈ R𝑑 : 𝑙 ≤ ∥𝒙∥ ≤ 𝑟}, where 0 < 𝑙 < 𝑟. That is, the probability
that the Brownian motion hits the inner sphere before it hits the outer sphere. We
can calculate 𝑝 via (6.64), by selecting a function 𝑓 for which Δ 𝑓 = 0 for all
𝒙 (here, on the annulus 𝐷). Such functions are said to be harmonic; they have
been widely studied in mathematical analysis and have many interesting properties.
If 𝑓 is harmonic on 𝐷 and twice differentiable and bounded on R𝑑 , then (6.64)
implies that E𝒙 𝑓 (𝑩𝑡) = 𝑓 (𝒙). In particular, for spherically symmetric functions 𝑓
(that is, 𝑓 (𝒙) = 𝑔(∥𝒙∥) for some function 𝑔), we then have E𝒙𝑔(∥𝑩𝑡 ∥) = 𝑔(∥𝒙∥).
Moreover, if the martingale (6.63) is uniformly integrable, we may, by Doob’s
stopping theorem, replace the fixed time 𝑡 with any stopping time 𝑇 . Taking
𝑇 := 𝑇𝑙 ∧ 𝑇𝑟 , now gives

E𝒙𝑔(∥𝑩𝑇 ∥) = 𝑔(𝑙)𝑝 + 𝑔(𝑟) (1 − 𝑝) = 𝑔(∥𝒙∥),

whence,
𝑝 =

𝑔(𝑟) − 𝑔(∥𝒙∥)
𝑔(𝑟) − 𝑔(𝑙) .

In particular, the following functions:

(6.66) 𝑓 (𝒙) :=


|𝑥 | for 𝑑 = 1,
ln ∥𝒙∥ for 𝑑 = 2,
∥𝒙∥2−𝑑 for 𝑑 ≥ 3,
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are spherically symmetric and harmonic on 𝐷. We can extend 𝑓 outside 𝐷 in such a
way that the function satisfies the conditions of Theorem 6.46. Moreover, ( 𝑓 (𝑩𝑡))
is uniformly integrable; see Exercise 10. Thus, we have found explicit expressions
for the exit probability 𝑝 for each dimension 𝑑.

In Section 6.3 we established that 𝑩 is a time-homogeneous Markov process
with transition function 𝑃𝑡 = 𝑃0,𝑡 , whose transition density is given in (6.36). The
left of (6.64) is exactly (𝑃𝑡 𝑓 ) (𝒙); that is, the value at 𝒙 of the function 𝑃𝑡 𝑓 . It
follows that

(6.67) lim
𝑡↓0

(𝑃𝑡 𝑓 ) (𝒙) − 𝑓 (𝒙)
𝑡

= lim
𝑡↓0

E𝒙 𝑓 (𝑩𝑡) − 𝑓 (𝒙)
𝑡

= E𝒙𝐿 𝑓 (𝑩0) = 𝐿 𝑓 (𝒙).

The limit in (6.67) defines the infinitesimal generator of the Markov process. Its
domain consists of all bounded measurable functions for which the limit exists —
this includes the domain of 𝐿, hence the infinitesimal generator extends the latter
operator.

By (6.64), (𝑃𝑡 𝑓 ) (𝒙) as a function of 𝑡 has derivative E𝒙𝐿 𝑓 (𝑩𝑡) = (𝑃𝑡𝐿 𝑓 ) (𝒙),
which gives the Kolmogorov forward equations:

(6.68) 𝑃′𝑡 𝑓 = 𝑃𝑡𝐿 𝑓 .

Also, by the Chapman–Kolmogorov equations (4.43), we have

𝑃𝑡+𝑠 𝑓 (𝒙) = 𝑃𝑠𝑃𝑡 𝑓 (𝒙) = E𝒙𝑃𝑡 𝑓 (𝑩𝑠),

and therefore

1
𝑠
{𝑃𝑡+𝑠 𝑓 (𝒙) − 𝑃𝑡 𝑓 (𝒙)} =

1
𝑠
{E𝒙𝑃𝑡 𝑓 (𝑩𝑠) − 𝑃𝑡 𝑓 (𝒙)} .

Letting 𝑠 ↓ 0, we obtain the Kolmogorov backward equations:

(6.69) 𝑃′𝑡 𝑓 = 𝐿𝑃𝑡 𝑓 .

In terms of the transition density 𝑝𝑡 (𝒚 | 𝒙) this gives the partial differential
equations

𝜕

𝜕𝑡
𝑝𝑡 (𝒚 | 𝒙) =

1
2
Δ𝒚𝑝𝑡 (𝒚 | 𝒙) and

𝜕

𝜕𝑡
𝑝𝑡 (𝒚 | 𝒙) =

1
2
Δ𝒙𝑝𝑡 (𝒚 | 𝒙),

which we recognize as Laplace’s heat equation (6.38) in 𝒚 (with fixed 𝒙) and 𝒙
(with fixed 𝒚), respectively.

The last point illustrates the important relation between partial differential equa-
tions of the form 𝑢′𝑡 = 𝐿𝑢𝑡 and the standard Brownian motion. Indeed, given the
operator 𝐿, the pdf of 𝑩𝑡 gives the fundamental solution (Green’s function) of
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the differential operator 𝜕𝑡 − 𝐿. This idea can be extended to solve more general
elliptical and higher-dimensional PDEs via Itô diffusion processes; see Section 7.3.

Another type of partial differential equation that can be solved via the Brownian
motion process is the boundary value or Dirichlet problem. A typical application
is found in electrostatics. Suppose a charge 𝑔(𝒙) is placed at every point 𝒙 of the
boundary 𝜕𝑈 of a bounded domain (open set)𝑈 ⊂ R𝑑 . This creates an electric field
with potential (i.e., voltage) 𝑣(𝒙) for every 𝒙 in the closure𝑈 of𝑈, with

Δ𝑣(𝒙) = 0, 𝒙 ∈ 𝑈,
𝑣(𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕𝑈.

To solve the above problem (i.e., finding 𝑣) via simulation, we can employ once
again the martingale (6.63), with 𝑓 = 𝑣. Starting a Brownian motion from 𝒙 ∈ 𝑈,
let 𝑇 be the first time that 𝜕𝑈 is hit. Using the same reasoning as in Example 6.65,
we may use Doob’s stopping theorem to conclude that

𝑣(𝒙) = E𝒙𝑣(𝑩0) = E𝒙𝑣(𝑩𝑇 ) = E𝒙𝑔(𝑩𝑇 ).
To estimate 𝑣(𝒙), simply run many standard Brownian motions starting at 𝒙 until
they hit the boundary, and take the average of their values at the boundary. It should
be mentioned that some regularity conditions should be put on the domain𝑈 and on
the function 𝑔. It suffices that 𝑔 is continuous on𝑈 and that𝑈 satisfies an “exterior
sphere” condition, meaning that it should be possible to roll a small enough sphere
along the boundary such that sphere touches all the points at the boundary.

6.7 Path Properties
Recall the definition of a segmentation Π𝑛 = {𝑠𝑘 , 𝑘 = 0, . . . , 𝑛} of [0, 𝑡] given in
(5.19), and that its mesh ∥Π𝑛∥ is the maximum distance between consecutive points
in the segmentation. We will frequently consider sequences of nested segmenta-
tions; that is,Π1 ⊆ Π2 ⊆ · · · . For example, the following sequence of segmentations
of [0, 1] is nested: Π1 := {0, 1},Π2 := {0, 1/2, 1},Π3 := {0, 1/4, 1/2, 1}, . . .. In
this case, we say that Π2 is a refinement of Π1, and Π3 is a refinement of Π2.

We begin with a fundamental property of the quadratic variation of𝑊 on [0, 𝑡]
defined as the limit (in 𝐿2 norm) of:

⟨𝑊 (𝑛)⟩𝑡 :=
𝑛−1∑︁
𝑘=0

(𝑊𝑠𝑘+1 −𝑊𝑠𝑘 )2, 𝑛 ∈ N.

Theorem 6.70: Quadratic Variation of the Wiener Process on [0, 𝑡]

For any (Π𝑛) such that ∥Π𝑛∥ → 0, we have that ⟨𝑊 (𝑛)⟩𝑡 𝐿2→ 𝑡. If, additionally,
the sequence of segmentations is nested, then ⟨𝑊 (𝑛)⟩𝑡 a.s.→ 𝑡.
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Proof. To simplify notation, write 𝑉𝑛 := ⟨𝑊 (𝑛)⟩𝑡 for a fixed 𝑡. The random variable
𝑉𝑛 has expectation 𝑡 and variance

Var𝑉𝑛 =
𝑛−1∑︁
𝑘=0

Var (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 )2︸                  ︷︷                  ︸
= 3(𝑠𝑘+1−𝑠𝑘)2

≤ 3𝑡 ∥Π𝑛∥ → 0.

Hence, E (𝑉𝑛 − 𝑡)2 = Var𝑉𝑛 → 0 as 𝑛→ ∞, showing 𝐿2-norm convergence.
Assume further that (Π𝑛) is nested and, without loss of generality, that Π𝑛 and

Π𝑛−1 differ only by the addition of one point in the interval [0, 𝑡], say 𝑟 ∈ (𝑠𝑘 , 𝑠𝑘+1)
for some 𝑘 . Then,

𝑉𝑛 −𝑉𝑛−1 = 𝑋2 + 𝑌2 − (𝑋 + 𝑌 )2,

where 𝑋 := 𝑊𝑟 −𝑊𝑠𝑘 and 𝑌 := 𝑊𝑠𝑘+1 −𝑊𝑟 are independent zero-mean Gaussian
random variables. Let G𝑛 be the 𝜎-algebra generated by the sequence of random
variables (𝑉𝑘 , 𝑘 ≥ 𝑛), and note that

G1 ⊇ G2 ⊇ · · · ⊇ ∩∞
𝑘=1G𝑘 =: G∞.

Then, for 𝑛 ≥ 2 we have that

E[𝑉𝑛 −𝑉𝑛−1 | G𝑛] = E[𝑋2 + 𝑌2 − (𝑋 + 𝑌 )2 | 𝑋2 + 𝑌2] = −2E[𝑋𝑌 | 𝑋2 + 𝑌2] .

Since (𝑋,𝑌 ) has the same distribution as (±𝑋,∓𝑌 ), and (±𝑋)2 + (∓𝑌 )2 = 𝑋2 +𝑌2,
it must be true that

E[𝑋𝑌 | 𝑋2 + 𝑌2] = −E[𝑋𝑌 | 𝑋2 + 𝑌2] = 0.

In other words, if 𝑍𝑛 := 𝑉−𝑛 and F𝑛 := G−𝑛 for all 𝑛 ∈ T = {. . . ,−2,−1}, then
the process 𝑍 := (𝑍𝑛, 𝑛 ∈ T) is a square-integrable reversed-time martingale with
respect to the filtration (F𝑛, 𝑛 ∈ T). By Theorem 5.58 the reversed-time martingale
converges almost surely to

E[𝑍−1 | F−∞] = E𝑉1 = E(𝑊𝑡 −𝑊0)2 = 𝑡.

□

Recall from Section 5.3.1 that a function 𝑥 : R+ → R is said to be of bounded
variation over an interval [0, 𝑡] if its total variation is finite. When the function 𝑥
is right-continuous and the sequence (Π𝑛) is nested with ∥Π𝑛∥ → 0, then the total
variation can be written as

sup
(Π𝑛)

𝑛−1∑︁
𝑘=0

|𝑥𝑠𝑘+1 − 𝑥𝑠𝑘 | = lim
𝑛→∞

𝑛−1∑︁
𝑘=0

|𝑥𝑠𝑘+1 − 𝑥𝑠𝑘 |.
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This is because by adding a segmentation point to Π𝑛, the triangle inequality yields:

𝑛−1∑︁
𝑘=0

|𝑥𝑠𝑘+1 − 𝑥𝑠𝑘 | ≤
𝑛∑︁
𝑘=0

|𝑥𝑠𝑘+1 − 𝑥𝑠𝑘 |.

If 𝑥𝑠 represents the position of a particle at time 𝑠, then the total variation over
[0, 𝑡] represents the total amount of vertical distance that the particle has traveled
over the time interval [0, 𝑡]. Recall from Section 5.3.1 that for such functions we
can define integrals ∫ 𝑡

0
𝑓𝑠 d𝑥𝑠

in the Lebesgue–Stieltjes sense. Our aim in Section 7.1 is to define stochastic
integrals of the form ∫ 𝑡

0
𝐹𝑠 d𝑊𝑠

with respect to a Wiener process. If the paths of 𝑊 had bounded variation, we
would be able to define these integrals pathwise, i.e., for (almost) every function
𝑤 := 𝑊 (·, 𝜔), 𝜔 ∈ Ω. But, in fact, we have the following result:

Theorem 6.71: Infinite Variation of the Wiener Process

Suppose that the sequence (Π𝑛) of segmentations of [0, 𝑡] is nested and
∥Π𝑛∥ → 0. Then, for the Wiener process𝑊 ,

lim
𝑛→∞

𝑛−1∑︁
𝑘=0

|𝑊𝑠𝑘+1 −𝑊𝑠𝑘 | = ∞ almost surely.

That is, the sample paths of𝑊 do not have bounded variation on [0, 𝑡].

Proof. From Theorem 6.70 we know that there is an almost certain event Ω0 such
that ⟨𝑊 (𝑛) (𝜔)⟩𝑡 → 𝑡 for all 𝜔 ∈ Ω0. Now, consider a path 𝑤 := 𝑊 (𝜔) of the Wiener
process, where 𝜔 ∈ Ω0. Let its total variation on [0, 𝑡] be 𝑣∗. We have

𝑛−1∑︁
𝑘=0

(𝑤𝑠𝑘+1 − 𝑤𝑠𝑘 )2 ≤ sup
𝑘

|𝑤𝑠𝑘+1 − 𝑤𝑠𝑘 |
𝑛−1∑︁
𝑘=0

|𝑤𝑠𝑘+1 − 𝑤𝑠𝑘 | ≤ sup
𝑠∈[0,𝑡]

|𝑤𝑠+𝜀𝑛 − 𝑤𝑠 | 𝑣∗,

where 𝜀𝑛 := ∥Π𝑛∥ → 0. Letting 𝑛 → ∞, the left-most term goes to 𝑡, and in the
right-most term, the supremum goes to 0, by the uniform continuity of each path 𝑤;
see Theorem 6.21. It follows that 𝑣∗ cannot be finite. □

While the total and quadratic variation of the Wiener process on [0, 𝑡] are ∞
and 𝑡, respectively, these can be random variables for other stochastic processes.
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For example, the total and quadratic variation of the Poisson counting process
(𝑁𝑠, 𝑠 ≥ 0) on the interval [0, 𝑡] are both equal to 𝑁𝑡 ; see Exercise 26.

By the existence constructions in Sections 6.2, the Wiener process has almost
surely uniformly continuous paths on any interval [0, 𝑡]. In fact, the following
stronger result holds; see also Theorem 4.34.

Theorem 6.72: Lévy’s Modulus of Continuity

There exists a constant 𝑐 > 0 such that with probability 1:

lim sup
𝛿↓0

sup
0≤𝑡≤1−𝛿

|𝑊𝑡+𝛿 −𝑊𝑡 |√︁
𝑐 𝛿 ln(1/𝛿)

≤ 1.

The function 𝛿 ↦→
√︁
𝑐 𝛿 ln(1/𝛿) is called the modulus of continuity of the

Wiener process.

Proof. We recycle the arguments in the proof of Theorem 6.21. First, applying the
mean-value theorem to the Schauder functions in (6.18), we have that

|𝑐𝑘, 𝑗 (𝑡 + 𝛿) − 𝑐𝑘, 𝑗 (𝑡) | ≤ 𝛿 sup
𝑡

|ℎ𝑘, 𝑗 (𝑡) | ≤ 𝛿 2𝑘/2+1 × 1[ 𝑗/2𝑘 , ( 𝑗+1)/2𝑘] (𝑡).

It follows from the Haar basis expansion (6.19) that

|𝑊 (𝑛)
𝑡+𝛿 −𝑊

(𝑛)
𝑡 | ≤ 𝛿 |𝑍0 | +

𝑛−1∑︁
𝑘=0

2𝑘−1∑︁
𝑗=0

|𝑐𝑘, 𝑗 (𝑡 + 𝛿) − 𝑐𝑘, 𝑗 (𝑡) | |𝑍 𝑗+2𝑘 | ≤ 2𝛿 2𝑛/2 𝑀𝑛,

where 𝑀𝑛 is the maximum of the absolute value of 2𝑛 iid N(0, 1) random variables.
Second, define the event 𝐴𝑛 := {𝑀𝑛 > 2

√
𝑛}. Since (see Exercise 6)∑︁

𝑛

P(𝐴𝑛) ≤
∑︁
𝑛

e−(4𝑛+ln(4𝑛))/2+𝑛 ln 2 < ∞,

the Borel–Cantelli Lemma 3.14 implies that with probability 1 only finitely many
of the events (𝐴𝑛) occur. In other words, there exists a finite (random) 𝑁 such that
almost surely 𝑀𝑛 ≤ 2

√
𝑛 for all 𝑛 ≥ 𝑁 .

Third, using the triangle inequality (B.14) and the bound (6.22), we obtain:

|𝑊𝑡+𝛿 −𝑊𝑡 | ≤ 2∥𝑊 (𝑛) −𝑊 ∥ + |𝑊 (𝑛)
𝑡+𝛿 −𝑊

(𝑛)
𝑡 |

≤ 𝛾1
√
𝑛2−𝑛/2 + 2𝛿 2𝑛/2 𝑀𝑛,

where 𝛾1 > 0 is a constant. By setting 𝑛 := ⌈− ln 𝛿/ln 2⌉ and dividing by
√︁
𝛿 ln(1/𝛿),

we obtain:
sup

0≤𝑡≤1−𝛿

|𝑊𝑡+𝛿 −𝑊𝑡 |√︁
𝛿 ln(1/𝛿)

≤ 𝛾2 + 𝛾3
𝑀𝑛√︁

ln(1/𝛿)
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for some positive constants 𝛾2 and 𝛾3. The proof is completed by observing that a
sufficiently small 𝛿 ensures that 𝑛 = ⌈− ln 𝛿/ln 2⌉ ≥ 𝑁 , so that with probability 1:

𝑀𝑛√︁
ln(1/𝛿)

≤

√︄
2𝑛

ln(1/𝛿) ≤

√︄
2

ln 2
+ 2

ln(1/𝛿) ≤ 𝛾4,

where 𝛾4 > 0 is some constant. □

Lévy’s result above suggests that the maximum amount of “smoothness” of a
Wiener path is Hölder continuity with an exponent 𝛼 < 1/2; see Definition 4.33.
For any 𝛼 > 1/2 Hölder continuity does not hold. In particular, differentiability
(𝛼 = 1) does not hold.

Theorem 6.73: Nowhere Differentiability of Wiener Paths

Almost surely, for 𝛼 > 1/2 the Wiener process is not Hölder continuous at
any point. In particular, almost surely every path of a Wiener process is
nowhere differentiable.

Proof. We argue by contradiction: assume that there is a point, say 𝑠0 ∈ [0, 1], at
which the Wiener process is Hölder continuous with 𝛼 > 1/2. In other words, we
assume that there exists a constant 𝑐 < ∞ and an 𝛼 > 1/2 such that almost surely:

(6.74) sup
𝜀∈[0,1]

|𝑊𝑠0+𝜀 −𝑊𝑠0 |
𝜀𝛼

≤ 𝑐.

We now proceed to show that if Ω0 is the event that there exists an 𝑠0 ∈ [0, 1]
satisfying (6.74), then P(Ω0) = 0.

First, note that there exists a large enough integer𝑚 such that 1/𝑚 ∈ (0, 𝛼−1/2).
For a given integer 𝑛, there exists a 𝑘 ∈ {1, . . . , 2𝑛} such that 𝑠0 ∈ [(𝑘−1)/2𝑛, 𝑘/2𝑛],
and we can choose 𝑛 large enough so that 2𝑛 − 𝑘 ≥ 𝑚.

Second, by assumption (6.74) and the inequality |𝑥 |𝛼+ |𝑦 |𝛼 ≤ 2(1−𝛼)+ ( |𝑥 | + |𝑦 |)𝛼,
we have for 𝑙 = 1, 2, . . . , 𝑚:

|𝑊(𝑘+𝑙)/2𝑛 −𝑊(𝑘−1+𝑙)/2𝑛 | ≤ |𝑊(𝑘+𝑙)/2𝑛 −𝑊𝑠0 | + |𝑊𝑠0 −𝑊(𝑘−1+𝑙)/2𝑛 |
≤ 𝑐( [𝑙 + 1]/2𝑛)𝛼 + 𝑐(𝑙/2𝑛)𝛼

≤ 𝑐2(1−𝛼)+ (2𝑙 + 1)𝛼︸                ︷︷                ︸
=: 𝑐𝑙,𝛼

2−𝛼𝑛 ≤ 𝑐𝑚,𝛼2−𝛼𝑛.

Third, if

𝐴𝑘,𝑛 := ∩𝑚𝑙=1{|𝑊(𝑘+𝑙)/2𝑛 −𝑊(𝑘−1+𝑙)/2𝑛 | ≤ 𝑐𝑚,𝛼2−𝛼𝑛},
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then the event Ω0 implies that 𝐻𝑛 := ∪2𝑛−𝑚
𝑘=1 𝐴𝑘,𝑛 occurs for infinitely many 𝑛. In

other words,
P(Ω0) ≤ P

(∑︁
𝑛

1𝐻𝑛 = ∞
)
,

and the proof will be complete if we can show that P(∑𝑛 1𝐻𝑛 = ∞) = 0. By the
independence of nonoverlapping increments of the Wiener process, we have

P(𝐴𝑘,𝑛) = [P( |𝑊1/2𝑛 | ≤ 𝑐𝑚,𝛼2−𝛼𝑛)]𝑚 = [P( |𝑊1 | ≤ 𝑐𝑚,𝛼2−𝑛(𝛼−1/2))]𝑚 .

Since ∫ |𝑎 |−|𝑎 |
d𝑥√
2𝜋

exp(−𝑥2/2) ≤ |𝑎 |, it follows that P(𝐴𝑘,𝑛) ≤ 𝑐𝑚𝑚,𝛼2−𝑛 𝑚(𝛼−1/2) . Fi-
nally, by the countable subadditivity property in Theorem 2.2:∑︁

𝑛

P(𝐻𝑛) =
∑︁
𝑛

P(∪2𝑛−𝑚
𝑘=1 𝐴𝑘,𝑛) ≤ 𝑐𝑚𝑚,𝛼

∑︁
𝑛

2−𝑛 𝑚(𝛼−1/2−1/𝑚) < ∞,

where the finiteness of the sum follows from 1/𝑚 ∈ (0, 𝛼 − 1/2). Therefore, from
the Borel–Cantelli Lemma 3.14, the probability that the events (𝐻𝑛) occur infinitely
many times is 0. This implies that there is no point in [0, 1] such that the Wiener
process is almost surely Hölder continuous with 𝛼 > 1/2. The nondifferentiability
follows as the special case with 𝛼 = 1. □

Exercises
1. Simulate a two-dimensional Wiener process (𝑾 𝑡 , 𝑡 ≥ 0) and show a typical
realization.

2. Let (𝑾 𝑡 , 𝑡 ≥ 0) be a 𝑑-dimensional Wiener process. Derive the probability
distribution of ∥𝑾 𝑡 ∥2/𝑡. The process (∥𝑾 𝑡 ∥, 𝑡 ≥ 0) is called the 𝑑-dimensional
Bessel process. Show that

E∥𝑾 𝑡 ∥ =
√

2𝑡
Γ( 𝑑+1

2 )
Γ( 𝑑2 )

.

3. Let 𝑊 (𝑛) be defined as in (6.19). Show that 𝑊 (𝑛+𝑘)
𝑡 = 𝑊

(𝑛)
𝑡 , 𝑡 ∈ 𝐷𝑛 for 𝑘 =

1, 2, . . ., and E𝑊 (𝑛)
𝑠 𝑊

(𝑛)
𝑡 = 𝑠 ∧ 𝑡 for all 𝑠, 𝑡 ∈ 𝐷𝑛.

4.∗ To finish the proof of Theorem 6.21, show that for any choice of 𝑑 and 0 ≤
𝑡1 < 𝑡2 < · · · < 𝑡𝑑 ≤ 1, the 𝑑-dimensional vector [𝑊𝑡1 , . . . ,𝑊𝑡𝑑 ]⊤ is multivariate
Gaussian with E𝑊𝑡𝑖 = 0 and Cov(𝑊𝑡𝑖 ,𝑊𝑡 𝑗 ) = 𝑡𝑖∧ 𝑗 for all 𝑖 and 𝑗 .

5. Given a sequence (𝑊𝑡,𝑘 , 𝑡 ∈ [0, 1]), 𝑘 = 0, 1, 2, . . . of independent Wiener pro-
cesses on [0, 1], show that𝑊 defined via (6.23) is a Wiener process on [0,∞).
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6. For 𝑍 ∼ N(0, 1) and 𝑧 > 0, show that

P( |𝑍 | > 𝑧) ≤ e−𝑧
2/2/𝑧.

7. Explain how the construction of the Wiener process on [0, 1] implies the exist-
ence of a Wiener process on R.

8. Verify, using the transformation rule (2.39), that (6.45) is the pdf of 𝑥2/𝑍2, where
𝑍 ∼ N(0, 1).

9.∗ Consider a standard Brownian motion (𝐵𝑡) starting from 𝑥 ∈ (𝑙, 𝑟). Using the
fact that (𝐵𝑡) is a martingale, show that the process exits through 𝑟 rather than 𝑙
with probability (𝑥 − 𝑙)/(𝑟 − 𝑙). Use the fact that (𝐵2

𝑡 − 𝑡) is a martingale to show
that the expected time to exit the interval [𝑙, 𝑟] is (𝑥 − 𝑙) (𝑏 − 𝑟).

10. Show that the functions 𝑓 in (6.66) are harmonic on the annulus 𝐷 and that the
process ( 𝑓 (𝑩𝑡)) is uniformly integrable.

11. Example 6.65 gives a simple expression for the probability that a 𝑑-dimensional
standard Brownian motion (𝑩𝑡), starting at 𝒙, with 𝑙 ≤ ∥𝒙∥ ≤ 𝑟, hits the 0-centered
sphere with radius 𝑙 before it hits the 0-centered sphere with radius 𝑟, where
0 < 𝑙 < 𝑟 . For 𝑙 ≥ 0, let 𝑇𝑙 := inf{𝑡 ≥ 0 : ∥𝑩𝑡 ∥ = 𝑙}.

(a) Show that for 𝑑 = 2 and any 𝑙 > 0,

P𝒙 (𝑇𝑙 < ∞) = 1 for all ∥𝒙∥ > 𝑙.

Show that, however, for the case 𝑑 = 2 and 𝑙 = 0, we have

P𝒙 (𝑇0 < ∞) = 0 for all ∥𝒙∥ > 0.

Thus, starting from anywhere outside a 0-centered sphere of any radius 𝑙 > 0,
the process (𝑩𝑡) will hit the sphere with certainty, but will never exactly hit
the origin 0.

(b) For the case 𝑑 ≥ 3, show that

P𝒙 (𝑇𝑙 < ∞) =
(
𝑙

∥𝒙∥

)𝑑−2
for all ∥𝒙∥ > 𝑙.

Thus, any standard Brownian motion in dimension 3 or greater is transient,
meaning that there is a strictly positive probability that the process will never
hit a sphere of radius 𝑙, starting outside it, no matter how large 𝑙 is.

12.∗ With the hitting time𝑇𝑥 distributed according to (6.55), show that P(𝑇𝑥 < ∞) =
1 and E𝑇𝑥 = ∞ for all 𝑥 > 0.
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13. Let 𝑇 (1)
𝑥 and 𝑇 (2)

𝑥 be independent copies of the hitting time 𝑇𝑥 , as defined in
(6.48). Show that for any 𝑎, 𝑏 > 0 the random variable 𝑎𝑇 (1)

𝑥 + 𝑏𝑇 (2)
𝑥 has the same

distribution as 𝑐𝑇1 for some 𝑐.

14. Let𝑈 := {(𝑥1, 𝑥2) ∈ R2 : 𝑥2
1 + 𝑥

2
2 < 1}. On the unit circle 𝜕𝑈, let

𝑔(𝒙) := sin(4𝑥1) cos(𝑥2).

Solve the Dirichlet problem Δ𝑣(𝒙) = 0, 𝒙 ∈ 𝑈, 𝑣(𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕𝑈 via simulation,
and make a density plot of 𝑣.

15. Let (𝑊𝑡 , 𝑡 ≥ 0) be a Wiener process and let F + be the right-continuous filtration
defined by

F +
𝑡 :=

⋂
𝑢>𝑡

F𝑢, where F𝑢 := 𝜎(𝑊𝑠 : 0 ≤ 𝑠 ≤ 𝑢).

Let 𝑇𝑐 := min{𝑡 : 𝑊𝑡 = 𝑐} and define

𝑇∗ :=
{

min{𝑇10, 𝑇−1} if min{𝑇10, 𝑇−1} ≤ 1,
min{𝑇20, 𝑇−1} if min{𝑇10, 𝑇−1} > 1.

(a) Show that 𝑇∗ is a stopping time with respect to the filtration F +.
(b) Show P(𝑊𝑇∗ = 10) ≤ 0.04.
(c) Show P(𝑊𝑇∗ = 20) ≥ 0.026.

16. Let𝑊 (1) and𝑊 (2) be two independent Wiener processes. Define

𝑀𝑛 := max
1≤𝑘≤𝑛

��� 𝑘∑︁
𝑗=1

(
𝑊

(1)
𝑗/𝑛 −𝑊

(1)
( 𝑗−1)/𝑛

) (
𝑊

(2)
𝑗/𝑛 −𝑊

(2)
( 𝑗−1)/𝑛

)���.
Show that 𝑀𝑛

P→ 0 as 𝑛→ ∞.

17. Let 𝑊 be a Wiener process. Define 𝑇 := inf{𝑡 ≥ 0 : 𝑊2
𝑡 = 1 − 𝑡}. Compute

E𝑇 .

18. Let (𝐵𝑡) be a standard Brownian motion. Show that, for any 𝑥 > 0 and meas-
urable set 𝐴 ⊂ [0,∞),

P𝑥 (𝐵𝑠 ≥ 0 for all 0 ≤ 𝑠 ≤ 𝑡 and 𝐵𝑡 ∈ 𝐴) = P𝑥 (𝐵𝑡 ∈ 𝐴) − P−𝑥 (𝐵𝑡 ∈ 𝐴).

19. Define 𝑔(𝑤, 𝑟, 𝑡) := exp(𝑟𝑤 − 1
2𝑟

2𝑡) for 𝑤 ∈ R, 𝑟 ∈ R, and 𝑡 ≥ 0. Let (𝑊𝑡) be
a Wiener process and let 𝑔(𝑊𝑡 , 𝑟, 𝑡), 𝑡 ≥ 0 be the exponential martingale defined in
(6.40). Show that the process

𝑋𝑡 :=
𝜕𝑛𝑔(𝑊𝑡 , 𝑟, 𝑡)

𝜕𝑟𝑛

����
𝑟=0
, 𝑡 ≥ 0
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is a martingale with respect to the natural filtration of (𝑊𝑡) for every 𝑛 ∈ {1, 2, . . .}.
Show, in particular, that each of the processes

𝑊2
𝑡 − 𝑡, 𝑡 ≥ 0,

𝑊3
𝑡 − 3𝑡 𝑊𝑡 , 𝑡 ≥ 0,

𝑊4
𝑡 − 6𝑡 𝑊2

𝑡 + 3 𝑡2, 𝑡 ≥ 0,

is a martingale.

20. Find E𝑇2 for 𝑇 := min{𝑡 ≥ 0 : 𝑊𝑡 ∉ [−𝑎, 𝑏]} and −𝑎 < 0 < 𝑏, using the
martingales in Exercise 19. You may assume that E𝑇2 < ∞.

21. (a) Use the optional stopping theorem for the exponential martingale to show
that, with 𝑇𝑥 := inf{𝑡 ≥ 0 : 𝑊𝑡 = 𝑥},

E e−𝑠𝑇𝑥 = e−𝑥
√

2𝑠, for all 𝑠, 𝑥 > 0.

(b) Show that, with 𝑇−𝑥 = inf{𝑡 ≥ 0 : 𝑊𝑡 = −𝑥}, we have

E e−𝑠𝑇𝑥 = E[e−𝑠𝑇𝑥1(𝑇𝑥 < 𝑇−𝑥)] + E[e−𝑠𝑇−𝑥1(𝑇−𝑥 < 𝑇𝑥)] e−2𝑥
√

2𝑠 .

(c) Deduce that 𝑇 = 𝑇𝑥 ∧ 𝑇−𝑥 satisfies

E e−𝑠𝑇 = sech(𝑥
√

2𝑠).

22.∗ Let𝑊 be a Wiener process and define 𝑇𝑧 := inf{𝑡 : 𝑊𝑡 = 𝑧} where 𝑧 ∈ R. For
any three constants −𝑎 < 0 < 𝑏 < 𝑐, determine P(𝑇𝑏 < 𝑇−𝑎 < 𝑇𝑐).

23. Show that with probability 1 for every 𝜀 > 0 there is a 𝑡 ∈ (0, 𝜀) with𝑊𝑡 = 0.

24. Show that with probability 1 for every 𝑁 < ∞ there is a 𝑡 > 𝑁 with𝑊𝑡 = 0.

25. A continuous function 𝑓 is said to have a local maximum at 𝑡∗ if there exists an
𝜀 > 0 such that

𝑓 (𝑡∗) ≥ 𝑓 (𝑠) for all 𝑠 ∈ (𝑡∗ − 𝜀, 𝑡∗ + 𝜀).
We know that with probability 1 the Wiener process𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) is not mono-
tone on any interval [𝑎, 𝑏]. Use this fact to show that the set of local maxima of𝑊
is dense in [0,∞) almost surely.

26.∗ The quadratic variation of the Poisson counting process (𝑁𝑠, 𝑠 ≥ 0) on the
interval [0, 𝑡] is defined as the almost sure limit

⟨𝑁⟩𝑡 := lim
𝑛→∞

𝑛−1∑︁
𝑘=0

(𝑁𝑠𝑘+1 − 𝑁𝑠𝑘 )2,

where {𝑠𝑘 , 𝑘 = 0, . . . , 𝑛} =: Π𝑛 is a segmentation of [0, 𝑡] such that its mesh size
∥Π𝑛∥ → 0 as 𝑛 → ∞. Show that the total and quadratic variation of the Poisson
counting process (𝑁𝑠, 𝑠 ≥ 0) on the interval [0, 𝑡] are both equal to 𝑁𝑡 .
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27. Let 𝑊 := (𝑊𝑡 , 𝑡 ≥ 0) be a Wiener process, and let 𝑓 : R → [0, 1] be a Hölder
continuous function of order 𝛼 = 1; see Definition 4.33. Define 𝑋𝑡 := 𝑊𝑡 + 𝑓𝑡 , 𝑡 ∈
[0, 1] and define the quadratic variation of (𝑋𝑡 , 𝑡 ∈ [0, 1]) as the almost sure limit

⟨𝑋⟩1 := lim
𝑛→∞

𝑛−1∑︁
𝑘=0

(𝑋𝑠𝑘+1 − 𝑋𝑠𝑘 )2,

where {𝑠𝑘 , 𝑘 = 0, . . . , 𝑛} =: Π𝑛 is a nested segmentation of [0, 1] such that its mesh
size ∥Π𝑛∥ → 0 as 𝑛→ ∞. Prove that ⟨𝑋⟩1 = 1.

28. Let 𝑇 := min{𝑡 : 𝑊𝑡 ∈ {−1, 1}}. By considering the sequence of events

{𝑊𝑛+1 −𝑊𝑛 > 2}∞𝑛=0,

show that P(𝑇 > 𝑛) ≤ 𝐶𝜆𝑛 for some 𝐶 > 0 and 𝜆 ∈ (0, 1).

29. Let 𝑊 be a Wiener process and define 𝑇 := min{𝑡 : 𝑊𝑡 = 1 − 𝑡}. Use the
exponential martingale (6.40) to determine the Laplace transform of the distribution
of 𝑇 .





CHAPTER 7

ITÔ CALCULUS

In this chapter we introduce the framework for stochastic integration with re-
spect to the Wiener process. The resulting Itô integral provides the fundamental
example for stochastic integration with respect to integrators with unbounded
variation. We then prove Itô’s formula — the stochastic analogue of the chain
rule in calculus. The important class of Itô processes, which are constructed
from Itô integrals, forms the basis for the theory of diffusion processes and
stochastic differential equations.

An important class of stochastic processes — that of Itô processes — is constructed
from the Wiener process via the notion of the Itô integral. The Itô integral provides
the mathematical justification of integrals of the form∫ 𝑡

0
𝐹𝑠 d𝑋𝑠,

where the integrator 𝑋 := (𝑋𝑠) and integrand 𝐹 := (𝐹𝑠) are stochastic processes.
The most important case is where 𝑋 is a Wiener process — we will then use 𝑊
instead of 𝑋 . We already encountered stochastic integration in Section 5.3.1 and
saw that integrals of the form above can be well-defined if suitable restrictions are
placed on 𝑋 and 𝐹. In particular, when 𝑋 is of bounded variation, the integral can
be defined pathwise. Unfortunately, for processes of unbounded variation, like the
Wiener process, this is not possible in general, and a different approach is needed.
The clue as to what to do in this case is provided by the discrete integral in (5.23),
where 𝐹 is a predictable process. In that case, the integral-transformed process
(𝑍𝑛) in (5.24) is a martingale; see Theorem 5.26. Recall that, in this setting, 𝑋𝑛 can
be thought of as a share price and 𝐹𝑛 as the number of shares owned at time 𝑛, so
that 𝑍𝑛 represents the total capital at time 𝑛.

For consistency of the notation, in this chapter we will use the notation ∫ 𝑡0 𝐹𝑠 d𝑠
for Lebesgue integrals, rather than ∫ 𝑡0 d𝑠 𝐹𝑠.
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7.1 Itô Integral
Throughout the rest of this chapter we will work with a Wiener process 𝑊 on
a complete probability space (Ω,H , P) with a right-continuous filtration F :=
(F𝑠, 𝑠 ≥ 0) and such that𝑊 is adapted to F . We also use the following definition:

Definition 7.1: Simple Processes

A process 𝐹 := (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) is called simple if it is of the form:

(7.2) 𝐹𝑠 := 𝜉01{0} (𝑠) +
𝑛−1∑︁
𝑘=0

𝜉𝑘1(𝑠𝑘 ,𝑠𝑘+1] (𝑠), 𝑠 ∈ [0, 𝑡],

where {𝑠0, . . . , 𝑠𝑛 : 0 = 𝑠0 < · · · < 𝑠𝑛 = 𝑡} =: Π𝑛, 𝑛 ∈ N, is a segmentation
of [0, 𝑡] and 𝜉𝑘 ∈ F𝑠𝑘 for all 𝑘 .

Note that the simple process in (7.2) is right-continuous at 𝑠 = 0 and is left-
continuous at 𝑠 ∈ (0, 𝑡]. Figure 7.3 shows a realization of a simple process on [0, 1]
for the segmentation

{𝑠0, . . . , 𝑠10} = {0, 0.07, 0.13, 0.19, 0.41, 0.49, 0.52, 0.67, 0.71, 0.76, 1}.

0 0.2 0.4 0.6 0.8 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 7.3: A realization of a simple process.

7.1.1 Itô Integral for Simple Processes
To introduce the Itô integral with respect to the Wiener process 𝑊 , we need to
revisit the generalization of predictability to continuous-time processes. Recall that
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a real-valued stochastic process is said to be F -predictable, if it is measurable with
respect to the 𝜎-algebra in Definition 5.22, namely,

F 𝑝 := 𝜎((𝑎, 𝑏] × 𝐻 : 𝑎, 𝑏 ∈ R+, 𝐻 ∈ F𝑎) ∨ 𝜎({0} × 𝐻 : 𝐻 ∈ F0).

Example 7.4 (Simple Processes are Predictable) We now argue that for each
𝑡 ≥ 0 the stochastic process 𝐹 : [0, 𝑡] × Ω → R in (7.2) is not only F -adapted,
but also F 𝑝-measurable. Since the sum of measurable functions is measurable,
it is enough to show that an arbitrarily chosen summand of (7.2), say 𝜉01{0}, is
F 𝑝-measurable. To this end, recall from Theorems 1.27 and 1.31 that 𝜉0 ∈ F0 can
be viewed as the pointwise limit of linear combinations of indicator functions. In
other words,

𝜉0(𝜔) = lim
𝑚

𝑚∑︁
𝑖=1

𝑎𝑖1𝐻𝑖 (𝜔)

for some real sequence (𝑎𝑖) and subsets 𝐻1, 𝐻2, . . . ∈ F0. As a result, we can write

1{0} (𝑠) 𝜉0(𝜔) = lim
𝑚

𝑚∑︁
𝑖=1

𝑎𝑖1{0} (𝑠)1𝐻𝑖 (𝜔),

and since the limits of measurable functions are themselves measurable (see Pro-
position 1.26), we only need to show that for an arbitrary 𝑖:

1{0} (𝑠)1𝐻𝑖 (𝜔) = 1{0}×𝐻𝑖 (𝑠, 𝜔) ∈ F 𝑝 .

Since {0} × 𝐻𝑖 ∈ F 𝑝, the indicator function of this set is F 𝑝-measurable (see
Example 1.23), and therefore we can conclude that the process 𝐹 defined in (7.2) is
F -predictable.

Note that the measurability of the mapping 𝐹 : [0, 𝑡] ×Ω → R with respect
to the product 𝜎-algebra B[0,𝑡] ⊗ F𝑡 confirms that 𝐹𝑡 is indeed a random variable
for each 𝑡, or equivalently (see Theorem 2.17) that (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) is a stochastic
process. If, in addition to 𝜉𝑘 ∈ F𝑠𝑘 , we also have that

𝑛−1∑︁
𝑘=0

E 𝜉2
𝑘 (𝑠𝑘+1 − 𝑠𝑘 ) < ∞,

then 𝐹 is square-integrable with respect to the product measure Leb[0,𝑡] ⊗ P. In that
case, Fubini’s Theorem 1.67 allows us to write

E
∫ 𝑡

0
𝐹2
𝑠 d𝑠 =

∫ 𝑡

0
E 𝐹2

𝑠 d𝑠 =
𝑛−1∑︁
𝑘=0

E 𝜉2
𝑘 (𝑠𝑘+1 − 𝑠𝑘 ) < ∞.
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We are now ready to define the Itô Integral for simple processes.

Definition 7.5: Itô Integral For Simple Processes

Suppose that 𝐹 is a simple process of the form (7.2), with ∫ 𝑡0 E𝐹2
𝑠 d𝑠 < ∞.

Then, the Itô integral of 𝐹 with respect to𝑊 over [0, 𝑟] is defined as∫ 𝑟

0
𝐹𝑠 d𝑊𝑠 :=

𝑛−1∑︁
𝑘=0

𝜉𝑘 (𝑊𝑠𝑘+1∧𝑟 −𝑊𝑠𝑘∧𝑟), 𝑟 ∈ [0, 𝑡] .

The Itô integral from 𝑟 to 𝑡 is naturally defined as the difference of two integrals:∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠 :=
∫ 𝑡

0
𝐹𝑠 d𝑊𝑠 −

∫ 𝑟

0
𝐹𝑠 d𝑊𝑠 .

The Itô integral has the important isometry property:

E
[∫ 𝑡

0
𝐹𝑠 d𝑊𝑠

]2
=

∫ 𝑡

0
E 𝐹2

𝑠 d𝑠,

which allows us to compute the variance of the Itô integral. In fact, the Itô integral
satisfies the following four important properties:

Theorem 7.6: Properties of the Itô Integral

Assume that the Itô integral is well-defined. Then, for 𝛼, 𝛽 ∈ R and 𝑟 ∈ [0, 𝑡]:

1. (Linearity): ∫ 𝑟0 [𝛼𝐹𝑠 + 𝛽𝐺𝑠] d𝑊𝑠 = 𝛼 ∫ 𝑟0 𝐹𝑠 d𝑊𝑠 + 𝛽 ∫ 𝑟0 𝐺𝑠 d𝑊𝑠.

2. (Zero mean): E ∫ 𝑟0 𝐹𝑠 d𝑊𝑠 = 0.

3. (Isometry): E
[
∫ 𝑟0 𝐹𝑠 d𝑊𝑠 × ∫ 𝑟0 𝐺𝑠 d𝑊𝑠

]
= ∫ 𝑟0 E[𝐹𝑠𝐺𝑠]d𝑠.

4. (Martingale):
(
∫ 𝑟0 𝐹𝑠 d𝑊𝑠, 𝑟 ∈ [0, 𝑡]

)
is an 𝐿2-martingale.

We provide a proof for simple processes first. A proof for more general processes
is given on page 253 after we establish a relevant existence result in Theorem 7.20.

Proof for Simple Processes. Let 𝐹 be a simple process as in (7.2) and let 𝐺 be the
simple process:

𝐺𝑠 := 𝛾01{0} (𝑠) +
𝑛−1∑︁
𝑘=0

𝛾𝑘1(𝑠𝑘 ,𝑠𝑘+1] (𝑠), 𝑠 ∈ [0, 𝑡],
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where 𝛾𝑘 ∈ F𝑠𝑘 for all 𝑘 . Linearity follows directly from Definition 7.5. Define
Δ𝑊𝑠𝑘 := 𝑊𝑠𝑘+1∧𝑟 −𝑊𝑠𝑘∧𝑟 , so that ∫ 𝑟0 𝐹𝑠 d𝑊𝑠 =

∑𝑛−1
𝑘=0 𝜉𝑘Δ𝑊𝑠𝑘 . By the martingale

property of the Wiener process, combined with the fact that 𝜉𝑘 ∈ F𝑠𝑘 , we have for
each 𝑘 = 0, . . . , 𝑛 − 1:

E𝜉𝑘Δ𝑊𝑠𝑘 = EE𝑠𝑘𝜉𝑘Δ𝑊𝑠𝑘 = E𝜉𝑘 E𝑠𝑘Δ𝑊𝑠𝑘 = 0,

which implies the zero-mean property. For the isometry property, write the expect-
ation E

[
∫ 𝑟0 𝐹𝑠 d𝑊𝑠 × ∫ 𝑟0 𝐺𝑠 d𝑊𝑠

]
as the double sum:

(7.7) E
∑︁
𝑘, 𝑗

𝜉𝑘Δ𝑊𝑠𝑘𝛾 𝑗Δ𝑊𝑠 𝑗 =

𝑛−1∑︁
𝑘=0

E𝜉𝑘𝛾𝑘 [Δ𝑊𝑠𝑘 ]2 +
∑︁
𝑗<𝑘

E (𝜉𝑘𝛾 𝑗 + 𝜉 𝑗𝛾𝑘 )Δ𝑊𝑠𝑘Δ𝑊𝑠 𝑗 .

The double sum on the right-hand side in (7.7) is 0, since for each 𝑗 < 𝑘 ,

E
[
(𝜉𝑘𝛾 𝑗 + 𝜉 𝑗𝛾𝑘 )Δ𝑊𝑠𝑘Δ𝑊𝑠 𝑗

]
= E

[
(𝜉𝑘𝛾 𝑗 + 𝜉 𝑗𝛾𝑘 )Δ𝑊𝑠 𝑗E𝑠𝑘Δ𝑊𝑠𝑘

]
= 0,

by the martingale property of𝑊 . Moreover, for the first sum on the right-hand side
in (7.7) we have, again by conditioning on F𝑠𝑘 , that

𝑛−1∑︁
𝑘=0

E 𝜉𝑘𝛾𝑘 [Δ𝑊𝑠𝑘 ]2 =

𝑛−1∑︁
𝑘=0

E[𝜉𝑘𝛾𝑘 E𝑠𝑘 [Δ𝑊𝑠𝑘 ]2] =
𝑛−1∑︁
𝑘=0

E 𝜉𝑘𝛾𝑘 (𝑠𝑘+1 ∧ 𝑟 − 𝑠𝑘 ∧ 𝑟).

The latter sum is exactly ∫ 𝑟0 E[𝐹𝑠𝐺𝑠] d𝑠, as 𝐹𝑠 = 𝜉𝑘 and 𝐺𝑠 = 𝛾𝑘 on each interval
(𝑠𝑘 , 𝑠𝑘+1].

Finally, to show the martingale property, note that for 𝑟 ∈ [0, 𝑡) we can write:∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠 =

𝑛−1∑︁
𝑘=0

𝜉𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘+1∧𝑟 +𝑊𝑠𝑘∧𝑟 −𝑊𝑠𝑘 )

=
∑︁

𝑘:𝑠𝑘+1>𝑟

𝜉𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘∨𝑟),
(7.8)

where we used the fact that for any 𝑟 ∈ [0, 𝑡):

𝑊𝑠𝑘+1 −𝑊𝑠𝑘+1∧𝑟 +𝑊𝑠𝑘∧𝑟 −𝑊𝑠𝑘 =

{
𝑊𝑠𝑘+1 −𝑊𝑠𝑘∨𝑟 , 𝑠𝑘+1 > 𝑟,

0, 𝑠𝑘+1 ≤ 𝑟.

By the repeated conditioning property in (4.5), we have:

E𝑟

∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠 =
∑︁

𝑘:𝑠𝑘+1>𝑟

E𝑟 𝜉𝑘 E𝑠𝑘∨𝑟 [𝑊𝑠𝑘+1 −𝑊𝑠𝑘∨𝑟]︸                     ︷︷                     ︸
= 0

= 0.

By construction, ∫ 𝑟0 𝐹𝑠 d𝑊𝑠 is F𝑟-measurable for any arbitrary 𝑟 ∈ [0, 𝑡]. In addition,
it is square-integrable due to the isometry: E

(
∫ 𝑟0 𝐹𝑠 d𝑊𝑠

)2
= ∫ 𝑟0 E𝐹2

𝑠 d𝑠 < ∞. □
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Example 7.9 (Deterministic Integrands and Gaussian Processes) Suppose
that 𝑓 is a simple process of the form (7.2) such that 𝜉0, 𝜉1, . . . are all deterministic.
Then, the random variable

𝑍𝑟 :=
∫ 𝑟

0
𝑓𝑠 d𝑊𝑠

has a Gaussian distribution for each 𝑟 ∈ [0, 𝑡], because it is a linear combination
of the independent Gaussian random variables𝑊𝑠𝑘+1∧𝑟 −𝑊𝑠𝑘∧𝑟 , 𝑘 = 0, 1, . . . , 𝑛 − 1.
From Theorem 7.6 we deduce that E𝑍𝑟 = 0 and

Var 𝑍𝑟 =
∫ 𝑟

0
𝑓 2
𝑠 d𝑠 =

𝑛−1∑︁
𝑘=0

𝜉2
𝑘 (𝑠𝑘+1 ∧ 𝑟 − 𝑠𝑘 ∧ 𝑟).

In fact, we can go further and show that 𝑍 := (𝑍𝑡 , 𝑡 ≥ 0) is a zero-mean Gaussian
process with independent increments. Namely, for any 0 ≤ 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 ≤ 𝑡,
the increment 𝑍𝑡4 − 𝑍𝑡3 = ∫ 𝑡4𝑡3 𝑓𝑠 d𝑊𝑠 is determined completely by the process (𝑊𝑠 −
𝑊𝑡3 , 𝑡3 ≤ 𝑠 ≤ 𝑡4), whereas 𝑍𝑡2 − 𝑍𝑡1 = ∫ 𝑡2𝑡1 𝑓𝑠 d𝑊𝑠 is determined by the process
(𝑊𝑠 −𝑊𝑡1 , 𝑡1 ≤ 𝑠 ≤ 𝑡2). Since these two processes are independent of each other,
so are 𝑍𝑡4 − 𝑍𝑡3 and 𝑍𝑡2 − 𝑍𝑡1 . A similar argument can be used for the case with any
finite number of increments. This establishes the independence of the increments
of the process 𝑍 . This property of the increments combined with the fact that
𝑍𝑟 ∼ N(0, ∫ 𝑟0 𝑓 2

𝑠 d𝑠) for each 𝑟 ∈ [0, 𝑡] implies that 𝑍 is a Gaussian process with
covariance function

E𝑍𝑡1𝑍𝑡2 =
𝑡1∧𝑡2
∫
0

𝑓 2
𝑠 d𝑠, 𝑡1, 𝑡2 ≥ 0.

The main utility of simple processes of the form (7.2) is in approximating more
general processes. In this regard, we have the following definition:

Definition 7.10: Canonical Approximation

For any F -adapted process 𝐹 := (𝐹𝑠, 𝑠 ∈ [0, 𝑡]), we define its canonical
approximation as

(7.11) 𝐹
(𝑛)
𝑠 := 𝐹0 1{0} (𝑠) +

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘1(𝑠𝑘 ,𝑠𝑘+1] (𝑠), 𝑠 ∈ [0, 𝑡] .

Clearly, the canonical approximation is of the form (7.2), where 𝜉𝑘 := 𝐹𝑠𝑘 for
𝑘 = 0, . . . , 𝑛 − 1. Figure 7.12 shows the path of a Wiener process (𝑊𝑠, 𝑠 ∈ [0, 1])
and a canonical approximation with 𝑛 = 10, which coincides with the simple process
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on Figure 7.3. Further to this, Figure 7.12 depicts the path of the corresponding Itô
integral process 𝑍 (𝑛) = (∫ 𝑟0 𝐹

(𝑛)
𝑠 d𝑊𝑠, 𝑟 ∈ [0, 1]).

0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

Figure 7.12: A Wiener process 𝐹 := (𝑊𝑠, 𝑠 ∈ [0, 1]), its canonical approximation
𝐹 (𝑛) , and the Itô integral process 𝑍 (𝑛) = (∫ 𝑟0 𝐹

(𝑛)
𝑠 d𝑊𝑠, 𝑟 ∈ [0, 1]).

Having defined the Itô integral for simple processes, we are now ready to extend
the definition to more general predictable processes.

7.1.2 Itô Integral for Predictable Processes
While simple processes of the form (7.2) are F -predictable, it is not immediately
clear if more general processes are also F -predictable. The following result shows
that any process 𝐹 := (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) adapted to F and left-continuous on (0, 𝑡] is
not only F -predictable, but also indistinguishable from any other left-continuous
modification 𝐹 of 𝐹; that is, if P(𝐹𝑠 = 𝐹𝑠) = 1 for all 𝑠 ∈ [0, 𝑡], then P(𝐹𝑠 = 𝐹𝑠 for
all 𝑠 ∈ [0, 𝑡]) = 1. Moreover, 𝐹 is progressively measurable; that is, the mapping
𝐹 : [0, 𝑡] ×Ω → R is measurable with respect to the product 𝜎-algebra B[0,𝑡] ⊗ F𝑡 .
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Theorem 7.13: Properties of Left-continuous Adapted Processes

Suppose that 𝐹 := (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) is a process on (Ω,H , P) that is adapted
to the filtration F and is left-continuous on (0, 𝑡]. Then, the following hold:

1. (Predictable): The process 𝐹 is F -predictable (i.e., F 𝑝-measurable).

2. (Progressively Measurable): For each 𝑡, the mapping 𝐹 : [0, 𝑡] × Ω → R
is jointly measurable with respect to B[0,𝑡] ⊗ F𝑡 .

3. (Indistinguishable): If 𝐹 is a modification of 𝐹 and almost surely left-
continuous, then P(∩𝑠≤𝑡{𝐹𝑠 = 𝐹𝑠}) = 1.

Proof. Consider the canonical approximation 𝐹 (𝑛) of 𝐹, given in (7.11), where
the segmentation Π𝑛 is such that mesh(Π𝑛) → 0. For 𝑠 = 0 and 𝜔 ∈ Ω, we have
𝐹0(𝜔) = 𝐹 (𝑛)

0 (𝜔) by construction. For any 𝑠 ∈ (0, 𝑡], we can always find a 𝑘

(depending on 𝑛 and 𝑠) such that 𝑠𝑘 < 𝑠 ≤ 𝑠𝑘+1. For these 𝑘 and 𝑠, define 𝜀𝑛,𝑠 :=
𝑠 − 𝑠𝑘 , so that 0 < 𝜀𝑛,𝑠 ≤ mesh(Π𝑛). Importantly,

𝐹𝑠 − 𝐹 (𝑛)
𝑠 = 𝐹𝑠 − 𝐹𝑠𝑘 + 𝐹𝑠𝑘 − 𝐹

(𝑛)
𝑠︸      ︷︷      ︸

= 0

= 𝐹𝑠 − 𝐹𝑠−𝜀𝑛,𝑠 ,

where the last difference 𝐹𝑠−𝐹𝑠−𝜀𝑛,𝑠 vanishes as 𝑛 ↑ ∞, because 𝐹 is left-continuous.
In other words, the simple process approximates 𝐹 arbitrarily well, in the sense that
𝐹
(𝑛)
𝑠 (𝜔) → 𝐹𝑠 (𝜔) for all 𝑠 ∈ [0, 𝑡] and𝜔 ∈ Ω. Since 𝐹 is adapted toF , Example 7.4

implies that the simple process 𝐹 (𝑛) is F -predictable. As a consequence, for each 𝑡,
the mapping 𝐹 (𝑛) : [0, 𝑡] ×Ω → R is jointly measurable with respect to B[0,𝑡] ⊗ F𝑡 .
Since the limit of measurable functions is measurable, the same properties carry
through to the limit 𝐹 of 𝐹 (𝑛) . This establishes the properties of F -predictability
and progressive measurability for 𝐹.

Next, assume that 𝐹 is a modification of 𝐹; that is, P(𝐹𝑠 ≠ 𝐹𝑠) = 0 for all
𝑠 ∈ [0, 𝑡]. Let 𝐵 be the event that both 𝐹 and 𝐹 are left-continuous, so that
P(𝐵) = 1. Let Q𝑡 := [0, 𝑡] ∩ Q and define 𝐴 := ∩𝑠∈Q𝑡 {𝐹𝑠 = 𝐹𝑠} as the event that
𝐹 and 𝐹 coincide on Q𝑡 . Since the set Q𝑡 is countable, the countable subadditivity
property in Theorem 2.2 yields

P(𝐴𝑐) = P(∪𝑠∈Q𝑡 {𝐹𝑠 ≠ 𝐹𝑠}) ≤
∑︁
𝑠∈Q𝑡

P(𝐹𝑠 ≠ 𝐹𝑠) = 0.

In other words, P(𝐴) = 1. An important property of the set of rational numbers Q𝑡 ,
called denseness, is that any 𝑠 ∈ [0, 𝑡] can be approximated arbitrarily well with a
sequence of rational numbers 𝑠1, 𝑠2, . . . ∈ Q𝑡 . We can choose this sequence such
that 𝑠𝑛 < 𝑠 for all 𝑛; that is, 𝑠𝑛 ↑ 𝑠 as 𝑛 ↑ ∞. Therefore, for all 𝜔 ∈ 𝐴 ∩ 𝐵:

𝐹𝑠 (𝜔) − 𝐹𝑠 (𝜔) = lim
𝑛↑∞

(𝐹𝑠𝑛 (𝜔) − 𝐹𝑠𝑛 (𝜔)) = 0 for all 𝑠 ∈ [0, 𝑡] .
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SinceP(𝐴∩𝐵) = 1−P(𝐴𝑐∪𝐵𝑐) = 1, we conclude that 𝐹 and 𝐹 are indistinguishable.
□

We have so far considered stochastic processes that are left-continuous and
adapted to the filtration F . However, in order to define the Itô integral for these
more general processes, additional regularity conditions are needed.

Definition 7.14: The Class of Processes P𝑡

Let P𝑡 be the class of stochastic processes 𝐹 := (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) that are left-
continuous on (0, 𝑡], F -adapted, and satisfy the norm condition:

∥𝐹∥2
P𝑡 := E

∫ 𝑡

0
𝐹2
𝑠 d𝑠 < ∞.

Note that the progressively measurable property in Theorem 7.13 and Fubini’s
Theorem 1.67 together justify swapping the integral and expectation:

(7.15) ∥𝐹∥2
P𝑡 = E

∫ 𝑡

0
𝐹2
𝑠 d𝑠 =

∫ 𝑡

0
E𝐹2

𝑠 d𝑠 < ∞.

In addition, the processes in P𝑡 are not only F 𝑝-measurable (by Theorem 7.13), but
also belong to the Hilbert space 𝐿2( [0, 𝑡] ×Ω, F 𝑝,Leb[0,𝑡] ⊗ P) equipped with the
inner product that is induced by the norm ∥ · ∥P𝑡 , namely,

⟨𝐹, 𝐺⟩P𝑡 :=
∥𝐹 + 𝐺∥2

P𝑡 − ∥𝐹∥2
P𝑡 − ∥𝐺∥2

P𝑡
2

.

We are now ready to begin extending the definition of the Itô integral to the class
P𝑡 . A key step in this direction is to note that processes in P𝑡 can be approximated
arbitrarily well in the norm ∥ · ∥P𝑡 via the simple processes in Definition 7.1.

Theorem 7.16: Approximating the Class P𝑡 via Simple Processes

Suppose that 𝐹 ∈ P𝑡 . Then, there exists a sequence (𝐹 (𝑛)) of simple processes
of the form (7.2) such that mesh(Π𝑛) → 0 implies that 𝐹 (𝑛)

𝑠
a.s.→ 𝐹𝑠 for all

𝑠 ∈ [0, 𝑡] and

(7.17) lim
𝑛→∞

∥𝐹 (𝑛) − 𝐹∥P𝑡 = 0.

Proof. Let P̃ := Leb[0,𝑡]⊗P/𝑡 be a probability measure on ( [0, 𝑡]×Ω,B[0,𝑡]⊗H) and
let 𝑋 , with 𝑋 (𝑠, 𝜔) := 𝐹𝑠 (𝜔), be a numerical random variable on this probability
space. With Ẽ the expectation corresponding to P̃, and ∥𝑋 ∥2

2 := Ẽ𝑋2 the squared
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𝐿2 norm of 𝑋 , we have 𝑡∥𝑋 ∥2 = ∥𝐹∥P𝑡 < ∞. Let 𝑋𝑚 := 𝑋1{|𝑋 |≤𝑚} for 𝑚 ∈ N be a
truncated version of 𝑋 . Then,

∥𝑋𝑚 − 𝑋 ∥2
2 = Ẽ(𝑋𝑚 − 𝑋)2 = Ẽ𝑋2

1{|𝑋 |>𝑚} = ∥𝑋 ∥2
2 − Ẽ𝑋2

1{|𝑋 |≤𝑚} < ∞.

Since 𝑋2
1{|𝑋 |≤𝑚} ↑ 𝑋2 as 𝑚 → ∞, the Monotone Convergence Theorem 2.34

yields Ẽ𝑋2
1{|𝑋 |≤𝑚} ↑ ∥𝑋 ∥2

2 < ∞ and hence lim𝑚→∞ ∥𝑋𝑚 − 𝑋 ∥2 = 0.
Next, we define the random variable

𝑋𝑚,𝑛 (𝑠, 𝜔) := 𝐹𝑠𝑘 (𝜔)1{|𝐹𝑠𝑘 (𝜔) |≤𝑚}, 𝑠 ∈ (𝑠𝑘 , 𝑠𝑘+1],

where 0 = 𝑠0 < · · · < 𝑠𝑛 = 𝑡 is a segmentation of [0, 𝑡] such that max𝑘 (𝑠𝑘+1− 𝑠𝑘 ) →
0 as 𝑛→ ∞. In other words, 𝑋𝑚,𝑛 is a simple process of the form (7.2):

𝑋𝑚,𝑛 (𝑠, 𝜔) = 𝑋𝑚 (0, 𝜔)1{0} (𝑠) +
𝑛−1∑︁
𝑘=0

𝑋𝑚 (𝑠𝑘 , 𝜔)1(𝑠𝑘 ,𝑠𝑘+1] (𝑠), 𝑠 ∈ [0, 𝑡] .

By the same arguments as in Theorem 7.13, the condition max𝑘 (𝑠𝑘+1 − 𝑠𝑘 ) → 0
implies that 𝑋𝑚,𝑛 (𝑠, 𝜔) a.s.→ 𝑋𝑚 (𝑠, 𝜔) as 𝑛 → ∞ for (𝑠, 𝜔) ∈ [0, 𝑡] × Ω. Since
|𝑋𝑚,𝑛 | ≤ 𝑚 for each 𝑚 ∈ N, the Bounded Convergence Theorem 2.36 yields

lim
𝑛→∞

∥𝑋𝑚,𝑛 − 𝑋𝑚 ∥2 = 0.

For each 𝑚, let 𝑛𝑚 be the smallest integer such that ∥𝑋𝑚,𝑛𝑚 − 𝑋𝑚 ∥2 < 1/𝑚 and
define

𝐹
(𝑚)
𝑠 (𝜔) := 𝑋𝑚,𝑛𝑚 (𝑠, 𝜔), 𝑚 ∈ N.

Then, (𝐹 (𝑚) , 𝑚 ∈ N) corresponds to a sequence of simple processes of the form
(7.2) that converges almost surely to 𝑋 as 𝑚 → ∞ and satisfies

∥𝐹 (𝑚) − 𝑋 ∥2 ≤ ∥𝑋𝑚 − 𝑋 ∥2 + 1/𝑚 → 0.

This completes the proof. □

Example 7.18 (Uniform Integrability and Canonical Approximations) The-
orem 7.16 asserts that there exists a sequence of simple processes that can approx-
imate any 𝐹 ∈ P𝑡 in the norm on P𝑡 , but it does not tell us how to construct such a
sequence explicitly. An explicit approximating sequence for 𝑛 ∈ N is the canonical
approximation (7.11), provided that (𝐹2

𝑠 , 𝑠 ∈ [0, 𝑡]) is uniformly integrable, in the
sense that

(7.19) lim
𝑚→∞

sup
𝑠∈[0,𝑡]

E𝐹2
𝑠 1{𝐹2

𝑠 >𝑚} = 0.

For example, this condition is met when (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) = (𝑊𝑠, 𝑠 ∈ [0, 𝑡]) is the
Wiener process, because E𝑊2

𝑠 = 𝑠 ≤ 𝑡 < ∞ is bounded.
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To prove that, under condition (7.19), the canonical approximation 𝐹 (𝑛) satisfies
∥𝐹 (𝑛) − 𝐹∥P𝑡 → 0, we can modify the proof in Theorem 7.16 as follows. For each
𝑛 ≥ 1, define the random variable

𝑌𝑛 (𝑠, 𝜔) := 𝐹0(𝜔)1{0} (𝑠) +
𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝜔)1(𝑠𝑘 ,𝑠𝑘+1] (𝑠), 𝑠 ∈ [0, 𝑡] .

Then, as in the proof in Theorem 7.16, we have that 𝑌𝑛 (𝑠, 𝜔) a.s.→ 𝐹𝑠 (𝜔) =: 𝑌 (𝑠, 𝜔)
as 𝑛→ ∞ for (𝑠, 𝜔) ∈ [0, 𝑡] ×Ω. Using the triangle inequality, we have:

∥𝑌𝑛 − 𝑌 ∥2

≤ ∥𝑌 − 𝑌1{|𝑌 |≤𝑚}∥2 + ∥𝑌1{|𝑌 |≤𝑚} − 𝑌𝑛1{|𝑌𝑛 |≤𝑚}∥2 + ∥𝑌𝑛1{|𝑌𝑛 |≤𝑚} − 𝑌𝑛∥2

≤ ∥𝑌1{|𝑌 |>𝑚}∥2 + ∥𝑌1{|𝑌 |≤𝑚} − 𝑌𝑛1{|𝑌𝑛 |≤𝑚}∥2 + sup
𝑛

∥𝑌𝑛1{|𝑌𝑛 |>𝑚}∥2.

Since (𝑌1{|𝑌 |≤𝑚}−𝑌𝑛1{|𝑌𝑛 |≤𝑚})2 ≤ 4𝑚2, the Dominated Convergence Theorem 2.36
gives:

lim
𝑛→∞

∥𝑌1{|𝑌 |≤𝑚} − 𝑌𝑛1{|𝑌𝑛 |≤𝑚}∥2 = 0.

Hence, taking a limit as 𝑛→ ∞, we obtain

lim
𝑛

∥𝑌𝑛 − 𝑌 ∥2 ≤ ∥𝑌1{|𝑌 |>𝑚}∥2 + sup
𝑛

∥𝑌𝑛1{|𝑌𝑛 |>𝑚}∥2.

The first term ∥𝑌1{|𝑌 |>𝑚}∥2 vanishes by the Monotone Convergence Theorem 2.34
as 𝑚 → ∞. For the second term we have, by the isometry property:

∥𝑌𝑛1{|𝑌𝑛 |>𝑚}∥2
2 =

𝑛−1∑︁
𝑘=0

(𝑠𝑘+1 − 𝑠𝑘 )E𝐹2
𝑠𝑘
1{|𝐹𝑠𝑘 |>𝑚} ≤ 𝑡 sup

𝑠∈[0,𝑡]
E𝐹2

𝑠 1{|𝐹𝑠 |>𝑚} .

Therefore, sup𝑛 ∥𝑌𝑛1{|𝑌𝑛 |>𝑚}∥2 → 0 as𝑚 → ∞, and since ∥𝐹 (𝑛)−𝐹∥P𝑡 = 𝑡∥𝑌𝑛−𝑌 ∥2,
it follows that ∥𝐹 (𝑛) − 𝐹∥P𝑡 → 0, as desired.

Theorem 7.16 permits us to define the Itô integral for any process in the class
P𝑡 as the limit of a suitable sequence of integrals of simple processes. For this
definition to make sense, we need to ensure that such a limit exists.

Theorem 7.20: Existence of the Itô Integral with Integrand 𝐹 ∈ P𝑡

Suppose that 𝐹 ∈ P𝑡 and (𝐹 (𝑛)) is a sequence of simple processes satisfying
(7.17). Then, the following limit exists in 𝐿2 norm:∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠 := lim
𝑛→∞

∫ 𝑡

𝑟

𝐹
(𝑛)
𝑠 d𝑊𝑠, 𝑟 ∈ [0, 𝑡],

and it defines the Itô integral of 𝐹 with respect to𝑊 on [𝑟, 𝑡].
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Proof. Since ∫ 𝑡𝑟 𝐹
(𝑛)
𝑠 d𝑊𝑠 = ∫ 𝑡0 𝐹

(𝑛)
𝑠 d𝑊𝑠 − ∫ 𝑟0 𝐹

(𝑛)
𝑠 d𝑊𝑠, it suffices to consider the

existence of the limit of the integral 𝐽 (𝑛) := ∫ 𝑟0 𝐹
(𝑛)
𝑠 d𝑊𝑠. Consider the Hilbert space

𝐿2(Ω,H , P), equipped with the 𝐿2 norm: ∥𝑋 ∥2 =
√
E𝑋2. We will show that (𝐽 (𝑛))

is a Cauchy sequence in 𝐿2, so that, by the completeness of 𝐿2, there exists a random
variable 𝐽 ∈ 𝐿2 such that E(𝐽 (𝑛) − 𝐽)2 → 0. Thus, setting ∫ 𝑟0 𝐹𝑠 d𝑊𝑠 := 𝐽, justifies
the definition of the Itô integral.

That (𝐽 (𝑛)) is a Cauchy sequence in 𝐿2 follows from the following bound:

∥𝐽 (𝑛) − 𝐽 (𝑚) ∥2 =

√︂
E

(∫ 𝑟

0 (𝐹 (𝑛)
𝑠 − 𝐹 (𝑚)

𝑠 ) d𝑊𝑠

)2

= ∥𝐹 (𝑛) − 𝐹 (𝑚) ∥P𝑟 ≤ ∥𝐹 (𝑚) − 𝐹∥P𝑟 + ∥𝐹 (𝑛) − 𝐹∥P𝑟 ,

where in the last line we used the linearity and isometry for the simple process
𝐹 (𝑛) − 𝐹 (𝑚) , as well as the triangle inequality applied to the norm ∥ · ∥P𝑟 .

Finally, from (7.17) and ∥𝐹∥P𝑟 ≤ ∥𝐹∥P𝑡 we have that as 𝑚, 𝑛→ ∞:

∥𝐽 (𝑛) − 𝐽 (𝑚) ∥2 ≤ ∥𝐹 (𝑚) − 𝐹∥P𝑡 + ∥𝐹 (𝑛) − 𝐹∥P𝑡 → 0.

Hence, (𝐽 (𝑛)) is a Cauchy sequence in 𝐿2, guaranteeing that the Itô integral ∫ 𝑟0 𝐹𝑠 d𝑊𝑠

is well-defined as the limit 𝐽 of (𝐽 (𝑛)) in 𝐿2. □

Example 7.21 (Itô Integral as a Riemann Sum) Recall that if the process
𝐹2 is uniformly integrable, see (7.19), then an explicit approximating sequence
(𝐹 (𝑛) , 𝑛 ∈ N) of 𝐹 is (7.11). For such uniformly integrable 𝐹2, the Itô integral over
[0, 𝑡] can be defined as the limit in 𝐿2 norm of a Riemann sum:∫ 𝑡

0
𝐹𝑠 d𝑊𝑠 := lim

𝑛→∞

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 ).

For example, since E𝑊2
𝑡 = 𝑡 < ∞, the Wiener process satisfies (7.19) and we can

define ∫ 𝑡0𝑊𝑠 d𝑊𝑠 = lim𝑛→∞
∑𝑛−1
𝑘=0𝑊𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 ) = (𝑊2

𝑡 − 𝑡)/2.
To see the latter equality, consider the telescoping sum

∑𝑛−1
𝑘=0(𝑊𝑠𝑘+1+𝑊𝑠𝑘 ) (𝑊𝑠𝑘+1−

𝑊𝑠𝑘 ) =
∑𝑛−1
𝑘=0(𝑊2

𝑠𝑘+1 − 𝑊
2
𝑠𝑘
) = 𝑊2

𝑡 , and note that by Theorem 6.70 the quadratic
variation of the Wiener process over [0, 𝑡] is 𝑡; that is, ⟨𝑊 (𝑛)⟩𝑡 =

∑𝑛−1
𝑘=0(𝑊𝑠𝑘+1 −

𝑊𝑠𝑘 )2 𝐿2→ 𝑡. Hence,

𝑊2
𝑡 − 𝑡
2

= lim
𝑛→∞

𝑛−1∑︁
𝑘=0

[
(𝑊2

𝑠𝑘+1 −𝑊
2
𝑠𝑘
)

2
−

(𝑊𝑠𝑘+1 −𝑊𝑠𝑘 )2

2

]
= lim
𝑛→∞

𝑛−1∑︁
𝑘=0

𝑊𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 ).
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Figure 7.22: The Itô integral process (∫ 𝑡0𝑊𝑠 d𝑊𝑠, 𝑡 ∈ [0, 1]) and its corresponding
Wiener process𝑊 .

Figure 7.22 shows a realization of the process (∫ 𝑡0𝑊𝑠 d𝑊𝑠, 𝑡 ∈ [0, 1]) together with
the corresponding Wiener process 𝑊 := (𝑊𝑠, 𝑠 ∈ [0, 1]) — the Wiener path from
Figure 7.12. Observe that here the Riemann sum

∑𝑛−1
𝑘=0𝑊𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 ) not only

converges in 𝐿2, but also almost surely, because ⟨𝑊 (𝑛)⟩𝑡 a.s.→ 𝑡 by Theorem 6.70.
Similar calculations also show (see Exercise 1) that

∑𝑛−1
𝑘=0𝑊𝑠𝑘+1 (𝑊𝑠𝑘+1 − 𝑊𝑠𝑘 )

𝐿2→
(𝑊2

𝑡 + 𝑡)/2. However, the limit of this latter Riemann sum does not define an Itô
integral, because the simple process

∑𝑛−1
𝑘=0𝑊𝑠𝑘+11[𝑠𝑘 ,𝑠𝑘+1) is not F -adapted (𝑊𝑠𝑘+1 ∉

F𝑠𝑘 ).

Next, we provide the proof of Theorem 7.6 for the more general class of integ-
rands in P𝑡 .

Proof of Theorem 7.6 for Processes in P𝑡 . That the Itô integral for any 𝐹 ∈ P𝑡 has
the same four properties as for simple processes follows by taking limits. In particu-
lar, let (𝐹 (𝑛)) and (𝐺 (𝑛)) be the approximating sequences of simple processes for 𝐹
and𝐺, respectively. Then,𝐻 (𝑛) := 𝛼𝐹 (𝑛) + 𝛽𝐺 (𝑛) is a simple process approximating
𝐻 := 𝛼𝐹 + 𝛽𝐺, in the sense that

∥𝐻 (𝑛) − 𝐻∥P𝑡 ≤ 𝛼∥𝐹 (𝑛) − 𝐹∥P𝑡 + 𝛽∥𝐺 (𝑛) − 𝐺∥P𝑡 → 0.

Hence, the limit of ∫ 𝑟0 𝐻
(𝑛)
𝑠 d𝑊𝑠 exists in 𝐿2. By the linearity property of the integral

for simple functions, we have:∫ 𝑟

0
𝐻

(𝑛)
𝑠 d𝑊𝑠 = 𝛼

∫ 𝑟

0
𝐹
(𝑛)
𝑠 d𝑊𝑠 + 𝛽

∫ 𝑟

0
𝐺

(𝑛)
𝑠 d𝑊𝑠 .

By taking limits on both sides, we find ∫ 𝑟0 𝐻𝑠 d𝑊𝑠 = 𝛼 ∫ 𝑟0 𝐹𝑠 d𝑊𝑠 + 𝛽 ∫ 𝑟0 𝐹𝑠 d𝑊𝑠,
showing the linearity property.



254 7.1. Itô Integral

Next, let 𝐽 (𝑛) := ∫ 𝑟0 𝐹
(𝑛)
𝑠 d𝑊𝑠 and denote its limit in 𝐿2 by 𝐽 := ∫ 𝑟0 𝐹𝑠 d𝑊𝑠. Recall

that 𝐽 (𝑛) satisfies the isometry ∥𝐽 (𝑛) ∥2 = ∥𝐹 (𝑛) ∥P𝑟 . By the monotonicity property
in Theorem 2.47, |E𝐽 | = |E𝐽 −E𝐽 (𝑛) | ≤ E|𝐽 − 𝐽 (𝑛) | ≤ ∥𝐽 − 𝐽 (𝑛) ∥2 → 0, proving the
zero-mean property. Further, by the triangle inequality, we have |∥𝐽 (𝑛) ∥2 − ∥𝐽∥2 | ≤
∥𝐽 (𝑛) − 𝐽∥2 → 0 and |∥𝐹 (𝑛) ∥P𝑟 − ∥𝐹∥P𝑟 | ≤ ∥𝐹 (𝑛) − 𝐹∥P𝑟 → 0. Hence,

∥𝐽∥2 = lim
𝑛→∞

∥𝐽 (𝑛) ∥2 = lim
𝑛→∞

∥𝐹 (𝑛) ∥P𝑟 = ∥𝐹∥P𝑟 ,

proving the isometry for the special case where 𝐺 = 𝐹. The more general isometry
property follows by applying the linearity and isometry (in the special case of
𝐺 = 𝐹) to the right-hand side of the polarization identity:

E
[∫ 𝑟

0
𝐹𝑠 d𝑊𝑠 ×

∫ 𝑟

0
𝐺𝑠 d𝑊𝑠

]
=

E
[∫ 𝑟

0 (𝐹𝑠 + 𝐺𝑠) d𝑊𝑠

]2
− E

[∫ 𝑟

0 (𝐹𝑠 − 𝐺𝑠) d𝑊𝑠

]2

4

=
∥𝐹 + 𝐺∥2

P𝑟 − ∥𝐹 − 𝐺∥2
P𝑟

4
= ⟨𝐹, 𝐺⟩P𝑟 .

Finally, for the martingale property, we show that E𝑟 ∫ 𝑡𝑟 𝐹𝑠 d𝑊𝑠 = 0, where∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠 := lim
𝑛→∞

∫ 𝑡

𝑟

𝐹
(𝑛)
𝑠 d𝑊𝑠,

and ∫ 𝑡𝑟 𝐹
(𝑛)
𝑠 d𝑊𝑠 is the integral of a simple process and hence of the form (7.8), but

with 𝑟 assumed to be a point in the segmentation of [0, 𝑡]; that is, 𝑟 ∈ Π𝑛. Define
𝑊𝑠 := 𝑊𝑟+𝑠 −𝑊𝑟 , 𝐹

(𝑛)
𝑠 := 𝐹 (𝑛)

𝑠+𝑟 , and F̃ := (F𝑠+𝑟 , 𝑠 ≥ 0). We know that (𝑊𝑠, 𝑠 ≥ 0)
is a Wiener process (see Theorem 6.11) and that by construction 𝐹 (𝑛) is F̃ -adapted.
Hence, ∫ 𝑡−𝑟0 𝐹

(𝑛)
𝑠 d𝑊𝑠 converges to a limit in 𝐿2 norm, which is the Itô integral∫ 𝑡−𝑟

0 𝐹𝑠 d𝑊𝑠 with 0 mean. From the construction, ∫ 𝑡−𝑟0 𝐹
(𝑛)
𝑠 d𝑊𝑠 = ∫ 𝑡𝑟 𝐹

(𝑛)
𝑠 d𝑊𝑠, and

so we can conclude that ∫ 𝑡−𝑟

0
𝐹𝑠+𝑟 d𝑊𝑠 =

∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠 .

Hence, E𝑟 ∫ 𝑡𝑟 𝐹𝑠 d𝑊𝑠 = E0 ∫ 𝑡−𝑟0 𝐹𝑠 d𝑊𝑠 = 0, proving the martingale property. The
square-integrability follows from the isometry:

E𝑟

(∫ 𝑡

𝑟

𝐹𝑠 d𝑊𝑠

)2
= E0

(∫ 𝑡−𝑟

0
𝐹𝑠 d𝑊𝑠

)2

= E0

∫ 𝑡−𝑟

0
𝐹2
𝑠+𝑟 d𝑠 = E𝑟

∫ 𝑡

𝑟

𝐹2
𝑠 d𝑠 < ∥𝐹∥2

P𝑡 < ∞.

□
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If we view the Itô integral 𝐽[0,𝑡] (𝐹) := ∫ 𝑡0 𝐹𝑠 d𝑊𝑠 of 𝐹 ∈ P𝑡 on [0, 𝑡] as a linear
mapping 𝐽[0,𝑡] : [0, 𝑡] ×Ω → Ω from the Hilbert space 𝐿2( [0, 𝑡] ×Ω, F 𝑝,Leb[0,𝑡] ⊗
P) to the Hilbert space 𝐿2(Ω,H , P), then the isometry property in Theorem 7.6
shows that this mapping is a linear isometry; see Example B.3.

Example 7.23 (Quadratic Martingale Process) Let 𝐽[𝑟,𝑡] := ∫ 𝑡𝑟 𝐹𝑠 d𝑊𝑠 be the
Itô integral of 𝐹 on [𝑟, 𝑡] and define

𝑍𝑟 := 𝐽2
[0,𝑟] −

∫ 𝑟

0
𝐹2
𝑠 d𝑠.

Then, the process 𝑍 := (𝑍𝑟 , 𝑟 ∈ [0, 𝑡]) is a martingale. Indeed, for any 𝑟 ∈ [0, 𝑡],
the martingale property in Theorem 7.6 yields:

E𝑟 [𝐽2
[0,𝑡] − 𝐽

2
[0,𝑟]] = E𝑟 (𝐽[0,𝑡] − 𝐽[0,𝑟]) (𝐽[0,𝑡] + 𝐽[0,𝑟])

= E𝑟𝐽[𝑟,𝑡] (𝐽[𝑟,𝑡] + 2𝐽[0,𝑟])
= E𝑟𝐽2

[𝑟,𝑡] + 2𝐽[0,𝑟]E𝑟𝐽[𝑟,𝑡]

= E𝑟

∫ 𝑡

𝑟

𝐹2
𝑠 d𝑠 + 0.

Finally, by the isometry and triangle inequality E|𝑍𝑡 | ≤ 2∥𝐹∥P𝑡 < ∞, and so 𝑍 is a
martingale.

Example 7.24 (Stopping Times and Isometry) Suppose that we are given two
bounded stopping times 𝑅 ≤ 𝑇 ≤ 𝑡 adapted to the filtration (F𝑠, 𝑠 ∈ [0, 𝑡]). Then,
an extension of the isometry property in Theorem 7.6 is the following:

E𝑅

[∫ 𝑇

𝑅

𝐹𝑠 d𝑊𝑠 ×
∫ 𝑇

𝑅

𝐺𝑠 d𝑊𝑠

]
= E𝑅

∫ 𝑇

𝑅

𝐹𝑠𝐺𝑠 d𝑠.

To prove this, we again first establish the identity for the special case of𝐺 = 𝐹. Using
the notation in Example 7.23, recall that both (𝐽[0,𝑟] , 𝑟 ∈ [0, 𝑡]) and (𝑍𝑟 , 𝑟 ∈ [0, 𝑡])
are martingales, so that by Theorem 5.83 we have E𝑅 [𝐽[0,𝑇] − 𝐽[0,𝑅]] = 0 and
E𝑅 [𝑍𝑇 − 𝑍𝑅] = 0. In other words, we have E𝑅𝐽[𝑅,𝑇] = 0 and E𝑅 [𝐽2

[0,𝑇] − 𝐽
2
[0,𝑅]] =

E𝑅 ∫𝑇𝑅 𝐹2
𝑠 d𝑠. Hence, we obtain

E𝑅𝐽2
[𝑅,𝑇] = E𝑅 (𝐽[0,𝑇] − 𝐽[0,𝑅]) (𝐽[0,𝑇] + 𝐽[0,𝑅] − 2𝐽[0,𝑅])

= E𝑅 [𝐽2
[0,𝑇] − 𝐽

2
[0,𝑅]] − 2𝐽[0,𝑅]E𝑅𝐽[𝑅,𝑇]

= E𝑅

∫ 𝑇

𝑅

𝐹2
𝑠 d𝑠 − 0.

The general isometry identity follows by applying the linearity and isometry (in the
case of 𝐺 ≡ 𝐹) to the right-hand side of the polarization identity:

E𝑅

[∫ 𝑇

𝑅

𝐹𝑠 d𝑊𝑠 ×
∫ 𝑇

𝑅

𝐺𝑠 d𝑊𝑠

]
=
E𝑅

[∫ 𝑇
𝑅
(𝐹𝑠 + 𝐺𝑠) d𝑊𝑠

]2 − E𝑅
[∫ 𝑇
𝑅
(𝐹𝑠 − 𝐺𝑠) d𝑊𝑠

]2

4
.
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We next generalize the results in Example 7.9 to the wider class of left-
continuous deterministic integrands.

Proposition 7.25: Deterministic Integrands and Gaussian Processes

Let 𝑓 : R+ × R+ → R be left-continuous in the first argument and such that
∥ 𝑓 (·, 𝑡)∥2

P𝑡 = ∫ 𝑡0 𝑓 2(𝑠, 𝑡) d𝑠 < ∞. Then, the stochastic integral process

𝑍𝑡 :=
∫ 𝑡

0
𝑓 (𝑠, 𝑡) d𝑊𝑠, 𝑡 ≥ 0,

is a zero-mean Gaussian process with covariance function

Cov(𝑍𝑡1 , 𝑍𝑡2) =
∫ 𝑡1∧𝑡2

0
𝑓 (𝑠, 𝑡1) 𝑓 (𝑠, 𝑡2) d𝑠, 𝑡1, 𝑡2 ≥ 0.

Proof. Take a sequence of segmentations of [0, 𝑡] whose mesh is going to 0 as
𝑛 → ∞. Let 𝑓 (𝑛) (·, 𝑟) be the corresponding canonical approximation of 𝑓 (·, 𝑟) for
𝑟 ∈ [0, 𝑡], and define

𝑍
(𝑛)
𝑟 :=

∫ 𝑟

0
𝑓 (𝑛) (𝑠, 𝑟) d𝑊𝑠 =

𝑛−1∑︁
𝑘=0

𝑓 (𝑠𝑘 , 𝑟) (𝑊𝑠𝑘+1∧𝑟 −𝑊𝑠𝑘∧𝑟).

This is a zero-mean Gaussian random variable, with variance

𝑛−1∑︁
𝑘=0

𝑓 2(𝑠𝑘 , 𝑟) (𝑠𝑘+1 ∧ 𝑟 − 𝑠𝑘 ∧ 𝑟) =
∫ 𝑟

0
[ 𝑓 (𝑛) (𝑠, 𝑟)]2 d𝑠 = ∥ 𝑓 (𝑛) (·, 𝑟)∥2

P𝑟 .

Since |∥ 𝑓 (𝑛) (·, 𝑟)∥P𝑟 − ∥ 𝑓 (·, 𝑟)∥P𝑟 | ≤ ∥ 𝑓 (𝑛) (·, 𝑟) − 𝑓 (·, 𝑟)∥P𝑟 → 0, we have that

Var 𝑍 (𝑛)
𝑟 = ∥ 𝑓 (𝑛) (·, 𝑟)∥2

P𝑟 → ∥ 𝑓 (·, 𝑟)∥2
P𝑟 =

∫ 𝑟

0
𝑓 2(𝑠, 𝑟) d𝑠.

Moreover, 𝑍 (𝑛)
𝑟

d→ 𝑍𝑟 . By Theorem 3.24, the characteristic function of 𝑍𝑟 is
given by the limit of the characteristic function of 𝑍 (𝑛)

𝑟 as 𝑛 → ∞. Therefore,
𝑍𝑟 ∼ N(0, ∥ 𝑓 (·, 𝑟)∥2

P𝑟 ). More generally, for any choice 𝑡1, . . . , 𝑡𝑚 ∈ [0, 𝑡] and real
numbers 𝛼1, . . . , 𝛼𝑚, the linear combination

𝑚∑︁
𝑖=1

𝛼𝑖 𝑍
(𝑛)
𝑡𝑖

=

𝑚∑︁
𝑖=1

𝑛−1∑︁
𝑘=0

𝛼𝑖 𝑓 (𝑠𝑘 , 𝑡𝑖) (𝑊𝑠𝑘+1∧𝑡𝑖 −𝑊𝑠𝑘∧𝑡𝑖 )
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is a Gaussian random variable, showing that (𝑍 (𝑛)
𝑠 , 𝑠 ∈ [0, 𝑡]) is a zero-mean Gaus-

sian process for any 𝑛 and, by taking the limit as 𝑛 → ∞, that (𝑍𝑠, 𝑠 ∈ [0, 𝑡]) is
a zero-mean Gaussian process as well. As 𝑡 is arbitrary, the process (𝑍𝑡 , 𝑡 ≥ 0) is
Gaussian. The covariance formula for 𝑡1 ≤ 𝑡2 follows from

E𝑍 (𝑛)
𝑡1
𝑍
(𝑛)
𝑡2

=

Var
(
𝑍
(𝑛)
𝑡1

+ 𝑍 (𝑛)
𝑡2

)
− Var 𝑍 (𝑛)

𝑡1
− Var 𝑍 (𝑛)

𝑡2

2

→
E (𝑍𝑡1 + 𝑍𝑡2)2 − E𝑍2

𝑡1
− E𝑍2

𝑡2

2
= E𝑍𝑡1𝑍𝑡2

and an application of the isometry property in Theorem 7.6 gives:

E𝑍𝑡1𝑍𝑡2 = E
[∫ 𝑡1

0
𝑓 (𝑠, 𝑡1) d𝑊𝑠 ×

∫ 𝑡2

𝑡1

𝑓 (𝑠, 𝑡2) d𝑊𝑠

]
+ E

[∫ 𝑡1

0
𝑓 (𝑠, 𝑡1) d𝑊𝑠 ×

∫ 𝑡1

0
𝑓 (𝑠, 𝑡2) d𝑊𝑠

]
= 0 +

∫ 𝑡1

0
𝑓 (𝑠, 𝑡1) 𝑓 (𝑠, 𝑡2) d𝑠.

□

Example 7.26 (Time-changed Wiener Process) Suppose that in Proposi-
tion 7.25 there is no dependence of 𝑓 on 𝑡; that is, 𝑓 (𝑠, 𝑡) = 𝑓𝑠. Then, for
𝑡2 > 𝑡1:

Cov(𝑍𝑡1 , 𝑍𝑡2 − 𝑍𝑡1) = Cov(𝑍𝑡1 , 𝑍𝑡2) − Var 𝑍𝑡1 =
∫ 𝑡1∧𝑡2

0
𝑓 2
𝑠 d𝑠 −

∫ 𝑡1

0
𝑓 2
𝑠 d𝑠 = 0,

and therefore the Gaussian process 𝑍 := (∫ 𝑡0 𝑓𝑠 d𝑊𝑠, 𝑡 ≥ 0) has independent incre-
ments, just like in Example 7.9. The variance of 𝑍𝑡 is in this case the continuous
increasing function

(7.27) 𝐶 (𝑡) := Var 𝑍𝑡 = ∥ 𝑓 ∥P𝑡 =
∫ 𝑡

0
𝑓 2
𝑠 d𝑠, 𝑡 ≥ 0.

This increasing function can thus serve as a “clock” with which to measure time:
showing the clock time𝐶 (𝑡) when 𝑡 units of natural time have passed. In Exercise 2
we prove that the process (𝑊𝐶 (𝑡) , 𝑡 ≥ 0), which can be viewed as a time change of
the Wiener process𝑊 , has the same statistical properties as 𝑍 . In other words, both
𝑍 and (𝑊𝐶 (𝑡) , 𝑡 ≥ 0) are Gaussian processes with the same mean and covariance
functions.
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We finish with a result that generalizes the quadratic variation of the Wiener
process in Section 6.7 and that will be used many times in Section 7.2.

Lemma 7.28: Quadratic Variation Integral

Suppose that 𝐹 ∈ P𝑡 satisfies the condition (7.19). Then, as mesh(Π𝑛) → 0:

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 )2 𝐿2→
∫ 𝑡

0
𝐹𝑠 d𝑠.

Proof. Since 𝐹 ∈ P𝑡 and 𝐹2 satisfies the uniform integrability condition, we can
use the canonical approximation 𝐹 (𝑛) of the form (7.11). Set 𝐽𝑛 :=

∑𝑛−1
𝑘=0 𝐹𝑠𝑘Δ𝑠𝑘 =∫ 𝑡

0 𝐹
(𝑛)
𝑠 d𝑠, and note that it converges almost surely and in mean squared error

to the Lebesgue integral 𝐽 := ∫ 𝑡0 𝐹𝑠 d𝑠, defined in (5.17). In addition, if 𝐽𝑛 :=∑𝑛−1
𝑘=0 𝐹𝑠𝑘 (Δ𝑊𝑠𝑘 )2, then E[𝐽𝑛 − 𝐽𝑛] =

∑𝑛−1
𝑘=0 E[𝐹𝑠𝑘E𝑠𝑘 [(Δ𝑊𝑠𝑘 )2 − Δ𝑠𝑘 ]] = 0, and

hence

∥𝐽𝑛 − 𝐽𝑛∥2 =

𝑛−1∑︁
𝑘=0

E[𝐹2
𝑠𝑘
E𝑠𝑘 [(Δ𝑊𝑠𝑘 )2 − Δ𝑠𝑘 ]2︸                     ︷︷                     ︸

= 2Δ𝑠2
𝑘

] ≤ 2 max
𝑘

Δ𝑠𝑘︸    ︷︷    ︸
→ 0

𝑛−1∑︁
𝑘=0

E𝐹2
𝑠𝑘
Δ𝑠𝑘︸         ︷︷         ︸

→ ∥𝐹∥2
P𝑡 < ∞

.

Therefore, by the triangle inequality: ∥𝐽𝑛 − 𝐽∥ ≤ ∥𝐽𝑛 − 𝐽𝑛∥ + ∥𝐽𝑛 − 𝐽∥ → 0,
completing the proof. □

7.1.3 Further Extensions of the Itô Integral
Recall that the Wiener process has continuous sample paths; see Definition 6.1
and Theorem 6.21. As a result of this, whenever the integrand 𝐹 is a piecewise
constant process of the form (7.2), the corresponding Itô integral in Definition 7.5
has continuous sample paths. A natural question then arises as to whether this
continuity holds for a more general process 𝐹 ∈ P𝑡 . While Theorem 7.20 ensures
the existence of a unique 𝐿2-norm limit when 𝐹 ∈ P𝑡 , there is no guarantee that the
Itô integral defined as this 𝐿2-norm limit has almost surely continuous paths.

Fortunately, Theorem 7.29 below asserts that the Itô integral as defined by an 𝐿2-
norm limit in Theorem 7.20 has a continuous modification. Recall that a stochastic
process 𝑍 := (𝑍𝑟 , 𝑟 ∈ [0, 𝑡]) is called a modification of 𝑍 := (𝑍𝑟 , 𝑟 ∈ [0, 𝑡]) if
P(𝑍𝑟 = 𝑍𝑟) = 1 for all 𝑟 ∈ [0, 𝑡].
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Theorem 7.29: Continuous Modification of the Itô Integral

Suppose that 𝐹 ∈ P𝑡 and (𝐹 (𝑛)) is a sequence of simple processes satisfying
(7.17). Denote the limit ∫ 𝑟0 𝐹

(𝑛)
𝑠 d𝑊𝑠 =: 𝑍 (𝑛)

𝑟
𝐿2→ 𝑍𝑟 as the Itô integral on [0, 𝑟]

for 𝑟 ≤ 𝑡. Then, there exists a modification 𝑍 of (𝑍𝑟 , 𝑟 ∈ [0, 𝑡]) such that the
mapping 𝑟 ↦→ 𝑍𝑟 is almost surely continuous. Moreover, this modification is
unique up to indistinguishability.

Proof. In what follows, we use similar arguments to the ones employed in the proof
of the existence of the Wiener process; see Theorem 6.21. The condition (7.17)
implies the existence of a subsequence (𝐹 (𝑛𝑘)) of (𝐹 (𝑛)) such that (𝑛𝑘 , 𝑘 ∈ N) is
strictly increasing and ∥𝐹 (𝑛𝑘+1) − 𝐹 (𝑛𝑘) ∥P𝑡 ≤ 2−2𝑘 . Define the processes 𝑍 (𝑘) :=
(𝑍 (𝑛𝑘)

𝑟 , 𝑟 ∈ [0, 𝑡]) and the sequence of events with 𝜀𝑘 := 2−𝑘 :

𝐻𝑘 :=
{

sup
0≤𝑟≤𝑡

|𝑍 (𝑘+1)
𝑟 − 𝑍 (𝑘)

𝑟 | ≥ 𝜀𝑘
}
, 𝑘 = 1, 2, . . . .

Recall from Theorem 7.6 that 𝑍 (𝑛) := (𝑍 (𝑛)
𝑟 , 𝑟 ∈ [0, 𝑡]) is an 𝐿2-martingale with

respect to F and, by construction, 𝑍 (𝑛) has continuous sample paths, because
𝑟 ↦→ 𝐹

(𝑛)
𝑟 (𝜔) is piecewise constant. It follows that the process |𝑍 (𝑘+1) − 𝑍 (𝑘) | is

a positive continuous F -submartingale, and hence by Doob’s maximal inequality
(Proposition 5.86), we have

P(𝐻𝑘 ) ≤ 𝜀−2
𝑘 E |𝑍 (𝑘+1)

𝑡 − 𝑍 (𝑘)
𝑡 |2 = 22𝑘 ∥𝐹 (𝑛𝑘+1) − 𝐹 (𝑛𝑘) ∥2

P𝑡 ≤ 2−2𝑘 ,

where we used the isometry property in the last equality. Since
∑
𝑘 P(𝐻𝑘 ) < ∞,

the Borel–Cantelli Lemma 3.14 implies that the event Ω0 := {∑𝑘 1𝐻𝑘 < ∞} occurs
with probability 1. From Proposition 3.2 the sequence (𝑍 (𝑘) (𝜔)), 𝜔 ∈ Ω0 is
Cauchy convergent in the uniform norm and its limit 𝑍 defines the Itô integral for
all 𝜔 ∈ Ω0 and every 𝑟 ∈ [0, 𝑡]. Since 𝑍 (the Itô integral) is the almost sure limit (in
the uniform norm) of the continuous process 𝑍 (𝑘) , its sample paths are almost surely
continuous on [0, 𝑡] and, in fact, uniformly continuous, because [0, 𝑡] is a closed
and bounded set; see Example B.13. Finally, since both 𝑍 (𝑛𝑘)

𝑟
𝐿2→ 𝑍𝑟 and 𝑍 (𝑘)

𝑟
𝐿2→ 𝑍𝑟

converge to the same 𝐿2-norm limit for each 𝑟 ∈ [0, 𝑡] (that is, E(𝑍𝑟 − 𝑍𝑟)2 = 0), we
conclude that P(𝑍𝑟 = 𝑍𝑟) = 1 for each 𝑟 ∈ [0, 𝑡]. This shows that 𝑍 is a continuous
modification of 𝑍 . If 𝑍∗ is another continuous modification of 𝑍 , then part 3 of
Theorem 7.13 implies that 𝑍∗ is indistinguishable from 𝑍 . □

For the rest of this chapter we will assume that we are working with the con-
tinuous modification of every Itô integral, which, as the proof of Theorem 7.29
demonstrates, is defined as an almost sure limit. As a result of this, henceforth all
equations and identities involving the Itô integrals are assumed to hold not only in
𝐿2 norm, but also almost surely.
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Example 7.30 (Time-changed Wiener Process Continued) In Example 7.26,
we can go one step further and construct a time-changed Wiener process that
is almost surely identical to the continuous modification of the process 𝑍 =

(∫ 𝑡0 𝑓𝑠d𝑊𝑠, 𝑡 ≥ 0). Since the time-change clock 𝐶 in (7.27) is a continuous and
increasing function, it has an inverse 𝐶−1 such that 𝐶 (𝐶−1(𝑡)) = 𝑡. Define the
process𝑊 as

(7.31) 𝑊𝑡 := 𝑍𝐶−1 (𝑡) , 𝑡 ≥ 0.

Then, 𝑊0 = 𝑍0 = 0 and the continuity of 𝐶−1 and 𝑍 implies that 𝑊 has almost
surely continuous paths. Moreover, its increments are stationary and Gaussian:

𝑊𝑡2 −𝑊𝑡1 = 𝑍𝐶−1 (𝑡2) − 𝑍𝐶−1 (𝑡1) ∼ N(0, 𝑡2 − 𝑡1).

Finally, for any 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, the increments 𝑊𝑡4 − 𝑊𝑡3 = and 𝑊𝑡2 − 𝑊𝑡1 are
independent, because 𝑍 has independent increments. Hence,𝑊 is a Wiener process
by Theorem 6.2. Note that 𝑊 is not the same Wiener process as 𝑊 , but when
time-changed by the clock 𝐶, it is (almost surely) identical to 𝑍:

𝑊𝐶 (𝑡) = 𝑍𝑡 , 𝑡 ≥ 0.

Let 𝑍𝑡 := ∫ 𝑡0 𝐹𝑠 d𝑊𝑠 for 𝑡 ≥ 0. For a positive stopping time 𝑇 ≤ 𝑡, we can define
∫𝑇0 𝐹𝑠d𝑊𝑠 as the random variable 𝑍𝑇 . An important consequence of working with
continuous modifications of Itô integrals is that the following intuitive relationship
holds:

Proposition 7.32: Continuous Modification and Stopping Times

If 𝐹 ∈ P𝑡 and 𝑇 ≤ 𝑡 is a stopping time with respect to F , then almost surely:∫ 𝑇

0
𝐹𝑠 d𝑊𝑠 =

∫ 𝑡

0
1[0,𝑇] (𝑠) 𝐹𝑠 d𝑊𝑠 .

Proof. Consider a segmentation Π𝑛 of [0, 𝑡] such that max𝑘≤𝑛 (𝑠𝑘+1 − 𝑠𝑘 ) → 0 and

𝑇𝑛 :=
𝑛−1∑︁
𝑘=0

𝑠𝑘+11[𝑠𝑘 ,𝑠𝑘+1) (𝑇)

is an approximation of 𝑇 from above; that is, 𝑇𝑛 > 𝑇 for each 𝑛 and 𝑇𝑛 a.s.→ 𝑇 as
𝑛→ ∞. We now write for every 𝑡 ≥ 𝑇 :

(7.33)
∫ 𝑇

0
𝐹𝑠 d𝑊𝑠 −

∫ 𝑡

0
1[0,𝑇] (𝑠) 𝐹𝑠 d𝑊𝑠 =: 𝐽 (𝑛)1 + 𝐽 (𝑛)2 + 𝐽 (𝑛)3 ,
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where we have defined the quantities:

𝐽
(𝑛)
1 :=

∫ 𝑇

0
𝐹𝑠 d𝑊𝑠 −

∫ 𝑇𝑛

0
𝐹𝑠 d𝑊𝑠,

𝐽
(𝑛)
2 :=

∫ 𝑇𝑛

0
𝐹𝑠 d𝑊𝑠 −

∫ 𝑡

0
1{𝑠≤𝑇𝑛}𝐹𝑠 d𝑊𝑠,

𝐽
(𝑛)
3 :=

∫ 𝑡

0
(1{𝑠≤𝑇𝑛} − 1{𝑠≤𝑇})𝐹𝑠 d𝑊𝑠 .

Since we are using the continuous modification of the Itô integral, we have 𝐽 (𝑛)1
a.s.→ 0.

The second quantity, 𝐽 (𝑛)2 , is 0 almost surely for all 𝑛 ≥ 1, because
∑𝑛
𝑘=1 1{𝑇𝑛=𝑠𝑘} = 1

implies that:∫ 𝑇𝑛

0
𝐹𝑠 d𝑊𝑠 =

𝑛∑︁
𝑘=1

1{𝑇𝑛=𝑠𝑘}

∫ 𝑠𝑘

0
𝐹𝑠 d𝑊𝑠

=

∫ 𝑡

0

𝑛∑︁
𝑘=1

1{𝑇𝑛=𝑠𝑘}1{𝑠≤𝑠𝑘}𝐹𝑠 d𝑊𝑠 =

∫ 𝑡

0
1{𝑠≤𝑇𝑛}𝐹𝑠 d𝑊𝑠 .

For 𝐽 (𝑛)3 , define 𝐷 (𝑛) := (𝐹𝑠1{𝑇<𝑠≤𝑇𝑛}, 𝑠 ∈ [0, 𝑡]), which is left-continuous, F -
adapted, and such that 𝐷 (𝑛)

𝑠
a.s.→ 0 for all 𝑠 ∈ [0, 𝑡]. Since 𝐷 (𝑛)

𝑠 ≤ 𝐹𝑠 and ∥𝐹∥P𝑡 < ∞,
the Dominated Convergence Theorem 2.36 implies that ∥𝐷 (𝑛) ∥P𝑡 → 0. Therefore,
by the isometry property, 𝐽 (𝑛)3 = ∫ 𝑡0 𝐷

(𝑛)
𝑠 d𝑊𝑠

𝐿2→ 0. Since the left-hand side of
(7.33) does not depend on 𝑛, we conclude that it must be almost surely 0; see
Exercise 3.16. □

In the general theory of stochastic integration, the aim is to define integrators
and integrands in as wide a sense as possible. For example, in Section 7.2 we show
how integration with respect to the Wiener process can be extended to integration
with respect to Itô processes; see Definition 7.39. We mention that the most general
integrators in stochastic integration are the semimartingale processes, which are
defined as the sum of a local martingale and a process of locally bounded variation;
see Definition 5.74.

As indicated above, we can not only extend the type of integrators used in
stochastic integration, but also the type of integrands. There are two possible
extensions of the class of integrands P𝑡 in Definition 7.14. The first extension,
which we do not pursue in this book, is to relax the requirement that 𝐹 is left-
continuous with the less stringent requirement that 𝐹 is progressively measurable.
The second extension, which is our focus for the rest of this section, is to relax the
𝐿2-norm condition ∥𝐹∥P𝑡 < ∞ to the less restrictive condition:

(7.34) P
(∫ 𝑡

0
𝐹2
𝑠 d𝑠 < ∞

)
= 1, ∀𝑡 ≥ 0.
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This relaxation is accomplished using a localization argument — rather than defin-
ing a property of a stochastic process on [0, 𝑡] (or R), we instead define it locally
on a (random) interval [0, 𝑇𝑛], where (𝑇𝑛) is a sequence of increasing bounded
stopping times called a localizing sequence.

Theorem 7.35: Enlarging the Class P𝑡 via Localization

Let 𝐹 := (𝐹𝑠, 𝑠 ∈ [0, 𝑡]) be an F -adapted process, left-continuous on (0, 𝑡],
and such that (7.34) holds. Then, there exists a localizing sequence (𝑇𝑛)
such that the stopped process (∫ 𝑟∧𝑇𝑛0 𝐹𝑠 d𝑊𝑠, 𝑟 ∈ [0, 𝑡]) is a square-integrable
martingale. In addition, the Itô integral of 𝐹 with respect to 𝑊 on [0, 𝑡] is
defined as the almost sure limit:∫ 𝑡

0
𝐹𝑠 d𝑊𝑠 := lim

𝑛→∞

∫ 𝑡∧𝑇𝑛

0
𝐹𝑠 d𝑊𝑠 .

Proof. First, let 𝑇𝑛 := 𝑛 ∧ inf
{
𝑟 : ∫ 𝑟0 𝐹2

𝑠 d𝑠 ≥ 𝑛
}

be a stopping time for each 𝑛 =

1, 2, . . .. Then, the condition (7.34) implies that (𝑇𝑛) is an increasing sequence of
stopping times such that 𝑇𝑛 a.s.→ ∞.

Second, consider the truncated process 𝐹 (𝑛) , where 𝐹 (𝑛)
𝑠 := 1[0,𝑇𝑛] (𝑠)𝐹𝑠 for all

𝑠. Since ∥𝐹 (𝑛) ∥P𝑡 ≤ 𝑛 (that is, 𝐹 (𝑛) ∈ P𝑡), the continuous modification of the Itô
integral ∫ 𝑡0 𝐹

(𝑛)
𝑠 d𝑊𝑠 is well-defined by Theorem 7.29.

Third, since 𝑇𝑛 a.s.→ ∞, there exists an almost surely finite 𝑁 such that 𝑡 ∧ 𝑇𝑛 = 𝑡
for 𝑛 ≥ 𝑁 , and from Proposition 7.32 we have for any 𝑚 ≥ 𝑛 and 𝑡 ∈ [0, 𝑇𝑛] that:∫ 𝑡

0
𝐹
(𝑚)
𝑠 d𝑊𝑠 =

∫ 𝑡∧𝑇𝑚

0
𝐹𝑠 d𝑊𝑠 =

∫ 𝑡∧𝑇𝑛

0
𝐹𝑠 d𝑊𝑠 =

∫ 𝑡

0
𝐹
(𝑛)
𝑠 d𝑊𝑠 .

The last consistency relation implies that lim𝑛 ∫ 𝑡∧𝑇𝑛0 𝐹𝑠 d𝑊𝑠 = ∫ 𝑡0 𝐹
(𝑚)
𝑠 d𝑊𝑠 for each

𝑚 and all 𝑡 ∈ [0, 𝑇𝑚]. In addition, if (𝜏𝑛) is another strictly increasing sequence of
stopping times such that ∫ 𝑡∧𝜏𝑛0 𝐹𝑠 d𝑊𝑠 is well-defined as an 𝐿2-norm limit, then al-
most surely lim𝑛 ∫ 𝑡∧𝑇𝑛0 𝐹𝑠 d𝑊𝑠 = lim𝑛 ∫ 𝑡∧𝜏𝑛0 𝐹𝑠 d𝑊𝑠; that is, the Itô integral definition
is independent of the choice of localizing sequence. □

The Itô integral process 𝑍 := (∫ 𝑡0 𝐹𝑠 d𝑊𝑠, 𝑡 ≥ 0) defined in Theorem 7.35 is a
continuous local martingale, because there exists a localizing sequence of stopping
times (𝑇𝑛) such that 𝑇𝑛 a.s.→ ∞. This extended definition of the Itô integral does
not necessarily satisfy the isometry property in Theorem 7.6, as illustrated in the
following example:

Example 7.36 (Enlarging the Class P𝑡) Although 𝑊𝑛 ∈ P𝑡 for any 𝑛 ∈ N,
the process exp(𝑊2) ∉ P𝑡 for all 𝑡, because ∫ 𝑡0 E exp(2𝑊2

𝑠 ) d𝑠 = ∞ for 𝑡 ≥ 1/4.
Therefore, for 𝑡 ≥ 1/4 the process (∫ 𝑡0 exp(𝑊2

𝑠 ) d𝑊𝑠, 𝑡 ≥ 0) is not a square-integrable



Chapter 7. Itô Calculus 263

martingale and the isometry property does not hold. However, exp(𝑊2) satisfies
the relaxed condition (7.34), because almost surely:∫ 𝑡

0
exp(2𝑊2

𝑠 ) d𝑠 ≤ 𝑡 exp(2𝑀2
𝑡 ) < ∞,

where 𝑀 is the running maximum process (6.49), which satisfies P(𝑀𝑡 = ∞) =

lim𝑥→∞ P(𝑀𝑡 ≥ 𝑥) = 0; see (6.53). Hence, (∫ 𝑡0 exp(𝑊2
𝑠 ) d𝑊𝑠, 𝑡 ≥ 0) is a local

martingale according to Theorem 5.74.

7.2 Itô Calculus
Let 𝑓 be a differentiable real-valued function and 𝑎 a function of bounded variation
(for example, an increasing function). For ordinary (Lebesgue–Stieltjes) integration,
application of Theorem 1.62 gives the change of variable formula∫ 𝑡

0
𝑓 ′(𝑎𝑠) d𝑎𝑠 = 𝑓 (𝑎𝑡) − 𝑓 (𝑎0).

This formula no longer holds when the integrator is the Wiener process, motivating
the study of stochastic calculus and one of its most celebrated formulas.

7.2.1 Itô’s Formula
Itô’s formula is the correct generalization of the change of variable formula for
stochastic integrals and has a wide variety of applications in mathematical finance
and the theory of stochastic differential equations; see Section 7.3.

Theorem 7.37: Itô’s Formula for the Wiener Process

Let𝑊 be a Wiener process and 𝑓 : R → R be twice continuously differenti-
able with derivatives 𝑓 ′ and 𝑓 ′′. Then, almost surely

𝑓 (𝑊𝑡) − 𝑓 (𝑊0) =
∫ 𝑡

0
𝑓 ′(𝑊𝑠) d𝑊𝑠 +

1
2

∫ 𝑡

0
𝑓 ′′(𝑊𝑠) d𝑠.

Proof. We first prove the result under the assumption that 𝑓 2, ( 𝑓 ′)2, and ( 𝑓 ′′)2 are
uniformly integrable as in condition (7.19), which ensures that the canonical ap-
proximations of the form (7.11) satisfy the crucial condition (7.17). In addition, we
assume that 𝑓 ′′ is uniformly continuous; that is, sup𝑥 sup𝑦∈B(𝑥,𝑟) | 𝑓 ′′(𝑦)− 𝑓 ′′(𝑥) | → 0
as 𝑟 ↓ 0, where B(𝑥, 𝑟) = {𝑢 : |𝑢 − 𝑥 | < 𝑟} is the Euclidean ball centered at 𝑥 with
radius 𝑟.
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By the fundamental theorem of calculus, 𝑓 (𝑦) − 𝑓 (𝑥) = ∫ 𝑦𝑥 𝑓 ′(𝑠) d𝑠. Let
Δ𝑥 := 𝑦 − 𝑥 and apply integration by parts to obtain 𝑓 (𝑦) − 𝑓 (𝑥) = 𝑓 ′(𝑠)𝑠

��𝑠=𝑦
𝑠=𝑥

−
∫ 𝑦𝑥 𝑠 𝑓 ′′(𝑠) d𝑠 = 𝑓 ′(𝑥) Δ𝑥+∫ 𝑦𝑥 (𝑦−𝑠) 𝑓 ′′(𝑠) d𝑠. Using the change of variable 𝑦−𝑠 → 𝑠

gives a suitable version of Taylor’s theorem:

𝑓 (𝑦) − 𝑓 (𝑥) = 𝑓 ′(𝑥) Δ𝑥 +
∫ Δ𝑥

0
𝑓 ′′(𝑦 − 𝑠)𝑠 d𝑠 = 𝑓 ′(𝑥) Δ𝑥 + 1

2
𝑓 ′′(𝑥) [Δ𝑥]2 + 𝑟 (𝑥, 𝑦),

where 𝑟 (𝑥, 𝑦) := ∫Δ𝑥0 [ 𝑓 ′′(𝑦 − 𝑠) − 𝑓 ′′(𝑥)]𝑠 d𝑠 is an integral with magnitude

|𝑟 (𝑥, 𝑦) | ≤ [Δ𝑥]2

2
sup

𝑢∈B(𝑥,Δ𝑥)
| 𝑓 ′′(𝑢) − 𝑓 ′′(𝑥) |.

Next, we take the sequence of simple processes (7.11), and then apply the Taylor
expansion on each term in the telescoping sum with incrementsΔ𝑊𝑠𝑘 := 𝑊𝑠𝑘+1−𝑊𝑠𝑘 :

𝑓 (𝑊𝑡) − 𝑓 (0) =
𝑛−1∑︁
𝑘=0

( 𝑓 (𝑊𝑠𝑘+1) − 𝑓 (𝑊𝑠𝑘 ))

=

𝑛−1∑︁
𝑘=0

𝑓 ′(𝑊𝑠𝑘 ) Δ𝑊𝑠𝑘︸                ︷︷                ︸
=: 𝐽 (𝑛)1

+1
2

𝑛−1∑︁
𝑘=0

𝑓 ′′(𝑊𝑠𝑘 ) [Δ𝑊𝑠𝑘 ]2

︸                     ︷︷                     ︸
=: 𝐽 (𝑛)2

+
𝑛−1∑︁
𝑘=0

𝑟 (𝑊𝑠𝑘 ,𝑊𝑠𝑘+1)︸               ︷︷               ︸
=: 𝐽 (𝑛)3

.

As 𝑛→ ∞, the first term 𝐽
(𝑛)
1 converges in 𝐿2 norm to the Itô integral ∫ 𝑡0 𝑓 ′(𝑊𝑠) d𝑊𝑠

by Theorem 7.20. Further, 𝐽 (𝑛)2
𝐿2→ ∫ 𝑡0 𝑓 ′′(𝑊𝑠) d𝑠 from Lemma 7.28. As for the third

term, its magnitude is at most

|𝐽 (𝑛)3 | ≤
𝑛−1∑︁
𝑘=0

|𝑟 (𝑊𝑠𝑘 ,𝑊𝑠𝑘+1) | ≤ sup
𝑘

sup
𝑢∈B(𝑊𝑠𝑘 ,Δ𝑊𝑠𝑘 )

| 𝑓 ′′(𝑢) − 𝑓 ′′(𝑊𝑠𝑘 ) |︸                                         ︷︷                                         ︸
=: 𝑉𝑛

a.s.→ 0

×
𝑛−1∑︁
𝑘=0

(Δ𝑊𝑠𝑘 )2

︸        ︷︷        ︸
𝐿2→ 𝑡

.

By Theorem 6.70, the second term converges in mean squared error to 𝑡 as 𝜀𝑛 :=
max𝑘 Δ𝑠𝑘 → 0. By Theorem 6.72, we know that there exists a finite constant 𝑐 > 0
such that, almost surely, for every sufficiently small Δ𝑠𝑘 we have:

|Δ𝑊𝑠𝑘 | ≤
√︁
𝑐 Δ𝑠𝑘 ln(1/Δ𝑠𝑘 ) ≤

√︁
𝑐 𝜀𝑛 ln(1/𝜀𝑛) =: 𝑟 for all 𝑘.

Since 𝑓 ′′ is uniformly continuous, it follows that for a small enough 𝑟 the follow-
ing bound holds almost surely: 𝑉𝑛 ≤ sup𝑤 sup𝑢∈B(𝑤,𝑟) | 𝑓 ′′(𝑢) − 𝑓 ′′(𝑤) |. The bound
vanishes, because 𝑟 → 0 as 𝜀𝑛 → 0. Thus, the bounded random variable 𝑉𝑛 con-
verges to 0 almost surely, and hence in mean squared error, implying that 𝐽 (𝑛)3

𝐿2→ 0
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as 𝑛→ ∞, and completing the proof under the restriction that 𝑓 2, ( 𝑓 ′)2, and ( 𝑓 ′′)2

are uniformly integrable, and 𝑓 ′′ is uniformly continuous.
We can drop the latter restrictions on 𝑓 , 𝑓 ′, and 𝑓 ′′ in the following way. Define

the stopping time
𝑇𝑚 := inf{𝑠 ≥ 0 : |𝑊𝑠 | ≥ 𝑚},

where 𝑚 is a large positive integer and 𝑡 ∧ 𝑇𝑚 a.s.→ 𝑡 as 𝑚 → ∞. Then, the
range of the process 𝑊 (𝑚) := (𝑊𝑠∧𝑇𝑚 , 𝑠 ∈ [0, 𝑡]) is restricted to the closed and
bounded set [−𝑚, 𝑚]. The continuity of 𝑓 , 𝑓 ′, 𝑓 ′′ implies that the processes
𝑓 (𝑊 (𝑚)), 𝑓 ′(𝑊 (𝑚)), 𝑓 ′′(𝑊 (𝑚)) are almost surely bounded on the range of𝑊 (𝑚); see
Exercise 3.33(b). Hence, 𝑓 2, ( 𝑓 ′)2, and ( 𝑓 ′′)2 are uniformly integrable. Moreover,
by the Heine–Cantor theorem in Example B.6 the 𝑓 ′′ is uniformly continuous on
the range of 𝑊 (𝑚) . Therefore, Itô’s formula holds with 𝑊 replaced by 𝑊 (𝑚) , or
equivalently, with 𝑡 replaced by 𝑡 ∧𝑇𝑚 in all integrals. We can now take 𝑚 → ∞ as
in Theorem 7.35 to remove any reference to the localizing sequence (𝑇𝑚). □

Example 7.38 (Enlarging the Class P𝑡 Continued) An application of The-
orem 7.37 to the function 𝑥 ↦→ exp(𝑥2) yields:

exp(𝑊2
𝑡 ) = 1 + 2

∫ 𝑡

0
𝑊𝑠 exp(𝑊2

𝑠 ) d𝑊𝑠 +
∫ 𝑡

0
[1 + 2𝑊2

𝑠 ] exp(𝑊2
𝑠 ) d𝑠,

where we recall from Example 7.36 that exp(𝑊2) does not belong to P𝑡 for all 𝑡.
As another example, we can apply Theorem 7.37 to the function 𝑥 ↦→ 𝑥𝑛 to obtain:

𝑊𝑛
𝑡 = 𝑛

∫ 𝑡

0
𝑊𝑛−1
𝑠 d𝑊𝑠 +

𝑛(𝑛 − 1)
2

∫ 𝑡

0
𝑊𝑛−2
𝑠 d𝑠,

which for 𝑛 = 2 confirms the result in Example 7.21, namely,𝑊2
𝑡 = 2 ∫ 𝑡0𝑊𝑠 d𝑊𝑠 + 𝑡.

The Itô integral defines a new process 𝑍 := (𝑍𝑠, 𝑠 ∈ [0, 𝑡]) via the integral
transform 𝑍𝑡 := ∫ 𝑡0 𝐹𝑠 d𝑊𝑠. This motivates our definition of the Itô process as
follows:

Definition 7.39: Itô Process

An Itô process is a stochastic process 𝑋 := (𝑋𝑡 , 𝑡 ≥ 0) that can be written in
the form

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝜇𝑠 d𝑠 +

∫ 𝑡

0
𝜎𝑠 d𝑊𝑠,

where (𝜇𝑠, 𝑠 ≥ 0) and (𝜎𝑠, 𝑠 ≥ 0) are left-continuous F -adapted processes
such that almost surely ∫ 𝑡0 ( |𝜇𝑠 | + 𝜎2

𝑠 ) d𝑠 < ∞ for all 𝑡.
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Note that in Definition 7.39 ∫ 𝑡0 𝜇𝑠 d𝑠 is a Lebesgue integral as defined in Sec-
tion 1.4.1, and ∫ 𝑡0 𝜎𝑠 d𝑊𝑠 is an Itô integral such that the corresponding process
(∫ 𝑡0 𝜎𝑠 d𝑊𝑠, 𝑡 ≥ 0) is a local martingale like the one in Theorem 7.35.

The integral equation in Definition 7.39 is usually written in the shorthand
differential form

d𝑋𝑠 = 𝜇𝑠 d𝑠 + 𝜎𝑠 d𝑊𝑠,

where 𝜇 is commonly referred to as the drift process and𝜎 as the dispersion process.
We denote an Itô process with drift 𝜇 and dispersion 𝜎 by Itô(𝜇, 𝜎).

If 𝑋 is the Itô process in Definition 7.39 and 𝐹 is a simple process of the form
(7.2), then, similar to Definition 7.5, we can define the stochastic integral of 𝐹 with
respect to 𝑋 as:∫ 𝑟

0
𝐹𝑠 d𝑋𝑠 :=

𝑛−1∑︁
𝑘=0

𝜉𝑘 (𝑋𝑠𝑘+1∧𝑟 − 𝑋𝑠𝑘∧𝑟), 𝑟 ∈ [0, 𝑡] .

As in Theorem 7.20, we can extend this definition to a more general process 𝐹 by
using sequences of simple processes (𝐹 (𝑛)), (𝜇(𝑛)), (𝜎 (𝑛)) approximating 𝐹, 𝜇, 𝜎,
respectively, and with jumps on a common segmentation 0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑛 = 𝑡
of [0, 𝑡]. If, for simplicity of exposition, all approximations are of the form (7.11),
and we define 𝑋 (𝑛)

𝑡 := 𝑋0 + ∫ 𝑡0 𝜇
(𝑛)
𝑠 d𝑠 + ∫ 𝑡0 𝜎

(𝑛)
𝑠 d𝑊𝑠, then:∫ 𝑡

0
𝐹
(𝑛)
𝑠 d𝑋 (𝑛)

𝑠 =

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘
[
𝜇𝑠𝑘 (𝑠𝑘+1 − 𝑠𝑘 ) + 𝜎𝑠𝑘 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 )

]
=

∫ 𝑡

0
𝐹
(𝑛)
𝑠 𝜇

(𝑛)
𝑠 d𝑠︸             ︷︷             ︸

=: 𝐽 (𝑛)1

+
∫ 𝑡

0
𝐹
(𝑛)
𝑠 𝜎

(𝑛)
𝑠 d𝑊𝑠︸                ︷︷                ︸

=: 𝐽 (𝑛)2

.

The first integral 𝐽 (𝑛)1 converges almost surely to the Lebesgue integral ∫ 𝑡0 𝐹𝑠𝜇𝑠 d𝑠,
under the assumption that ∫ 𝑡0 |𝐹𝑠𝜇𝑠 |d𝑠 < ∞; see Section 1.4.1. Additionally, if
𝐹𝜎 ∈ P𝑡 and ∥𝐹 (𝑛)𝜎 (𝑛) − 𝐹𝜎∥P𝑡 → 0, then by Theorem 7.20 the sequence (𝐽 (𝑛)2 )
has an 𝐿2-norm limit — the Itô integral ∫ 𝑡0 𝐹𝑠𝜎𝑠 d𝑊𝑠.

As in Theorem 7.35, the condition that 𝐹𝜎 ∈ P𝑡 can be relaxed to the less
restrictive (7.34) (that is, ∫ 𝑡0 (𝐹𝑠𝜎𝑠)2d𝑠 < ∞ for all 𝑡), whilst still ensuring the
existence of the Itô integral as an almost sure limit. We can conclude that the almost
sure limit of ∫ 𝑡0 𝐹

(𝑛)
𝑠 d𝑋 (𝑛)

𝑠 is again an Itô process, but with drift 𝐹𝜇 and dispersion
𝐹𝜎. In other words, we can define the integral ∫ 𝑡0 𝐹𝑠 d𝑋𝑠 as follows:
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Definition 7.40: Integral with Respect to an Itô Process

Let 𝑋 be an Itô(𝜇, 𝜎) process and 𝐹 a left-continuous F -adapted process
such that almost surely ∫ 𝑡0 ( |𝐹𝑠𝜇𝑠 | + (𝐹𝑠𝜎𝑠)2) d𝑠 < ∞ for all 𝑡. Then, the
integral of 𝐹 with respect to 𝑋 is defined as the Itô(𝐹𝜇, 𝐹𝜎) process with:∫ 𝑡

0
𝐹𝑠 d𝑋𝑠 :=

∫ 𝑡

0
𝐹𝑠 𝜇𝑠 d𝑠 +

∫ 𝑡

0
𝐹𝑠 𝜎𝑠 d𝑊𝑠 .

Recall from Theorem 6.70 that we define the quadratic variation of the Wiener
process as the limit of ⟨𝑊 (𝑛)⟩𝑡 in 𝐿2 norm. Similarly, we can define the quadratic
variation over [0, 𝑡] of any F -adapted process 𝑋 , as follows:

Definition 7.41: Quadratic Variation on [0, 𝑡]

Let Π𝑛 := {𝑠𝑘 , 𝑘 = 0, . . . , 𝑛} be a segmentation of [0, 𝑡] and let (𝑋 (𝑛)) be a
sequence of simple processes with almost sure limit 𝑋𝑠 := lim𝑛 𝑋

(𝑛)
𝑠 for all

𝑠 ∈ [0, 𝑡] as mesh(Π𝑛) → 0. The quadratic variation of 𝑋 := (𝑋𝑠, 𝑠 ∈ [0, 𝑡])
over [0, 𝑡], denoted as ⟨𝑋⟩𝑡 , is defined as the limit in probability of

⟨𝑋 (𝑛)⟩𝑡 :=
𝑛−1∑︁
𝑘=0

(𝑋 (𝑛)
𝑠𝑘+1 − 𝑋

(𝑛)
𝑠𝑘 )2.

Note that the limit in the definition of quadratic variation can often be in a
stronger mode of convergence, such as in almost sure or 𝐿2-norm convergence.
In particular, we have 𝐿2-norm convergence for the quadratic variation of an Itô
process.

Theorem 7.42: Quadratic Variation of an Itô Process

If 𝑋 is an Itô(𝜇, 𝜎) process, then

⟨𝑋 (𝑛)⟩𝑡 𝐿2→ ⟨𝑋⟩𝑡 =
∫ 𝑡

0
𝜎2
𝑠 d𝑠.

Furthermore, if 𝐹 ∈ P𝑡 satisfies the condition (7.19) and mesh(Π𝑛) → 0,
then:

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝑋𝑠𝑘+1 − 𝑋𝑠𝑘 )2 𝐿2→
∫ 𝑡

0
𝐹𝑠 𝜎

2
𝑠 d𝑠.

Proof. Suppose that 𝜇(𝑛) , 𝜎 (𝑛) , and 𝐹 (𝑛) are simple processes with jumps on the
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same segmentation 0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑛 = 𝑡 of [0, 𝑡], and approximating 𝜇, 𝜎,
and 𝐹. Without loss of generality we may assume that 𝜇, 𝜎, and 𝐹 are bounded, so
that 𝜇(𝑛) , 𝜎 (𝑛) , and 𝐹 (𝑛) are canonical approximations of the form (7.11). Then,

𝑋
(𝑛)
𝑟 := 𝑋0 +

∫ 𝑟

0
𝜇
(𝑛)
𝑠 d𝑠 +

∫ 𝑟

0
𝜎

(𝑛)
𝑠 d𝑊𝑠

converges almost surely to a limit which we can take to be the Itô process 𝑋 in
Definition 7.39. Denoting 𝐺𝑠 := 𝐹𝑠𝜇𝑠𝜎𝑠, it follows that

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝑋
(𝑛)
𝑠𝑘+1 − 𝑋

(𝑛)
𝑠𝑘 )2 =

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘 (𝜇𝑠𝑘 Δ𝑠𝑘 + 𝜎𝑠𝑘 Δ𝑊𝑠𝑘 )2

=

𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘𝜇
2
𝑠𝑘
(Δ𝑠𝑘 )2

︸                ︷︷                ︸
=: 𝐽 (𝑛)1

+
𝑛−1∑︁
𝑘=0

𝐹𝑠𝑘𝜎
2
𝑠𝑘
[Δ𝑊𝑠𝑘 ]2

︸                  ︷︷                  ︸
=: 𝐽 (𝑛)2

+2
𝑛−1∑︁
𝑘=0

𝐺𝑠𝑘 Δ𝑠𝑘 Δ𝑊𝑠𝑘︸                ︷︷                ︸
=: 𝐽 (𝑛)3

.

If 𝜀𝑛 := max𝑘 Δ𝑠𝑘 , then |𝐽 (𝑛)1 | ≤ 𝜀𝑛
∫ 𝑡

0 𝐹
(𝑛)
𝑠 (𝜇(𝑛)𝑠 )2 d𝑠 → 0. Furthermore, 𝐽 (𝑛)3 is a

zero-mean Itô integral, so that, by the isometry property,

Var(𝐽 (𝑛)3 ) = E
𝑛−1∑︁
𝑘=0

𝐺2
𝑠𝑘
(Δ𝑠𝑘 )3 ≤ 𝜀2

𝑛 E
∫ 𝑡

0
(𝐹 (𝑛)

𝑠 𝜇
(𝑛)
𝑠 𝜎

(𝑛)
𝑠 )2 d𝑠 → 0,

proving that 𝐽 (𝑛)3
𝐿2→ 0. Finally, we also have that 𝐽 (𝑛)2

𝐿2→ ∫ 𝑡0 𝐹𝑠𝜎2
𝑠 d𝑠 by Lemma 7.28.

□

Example 7.43 (Quadratic Variation of the Wiener Process) Since the Wiener
process 𝑊𝑡 = 0 +

∫ 𝑡

0 0 d𝑠 +
∫ 𝑡

0 1 d𝑊𝑠 is a special case of the Itô process with 𝜇 = 0
and 𝜎 = 1, we have that ⟨𝑊⟩𝑡 = ∫ 𝑡0 1 d𝑠 = 𝑡, in agreement with Theorem 6.70.

Example 7.44 (Quadratic Variation and the Integral ∫ 𝑡0 𝑋𝑠 d𝑋𝑠) It is possible
to define the meaning of the integral ∫ 𝑡0 𝑋𝑠 d𝑋𝑠 using the quadratic variation of 𝑋 ,
namely, ∫ 𝑡

0
𝑋𝑠 d𝑋𝑠 :=

𝑋2
𝑡 − 𝑋2

0 − ⟨𝑋⟩𝑡
2

.

That this definition makes sense follows from the corresponding telescoping sum:

𝑋2
𝑡 − 𝑋2

0 =

𝑛−1∑︁
𝑘=0

(𝑋𝑠𝑘+1 − 𝑋𝑠𝑘 )2 + 2
𝑛−1∑︁
𝑘=0

𝑋𝑠𝑘 (𝑋𝑠𝑘+1 − 𝑋𝑠𝑘 ).
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Using the shorthand notation d⟨𝑋⟩𝑡 = 𝜎2
𝑡 d𝑡 for the result in Theorem 7.42, we

can now generalize Itô’s formula in Theorem 7.37.

Theorem 7.45: Itô’s Formula for Itô Processes

Let 𝑋 be an Itô process and let 𝑓 be twice continuously differentiable. Then,

(7.46) 𝑓 (𝑋𝑡) = 𝑓 (𝑋0) +
∫ 𝑡

0
𝑓 ′(𝑋𝑠) d𝑋𝑠 +

1
2

∫ 𝑡

0
𝑓 ′′(𝑋𝑠) d⟨𝑋⟩𝑠 .

Proof. Repeating the arguments in Theorem 7.37, we obtain from Taylor’s expan-
sion:

𝑓 (𝑋𝑡) − 𝑓 (𝑋0) =
𝑛−1∑︁
𝑘=0

𝑓 ′(𝑋𝑠𝑘 ) Δ𝑋𝑠𝑘︸               ︷︷               ︸
=: 𝐽 (𝑛)1

+1
2

𝑛−1∑︁
𝑘=0

𝑓 ′′(𝑋𝑠𝑘 ) [Δ𝑋𝑠𝑘 ]2

︸                    ︷︷                    ︸
=: 𝐽 (𝑛)2

+
𝑛−1∑︁
𝑘=0

𝑟 (𝑋𝑠𝑘 , 𝑋𝑠𝑘+1)︸              ︷︷              ︸
=: 𝐽 (𝑛)3

.

As in the proof of Theorem 7.37, the function 𝑓 and its derivatives are assumed to
be bounded and continuous. Therefore, the first term 𝐽

(𝑛)
1

𝐿2→ ∫ 𝑡0 𝑓 ′(𝑋𝑠) d𝑋𝑠, and
by Theorem 7.42, the second term 𝐽

(𝑛)
2

𝐿2→ ∫ 𝑡0 𝑓 ′′(𝑋𝑠) d⟨𝑋⟩𝑠. Finally, similar to the
proof in Theorem 7.37, we have:

|𝐽 (𝑛)3 | ≤ sup
𝑘

sup
𝑢∈B(𝑋𝑠𝑘 ,Δ𝑋𝑠𝑘 )

| 𝑓 ′′(𝑢) − 𝑓 ′′(𝑋𝑠𝑘 ) |︸                                        ︷︷                                        ︸
=: 𝑉𝑛

a.s.→ 0

×
𝑛−1∑︁
𝑘=0

(Δ𝑋𝑠𝑘 )2

︸       ︷︷       ︸
𝐿2→ ⟨𝑋⟩𝑡 < ∞

.

Here 𝑉𝑛 is bounded and converges to 0 (almost surely and in 𝐿2 norm), because:

|Δ𝑋𝑠𝑘 | ≤ |𝜇𝑠𝑘 Δ𝑠𝑘 | + |𝜎𝑠𝑘 Δ𝑊𝑠𝑘 | ≤ 𝜀𝑛 max
𝑠∈[0,𝑡]

𝜇𝑠 +
√︁
𝑐𝜀𝑛 ln(1/𝜀𝑛) max

𝑠∈[0,𝑡]
𝜎𝑠 → 0.

As in Theorem 7.37, the assumption that 𝑓 and its derivatives are bounded can be
removed by using a suitably chosen localizing sequence of stopping times. □

In differential form, (7.46) reads:

d 𝑓 (𝑋𝑡) = 𝑓 ′(𝑋𝑡) d𝑋𝑡 +
1
2
𝑓 ′′(𝑋𝑡) d⟨𝑋⟩𝑡

=

(
𝑓 ′(𝑋𝑡)𝜇𝑡 +

1
2
𝑓 ′′(𝑋𝑡)𝜎2

𝑡

)
d𝑠 + 𝑓 ′(𝑋𝑡)𝜎𝑡 d𝑊𝑡 .

Compare this with the corresponding chain rule of ordinary calculus:

d 𝑓 (𝑥(𝑡)) = 𝑓 ′(𝑥(𝑡)) d𝑥(𝑡).
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If 𝑋 is an Itô(𝜇, 𝜎) process, then an immediate consequence of (7.46) is that 𝑓 (𝑋)
is also an Itô process:

Itô
(
𝑓 ′(𝑋)𝜇 + 1

2
𝑓 ′′(𝑋)𝜎2, 𝑓 ′(𝑋)𝜎

)
.

Another consequence of Itô’s formula and Theorem 7.42 is that

⟨ 𝑓 (𝑋)⟩𝑡 =
∫ 𝑡

0
[ 𝑓 ′(𝑋𝑠)]2 d⟨𝑋⟩𝑠 .

7.2.2 Multivariate Itô’s Formula
In this section we extend the Itô calculus to multivariate Itô processes. Suppose that

𝝁𝑠 :=


𝜇𝑠,1
...

𝜇𝑠,𝑑

 and 𝝈𝑠 :=


𝜎𝑠,1,1 · · · 𝜎𝑠,1,𝑑
...

. . .
...

𝜎𝑠,𝑑,1 · · · 𝜎𝑠,𝑑,𝑑


are processes such that 𝜇𝑠,𝑖, 𝜎𝑠,𝑖, 𝑗 ∈ F𝑠 for all 𝑖, 𝑗 , and both ∫ 𝑡0 |𝜇𝑠,𝑖 | d𝑠 and ∫ 𝑡0 𝜎2

𝑠,𝑖
d𝑠

are almost surely finite for all 𝑖. If 𝑾 is a 𝑑-dimensional Wiener process, see
Definition 6.8, then in analogy to d𝑋𝑠 = 𝜇𝑠 d𝑠 + 𝜎𝑠 d𝑊𝑠, we define the Itô process
in R𝑑 via:

(7.47) d𝑋𝑡,𝑖 = 𝜇𝑡,𝑖 d𝑡 +
𝑑∑︁
𝑗=1
𝜎𝑡,𝑖, 𝑗 d𝑊𝑡, 𝑗 , 𝑖 = 1, . . . , 𝑑,

or in matrix differential notation:

d𝑿𝑡 = 𝝁𝑡 d𝑡 + 𝝈𝑡 d𝑾 𝑡 .

Further, we denote a 𝑑-dimensional Itô process with drift 𝝁 and dispersion 𝝈 by
Itô(𝝁,𝝈). The results of Theorem 7.42 can be extended (see Exercise 8) to evaluate
the quadratic variation of 𝑋·,𝑖 for a given 𝑖:

⟨𝑋·,𝑖⟩𝑡 =
∑︁
𝑗

∫ 𝑡

0
𝜎2
𝑠,𝑖, 𝑗 d𝑠.

Using the above formula, we can extend the concept of a quadratic variation to the
covariation of two processes.

Definition 7.48: Covariation of Two Itô Processes

Let 𝑋 and 𝑌 be two Itô processes adapted to the same filtration F . Then, the
covariation between 𝑋 and 𝑌 is defined as the quantity:

⟨𝑋,𝑌⟩𝑡 :=
⟨𝑋 + 𝑌⟩𝑡 − ⟨𝑋⟩𝑡 − ⟨𝑌⟩𝑡

2
.
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The special case ⟨𝑋, 𝑋⟩𝑡 simplifies to ⟨𝑋⟩𝑡 , so that the covariation of 𝑋 with
respect to itself is the quadratic variation of 𝑋 . Note that the covariation satis-
fies the same properties as the inner product in Definition B.17. In particular,
the covariation satisfies the symmetry property ⟨𝑋,𝑌⟩𝑡 = ⟨𝑌, 𝑋⟩𝑡 and the bilin-
earity property ⟨𝛼𝑋 + 𝛽𝑌, 𝑍⟩𝑡 = 𝛼⟨𝑋, 𝑍⟩𝑡 + 𝛽⟨𝑌, 𝑍⟩𝑡 for any 𝛼, 𝛽 ∈ R. Finally, if
𝑋 (𝑛) , 𝑌 (𝑛) are simple processes with jumps on the same segmentation Π𝑛 of [0, 𝑡]
and approximating 𝑋,𝑌 , then (see Exercise 6) the covariation ⟨𝑋,𝑌⟩𝑡 is the limiting
value of:

⟨𝑋 (𝑛) , 𝑌 (𝑛)⟩𝑡 =
𝑛−1∑︁
𝑘=0

(𝑋 (𝑛)
𝑠𝑘+1 − 𝑋

(𝑛)
𝑠𝑘 ) (𝑌 (𝑛)

𝑠𝑘+1 − 𝑌
(𝑛)
𝑠𝑘 ).

Example 7.49 (Covariation and Dispersion Matrix) Let d𝑋𝑡 = 𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊𝑡

and d𝑌𝑡 = 𝜈𝑡 d𝑡 + 𝜚𝑡 d𝑊𝑡 define two Itô processes with respect to the same Wiener
process𝑊 . Then, from the definition of the covariation, we have:

⟨𝑋,𝑌⟩𝑡 =
∫ 𝑡

0
𝜎𝑠 𝜚𝑠 d𝑠,

or in shorthand differential form: d⟨𝑋,𝑌⟩𝑡 = 𝜎𝑡 𝜚𝑡 . More generally, for a 𝑑-
dimensional Itô process d𝑿𝑡 = 𝝁𝑡 d𝑡 + 𝝈𝑡 d𝑾 𝑡 , we obtain:

(7.50) d⟨𝑋·,𝑖, 𝑋·, 𝑗 ⟩𝑡 =
𝑑∑︁
𝑘=1

𝜎𝑡,𝑖,𝑘𝜎𝑡, 𝑗 ,𝑘 d𝑡, ∀𝑖, 𝑗 ,

or in shorthand matrix notation: d⟨𝑿, 𝑿⟩𝑡 = 𝝈𝑡𝝈
⊤
𝑡 d𝑡.

Note that all the results so far suggest the following heuristic Itô calculus rules
for manipulating a multivariate Itô process 𝑿:

d𝑋𝑡,𝑖 × d𝑋𝑡, 𝑗 =
𝑑∑︁
𝑘=1

𝜎𝑡,𝑖,𝑘𝜎𝑡, 𝑗 ,𝑘 d𝑡, d𝑡 × d𝑋𝑡,𝑖 = 0, (d𝑡)2 = 0.

In particular, we have the following Itô calculus rule for the increments of the
𝑑-dimensional Wiener process:

d𝑊𝑡,𝑖 × d𝑊𝑡, 𝑗 =

{
d𝑡 if 𝑖 = 𝑗 ,

0 if 𝑖 ≠ 𝑗 .

The utility of the covariation concept in Definition 7.48 is that it permits us to
state the multivariate version of Itô’s formula in compact and intuitive notation.
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Theorem 7.51: Itô’s Formula in R𝑑

Let (𝑿𝑡) be an 𝑑-dimensional Itô process, and let 𝑓 : R𝑑 → R be twice
continuously differentiable in all variables. Then,

d 𝑓 (𝑿𝑡) =
𝑑∑︁
𝑖=1

𝜕𝑖 𝑓 (𝑿𝑡) d𝑋𝑡,𝑖 +
1
2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜕𝑖 𝑗 𝑓 (𝑿𝑡) d⟨𝑋·,𝑖, 𝑋·, 𝑗 ⟩𝑡 .

Proof. We repeat the arguments in the proof of Theorem 7.45, assuming that
𝑿 is an Itô(𝝁,𝝈) process. The main difference is that we combine a version
of the multivariate Taylor theorem with the covariation identity (7.50). Below,
𝝏 𝑓 and 𝝏2 𝑓 denote the gradient and Hessian matrix of 𝑓 . Let Δ𝒙 := 𝒚 − 𝒙 and
𝑔(𝑡) := 𝑓 (𝒙 + 𝑡 Δ𝒙) for some 𝑡 ∈ R, and note that by the one-dimensional Taylor
expansion in Theorem 7.37:

𝑔(1) − 𝑔(0) = 𝑔′(0) + 1
2
𝑔′′(0) +

∫ 1

0
𝑠[𝑔′′(1 − 𝑠) − 𝑔′′(0)] d𝑠.

Using the chain rule, the last identity is equivalent to

𝑓 (𝒚) − 𝑓 (𝒙) = (Δ𝒙)⊤𝝏 𝑓 (𝒙) + 1
2
(Δ𝒙)⊤𝝏2 𝑓 (𝒙) Δ𝒙 + 𝑟 (𝒙, 𝒚),

where the residual is given by

𝑟 (𝒙, 𝒚) :=
∫ 1

0
(1 − 𝑠) (Δ𝒙)⊤ [𝝏2 𝑓 (𝒙 + 𝑠Δ𝒙) − 𝝏2 𝑓 (𝒙)] Δ𝒙 d𝑠.

It follows that

𝑓 (𝑿𝑡) − 𝑓 (𝑿0) =
𝑛−1∑︁
𝑘=0

( 𝑓 (𝑿𝑠𝑘+1) − 𝑓 (𝑿𝑠𝑘 ))

=
∑︁
𝑖

∑︁
𝑘

𝜕𝑖 𝑓 (𝑿𝑠𝑘 ) Δ𝑋𝑠𝑘 ,𝑖 +
1
2

∑︁
𝑖, 𝑗

∑︁
𝑘

𝜕𝑖 𝑗 𝑓 (𝑿𝑠𝑘 ) Δ𝑋𝑠𝑘 ,𝑖 Δ𝑋𝑠𝑘 , 𝑗 +
∑︁
𝑘

𝑟 (𝑿𝑠𝑘 , 𝑿𝑠𝑘+1),

where Δ𝑋𝑠𝑘 ,𝑖 := 𝑋𝑠𝑘+1,𝑖 − 𝑋𝑠𝑘 ,𝑖. For a given 𝑖, let 𝐺 (𝑛)
𝑠,𝑖

:= 𝜕𝑖 𝑓 (𝑿𝑠) for 𝑠 ∈ [𝑠𝑘 , 𝑠𝑘+1)
and all 𝑘 = 0, 1 . . . , 𝑛 − 1. Then, we have∑︁

𝑘

𝜕𝑖 𝑓 (𝑿𝑠𝑘 ) Δ𝑋𝑠𝑘 ,𝑖 =
∫ 𝑡

0
𝐺

(𝑛)
𝑠,𝑖

d𝑋𝑠,𝑖 𝐿2→
∫ 𝑡

0
𝜕𝑖 𝑓 (𝑿𝑠) d𝑋𝑠,𝑖 .

Therefore,
∑
𝑖

∑
𝑘 𝜕𝑖 𝑓 (𝑿𝑠𝑘 ) Δ𝑋𝑠𝑘 ,𝑖

𝐿2→ ∑
𝑖

∫ 𝑡

0 𝜕𝑖 𝑓 (𝑿𝑠) d𝑋𝑠,𝑖, dealing with the first
term in the Taylor expansion. Next, we use the fact that for any bounded 𝐹 ∈ P𝑡 :

2
∑︁
𝑘

𝐹𝑠𝑘 Δ𝑋𝑠𝑘 ,𝑖 Δ𝑋𝑠𝑘 , 𝑗 =
∑︁
𝑘

𝐹𝑠𝑘 (Δ𝑋𝑠𝑘 ,𝑖 + Δ𝑋𝑠𝑘 , 𝑗 )2

−
∑︁
𝑘

𝐹𝑠𝑘 (Δ𝑋𝑠𝑘 ,𝑖)2 −
∑︁
𝑘

𝐹𝑠𝑘 (Δ𝑋𝑠𝑘 , 𝑗 )2.
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Since (𝑋𝑠,𝑖 + 𝑋𝑠, 𝑗 , 𝑠 ∈ [0, 1]) is an Itô process with drift (𝜇𝑠,𝑖 + 𝜇𝑠, 𝑗 ) and dispersion
(∑𝑘 (𝜎𝑠,𝑖,𝑘 + 𝜎𝑠, 𝑗 ,𝑘 )), Theorem 7.42 yields∑︁

𝑘

𝐹𝑠𝑘 (Δ𝑋𝑠𝑘 ,𝑖 + Δ𝑋𝑠𝑘 , 𝑗 )2 𝐿2→
∫ 𝑡

0
𝐹𝑠

∑︁
𝑘

(𝜎𝑠,𝑖,𝑘 + 𝜎𝑠, 𝑗 ,𝑘 )2 d𝑠.

In addition,
∑
𝑘 𝐹𝑠𝑘 (Δ𝑋𝑠𝑘 ,𝑖)2 𝐿2→ ∫ 𝑡0 𝐹𝑠

∑
𝑘 𝜎

2
𝑠,𝑖,𝑘

d𝑠. Therefore,

2
∑︁
𝑘

𝐹𝑠𝑘 Δ𝑋𝑠𝑘 ,𝑖 Δ𝑋𝑠𝑘 , 𝑗
𝐿2→

∫ 𝑡

0
𝐹𝑠

∑︁
𝑘

(
(𝜎𝑠,𝑖,𝑘 + 𝜎𝑠, 𝑗 ,𝑘 )2 − 𝜎2

𝑠,𝑖,𝑘 − 𝜎
2
𝑠, 𝑗 ,𝑘

)
d𝑠.

In other words, for the second term in the Taylor approximation, (7.50) yields:∑︁
𝑖, 𝑗 ,𝑘

𝜕𝑖 𝑗 𝑓 (𝑿𝑠𝑘 ) Δ𝑋𝑠𝑘 ,𝑖 Δ𝑋𝑠𝑘 , 𝑗
𝐿2→

∑︁
𝑖, 𝑗

∫ 𝑡

0
𝜕𝑖 𝑗 𝑓 (𝑿𝑠) d⟨𝑋·,𝑖, 𝑋·, 𝑗 ⟩𝑠 .

Finally, denote ℎ𝑖 𝑗 (𝒖, 𝒙) := 𝜕𝑖 𝑗 𝑓 (𝒖) − 𝜕𝑖 𝑗 𝑓 (𝒙), and note that the matrix H = [ℎ𝑖 𝑗 ]
is a symmetric matrix, implying that its eigenvalues 𝜆1(𝒖, 𝒙), . . . , 𝜆𝑑 (𝒖, 𝒙) are real.
Thus, the spectral radius of H(𝒖, 𝒙):

𝜚(𝒖, 𝒙) := max
∥𝒗∥=1

|𝒗⊤H(𝒖, 𝒙)𝒗 | = max
𝑘

|𝜆𝑘 (𝒖, 𝒙) |

can be bounded as:

𝜚(𝒖, 𝒙) ≤
√︄∑︁

𝑘

[𝜆𝑘 (𝒖, 𝒙)]2 =

√︄∑︁
𝑖, 𝑗

[ℎ𝑖, 𝑗 (𝒖, 𝒙)]2 ≤ 𝑑max
𝑖, 𝑗

|ℎ𝑖, 𝑗 (𝒖, 𝒙) |.

Hence, we have the following bound on the residual:

|𝑟 (𝒙, 𝒚) | ≤ ∥Δ𝒙∥2
∫ 1

0
(1 − 𝑠)𝜚(𝒙 + 𝑠Δ𝒙, 𝒙) d𝑠

≤ 𝑑 ∥Δ𝒙∥2

2
sup

𝒖∈B(𝒙,∥Δ𝒙∥)
max
𝑖, 𝑗

|ℎ𝑖, 𝑗 (𝒖, 𝒙) |,

where B(𝒙, 𝑟) = {𝒖 ∈ R : ∥𝒖 − 𝒙∥2 < 𝑟} is the Euclidean ball centered at 𝒙 with
radius 𝑟. Therefore,∑︁

𝑘

|𝑟 (𝑿𝑠𝑘 , 𝑿𝑠𝑘+1) | ≤ sup
𝑘

sup
𝒖∈B(𝑿𝑠𝑘 ,∥Δ𝑿𝑠𝑘 ∥)

max
𝑖, 𝑗

|ℎ𝑖, 𝑗 (𝒖, 𝑿𝑠𝑘 ) |︸                                           ︷︷                                           ︸
=: 𝑉𝑛

× 𝑑
∑︁
𝑘

∥Δ𝑿𝑠𝑘 ∥2.

By Theorem 7.42, we have
∑
𝑘 (𝑋𝑠𝑘+1,𝑖 − 𝑋𝑠𝑘 ,𝑖)2 𝐿2→ ∫ 𝑡0 𝜎2

𝑠,𝑖
d𝑠 for all 𝑖, and hence∑

𝑘 ∥Δ𝑿𝑠𝑘 ∥2 𝐿2→ ∑
𝑖 ∫ 𝑡0 𝜎2

𝑠,𝑖
d𝑠. Further, if we define 𝜀𝑛 := max𝑘 (𝑠𝑘+1 − 𝑠𝑘 ), then

Theorem 6.72 implies the following almost sure inequalities:

∥Δ𝑿𝑠𝑘 ∥ ≤ 𝑑 𝜀𝑛 max
𝑖

max
𝑠∈[0,𝑡]

𝜇𝑠,𝑖 +
√︁
𝑐 𝜀𝑛 ln(1/𝜀𝑛) max

𝑖
max
𝑠∈[0,𝑡]

𝜎𝑠,𝑖 → 0.
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Hence, the uniform continuity of (𝒖, 𝒙) ↦→ max𝑖, 𝑗 |ℎ𝑖, 𝑗 (𝒖, 𝒙) | and the boundedness
of 𝑉𝑛 together imply that the residual

∑
𝑘 |𝑟 (𝑿𝑠𝑘 , 𝑿𝑠𝑘+1) | converges to 0 (both in 𝐿2

norm and almost surely). Similarly to Theorem 7.37, one can lift any boundedness
restrictions on 𝑓 and its derivatives using a localization argument. □

A consequence of Itô’s formula in Theorem 7.51 is that the covariation satisfies:

(7.52) d⟨ 𝑓 (𝑿), 𝑋·,𝑖⟩𝑡 =
∑︁
𝑗

𝜕𝑗 𝑓 (𝑿𝑡) d⟨𝑋·,𝑖, 𝑋·, 𝑗 ⟩𝑡 for all 𝑖.

Further, if 𝑿 is an Itô(𝝁,𝝈) process, then:

d 𝑓 (𝑿𝑡) =
(
[𝝏 𝑓 (𝑿𝑡)]⊤𝝁𝑡 +

1
2

tr
(
𝝈⊤
𝑡 𝝏

2 𝑓 (𝑿𝑡)𝝈𝑡
) )

d𝑡 + [𝝏 𝑓 (𝑿𝑡)]⊤𝝈𝑡 d𝑾 𝑡 .

Example 7.53 (Multivariate Itô Formula) A special case of Theorem 7.51 is
𝑿𝑡 := [𝑋𝑡 , 𝑡]⊤, where 𝑡 (≥ 0) is deterministic and the process (𝑋𝑡) is governed by
d𝑋𝑡 = 𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊𝑡 . Then,

(7.54) d 𝑓 (𝑋𝑡 , 𝑡) =
(
𝜕 𝑓

𝜕𝑡
(𝑿𝑡) + 𝜇𝑡

𝜕 𝑓

𝜕𝑥
(𝑿𝑡) +

𝜎2
𝑡

2
𝜕2 𝑓

𝜕𝑥2 (𝑿𝑡)
)

d𝑡 + 𝜎𝑡
𝜕 𝑓

𝜕𝑥
(𝑿𝑡) d𝑊𝑡 .

As an example, consider the exponential martingale 𝑆𝑡 := exp(𝑟𝑊𝑡 − 𝑡 𝑟2/2), 𝑡 ≥ 0
from (6.40), where (𝑊𝑡) is a Wiener process. An application of (7.54) with 𝜇𝑡 = 0
and 𝜎𝑡 = 1 yields

d𝑆𝑡 =
(
−𝑟

2

2
𝑆𝑡 + 0 + 𝑟

2

2
𝑆𝑡

)
d𝑡 + 𝑟𝑆𝑡 d𝑊𝑡 = 𝑟𝑆𝑡 d𝑊𝑡 ,

or equivalently 𝑆𝑡 − 𝑆0 = 𝑟 ∫ 𝑡0 𝑆𝑠 d𝑊𝑠.

Example 7.55 (Theorem 6.46 Revisited) Recall that in Theorem 6.46 the
standard 𝑑-dimensional Brownian motion 𝑩 is of the form 𝑩𝑡 = 𝑩0 +𝑾 𝑡 . In other
words, 𝑩 is an Itô process with drift vector 𝝁 = 0 and dispersion matrix 𝝈 = I𝑑 ,
so that by (7.50) we have d⟨𝑊·,𝑖,𝑊·, 𝑗 ⟩𝑡 = 1{𝑖= 𝑗} d𝑡. An application of Theorem 7.51
yields:

d 𝑓 (𝑩𝑡) =
𝑑∑︁
𝑖=1

𝜕𝑖 𝑓 (𝑩𝑡) d𝑊𝑡,𝑖 +
1
2

𝑑∑︁
𝑖=1

𝜕𝑖𝑖 𝑓 (𝑩𝑡) d⟨𝑊·,𝑖⟩𝑡 ,

or in integral form we can write:

𝑋𝑡 := 𝑓 (𝑩𝑡) −
1
2

𝑑∑︁
𝑖=1

∫ 𝑡

0
𝜕𝑖𝑖 𝑓 (𝑩𝑠) d𝑠 = 𝑓 (𝑩0) +

𝑑∑︁
𝑖=1

∫ 𝑡

0
𝜕𝑖 𝑓 (𝑩𝑠) d𝑊𝑠,𝑖 .

Since the sum of martingales adapted to the same filtration is another martingale,
the process (∑𝑑

𝑖=1
∫ 𝑡

0 𝜕𝑖 𝑓 (𝑩𝑠) d𝑊𝑠,𝑖) is a martingale, which confirms the result of
Theorem 6.46, namely, that (𝑋𝑡) is a martingale.
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Example 7.56 (Stochastic Product Rule and Integration by Parts) A notable
application of Theorem 7.51 on the function (𝑥, 𝑦) ↦→ 𝑥 × 𝑦 yields the product rule
for Itô processes:

(7.57) d(𝑋𝑡𝑌𝑡) = 𝑌𝑡 d𝑋𝑡 + 𝑋𝑡 d𝑌𝑡 + d⟨𝑋,𝑌⟩𝑡 .

The corresponding integral form,

𝑋𝑡𝑌𝑡 − 𝑋0𝑌0 =

∫ 𝑡

0
𝑌𝑠 d𝑋𝑠 +

∫ 𝑡

0
𝑋𝑠 d𝑌𝑠 + ⟨𝑋,𝑌⟩𝑡 ,

is the Itô integration by parts formula.

Example 7.58 (Integral of the Wiener Process) Consider the integral process
𝑌 := (𝑌𝑡 , 𝑡 ≥ 0) of the Wiener process, defined as

𝑌𝑡 :=
∫ 𝑡

0
𝑊𝑠 d𝑠, 𝑡 ≥ 0.

Using the Itô integration by parts formula for the process (𝑡 𝑊𝑡 , 𝑡 ≥ 0), we obtain

𝑌𝑡 = 𝑡 𝑊𝑡 −
∫ 𝑡

0
𝑠 d𝑊𝑠 =

∫ 𝑡

0
(𝑡 − 𝑠) d𝑊𝑠,

which shows, by Proposition 7.25, that 𝑌 is a zero-mean Gaussian process with
covariance function

E𝑌𝑡𝑌𝑡+𝑢 =
∫ 𝑡

0
(𝑡 − 𝑠) (𝑡 + 𝑢 − 𝑠) d𝑠 =

𝑡3

3
+ 𝑢 𝑡

2

2
.

In addition, if we define

𝑊𝑡 :=
∫ (3𝑡)1/3

0
𝑠 d𝑊𝑠,

then the time change in (7.31) with 𝐶 (𝑡) := 𝑡3/3 shows that𝑊 is a Wiener process.
In other words,

𝑌𝑡 = 𝑡𝑊𝑡 −𝑊𝐶 (𝑡) , 𝑡 ≥ 0.

Figure 7.59 shows typical paths of the process (𝑌𝑡). Note that both (𝑡 𝑊𝑡) and
(∫ 𝑡0 𝑠 d𝑊𝑠) have paths of unbounded variation, but the difference between these two
processes, that is (𝑌𝑡), has paths of bounded variation. In fact, its total variation on
[0, 𝑡] is

∫ 𝑡

0 |𝑊𝑠 | d𝑠.
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Figure 7.59: Typical paths of (∫ 𝑡0𝑊𝑠 d𝑠, 𝑡 ≥ 0). The paths are of bounded variation.

We say that the Itô process (7.47) is a local martingale inR𝑑 if the 𝑑 components
of the process are each local martingales.

Theorem 7.60: Itô Processes and Martingales

An Itô process in R𝑑 is a local martingale if and only if its drift is 0.

Proof. Let the Itô process be 𝑿𝑡 = 𝑿0 + ∫ 𝑡0 𝝁𝑠 d𝑠 + ∫ 𝑡0 𝝈𝑠 d𝑾𝑠. Sufficiency of 𝝁𝑡 = 0
follows from the fact that the 𝑑 components of the process 𝑿𝑡 = 𝑿0 + ∫ 𝑡0 𝝈𝑠 d𝑾𝑠 are
all Itô integrals and hence local martingales. To prove the necessity, we assume that
𝑿 is a local martingale. Then, (𝑿𝑡 − 𝑿0 − ∫ 𝑡0 𝝈𝑠 d𝑾𝑠) is also a local martingale.
However, the identity 𝑿𝑡 − 𝑿0 − ∫ 𝑡0 𝝈𝑠 d𝑾𝑠 = ∫ 𝑡0 𝝁𝑠 d𝑠 implies that (∫ 𝑡0 𝝁𝑠 d𝑠) is a
local martingale, which is continuous and of bounded variation, because

sup
Π𝑛

∑︁
𝑘

����∫ 𝑠𝑘+1

𝑠𝑘

𝜇𝑠,𝑖 d𝑠
���� = ∫ 𝑡

0
|𝜇𝑠,𝑖 | d𝑠 < ∞.

It follows from Lemma 5.90 that (∫ 𝑡0 𝜇𝑠,𝑖 d𝑠) for each 𝑖 = 1, . . . , 𝑑 are almost surely
constant. In other words, 𝝁𝑠 is almost surely 0. □

Example 7.61 (Lévy’s Characterization of the Wiener Process) Suppose that
𝑋 is an Itô(𝜇, 𝜎) process such that both (𝑋𝑡 , 𝑡 ≥ 0) and (𝑋2

𝑡 − 𝑡, 𝑡 ≥ 0) are local
martingales. Then, 𝑋 must be the Wiener process governing the Itô process. To see
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this, we apply Theorem 7.60. First, 𝑋 being a local martingale implies that 𝜇 = 0.
Second, by Itô’s formula: d(𝑋2

𝑡 − 𝑡) = (−1 + 𝜎2
𝑡 ) d𝑡 + 2𝜎𝑡𝑋𝑡 d𝑊𝑡 , so that (𝑋2

𝑡 − 𝑡)
is an Itô process with drift (−1 + 𝜎2

𝑡 ). Hence, if (𝑋2
𝑡 − 𝑡) is a martingale, then we

must have 𝜎2
𝑡 = 1. In other words, 𝑋 is an Itô process with drift 0 and dispersion

𝜎𝑡 = ±1, implying that 𝑋 is a Wiener process.
This example gives a characterization of the Wiener process in terms of two

martingales. We demonstrated it under the restriction that 𝑋 is an Itô process.
However, the restriction that the process 𝑋 must be an Itô process can be removed,
resulting in the celebrated Lévy’s characterization theorem (Karatzas and Shreve,
1998, page 157).

Example 7.62 (Quadratic Variation and Martingales) Let 𝑋 := (𝑋𝑡) be an Itô
process that is also a local martingale, and let 𝑍 := (𝑍𝑡) be an increasing process
with 𝑍0 = 0. Then, (𝑋2

𝑡 − 𝑍𝑡) is a local martingale if and only if 𝑍 = ⟨𝑋⟩. To see
this, use Itô’s formula to write

𝑋2
𝑡 = 2

∫ 𝑡

0
𝑋𝑠 d𝑋𝑠 + ⟨𝑋⟩𝑡 ,

and note that by Theorem 7.60 the Itô process (𝑋𝑡) must be of the form 𝑋𝑡 =

𝑋0 +
∫ 𝑡

0 𝜎𝑠 d𝑊𝑠, because 𝜇𝑡 = 0 almost surely.
First, assume that 𝑍 = ⟨𝑋⟩. Then,

𝑋2
𝑡 − 𝑍𝑡 =

∫ 𝑡

0
𝑋𝑠 d𝑋𝑠 =

∫ 𝑡

0
𝑋𝑠𝜎𝑠 d𝑊𝑠 .

Hence, (𝑋2
𝑡 − 𝑍𝑡) is a local martingale, either because the integrator process (𝑋𝑡)

in ∫ 𝑡0 𝑋𝑠 d𝑋𝑠 is a local martingale, or simply because ∫ 𝑡0 𝑋𝑠𝜎𝑠 d𝑊𝑠 is an Itô integral.
Conversely, suppose that (𝑋2

𝑡 − 𝑍𝑡) =: (𝑀𝑡) is a local martingale. Then,

𝑍𝑡 − ⟨𝑋⟩𝑡 = 2
∫ 𝑡

0
𝑋𝑠 d𝑋𝑠 − 𝑀𝑡

is a local martingale as well. Moreover, the process (𝑍𝑡 − ⟨𝑋⟩𝑡) is the difference
of two increasing processes, and so has bounded variation; see Exercise 6.11. It
follows from Lemma 5.90 that (𝑍𝑡 −⟨𝑋⟩𝑡) is the 0 process. Hence, 𝑍𝑡 = ⟨𝑋⟩𝑡 almost
surely for all 𝑡 ≥ 0.

7.3 Stochastic Differential Equations
Stochastic differential equations are based on the same principle as ordinary dif-
ferential equations, relating an unknown function to its derivatives, but with the
additional feature that part of the unknown function is driven by randomness.
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Definition 7.63: Stochastic Differential Equation

A stochastic differential equation (SDE) for a stochastic process (𝑋𝑡 , 𝑡 ≥ 0)
is an expression of the form

(7.64) d𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡) d𝑡 + 𝑏(𝑋𝑡 , 𝑡) d𝑊𝑡 ,

where (𝑊𝑡 , 𝑡 ≥ 0) is a Wiener process and 𝑎 and 𝑏 are deterministic functions,
called the drift and diffusion1 functions. The resulting process (𝑋𝑡 , 𝑡 ≥ 0) is
called an (Itô) diffusion.

Note that the stochastic process (𝑏(𝑋𝑡 , 𝑡)) in Definition 7.63 is a dispersion
process 𝜎 := (𝜎𝑡) (as used in Definition 7.39) for which 𝜎𝑡 only depends on the
values of 𝑋𝑡 and 𝑡, rather than on the whole path (𝑋𝑠, 𝑠 ∈ [0, 𝑡]). Intuitively, (7.64)
expresses that the infinitesimal change, d𝑋𝑡 , in 𝑋𝑡 at time 𝑡, is the sum of an
infinitesimal displacement 𝑎(𝑋𝑡 , 𝑡) d𝑡 and an infinitesimal noise term 𝑏(𝑋𝑡 , 𝑡) d𝑊𝑡 .
The precise mathematical meaning of (7.64) is that the stochastic process (𝑋𝑡 , 𝑡 ≥ 0)
satisfies the integral equation

(7.65) 𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑎(𝑋𝑠, 𝑠) d𝑠 +

∫ 𝑡

0
𝑏(𝑋𝑠, 𝑠) d𝑊𝑠,

where the last integral is an Itô integral. The definition of such integrals is discussed
in Section 7.1.

When 𝑎 and 𝑏 do not depend on 𝑡 explicitly (that is, 𝑎(𝑥, 𝑡) = 𝑎̃(𝑥), and
𝑏(𝑥, 𝑡) = 𝑏̃(𝑥)), the corresponding SDE is referred to as being time-homogeneous
or autonomous. For simplicity, we will focus on such autonomous SDEs.

Multidimensional SDEs can be defined in a similar way as in (7.64). A stochastic
differential equation in R𝑑 is an expression of the form

(7.66) d𝑿𝑡 = 𝒂(𝑿𝑡 , 𝑡) d𝑡 + B(𝑿𝑡 , 𝑡) d𝑾 𝑡 ,

where (𝑾 𝑡) is an 𝑚-dimensional Wiener process, 𝒂(𝒙, 𝑡) is a 𝑑-dimensional vector
and B(𝒙, 𝑡) a 𝑑 × 𝑚 matrix, for each 𝒙 ∈ R𝑑 and 𝑡 ≥ 0.

Example 7.67 (Brownian Motion) The solution of the simplest SDE

d𝑋𝑡 = 𝑎 d𝑡 + 𝑏 d𝑊𝑡

is the Brownian motion process

𝑋𝑡 = 𝑋0 + 𝑎 𝑡 + 𝑏𝑊𝑡 , 𝑡 ≥ 0,

as this satisfies (7.65) with 𝑎(𝑥, 𝑡) = 𝑎 and 𝑏(𝑥, 𝑡) = 𝑏.
1Some authors refer to 𝑏2 as the diffusion function (or diffusion coefficient).
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Example 7.68 (Geometric Brownian Motion) A fundamental stochastic process
in finance is defined as the solution to the SDE

(7.69) d𝑆𝑡 = 𝜇𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡 ,

which is called a geometric Brownian motion. In finance, 𝑆𝑡 typically models the
price of a risky financial asset at a time 𝑡, characterized by a drift parameter 𝜇 and a
volatility parameter 𝜎. If (𝐵𝑡) is the Brownian motion process with 𝐵𝑡 = 𝜇 𝑡 +𝜎𝑊𝑡 ,
then the SDE can also be written as

d𝑆𝑡 = 𝑆𝑡 d𝐵𝑡 ,

which suggests an exponential/geometric growth of the process, hence the name.
When 𝜇 = 0, we obtain the exponential martingale 𝑆𝑡 = exp(𝜎𝑊𝑡 − 𝑡𝜎2/2), 𝑡 ≥ 0;
see Theorem 6.39.

We can solve the SDE (7.69) via a “separation of variables” argument, similar
to the way certain ordinary differential equations are solved. The derivation below
also uses Itô’s formula (7.46).

First, note that 𝑆𝑡 =
∫ 𝑡

0 𝜇𝑆𝑠 d𝑠 +
∫ 𝑡

0 𝜎𝑆𝑠 d𝑊𝑠, which shows that the diffusion
function of (𝑆𝑡) is (𝜎𝑆𝑡). Next, a separation of variables for the SDE (7.69) yields

d𝑆𝑡
𝑆𝑡

= 𝜇 d𝑡 + 𝜎 d𝑊𝑡 .

Taking the integral from 0 to 𝑡 on both sides results in

(7.70)
∫ 𝑡

0

1
𝑆𝑠

d𝑆𝑠 = 𝜇𝑡 + 𝜎𝑊𝑡 .

With 𝑓 (𝑥) := ln 𝑥, 𝑓 ′(𝑥) = 1/𝑥, and 𝑓 ′′(𝑥) = −1/𝑥2, Itô’s formula (7.46) gives

ln 𝑆𝑡 = ln 𝑆0 +
∫ 𝑡

0

1
𝑆𝑠

d𝑆𝑠 −
1
2

∫ 𝑡

0

1
𝑆2
𝑠

𝜎2𝑆2
𝑠 d𝑠 =

∫ 𝑡

0

1
𝑆𝑠

d𝑆𝑠 −
1
2
𝜎2𝑡.

Combining this with (7.70), we conclude that

ln
𝑆𝑡

𝑆0
= 𝜎𝑊𝑡 +

(
𝜇 − 1

2
𝜎2

)
𝑡,

so that

(7.71) 𝑆𝑡 = 𝑆0 exp
(
𝜎𝑊𝑡 +

(
𝜇 − 1

2
𝜎2

)
𝑡

)
, 𝑡 ≥ 0.

Figure 7.72 shows typical trajectories for the case 𝜇 = 1, 𝜎 = 0.2, and 𝑆0 = 1.
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Figure 7.72: Typical paths of a geometric Brownian motion process with drift 𝜇 = 1,
volatility 𝜎 = 0.2, and initial state 𝑆0 = 1.

Example 7.73 (Ornstein–Uhlenbeck Process) Another prominent SDE is

(7.74) d𝑋𝑡 = 𝜃 (𝜈 − 𝑋𝑡) d𝑡 + 𝜎 d𝑊𝑡 ,

with 𝜎 > 0, 𝜃 > 0, and 𝜈 ∈ R. Its solution (𝑋𝑡) is called the Ornstein–Uhlenbeck
process or mean-reverting process. In finance, the process is used to describe price
fluctuations around a mean price 𝜈 such that the process “reverts to the mean” —
that is, when 𝑋𝑡 > 𝜈 the drift is negative, and when 𝑋𝑡 < 𝜈 the drift is positive, so
that at all times the process tends to drift toward 𝜈. In physics, 𝑋𝑡 is used to describe
the velocity of a Brownian particle. The term 𝜈 is then usually taken to be 0, and
the resulting SDE is said to be of Langevin type.

We show that the Itô diffusion

(7.75) 𝑋𝑡 = e−𝜃𝑡𝑋0 + 𝜈(1 − e−𝜃𝑡) + 𝜎e−𝜃𝑡
∫ 𝑡

0
e𝜃𝑠 d𝑊𝑠, 𝑡 ≥ 0

satisfies the SDE (7.74). Namely, define 𝑓 (𝑦, 𝑡) := 𝜎e−𝜃𝑡𝑦 and 𝑌𝑡 :=
∫ 𝑡

0 e𝜃𝑠 d𝑊𝑠, so
that 𝑋𝑡 = e−𝜃𝑡𝑋0 + 𝜈(1 − e−𝜃𝑡) + 𝑓 (𝑌𝑡 , 𝑡). Then, Itô’s formula (7.54) yields:

d𝑋𝑡 = −𝜃e−𝜃𝑡𝑋0 d𝑡 + 𝜈𝜃e−𝜃𝑡 d𝑡 − 𝜎𝜃e−𝜃𝑡𝑌𝑡 d𝑡 + e𝜃𝑡𝜎e−𝜃𝑡d𝑊𝑡

= 𝜃e−𝜃𝑡 (𝜈 − 𝑋0) d𝑡 − 𝜃 𝑓 (𝑌𝑡 , 𝑡) d𝑡 + 𝜎d𝑊𝑡

= 𝜃 (𝜈 − 𝑋𝑡) d𝑡 + 𝜎 d𝑊𝑡 .

Since the integrand in the Itô integral in (7.75) is deterministic (i.e., e𝜃𝑠), it follows
from Proposition 7.25 that (𝑋𝑡) is a Gaussian process, with mean

E𝑋𝑡 = e−𝜃𝑡 E𝑋0 + 𝜈(1 − e−𝜃𝑡),
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variance Var 𝑋𝑡 = 𝜎2(1 − e−2𝜃𝑡)/(2𝜃), and covariance

Cov(𝑋𝑠, 𝑋𝑡) =
𝜎2

2𝜃
e−𝜃 (𝑠+𝑡)

(
e2𝜃 (𝑠∧𝑡) − 1

)
.

Note that (𝑋𝑡) has independent increments, because the integrand in the Itô integral
in (7.75) does not depend on 𝑡. This shows that 𝑋𝑡 converges in distribution to
an N(𝜈, 𝜎2/(2𝜃)) random variable as 𝑡 → ∞. Also, by the time-change property
(7.31) , we have that

𝑊𝑡 :=
∫ 𝐶−1 (𝑡)

0
e𝜃𝑠 d𝑊𝑠, 𝑡 ≥ 0

is a Wiener process, where 𝐶 (𝑡) := (e2𝑡𝜃 − 1)/(2𝜃), 𝑡 ≥ 0. As a result of this, we
can write

𝑋𝑡 = e−𝜃𝑡𝑋0 + 𝜈(1 − e−𝜃𝑡) + 𝜎e−𝜃𝑡𝑊𝐶 (𝑡) , 𝑡 ≥ 0,

where the Wiener process 𝑊 is time-changed using the clock function 𝐶. This
provides a straightforward way to simulate the process from a realization of a
Wiener process. Typical realizations are depicted in Figure 7.76.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.6

0.8

1

1.2

1.4

Figure 7.76: Three realizations of an Ornstein–Uhlenbeck process with parameters
𝜈 = 1, 𝜎 = 0.2, and 𝜃 = 2. The initial value 𝑋0 is drawn from the N(𝜈, 𝜎2/(2𝜃))
distribution.

7.3.1 Existence of Solutions to SDEs
Consider the autonomous SDE

(7.77) d𝑋𝑡 = 𝑎(𝑋𝑡) d𝑡 + 𝑏(𝑋𝑡) d𝑊𝑡 .
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As already mentioned, the meaning of this SDE is that 𝑋 is a stochastic process that
satisfies the integral equation

(7.78) 𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑎(𝑋𝑠) d𝑠 +

∫ 𝑡

0
𝑏(𝑋𝑠) d𝑊𝑠 .

However, it is not clear that such a process indeed exists. We show in this section
that under mild conditions on 𝑎 and 𝑏 we can obtain a unique solution 𝑋 of the SDE
via a method of successive approximations, similar to Picard iteration for ordinary
differential equations.

The condition that is placed on 𝑎 and 𝑏 is that they be Lipschitz continuous; that
is, for all 𝑥 ∈ R there exists a constant 𝑐 such that

(7.79) |𝑎(𝑦) − 𝑎(𝑥) | + |𝑏(𝑦) − 𝑏(𝑥) | ≤ 𝑐 |𝑦 − 𝑥 |.

The successive approximation idea is very simple. Suppose that 𝑋0 = 𝑥. Define
𝑋
(0)
𝑡 := 𝑥 for all 𝑡, and let

(7.80) 𝑋
(𝑛+1)
𝑡 := 𝑥 +

∫ 𝑡

0
𝑎(𝑋 (𝑛)

𝑠 ) d𝑠 +
∫ 𝑡

0
𝑏(𝑋 (𝑛)

𝑠 ) d𝑊𝑠

for 𝑛 ∈ N. The following is the main existence result for SDEs:

Theorem 7.81: Existence of SDE Solutions

For any 𝑡 ∈ [0, 𝑣], the sequence (𝑋 (𝑛)) in (7.80) converges almost surely in
the uniform norm on [0, 𝑡] to a process 𝑋 that satisfies the integral equation
(7.78).

For the proof, we first need the following lemma. Recall also the definition of
the norm ∥ · ∥P𝑡 in Definition 7.14.

Lemma 7.82: Integral Bound

Let 𝑋 (𝑛) , 𝑛 = 1, 2, . . . be defined in (7.80), with 𝑋 (0) = 𝑥. Then, for every
𝑣 > 0 there exists a constant 𝛼 such that

E sup
𝑠≤𝑡

(
𝑋
(𝑛+1)
𝑠 − 𝑋 (𝑛)

𝑠

)2
≤ 𝛼∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2

P𝑡 , 𝑡 ≤ 𝑣.

Proof.

𝑋
(𝑛+1)
𝑡 − 𝑋 (𝑛)

𝑡 =

∫ 𝑡

0

[
𝑎(𝑋 (𝑛)

𝑠 ) − 𝑎(𝑋 (𝑛−1)
𝑠 )

]
d𝑠 +

∫ 𝑡

0

[
𝑏(𝑋 (𝑛)

𝑠 ) − 𝑏(𝑋 (𝑛−1)
𝑠 )

]
d𝑊𝑠

=: 𝐴𝑡 + 𝐵𝑡 .
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By Jensen’s inequality 𝑡2(1/𝑡 ∫ 𝑡0 𝑓𝑠 d𝑠)2 ≤ 𝑡 ∫ 𝑡0 𝑓 2
𝑠 d𝑠, which implies that almost

surely

𝐴2
𝑡 ≤ 𝑡

∫ 𝑡

0

[
𝑎(𝑋 (𝑛)

𝑠 ) − 𝑎(𝑋 (𝑛−1)
𝑠 )

]2
d𝑠 ≤ 𝑡𝑐2

∫ 𝑡

0

[
𝑋
(𝑛)
𝑠 − 𝑋 (𝑛−1)

𝑠

]2
d𝑠,

using the Lipschitz continuity (7.79) of 𝑎 in the last inequality. Taking expectations,
we find

E𝐴2
𝑡 ≤ 𝑡𝑐2∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2

P𝑡 .

To bound E𝐵2
𝑡 , we use the fact that

𝐵2
𝑣 −

∫ 𝑣

0

[
𝑏(𝑋 (𝑛)

𝑠 ) − 𝑏(𝑋 (𝑛−1)
𝑠 )

]2
d𝑠, 𝑣 ∈ [0, 𝑡],

is a martingale; see Example 7.23. In particular,

E𝐵2
𝑡 = ∥𝑏(𝑋 (𝑛)) − 𝑏(𝑋 (𝑛−1))∥2

P𝑡 ≤ 𝑐
2∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2

P𝑡 ,

again using Lipschitz continuity (7.79) in the last inequality. By combining the
latter result with Doob’s norm inequality (5.89), we obtain

sup
𝑠≤𝑡

E𝐵2
𝑠 ≤ 22 E𝐵2

𝑡 ≤ 4 𝑐2∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2
P𝑡 .

Putting everything together, gives

E sup
𝑠≤𝑡

(𝐴𝑠 + 𝐵𝑠)2 ≤ 2
{
sup
𝑠≤𝑡

E𝐴2
𝑠 + sup

𝑠≤𝑡
E𝐵2

𝑠

}
≤ (2𝑡 + 8)𝑐2∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2

P𝑡 ,

which proves the lemma for 𝛼 := (2𝑡 + 8)𝑐2. □

Proof of Theorem 7.81. The proof is similar to the existence result for the Wiener
process in Theorem 6.21. We will show that for almost all𝜔, the sequence (𝑋 (𝑛) (𝜔))
converges in the uniform norm sup𝑠≤𝑡 | 𝑓 (𝑠) |, and hence has a limit 𝑋 (𝜔) in this
norm. Take an arbitrary 𝑣 ≥ 0. For a fixed 𝑥 and 𝑡 ∈ [0, 𝑣], there exists the following
bound:

E(𝑋 (1)
𝑡 − 𝑥)2 = E(𝑎(𝑥)𝑡 + 𝑏(𝑥)𝑊𝑡)2 = 𝑎2(𝑥)𝑡2 + 𝑏2(𝑥)𝑡 ≤ 𝛽,

where 𝛽 ≥ 0 is a constant that depends on 𝑥 and 𝑣. Consequently, by applying
Lemma 7.82 iteratively, we have

E sup
𝑠≤𝑡

(𝑋 (2)
𝑠 − 𝑋 (1)

𝑠 )2 ≤ 𝛼
∫ 𝑡

0
𝛽 d𝑠 = 𝛽𝛼𝑡,

so that
E sup
𝑠≤𝑡

(𝑋 (3)
𝑠 − 𝑋 (2)

𝑠 )2 ≤ 𝛼
∫ 𝑡

0
𝛼𝛽𝑠 d𝑠 =

𝛽𝛼2𝑡2

2
,
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and, in general, for every 𝑡 ≤ 𝑣 and 𝑛 ∈ N, we have

E sup
𝑠≤𝑡

(𝑋 (𝑛+1)
𝑠 − 𝑋 (𝑛)

𝑠 )2 ≤ 𝛽𝛼𝑛𝑡𝑛

𝑛!
.

Hence, for the event 𝐴𝑛 := {sup𝑠≤𝑡 |𝑋
(𝑛+1)
𝑠 − 𝑋

(𝑛)
𝑠 | > 2−𝑛} Markov’s inequality

yields:

P (𝐴𝑛) ≤
𝛽(4𝛼𝑡)𝑛
𝑛!

.

By the first part of Borel–Cantelli’s Lemma 3.14, we have that P(Ω0) = 1, where
Ω0 is the event {∑𝑘 1𝐴𝑘 < ∞}. If 𝑥𝑘 := 𝑋𝑘 (𝜔) for an 𝜔 ∈ Ω0, then (𝑥𝑘 ) is a Cauchy
sequence by part three of Proposition 3.2, where 𝜀𝑛 := 2−𝑛 and we use the result
with the uniform norm. Hence, the sequence (𝑋 (𝑛) (𝜔)) is Cauchy convergent in
the uniform norm for every 𝜔 ∈ Ω0, and hence has a limit 𝑋 (𝜔) in this norm; see
Proposition 3.7. We can set 𝑋 (𝜔) = 𝑥 for 𝜔 ∉ Ω0. Since all 𝑋 (𝑛) are continuous
processes and convergence is in uniform norm, 𝑋 is a continuous process as well,
on any interval [0, 𝑡]. Moreover, taking limits on both sides of (7.80), we see that 𝑋
satisfies the integral equation (7.78) with 𝑋0 = 𝑥; so it is a solution of the SDE (7.77)
with this initial condition. That it is the only solution follows from an application
of Gronwall’s inequality; see Exercise 11. Namely, suppose 𝑋 and 𝑋 are solutions
to (7.78), with 𝑋0 = 𝑋0 = 𝑥. Then, duplicating the proof of Lemma 7.82, with 𝑋
and 𝑋 , we find for all 𝑡 ≤ 𝑣:

E(𝑋𝑡 − 𝑋𝑡)2 ≤ (2𝑣 + 8)𝑐2∥𝑋 − 𝑋 ∥P𝑡 .

Application of (7.115), with 𝑓 (𝑠) := E(𝑋𝑠−𝑋𝑠)2 and 𝑔(𝑡) := 0, shows that 𝑓 (𝑡) = 0
for all 𝑡 ≤ 𝑣. Since 𝑣 is arbitrary, 𝑋 and 𝑋 are modifications of each other and hence,
by their continuity, indistinguishable; see Theorem 7.13. □

7.3.2 Markov Property of Diffusion Processes
Let 𝑋 be the unique solution to the SDE (7.77) obtained from the successive
substitution procedure in (7.80). This solution is called the strong solution of the
SDE, in the sense that almost surely every path of 𝑋 is a deterministic function of
the starting value of 𝑋 and the path of 𝑊 ; that is, for almost every 𝜔 ∈ Ω and all
𝑡 ≥ 0,

𝑋𝑡 (𝜔) = 𝜙(𝑋0(𝜔), (𝑊𝑠 (𝜔), 𝑠 ∈ [0, 𝑡]), 𝑡)
for some function 𝜙. In contrast, a weak solution is one which satisfies the SDE
for some Wiener process 𝑊 different from 𝑊 . Weak solutions are solutions in
distribution, in the sense that while 𝑊 and 𝑊 may exist on different probability
spaces, they still have the same statistical properties. For a brief exploration of the
antipodal concept of a weak solution of an SDE; see Example 7.105, Exercise 22,
and Exercise 27.
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For a fixed 𝑡 ≥ 0, let 𝑊 := (𝑊𝑡+𝑢 −𝑊𝑡 , 𝑢 ≥ 0) and 𝑋 := (𝑋𝑡+𝑢 − 𝑋𝑡 , 𝑢 ≥ 0).
Then, from (7.78) we have

𝑋𝑢 = 𝑋𝑡 +
∫ 𝑡+𝑢

𝑡

𝑎(𝑋𝑠) d𝑠 +
∫ 𝑡+𝑢

𝑡

𝑏(𝑋𝑠) d𝑊𝑠

= 𝑋0 +
∫ 𝑢

0
𝑎(𝑋𝑠) d𝑠 +

∫ 𝑢

0
𝑏(𝑋𝑠) d𝑊𝑠 .

Thus, if 𝑋 = 𝜙(𝑋0,𝑊), then 𝑋 = 𝜙(𝑋0,𝑊). Let (F𝑡) be the filtration to which 𝑊
is adapted, and assume that 𝑋0 is independent of F0 and𝑊 . Then, 𝑋 = 𝜙(𝑋0,𝑊) =
𝜙(𝑋𝑡 ,𝑊) is conditionally independent of F𝑡 given 𝑋𝑡 , showing that the Markov
property holds. Moreover, the conditional distribution of 𝑋 given 𝑋𝑡 = 𝑥 is the
same as the distribution of 𝑋 starting at state 𝑥. Thus, the Itô diffusion 𝑋 is a
(time-homogeneous) Markov process with continuous sample paths. We will show
that its infinitesimal generator is given by the differential operator 𝐿 defined by

(7.83) 𝐿 𝑓 (𝑥) := 𝑎(𝑥) 𝑓 ′(𝑥) + 1
2
𝑏2(𝑥) 𝑓 ′′(𝑥),

for all twice continuously differentiable functions on compact sets.
First, by Itô’s formula,

𝑓 (𝑋𝑡) − 𝑓 (𝑋0) =
∫ 𝑡

0
𝑓 ′(𝑋𝑠) d𝑋𝑠 +

∫ 𝑡

0

1
2
𝑓 ′′(𝑋𝑠) d⟨𝑋⟩𝑠

=

∫ 𝑡

0

[
𝑓 ′(𝑋𝑠) 𝑎(𝑋𝑠) +

1
2
𝑓 ′′(𝑋𝑠)𝑏2(𝑋𝑠)

]
d𝑠 +

∫ 𝑡

0
𝑓 ′(𝑋𝑠) 𝑏(𝑋𝑠) d𝑊𝑠

=

∫ 𝑡

0
𝐿 𝑓 (𝑋𝑠) d𝑠 + 𝑀𝑡 ,

where (𝑀𝑡 , 𝑡 ≥ 0) is the martingale given by

(7.84) 𝑀𝑡 := 𝑓 (𝑋𝑡) − 𝑓 (𝑋0) −
∫ 𝑡

0
𝐿 𝑓 (𝑋𝑠) d𝑠 =

∫ 𝑡

0
𝑓 ′(𝑋𝑠) 𝑏(𝑋𝑠) d𝑊𝑠 .

Hence, denoting by E𝑥 the expectation operator under which the process starts at 𝑥,
we have for all 𝑡 ≥ 0:

(7.85) E𝑥 𝑓 (𝑋𝑡) = 𝑓 (𝑥) + E𝑥
∫ 𝑡

0
𝐿 𝑓 (𝑋𝑠) d𝑠.

Under mild conditions, we may also replace 𝑡 in (7.85) with a stopping time 𝑇 ; that
is,

(7.86) E𝑥 𝑓 (𝑋𝑇 ) = 𝑓 (𝑥) + E𝑥
∫ 𝑇

0
𝐿 𝑓 (𝑋𝑠) d𝑠.
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This is Dynkin’s formula. A sufficient condition is that E𝑥𝑇 < ∞ for all 𝑥. To prove
(7.86), we need to show that E𝑥𝑀𝑇 = 0, with 𝑀 the martingale in (7.84). Consider
the stopped martingale 𝑀 := (𝑀𝑡 , 𝑡 ≥ 0), with 𝑀𝑡 := 𝑀𝑇∧𝑡 , 𝑡 ≥ 0. Since 𝑓 ′ and 𝑏
are continuous, 𝑓 ′𝑏 is bounded on [0, 𝑡] by some constant 𝑐. From Proposition 7.32,
it follows that

E𝑥𝑀2
𝑡 = E𝑥

(∫ 𝑡

0
𝑓 ′(𝑋𝑠) 𝑏(𝑋𝑠)1{𝑠≤𝑇} d𝑊𝑠

)2

= E𝑥
∫ 𝑡

0
( 𝑓 ′(𝑋𝑠) 𝑏(𝑋𝑠))2

1{𝑠≤𝑇} d𝑠 ≤ 𝑐2 E𝑥𝑇 < ∞.

Consequently, 𝑀 is uniformly integrable, and thus it converges almost surely and
in 𝐿1 to 𝑀𝑇 . By Theorem 5.95, 𝑀 can be extended to a Doob martingale on R+ by
defining 𝑀∞ := 𝑀𝑇 . In particular,

E𝑀𝑇 = E𝑀𝑇 = E𝑀0 = E𝑀0 = 0,

which had to be shown.

Example 7.87 (Exit Probability) We can generalize the methodology in Ex-
ample 6.65 to calculate exit probabilities for general diffusion processes. In this
example we consider the Brownian motion process 𝐵𝑡 = 𝑎𝑡 + 𝑏𝑊𝑡 , 𝑡 ≥ 0; but see
also Exercise 12. As in Example 6.65, we are interested in the probability

𝑝 := P𝑥 (𝑇𝑙 < 𝑇𝑟),

that the Brownian motion exits the interval [𝑙, 𝑟] through 𝑙 rather than 𝑟, when
starting from 𝑥 ∈ [𝑙, 𝑟]. We can calculate 𝑝 by finding a function 𝑓 such that
𝐿 𝑓 = 0 on [𝑙, 𝑟], where

𝐿 𝑓 (𝑥) = 𝑎 𝑓 ′(𝑥) + 1
2
𝑏2 𝑓 ′′(𝑥).

One particular solution (verify by differentiating the function twice) is

𝑓 (𝑥) := e−2𝑎𝑥/𝑏2
.

Application of Dynkin’s formula (7.86) with 𝑇 = 𝑇𝑙 ∧ 𝑇𝑟 now immediately gives:

𝑝 =
e−2𝑎𝑟/𝑏2 − e−2𝑎𝑥/𝑏2

e−2𝑎𝑟/𝑏2 − e−2𝑎𝑙/𝑏2 ,

assuming that E𝑥𝑇 < ∞. We leave the proof of the latter as an exercise.
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To show that 𝐿 is the infinitesimal generator of the diffusion, we can reason in
the same way as for the infinitesimal generator of the Wiener process in Section 6.6.
Namely, from (7.85) it follows that

(7.88) 𝐿 𝑓 (𝑥) = lim
𝑡↓0

E𝑥 𝑓 (𝑋𝑡) − 𝑓 (𝑥)
𝑡

.

The limit on the right in (7.88) defines the infinitesimal generator of the Markov
process 𝑋 . Its domain consists of all bounded measurable functions for which
the limit exists — this includes the domain of 𝐿, hence the infinitesimal generator
extends 𝐿.

Let 𝑃𝑡 be the transition kernel of the Markov process and define the operator 𝑃𝑡
by

𝑃𝑡 𝑓 (𝑥) :=
∫

𝑃𝑡 (𝑥, d𝑦) 𝑓 (𝑦) = E𝑥 𝑓 (𝑋𝑡).

Then, by (7.85), we obtain the Kolmogorov forward equations:

(7.89) 𝑃′𝑡 𝑓 = 𝑃𝑡𝐿 𝑓 .

Moreover, by the Chapman–Kolmogorov equations (4.43), we have 𝑃𝑡+𝑠 𝑓 (𝑥) =

𝑃𝑠𝑃𝑡 𝑓 (𝑥) = E𝑥𝑃𝑡 𝑓 (𝑋𝑠), and therefore

1
𝑠
{𝑃𝑡+𝑠 𝑓 (𝑥) − 𝑃𝑡 𝑓 (𝑥)} =

1
𝑠
{E𝑥𝑃𝑡 𝑓 (𝑋𝑠) − 𝑃𝑡 𝑓 (𝑥)} .

Letting 𝑠 ↓ 0, we obtain the Kolmogorov backward equations:

(7.90) 𝑃′𝑡 𝑓 = 𝐿𝑃𝑡 𝑓 .

If 𝑃𝑡 has a transition density 𝑝𝑡 , then we can write the last equation as

d
d𝑡

∫
𝑝𝑡 (𝑦 | 𝑥) 𝑓 (𝑦) d𝑦 =

∫
𝐿𝑝𝑡 (𝑦 | 𝑥) 𝑓 (𝑦) d𝑦,

so that 𝑝𝑡 (𝑦 | 𝑥) for fixed 𝑦 satisfies the Kolmogorov backward equations:

(7.91)
𝜕

𝜕𝑡
𝑝𝑡 (𝑦 | 𝑥) = 𝑎(𝑥)

𝜕

𝜕𝑥
𝑝𝑡 (𝑦 | 𝑥) +

1
2
𝑏2(𝑥) 𝜕

2

𝜕𝑥2 𝑝𝑡 (𝑦 | 𝑥).

Similarly, (7.89) can be written as d
d𝑡 ∫ 𝑝𝑡 (𝑦 | 𝑥) 𝑓 (𝑦) d𝑦 = ∫ 𝑝𝑡 (𝑦 | 𝑥)𝐿 𝑓 (𝑦) d𝑦 =

∫ 𝑓 (𝑦)𝐿∗𝑝𝑡 (𝑦 | 𝑥) d𝑦, where 𝐿∗ (acting here on 𝑦) is the adjoint operator of 𝐿
defined by ∫ 𝑔(𝑦)𝐿ℎ(𝑦) d𝑦 = ∫ ℎ(𝑦)𝐿∗𝑔(𝑦) d𝑦. Hence, for fixed 𝑥 the density
𝑝𝑡 (𝑦 | 𝑥) satisfies the Kolmogorov forward equations:

(7.92)
𝜕

𝜕𝑡
𝑝𝑡 (𝑦 | 𝑥) = − 𝜕

𝜕𝑦
(𝑎(𝑦) 𝑝𝑡 (𝑦 | 𝑥)) +

1
2
𝜕2

𝜕𝑦2

(
𝑏2(𝑦) 𝑝𝑡 (𝑦 | 𝑥)

)
.
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This illustrates the important connection between partial differential equations of
the form 𝑢′𝑡 = 𝐿𝑢𝑡 and diffusion processes. Similarly, for multidimensional SDEs of
the form (7.66) one can show that the infinitesimal generator extends the operator

𝐿 𝑓 (𝒙) =
𝑚∑︁
𝑖=1

𝑎𝑖 (𝒙)
𝜕

𝜕𝑥𝑖
𝑓 (𝒙) + 1

2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝑐𝑖 𝑗 (𝒙)

𝜕2

𝜕𝑥𝑖 𝜕𝑥 𝑗
𝑓 (𝒙),

where {𝑎𝑖} are the components of 𝒂 and {𝑐𝑖 𝑗 } the components of C := BB⊤.

7.3.3 Methods for Solving Simple SDEs
If a strong solution of the Itô diffusion SDE (7.64) exists, then it can be expressed as
𝑋𝑡 = 𝜙(𝑋0, (𝑊𝑠, 𝑠 ∈ [0, 𝑡]), 𝑡) for some function 𝜙. Finding an analytical formula
for 𝜙 is usually impossible, except in a few special cases.

7.3.3.1 Linear Stochastic Differential Equations

One setting where the strong solution of an SDE can be expressed as a simple
analytical formula is when both the drift and diffusion of the SDE (7.64) are linear
functions. In particular, suppose that

𝑎(𝑥, 𝑡) = 𝛼𝑡 + 𝛽𝑡𝑥,
𝑏(𝑥, 𝑡) = 𝛿𝑡 + 𝛾𝑡𝑥.

An SDE of the form

(7.93) d𝑋𝑡 = (𝛼𝑡 + 𝛽𝑡𝑋𝑡) d𝑡 + (𝛿𝑡 + 𝛾𝑡𝑋𝑡) d𝑊𝑡

is said to be linear.

Example 7.94 (Stochastic Exponential) Let𝑌 be an Itô(𝛽, 𝛾) process. A special
case of (7.93) is

d𝑋𝑡 = 𝑋𝑡 d𝑌𝑡 = 𝛽𝑡𝑋𝑡 d𝑡 + 𝛾𝑡𝑋𝑡 d𝑊𝑡 ,

whose solution is called the stochastic exponential of 𝑌 . If we conjecture that
the strong solution is of the form 𝑋𝑡 = 𝑓 (𝑌𝑡 , 𝑧𝑡) for some twice continuously
differentiable deterministic functions 𝑓 and 𝑧, then an application of Theorem 7.51
with 𝒀 𝑡 := (𝑌𝑡 , 𝑧𝑡)⊤ yields:

d 𝑓 (𝑌𝑡 , 𝑧𝑡) = 𝜕1 𝑓 (𝒀 𝑡) d𝑌𝑡 + 𝜕2 𝑓 (𝒀 𝑡) d𝑧𝑡 +
1
2
𝜕11 𝑓 (𝒀 𝑡) d⟨𝑌⟩𝑡 .

Since d 𝑓 (𝒀 𝑡) = 𝑋𝑡 d𝑌𝑡 = 𝑓 (𝒀 𝑡) d𝑌𝑡 , matching terms yields the system of equations
for 𝑓 (𝒚) := 𝑓 (𝑦, 𝑧):

𝜕1 𝑓 (𝒚) − 𝑓 (𝒚) = 0,

𝜕2 𝑓 (𝒚) 𝑧′𝑡 +
1
2
𝜕11 𝑓 (𝒚)

d
d𝑡
⟨𝑌⟩𝑡 = 0.
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The most general solution to the first equation is 𝑓 (𝑦, 𝑧) = 𝑐1(𝑧) exp(𝑦), where
𝑐1(𝑧) is an arbitrary function of 𝑧. Substituting this into the second equation and
solving yields ln 𝑐1(𝑧𝑡) = −1

2 ⟨𝑌⟩𝑡 + 𝑐2(𝑡), where 𝑐2 is an arbitrary function of 𝑡.
Hence, we must have that 𝑓 (𝑦, 𝑧) = exp

(
𝑦 − 1

2 ⟨𝑌⟩𝑡 + 𝑐2(𝑡)
)
. In other words, from

𝑋0 = 𝑓 (𝑌0, 𝑧0) we obtain that the stochastic exponential of 𝑌 is:

𝑋𝑡 = 𝑋0 exp
(
𝑌𝑡 − 𝑌0 −

1
2
⟨𝑌⟩𝑡

)
.

The solution to the general linear SDE in (7.93) is given next.

Proposition 7.95: Solution to a Linear Diffusion SDE

The solution to the linear SDE (7.93) is given by

𝑋𝑡 = 𝑌𝑡

(
𝑋0 +

∫ 𝑡

0

𝛼𝑠 − 𝛿𝑠𝛾𝑠
𝑌𝑠

d𝑠 +
∫ 𝑡

0

𝛿𝑠

𝑌𝑠
d𝑊𝑠

)
,

where 𝑌𝑡 = exp
(
∫ 𝑡0 (𝛽𝑠 − 𝛾2

𝑠 /2) d𝑠 + ∫ 𝑡0 𝛾𝑠 d𝑊𝑠

)
is the stochastic exponential

of an Itô(𝛽, 𝛾) process.

Proof. Let 𝑍 be an Itô((𝛼 − 𝛿𝛾)/𝑌, 𝛿/𝑌 ) process such that 𝑋𝑡 = 𝑌𝑡 𝑍𝑡 . We verify
that this formula satisfies (7.93) via direct computation of the differential of 𝑌𝑡 𝑍𝑡 .
Since 𝑌 is the stochastic exponential of an Itô(𝛽, 𝛾) process, it satisfies d𝑌𝑡 =

𝑌𝑡 (𝛽𝑡 d𝑡 + 𝛾𝑡 d𝑊𝑡). Using the stochastic product rule (7.57) and the covariation
formula (7.50), we obtain:

d𝑋𝑡 = 𝑌𝑡 d𝑍𝑡 + 𝑍𝑡 d𝑌𝑡 + d⟨𝑌, 𝑍⟩𝑡
= [(𝛼𝑡 − 𝛿𝑡𝛾𝑡) d𝑡 + 𝛿𝑡 d𝑊𝑡] + [𝑍𝑡𝑌𝑡 (𝛽𝑡 d𝑡 + 𝛾𝑡 d𝑊𝑡)] + 𝛿𝑡𝛾𝑡 d𝑡
= (𝛼𝑡 + 𝛽𝑡𝑋𝑡) d𝑡 + (𝛿𝑡 + 𝛾𝑡𝑋𝑡) d𝑊𝑡 ,

verifying that 𝑋𝑡 = 𝑌𝑡 𝑍𝑡 satisfies (7.93). □

Example 7.96 (Brownian Bridge) Consider the SDE for 𝑡 ∈ [0, 1):

d𝑋𝑡 =
𝑏 − 𝑋𝑡
1 − 𝑡 d𝑡 + d𝑊𝑡 , 𝑋0 = 𝑎.

This SDE is linear with 𝛼𝑡 := 𝑏/(1 − 𝑡), 𝛽𝑡 := −1/(1 − 𝑡), 𝛿𝑡 := 1, 𝛾𝑡 := 0, and so
an application of Proposition 7.95 yields:

𝑋𝑡 = 𝑎 + (𝑏 − 𝑎)𝑡 +
∫ 𝑡

0

1 − 𝑡
1 − 𝑠 d𝑊𝑠︸           ︷︷           ︸
=:𝑍𝑡

, 𝑡 ∈ [0, 1).
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Moreover, applying Proposition 7.25 to 𝑍 := (𝑍𝑡 , 𝑡 ∈ [0, 1)) shows that (𝑋𝑡 , 𝑡 ∈
[0, 1)) is a Gaussian process with mean 𝑎 + (𝑏 − 𝑎)𝑡 and covariance function:

Cov(𝑋𝑠1 , 𝑋𝑠2) = (1 − 𝑠1) (1 − 𝑠2)
[

1
1 − 𝑠1 ∧ 𝑠2

− 1
]
= 𝑠1 ∧ 𝑠2 − 𝑠1𝑠2.

Since Var 𝑋1−𝜀 = 𝜀(1 − 𝜀) → 0 as 𝜀 ↓ 0, it is clear that 𝑋1−𝜀
𝐿2→ 𝑏. In fact,

Exercise 16 shows that 𝑋1−𝜀
a.s.→ 𝑏 as 𝜀 ↓ 0. Hence, if we define 𝑋1 := 𝑏, then

𝑋 := (𝑋𝑡 , 𝑡 ∈ [0, 1]) is a Gaussian process with continuous paths. As a matter of
fact, 𝑋 is the Brownian bridge discussed in Example 6.5.

7.3.3.2 Itô–Stratonovich Method

Recall that the ordinary chain rule

d 𝑓 (𝒙(𝑡)) =
𝑑∑︁
𝑖=1

𝜕𝑖 𝑓 (𝒙(𝑡)) d𝑥𝑖 (𝑡)

is not in agreement with the multivariate Itô’s formula in Theorem 7.51. Neverthe-
less, it is possible to recover the ordinary form of the chain rule in stochastic settings
by using the following modification of the Itô integral:

Definition 7.97: Itô–Stratonovich Integral

Let 𝑋 and𝑌 be Itô processes such that ∫ 𝑡0 𝑌𝑠 d𝑋𝑠 and ∫ 𝑡0 𝑋𝑠 d𝑌𝑠 are well-defined
stochastic integrals. Then, the Itô–Stratonovich integral of 𝑌 with respect to
𝑋 is defined as ∫ 𝑡

0
𝑌𝑠 ◦ d𝑋𝑠 :=

∫ 𝑡

0
𝑌𝑠 d𝑋𝑠 +

1
2
⟨𝑋,𝑌⟩𝑡 .

The differential form of the identity in Definition 7.97 is

𝑌𝑡 ◦ d𝑋𝑡 = 𝑌𝑡 d𝑋𝑡 +
1
2

d⟨𝑋,𝑌⟩𝑡 .

With this differential identity we can write the stochastic product rule (7.57) as:

d(𝑋𝑡 𝑌𝑡) = 𝑋𝑡 ◦ d𝑌𝑡 + 𝑌𝑡 ◦ d𝑌𝑡 .

More importantly, the corresponding chain rule in Theorem 7.51 is now formally
in agreement with the chain rule in ordinary calculus.
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Proposition 7.98: Itô–Stratonovich Formula

Let (𝑿𝑡) be a 𝑑-dimensional Itô process, and let 𝑓 : R𝑑 → R be three times
continuously differentiable in all variables. Then,

d 𝑓 (𝑿𝑡) =
𝑑∑︁
𝑖=1

𝜕𝑖 𝑓 (𝑿𝑡) ◦ d𝑋𝑡,𝑖 .

Proof. Define 𝑔𝑖 (𝒙) := 𝜕𝑖 𝑓 (𝒙) for all 𝑖 and note that each 𝑔𝑖 is twice continuously
differentiable. Since 𝑔𝑖 (𝑿𝑡) ◦ d𝑋𝑡,𝑖 = 𝑔𝑖 (𝑿𝑡) d𝑋𝑡,𝑖 + 1

2d⟨𝑔𝑖 (𝑿), 𝑋·,𝑖⟩𝑡 , the proof will
be complete if we can show that for all 𝑖:

⟨𝑔𝑖 (𝑿), 𝑋·,𝑖⟩𝑡 =
∑︁
𝑗

𝜕𝑗𝑔𝑖 (𝑿𝑡) d⟨𝑋·,𝑖, 𝑋·, 𝑗 ⟩𝑡 .

To see this, apply Theorem 7.51 to obtain:

d𝑔𝑖 (𝑿𝑡) =
∑︁
𝑗

𝜕𝑗𝑔𝑖 (𝑿𝑡) d𝑋𝑡, 𝑗 +
1
2

∑︁
𝑘, 𝑗

𝜕𝑘 𝑗𝑔𝑖 (𝑿𝑡) d⟨𝑋·,𝑘 , 𝑋·, 𝑗 ⟩𝑡 ,

and then use formula (7.52) to conclude that the covariation is d⟨𝑔𝑖 (𝑿), 𝑋·,𝑖⟩𝑡 =∑
𝑗 𝜕𝑗𝑔𝑖 (𝑿𝑡) d⟨𝑋·,𝑖, 𝑋·, 𝑗 ⟩𝑡 . □

Since the definition of the Itô–Stratonovich integral is such that both the chain
rule and product rule of ordinary calculus are formally the same, this suggests yet
another method for solving diffusion SDEs. Namely, we convert all Itô integrals
to their Stratonovich equivalents, making it possible to use our experience with
(systems of) ODEs to solve SDEs. An example will illustrate this point.

Example 7.99 (Itô–Stratonovich Method) Consider solving the nonlinear SDE:

d𝑋𝑡 =
𝑛

2
𝑋2𝑛−1
𝑡 d𝑡 + 𝑋𝑛𝑡 d𝑊𝑡 , 𝑋0 = 𝑎

for some constant 𝑎 > 0. By Itô’s formula d(𝑋𝑛𝑡 ) = 𝑛𝑋𝑛−1
𝑡 d𝑋𝑡 + 𝑛(𝑛−1)

2 𝑋𝑛−2
𝑡 d⟨𝑋⟩𝑡 ,

and therefore
d⟨𝑋𝑛,𝑊⟩𝑡 = 𝑛𝑋𝑛−1

𝑡 𝑋𝑛𝑡 d𝑡 = 𝑛𝑋2𝑛−1
𝑡 d𝑡.

Hence, 𝑋𝑛𝑡 d𝑊𝑡 = 𝑋𝑛𝑡 ◦ d𝑊𝑡 − 𝑛
2𝑋

2𝑛−1
𝑡 d𝑡, and the SDE can be written as in its

Itô–Stratonovich format:
d𝑋𝑡 = 𝑋𝑛𝑡 ◦ d𝑊𝑡 .

The differential equation d𝑥(𝑡) = [𝑥(𝑡)]𝑛d𝑤(𝑡) implies that∫
d𝑥(𝑡)
[𝑥(𝑡)]𝑛 =

∫
d𝑤(𝑡) = 𝑤(𝑡) + 𝑐
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for some constant 𝑐. Hence, the strong solution to the SDE is

𝑋𝑡 = [(1 − 𝑛) (𝑊𝑡 + 𝑐)]
1

1−𝑛 , 𝑐 = 𝑎1−𝑛/(1 − 𝑛).

Note that this may not be a solution for all 𝑡 ≥ 0. For example, when 𝑛 = 3, the
expression [−2(𝑊𝑡 + 𝑐)]−1/2 is only well-defined until the exit time inf{𝑡 ≥ 0 :
𝑊𝑡 + 𝑐 > 0}.

7.3.3.3 Girsanov’s Method

Girsanov’s method explores how random variables and stochastic processes (e.g.,
determined by an SDE) behave when the underlying probability measure is changed.
Let (Ω,H , P) be a probability space and let 𝑀 be a real-valued random variable
with expectation 1. We can use 𝑀 to construct a change of measure P̃ on (Ω,H)
by defining

P̃(𝐴) :=
∫
𝐴

𝑀 dP = E𝑀1𝐴, 𝐴 ∈ H .

Thus, P̃ is the indefinite integral of 𝑀 with respect to P; see Section 1.4.3. It is a
probability measure, because P̃(Ω) = E𝑀 = 1.

As an example, suppose 𝑋 is a numerical random variable with pdf 𝑔. Let 𝑓 be
another pdf, with 𝑓 (𝑥) = 0 whenever 𝑔(𝑥) = 0. Define 𝑀 := 𝑓 (𝑋)/𝑔(𝑋). Then,
E𝑀 = 1, and we have for any measurable function ℎ:

Ẽℎ(𝑋) = E𝑀ℎ(𝑋) =
∫

𝑓 (𝑥)
𝑔(𝑥) ℎ(𝑥) 𝑔(𝑥) d𝑥 =

∫
ℎ(𝑥) 𝑓 (𝑥) d𝑥.

Thus, under P̃, 𝑋 has pdf 𝑓 . More generally, we have by Theorem 1.58 that for any
random variable 𝑉 :

E𝑀𝑉 = Ẽ𝑉.

We can generalize the change of measure idea to stochastic processes, as follows.
Suppose F := (F𝑡) is a filtration on the probability space (Ω,H , P) and 𝑀 := (𝑀𝑡)
is an F -martingale with E𝑀𝑡 = 1 for all 𝑡. Then, for each 𝑡 we can define a new
measure P̃𝑡 on (Ω, F𝑡) by

(7.100) P̃𝑡 (𝐴) := E𝑀𝑡1𝐴 , 𝐴 ∈ F𝑡 .

We say that P̃ is the change of measure induced by 𝑀 .
We now come to the connection with Itô processes, because here a natural

way arises to create a mean-1 martingale, and hence a change of measure. Let
𝑋 be an Itô(𝜇, 1) process under probability measure P, with respect to a filtration
F := (F𝑡 , 𝑡 ≥ 0). Suppose that (𝑀𝑡) is the solution to the SDE

d𝑀𝑡 = 𝑀𝑡 𝜇𝑡 d𝑊𝑡 ,
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ensuring that (𝑀𝑡) is a continuous local martingale. We can solve the SDE in the
same way as in Example 7.68. In particular, Itô’s formula gives

d ln𝑀𝑡 = 𝑀
−1
𝑡 d𝑀𝑡 −

1
2
𝜇2
𝑡 d𝑡 = 𝜇𝑡 d𝑊𝑡 −

1
2
𝜇2
𝑡 d𝑡,

so that

(7.101) 𝑀𝑡 = exp
(∫ 𝑡

0
𝜇𝑠 d𝑊𝑠 −

1
2

∫ 𝑡

0
𝜇2
𝑠 d𝑠

)
= e𝑍𝑡−

1
2 ⟨𝑍⟩𝑡 , 𝑡 ≥ 0,

where 𝑍 := (𝑍𝑡) is the martingale defined by 𝑍𝑡 :=
∫ 𝑡

0 𝜇𝑠 d𝑊𝑠. Exercises 19 and 20
show that a sufficient condition for (𝑀𝑡) to be a proper martingale (rather than a
local one) is that ⟨𝑍⟩ satisfies the Krylov condition:

(7.102) lim
𝜀↓0

𝜀 lnE exp((1 − 𝜀)⟨𝑍⟩𝑡/2) = 0.

Note that the Krylov condition is implied by the better known Novikov condition:

E exp (⟨𝑍⟩𝑡/2) < ∞;

see Exercises 19 and 20. Thus, assuming the Krylov condition (7.102), we have
E𝑀𝑡 = E𝑀0 = 1 for all 𝑡 and (𝑀𝑡) is the stochastic exponential of 𝑍 . As a
consequence of this, we have the following important result:

Theorem 7.103: Girsanov’s Change of Measure

Suppose that 𝜇 satisfies the Krylov condition (7.102) and𝑀 is the exponential
martingale (7.101). Then, under the change of measure (7.100) induced by
𝑀 , the Itô process

𝑊𝑡 := −
∫ 𝑡

0
𝜇𝑠 d𝑠 +𝑊𝑡 , 𝑡 ≥ 0

is a Wiener process.

Proof. We first show that𝑊 is a martingale under P̃. Noting that

d𝑀𝑡 = 𝑀𝑡 𝜇𝑡 d𝑊𝑡 ,

d𝑊𝑡 = −𝜇𝑡 d𝑡 + d𝑊𝑡 ,

d⟨𝑀,𝑊⟩𝑡 = 𝑀𝑡 𝜇𝑡 d𝑡,

we find, by using the product rule (7.57), that:

d(𝑀𝑡𝑊𝑡) = 𝑀𝑡 d𝑊𝑡 +𝑊𝑡 d𝑀𝑡 + 𝑀𝑡 𝜇𝑡 d𝑡
= −𝜇𝑡 𝑀𝑡 d𝑡 + 𝑀𝑡 d𝑊𝑡 +𝑊𝑡 𝑀𝑡 𝜇𝑡 d𝑊𝑡 + 𝑀𝑡 𝜇𝑡 d𝑡
= 𝑀𝑡 (1 + 𝜇𝑡𝑊𝑡) d𝑊𝑡 ,
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which shows that (𝑀𝑡𝑊𝑡) is a martingale under P, and so (𝑊𝑡) is a martingale under
P̃. Similarly, applying the product rule to (𝑀𝑡 (𝑊2

𝑡 − 𝑡)) gives:

d(𝑀𝑡 (𝑊2
𝑡 − 𝑡)) = 𝑀𝑡 d(𝑊2

𝑡 − 𝑡) + (𝑊2
𝑡 − 𝑡) d𝑀𝑡 + 2𝑀𝑡 𝜇𝑡𝑊𝑡 d𝑡

= 𝑀𝑡2𝑊𝑡 d𝑊𝑡 + (𝑊2
𝑡 − 𝑡) 𝑀𝑡 𝜇𝑡 d𝑊𝑡 + 2𝑀𝑡 𝜇𝑡𝑊𝑡 d𝑡

= 𝑀𝑡 (2𝑊𝑡 + (𝑊2
𝑡 − 𝑡)𝜇𝑡) d𝑊𝑡 ,

which shows that (𝑊2
𝑡 − 𝑡) is martingale under P̃. Lévy’s characterization theorem

then proves that𝑊 is a Wiener process under P̃; see Example 7.61. □

Example 7.104 (Girsanov’s Method I) Suppose that 𝑊 is a Wiener process
under P. Girsanov’s Theorem 7.103 can be used to solve SDEs of the form

d𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡) d𝑡 + 𝛾𝑡𝑋𝑡 d𝑊𝑡 ,

where 𝑎 and 𝛾 are continuous functions. Suppose that 𝜇 satisfies the condition
(7.102) and P̃ is the change of measure (7.100) induced by the exponential martingale
(7.101). Then, Girsanov’s theorem states that𝑊 , which satisfies d𝑊𝑡 = −𝜇𝑡 d𝑡+d𝑊𝑡

with𝑊0 = 0, is a Wiener process under P̃. Hence, under the change of measure, the
SDE can be written as:

d𝑋𝑡 = (𝑎(𝑋𝑡 , 𝑡) + 𝜇𝑡𝛾𝑡𝑋𝑡) d𝑡 + 𝛾𝑡𝑋𝑡 d𝑊𝑡 .

Taking 𝜇 such that 𝑎(𝑋𝑡 , 𝑡) + 𝜇𝑡𝛾𝑡𝑋𝑡 = 0, the solution under P̃ is the stochastic
exponential 𝑋𝑡 = 𝑋0 exp

(
∫ 𝑡0 𝛾𝑠 d𝑊𝑠 − 1

2 ∫
𝑡
0 𝛾

2
𝑠 d𝑠

)
. Substituting with d𝑊𝑡 = −𝜇𝑡 d𝑡 +

d𝑊𝑡 , yields 𝑋𝑡 = 𝑌𝑡𝑍𝑡 , where

𝑌𝑡 := 𝑋0 exp
(∫ 𝑡

0
𝛾𝑠 d𝑊𝑠 −

1
2

∫ 𝑡

0
𝛾2
𝑠 d𝑠

)
and 𝑍𝑡 := exp

(
−

∫ 𝑡

0
𝜇𝑠𝛾𝑠 d𝑠

)
.

Since 𝑌 is uniquely determined by 𝛾, we only need to solve for 𝑍 to complete the
solution. This amounts to finding a function 𝑧 that satisfies the ordinary differential
equation:

𝑎(𝑦𝑡𝑧𝑡 , 𝑡) + 𝜇𝑡𝛾𝑡𝑦𝑡𝑧𝑡 = 𝑎(𝑦𝑡𝑧𝑡 , 𝑡) − 𝑦𝑡
d𝑧
d𝑡

= 0, 𝑧0 = 1.

As a particular example, suppose that we wish to find the strong solution of

d𝑋𝑡 = 𝑋𝑛𝑡 d𝑡 + 𝛾𝑋𝑡 d𝑊𝑡 , 𝑛 ≤ 1.

Girsanov’s method calls for the solution of the differential equation: 𝑦𝑛𝑡 𝑧𝑛𝑡 = 𝑦𝑡
d𝑧
d𝑡 .

The SDE solution is thus:

𝑋𝑡 = 𝑌𝑡

(
1 + (1 − 𝑛)

∫ 𝑡

0
𝑌 𝑛−1
𝑠 d𝑠

) 1
1−𝑛
,

where 𝑌𝑡 = 𝑋0 exp
(
𝛾𝑊𝑡 − 𝛾2𝑡/2

)
.
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Example 7.105 (Girsanov’s Method II) Suppose we wish to solve SDEs of the
form

d𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡) d𝑡 + 𝛿𝑡 d𝑊𝑡 , 𝑋0 = 𝑥.

Under the measure P̃, the SDE is written as: d𝑋𝑡 = (𝑎(𝑋𝑡 , 𝑡) + 𝜇𝑡) d𝑡 + 𝛿𝑡 d𝑊𝑡 .

Taking 𝜇 such that 𝑎(𝑋𝑡 , 𝑡) + 𝜇𝑡 = 0, we obtain:

𝑋𝑡 − 𝑥 =
∫ 𝑡

0
𝛿𝑠 d𝑊𝑠 =

∫ 𝑡

0
𝛿𝑠 d𝑊𝑠︸       ︷︷       ︸
=:𝑌𝑡

−
∫ 𝑡

0
𝛿𝑠𝜇𝑠 d𝑠︸          ︷︷          ︸

=: 𝑍𝑡

.

Hence, the solution is given by 𝑋𝑡 − 𝑥 = 𝑌𝑡 + 𝑍𝑡 , where each realization (𝑧𝑡) of (𝑍𝑡)
satisfies the nonlinear differential equation: d𝑧𝑡/d𝑡 = 𝛿𝑡 𝑎(𝑥 + 𝑦𝑡 + 𝑧𝑡 , 𝑡) with 𝑧0 = 0.
For instance, if 𝑋0 = 𝑥 ≥ 0, 𝛿𝑡 := 1, and 𝑎(𝑥, 𝑡) := 1/𝑥, then 𝑋𝑡 − 𝑥 = 𝑊𝑡 + 𝑍𝑡 , such
that each path (𝑧𝑡) satisfies the ODE:

(7.106)
d𝑧𝑡
d𝑡

=
1

𝑥 + 𝑤𝑡 + 𝑧𝑡
, 𝑧0 = 0.

This ODE can be easily solved numerically using standard methods; see Exercise 27.
When 𝑥 = 0, the process 𝑋 := (𝑊𝑡 + 𝑍𝑡 , 𝑡 ≥ 0) is the strong solution to the 𝑑-
dimensional Bessel SDE

(7.107) d𝑋𝑡 =
𝑑 − 1
2𝑋𝑡

d𝑡 + d𝑊𝑡 , 𝑋0 = 0

for the case 𝑑 = 3. In Exercise 22 we show that the Euclidean norm ∥𝑾∥ of a 𝑑-
dimensional Wiener process𝑾 is a weak solution to the 𝑑-dimensional Bessel SDE.
In the next example we highlight an important link between Brownian excursions
and the three-dimensional Bessel SDE.

Example 7.108 (Brownian Excursions) This example deals with the continuous
version of the gambler’s ruin problem in Example 5.33; see also Example 7.87. Let
𝐵 := (𝐵𝑡 , 𝑡 ≥ 0) be a standard Brownian motion, starting at some 𝑥 with 0 < 𝑥 < 𝑟
under probability measure P. Denote the natural filtration of 𝐵 by F := (F𝑡) and
define

𝑇 := min{𝑡 : 𝐵𝑡 = 𝑟 or 0}
as the first time that the process hits either 𝑟 or 0. What do the trajectories of 𝐵 look
like that hit 𝑟 before 0? We are thus interested in the conditional distribution of 𝐵
given that the event {𝐵𝑇 = 𝑟} occurs. The corresponding probability measure, P̃, is
given by

P̃(𝐴) :=
P(𝐴 ∩ {𝐵𝑇 = 𝑟})

P(𝐵𝑇 = 𝑟) =
𝑟

𝑥
P(𝐴 ∩ {𝐵𝑇 = 𝑟}), 𝐴 ∈ F𝑇 ,
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where we used the fact that P(𝐵𝑇 = 𝑟) = 𝑥/𝑟, by Example 7.87. It follows that the
Radon–Nikodym derivative dP̃/dP is equal to the random variable

𝑍 :=
𝑟

𝑥
1{𝐵𝑇=𝑟} .

Let P̃𝑡 be the restriction of P̃ to (Ω, F𝑡∧𝑇 ). For 𝐴 ∈ F𝑡∧𝑇 , we have

P̃𝑡 (𝐴) = E𝑍1𝐴 = EE𝑡∧𝑇 [𝑍1𝐴] = E[1𝐴E𝑡∧𝑇𝑍] = E[𝑀𝑡∧𝑇1𝐴],

where 𝑀𝑡∧𝑇 := E𝑡∧𝑇𝑍 and E𝑡∧𝑇 denotes the conditional expectation given F𝑡∧𝑇 . By
Example 5.11, we see that, under P̃, the stopped process (𝑀𝑡∧𝑇 ) is a uniformly integ-
rable martingale. Moreover, 𝑀𝑡∧𝑇 = (𝑟/𝑥) P𝑡∧𝑇 (𝐵𝑇 = 𝑟) = (𝑟/𝑥)𝐵𝑡∧𝑇/𝑟 = 𝐵𝑡∧𝑇/𝑥.
Writing

𝑀𝑡∧𝑇 = exp(ln(𝐵𝑡∧𝑇/𝑥)) = exp
(∫ 𝑡∧𝑇

0

1
𝐵𝑠

d𝑊𝑠 −
1
2

∫ 𝑡∧𝑇

0

1
𝐵2
𝑠

d𝑠
)
,

we see that (𝑀𝑡∧𝑇 ) is of the form (7.101), with 𝜇𝑠 = 𝐵−1
𝑠 . Girsanov’s Theorem 7.103,

shows that the process

𝐵𝑡 := 𝐵𝑡 − 𝑥 −
∫ 𝑡

0

1
𝐵𝑠

d𝑠, 𝑡 ≤ 𝑇

is a Wiener process under P̃. In other words, under P̃ the process (𝐵𝑡) satisfies the
SDE

d𝐵𝑡 =
1
𝐵𝑡

d𝑡 + d𝐵𝑡 , 𝑡 ≤ 𝑇,

with 𝐵0 = 𝑥 > 0. Hence, excursions of a standard Brownian motion from 𝑥 to 𝑟
behave according to an Itô diffusion with drift function 𝑎 : 𝑥 ↦→ 1/𝑥. While the
strong solution of this SDE can be readily computed numerically, as discussed
in Example 7.105 and Exercise 27, a weak solution to the SDE is the process
𝑋 := ∥𝒙 +𝑾∥, where 𝒙 ∈ R3 is a vector with Euclidean norm ∥𝒙∥ = 𝑥 and 𝑾 is a
three-dimensional Wiener process; see Exercise 22. Recall from Example 7.105 that
in the special case of 𝑥 = 0, the process 𝑋 is a weak solution of the three-dimensional
Bessel SDE (7.107).

Figure 7.109 shows a typical excursion of a standard Brownian motion that starts
at a position 𝑥, arbitrarily close to 0, and reaches the maximal position 𝑟 = 1 before
dropping back to 𝑥.
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Figure 7.109: A typical excursion of a standard Brownian motion starting arbitrarily
close to 0 and reaching a maximal position of 1.

The path of the excursion in Figure 7.109 consists of two parts. The first
(depicted in blue) corresponds to an Itô process with drift (𝐵−1

𝑡 ); i.e., the path that
the Brownian motion follows conditional on reaching 1 before returning to 𝑥. The
second part (depicted in red) corresponds to the path of a Brownian motion starting
at 1, conditional on hitting 𝑥 before returning to 1. This has the same distribution as
1 minus the path of a Brownian motion starting at 𝑥 and hitting 1 before returning
to 𝑥, and can be thus simulated in the same way as the first path. By concatenating
the two paths, we obtain the path of the excursion depicted in Figure 7.109.

7.3.4 Euler’s Method for Numerically Solving SDEs
Let (𝑋𝑡 , 𝑡 ≥ 0) be a diffusion process defined by the autonomous SDE

(7.110) d𝑋𝑡 = 𝑎(𝑋𝑡) d𝑡 + 𝑏(𝑋𝑡) d𝑊𝑡 , 𝑡 ≥ 0,

where 𝑋0 has a known distribution.
The Euler or Euler–Maruyama method for solving SDEs is a simple generaliz-

ation of Euler’s method for solving ordinary differential equations. The idea is to
replace the SDE with the stochastic difference equation

(7.111) 𝑌𝑘+1 = 𝑌𝑘 + 𝑎(𝑌𝑘 ) ℎ + 𝑏(𝑌𝑘 )𝑉𝑘+1,

where 𝑉1, 𝑉2, . . . ∼iid N(0, ℎ) and 𝑌0 = 𝑋0. For a small step size ℎ, the sequence
(𝑌𝑘 , 𝑘 ∈ N) approximates the process (𝑋𝑡 , 𝑡 ≥ 0); that is,𝑌𝑘 ≈ 𝑋𝑘ℎ, 𝑘 ∈ N. The gen-
eralization to non-autonomous and multidimensional SDEs is straightforward; see
Exercises 26 and 23. Milstein’s method is similar to Euler’s, but uses an additional
correction term, which gives slightly better approximations in low-dimensional
settings; see Exercise 25.
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Example 7.112 (Euler Method for Geometric Brownian Motion) We illustrate
Euler’s method via the geometric Brownian motion SDE (7.69). The (strong)
solution is given by (7.71). To compare the Euler solution with the exact solution,
we use the same random variables 𝑉1, 𝑉2, . . . ∼iid N(0, ℎ) for a given step size ℎ.
The exact solution at time 𝑘ℎ can be written as

𝑆𝑘ℎ = 𝑆0 exp
((
𝜇 − 𝜎2

2

)
𝑘ℎ + 𝜎

𝑘∑︁
𝑖=1
𝑉𝑖

)
.

Euler’s method gives the approximation

(7.113) 𝑌𝑘 = 𝑌𝑘−1 (1 + 𝜇 ℎ + 𝜎𝑉𝑘 ) , 𝑘 = 1, 2, . . . .

For values not at the approximation points, we use linear interpolation.
We compute the approximation for two different step sizes, while ensuring that

the appropriate common random numbers are used. In particular, we use step sizes
ℎ := 2−8 and ℎ̃ := 2−4 = 𝑚ℎ, with 𝑚 := 24. Then, set

𝑉𝑖 :=
𝑚∑︁
𝑗=1
𝑉(𝑖−1)𝑚+ 𝑗 .

The exact solution at time 𝑘 ℎ̃ on the ℎ̃ time scale is generated as

𝑆
𝑘 ℎ̃

= 𝑆0 exp
((
𝜇 − 𝜎2

2

)
𝑘 ℎ̃ + 𝜎

𝑘∑︁
𝑖=1
𝑉𝑖

)
= 𝑆0 exp

((
𝜇 − 𝜎2

2

)
𝑘 ℎ̃ + 𝜎

𝑚𝑘∑︁
𝑗=1
𝑉 𝑗

)
.

Euler’s approximation on this time scale is computed as

𝑌𝑘 = 𝑌𝑘−1

(
1 + 𝜇 ℎ̃ + 𝜎𝑉𝑘

)
= 𝑌𝑘−1

(
1 + 𝜇 ℎ̃ + 𝜎

𝑚∑︁
𝑗=1
𝑉(𝑘−1)𝑚+ 𝑗

)
.

Figure 7.114 depicts the output of the exact and Euler schemes for the case
𝜇 = 2, 𝜎 = 1, initial value 𝑆0 = 1, and step sizes ℎ̃ and ℎ. For the smaller step size,
we see that Euler’s approximation is very close to the exact solution.
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Figure 7.114: Approximation schemes and exact solution for a geometric Brownian
motion trajectory.

Exercises
1. Let𝑊 be a Wiener process on [0, 𝑡]. Show that

𝑛−1∑︁
𝑘=0

𝑊𝑠𝑘+1 (𝑊𝑠𝑘+1 −𝑊𝑠𝑘 )
𝐿2→ (𝑊2

𝑡 + 𝑡)/2,

where 𝑠0, . . . , 𝑠𝑛 belong to a segmentation such that max𝑘 (𝑠𝑘+1 − 𝑠𝑘 ) → 0.

2.∗ Suppose that 𝑊 is a Wiener process and 𝑓 : R+ → R is a left-continuous
deterministic function. Prove that the process (𝑊𝐶 (𝑡) , 𝑡 ≥ 0), where the time change
𝐶 is defined in (7.27), has the same distribution as 𝑍 := (∫ 𝑡0 𝑓𝑠 d𝑊𝑠, 𝑡 ≥ 0).

3. Suppose we are given the Itô integral ∫ 𝑡𝑇 𝐹𝑠 d𝑊𝑠, where 𝑇 ≤ 𝑡 is a stopping time
with respect to the filtration F . If 𝑋 ∈ F𝑇 and E𝑋2 < ∞, show that

𝑋

∫ 𝑡

𝑇

𝐹𝑠 d𝑊𝑠 =

∫ 𝑡

0
𝑋1[𝑇,𝑡] (𝑠)𝐹𝑠 d𝑊𝑠 .

4. Consider the martingale process 𝑆𝑡 = exp(𝑟𝑊𝑡 − 𝑡𝑟2/2) from (6.40), where (𝑊𝑡)
is a Wiener process. Using the telescoping sum 𝑆𝑡 − 𝑆0 =

∑𝑛−1
𝑘=0 𝑆𝑠𝑘 (𝑆𝑠𝑘+1/𝑆𝑠𝑘 − 1)

and without calling upon Itô’s formula, prove that∫ 𝑡

0
𝑟𝑆𝑠 d𝑊𝑠 = 𝑆𝑡 − 𝑆0.

5. Show that the covariation process ⟨𝑋,𝑌⟩𝑡 is of finite variation and is at least
right-continuous.
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6. Let 𝑋,𝑌 be two Itô processes on the same probability space, adapted to the same
filtration, and with dispersion processes 𝜎, 𝛾 ∈ P𝑡 , respectively. If (𝑋 (𝑛)), (𝑌 (𝑛))
are sequences of simple processes with jumps on the same segmentation Π𝑛 of [0, 𝑡]
and approximating 𝑋,𝑌 , then show that

𝑛−1∑︁
𝑘=0

(𝑋 (𝑛)
𝑠𝑘+1 − 𝑋

(𝑛)
𝑠𝑘 ) (𝑌 (𝑛)

𝑠𝑘+1 − 𝑌
(𝑛)
𝑠𝑘 ) 𝐿2→ ⟨𝑋,𝑌⟩𝑡 .

7. Suppose that 𝑋 and 𝑌 are Itô processes and define the process 𝑍 := (𝑍𝑡 , 𝑡 ≥ 0),
with 𝑍𝑡 := ⟨𝑋,𝑌⟩𝑡 . Prove that

(𝑍𝑡)2 ≤ ⟨𝑋⟩𝑡 ⟨𝑌⟩𝑡 .

Hence, deduce the Cauchy–Schwarz inequality:

(𝑉𝑍 (𝑡))2 ≤ ⟨𝑋⟩𝑡 ⟨𝑌⟩𝑡 ,

where 𝑉𝑍 (𝑡) is the total variation of 𝑍 in [0, 𝑡]; see (5.18).

8. Suppose that

𝑋𝑟 := 𝑋0 +
∫ 𝑟

0
𝜇𝑠d𝑠 +

∑︁
𝑗

∫ 𝑟

0
𝜎𝑠, 𝑗 d𝑊𝑠, 𝑗 , 𝑟 ∈ [0, 𝑡]

is a multivariate Itô process. Show that

d⟨𝑋⟩𝑡 =
∑︁
𝑗

𝜎2
𝑡, 𝑗 d𝑡.

9. Define

𝐻𝑘 (𝑥, 𝑡) :=
𝑡𝑘/2

𝑘!
ℏ𝑘 (𝑥/

√
𝑡), 𝑘 ∈ N,

to be a scaled Hermite polynomial; see Section B.5 for the properties of these
polynomials. Show that

d𝐻𝑘 (𝑊𝑡 , 𝑡) = 𝐻𝑘−1(𝑊𝑡 , 𝑡)d𝑊𝑡 ,

that is, 𝐻𝑘 (𝑥, 𝑡) is differentiated with respect to the Wiener process in the same way
that the monomial 𝑥𝑘/𝑘! is differentiated in ordinary calculus.

10. Prove or disprove: if 𝑋 := (𝑋𝑣, 𝑣 ∈ [0, 𝑡]) is a zero-mean Itô process and
⟨𝑋⟩𝑣 = 𝑡, 𝑣 ∈ [0, 𝑡], then 𝑋 is a Wiener process on [0, 𝑡].
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11.∗ Suppose 𝑓 and 𝑔 are positive continuous functions on R+. Suppose that there
exists a constant 𝑐 ∈ R such that

𝑓 (𝑡) ≤ 𝑔(𝑡) + 𝑐
∫ 𝑡

0
𝑓 (𝑠) d𝑠.

Then,

(7.115) 𝑓 (𝑡) ≤ 𝑔(𝑡) + 𝑐
∫ 𝑡

0
e𝑐(𝑡−𝑠)𝑔(𝑠) d𝑠.

This is Gronwall’s inequality. Prove this by first finding an upper bound for

ℎ(𝑡) := 𝑐e−𝑐𝑡
∫ 𝑡

0
𝑓 (𝑠) d𝑠,

in terms of the function 𝑔 and the constant 𝑐.

12. For an Itô diffusion process of the form (7.77), show that the function

ℎ(𝑥) :=
∫ 𝑥

1
d𝑦 exp

(∫ 𝑦

1
d𝑧 𝑅(𝑧)

)
, with 𝑅(𝑧) := − 2𝑎(𝑧)

[𝑏(𝑧)]2

satisfies 𝐿ℎ = 0. Use it to derive the probability that the process exits the interval
[𝑙, 𝑟] through 𝑙 rather than 𝑟.

13. For an Itô diffusion process of the form (7.77), show that the expected exit time
𝑠(𝑥) := E𝑥𝑇 of the interval [𝑙, 𝑟] satisfies the differential equation 𝐿𝑠 = −1 with
𝑠(𝑙) = 0, 𝑠(𝑟) = 0.

14. Show that E𝑥𝑇 < ∞ in Example 7.87.

15. Solve the SDE (7.74) via a separation of variables, similar to Example 7.68.

16. Using stochastic integration by parts (that is, the integral version of (7.57)),
show that as 𝑡 ↑ 1: ∫ 𝑡

0

1 − 𝑡
1 − 𝑠 d𝑊𝑠

a.s.→ 0.

17. Let 𝑋,𝑌 be two Itô processes on the same probability space, adapted to the same
filtration, and with dispersion processes 𝜎, 𝛾 ∈ P𝑡 , respectively. If (𝑋 (𝑛)), (𝑌 (𝑛))
are sequences of simple processes with jumps on the same segmentation Π𝑛 of [0, 𝑡]
and approximating 𝑋,𝑌 , then show that

1
2

𝑛−1∑︁
𝑘=0

(𝑌 (𝑛)
𝑠𝑘 + 𝑌 (𝑛)

𝑠𝑘+1) (𝑋
(𝑛)
𝑠𝑘+1 − 𝑋

(𝑛)
𝑠𝑘 ) 𝐿2→

∫ 𝑡

0
𝑌𝑠 ◦ d𝑋𝑠 .

In other words, the Itô–Stratonovich integral can be defined as the limit of the
Riemann sum above.
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18. Suppose that 𝑓 is a three times continuously differentiable and invertible func-
tion such that ∫ 𝑏𝑎 d𝑥

𝑓 (𝑥) = 𝑔(𝑏) − 𝑔(𝑎). Use the Itô–Stratonovich method to find the
strong solution to the SDE:

d𝑋𝑡 = (𝑐 𝑓 (𝑋𝑡) + 𝑓 ′(𝑋𝑡) 𝑓 (𝑋𝑡)/2) d𝑡 + 𝑓 (𝑋𝑡) d𝑊𝑡 ,

where 𝑐 is a constant.

19. Let 𝑍 := (∫ 𝑡0 𝜇𝑠 d𝑊𝑠, 𝑡 ≥ 0) be a continuous local martingale, and let 𝑓 (𝑍) :=
exp(𝑍 − ⟨𝑍⟩/2) be its stochastic exponential. Assume that there exists an 𝜀 > 0
such that 𝑍 satisfies the weak Novikov condition:

E exp((1 + 𝜀)⟨𝑍⟩𝑡/2) < ∞.

(a) Show that ( 𝑓 (𝑍𝑠), 𝑠 ≤ 𝑡) is a local martingale.
(b) Let (𝑇𝑛) be a localizing sequence for 𝑓 (𝑍), so that ( 𝑓 (𝑍𝑠∧𝑇𝑛), 𝑠 ≤ 𝑡) is

a martingale. Use Hölder’s inequality in Theorem 2.47 to prove that for
𝑝, 𝑟, 𝑞 ≥ 1 and 1

𝑝
+ 1
𝑞
= 1
𝑟
:

∥ 𝑓 (𝑍𝑡∧𝑇𝑛)∥𝑟 ≤ [E 𝑓 (𝑝𝑟 𝑍𝑡∧𝑇𝑛)]1/𝑝
[
E exp

(
𝑞𝑟 (𝑝𝑟 − 1)

2
⟨𝑍⟩𝑡∧𝑇𝑛

)]1/𝑞
.

(c) Use the inequality in (b) with 𝑟 = 1 + 𝜀4 and 𝑝 = 1 + 𝜀2 to prove that

sup
𝑛

E[ 𝑓 (𝑍𝑡∧𝑇𝑛)]1+𝜀2
< ∞.

(d) Use the results above to show that ( 𝑓 (𝑍𝑡∧𝑇𝑛), 𝑛 ∈ N) is UI. Hence, deduce that
( 𝑓 (𝑍𝑠), 𝑠 ≤ 𝑡) is a martingale.

20. Let 𝑍 := (∫ 𝑡0 𝜇𝑠 d𝑊𝑠, 𝑡 ≥ 0) be a continuous local martingale, and let 𝑓 (𝑍) :=
exp(𝑍 − ⟨𝑍⟩/2) be its stochastic exponential. Assume that 𝑍 satisfies the Krylov
condition:

lim
𝜀↓0

𝜀 lnE exp((1 − 𝜀)⟨𝑍⟩𝑡/2) = 0.

(a) Show that the Krylov condition is less stringent than the weak Novikov condi-
tion in Exercise 19.

(b) Prove that there exists a sufficiently small 𝜀 > 0 such that ( 𝑓 ((1−𝜀)𝑍𝑠), 𝑠 ≤ 𝑡)
satisfies the weak Novikov condition in Exercise 19. Hence, deduce that
( 𝑓 ((1 − 𝜀)𝑍𝑠), 𝑠 ≤ 𝑡) is a martingale with E 𝑓 ((1 − 𝜀)𝑍𝑠) = 1 for all 𝑠 ≤ 𝑡.

(c) Use Hölder’s inequality in Theorem 2.47 with 𝑝 = 1/(1 − 𝜀) and 𝑞 = 1/𝜀 to
prove that:

1 = E 𝑓 ((1 − 𝜀)𝑍𝑠) ≤ [E 𝑓 (𝑍𝑠)]1−𝜀 [E exp ((1 − 𝜀)⟨𝑍⟩𝑠/2)]𝜀 .
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(d) Using the results above, prove that E 𝑓 (𝑍𝑠) = 1 for all 𝑠 ≤ 𝑡. Hence, deduce
that ( 𝑓 (𝑍𝑠), 𝑠 ≤ 𝑡) is a martingale.

21. Solve the Schwartz log-mean reverting SDE, which models energy prices:

d𝑋𝑡 = 𝛼(𝜇 − ln 𝑋𝑡) 𝑋𝑡 d𝑡 + 𝜎𝑋𝑡 d𝑊𝑡 , 𝑋0 > 0.

22.∗ Let 𝒙 ∈ R𝑑 with Euclidean norm ∥𝒙∥ =: 𝑥 ≥ 0 and let 𝑾 be a 𝑑-dimensional
Wiener process. Define the processes 𝑋 := ∥𝒙 +𝑾∥ and𝑊 := (𝑊𝑡 , 𝑡 ≥ 0), where

(7.116) 𝑊𝑡 :=
𝑑∑︁
𝑖=1

∫ 𝑡

0
𝜎𝑠,𝑖 d𝑊𝑠,𝑖, 𝑡 ≥ 0

and
𝜎𝑡,𝑖 :=

𝑥𝑖 +𝑊𝑡,𝑖

∥𝒙 +𝑾 𝑡 ∥
, 𝑖 = 1, . . . , 𝑑.

(a) Prove that𝑊 is a one-dimensional Wiener process.
(b) Show that 𝑋 satisfies the SDE

d𝑋𝑡 =
𝑑 − 1
2𝑋𝑡

d𝑡 + d𝑊𝑡 , 𝑋0 = 𝑥.

23.∗ For a multidimensional SDE of the form (7.66) the Euler method generalization
is to replace (7.111) with

𝒀 𝑘+1 := 𝒀 𝑘 + 𝒂(𝒀 𝑘 ) ℎ + B(𝒀 𝑘 )
√
ℎ 𝒁𝑘

as an approximation to 𝑿𝑘ℎ, where the {𝒁𝑘 } are standard multivariate normal
random vectors. Implement a two-dimensional Euler algorithm to simulate the
solution to the (simplified) Duffing–Van der Pol Oscillator:

d𝑋𝑡 = 𝑌𝑡 d𝑡,

d𝑌𝑡 =
(
𝑋𝑡

(
𝛼 − 𝑋2

𝑡

)
− 𝑌𝑡

)
d𝑡 + 𝜎𝑋𝑡 d𝑊𝑡 .

For the parameters 𝛼 = 1 and 𝜎 = 1/2 draw a plot of 𝑋𝑡 against 𝑡 for 𝑡 ∈ [0, 1000].
Also plot the trajectory of the two-dimensional process (𝑋𝑡 , 𝑌𝑡), 𝑡 ∈ [0, 1000]. Use
a step size ℎ = 10−3 and starting point (−2, 0).

24. Simulate the paths of the process 𝑌 in Example 7.58 in three different ways.

(a) Evaluate the integral ∫ 𝑡0𝑊𝑠 d𝑠 via a standard integration quadrature rule.
(b) Use Euler’s method to approximately simulate the process (∫ 𝑡0 𝑠 d𝑊𝑠, 𝑡 ∈ [0, 1])

and subtract this from (𝑡𝑊𝑡 , 𝑡 ∈ [0, 1]). How does the simulated sample path
compare with that in part (a)?
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(c) Simulate the Gaussian process 𝑌 via Algorithm 2.76.

25. Consider the autonomous SDE (7.77). By Itô’s lemma:

d𝑏(𝑋𝑠) = 𝑏′(𝑋𝑠) d𝑋𝑠 +
1
2
𝑏′′(𝑋𝑠) d⟨𝑋𝑠, 𝑋𝑠⟩

= 𝑏′(𝑋𝑠) {𝑎(𝑋𝑠)d𝑠 + 𝑏(𝑋𝑠) d𝑊𝑠} +
1
2
𝑏′′(𝑋𝑠) 𝑏(𝑋𝑠)2 d𝑠.

Denoting Δ𝑊𝑡 := 𝑊𝑡+ℎ −𝑊𝑡 and Δ𝑋𝑡 := 𝑋𝑡+ℎ − 𝑋𝑡 , it follows that

Δ𝑋𝑡 =

∫ 𝑡+ℎ

𝑡

𝑎(𝑋𝑢) d𝑢 +
∫ 𝑡+ℎ

𝑡

𝑏(𝑋𝑢) d𝑊𝑢

= ℎ 𝑎(𝑋𝑡) + 𝑏(𝑋𝑡)Δ𝑊𝑡 + O(ℎ
√
ℎ) +

∫ 𝑡+ℎ

𝑡

∫ 𝑢

𝑡

𝑏′(𝑋𝑠) 𝑏(𝑋𝑠) d𝑊𝑠 d𝑊𝑢,

where the last term can be written as

𝑏′(𝑋𝑡) 𝑏(𝑋𝑡)
1
2
((Δ𝑊𝑡)2 − ℎ) + O(ℎ2).

This suggests that we can replace the SDE (7.110) with the difference equation

(7.117) 𝑌𝑘+1 = 𝑌𝑘 + 𝑎(𝑌𝑘) ℎ + 𝑏(𝑌𝑘)
√
ℎ 𝑍𝑘+1 + 𝑏′(𝑌𝑘) 𝑏(𝑌𝑘) (𝑍2

𝑘+1 − 1) ℎ
2︸                           ︷︷                           ︸

additional term

,

where 𝑍1, 𝑍2, . . .
iid∼ N(0, 1). This is Milstein’s method. The only difference with

the Euler method is the additional term involving the derivative of 𝑏.
Specify how, for the geometric Brownian motion in Example 7.112, the updating

step in (7.113) is modified in Milstein’s method.

26. Modify the stochastic difference equation in (7.111) to obtain an Euler approx-
imation to the non-autonomous SDE

d𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡) d𝑡 + 𝑏(𝑋𝑡 , 𝑡) d𝑊𝑡 , 𝑡 ≥ 0.

27. Consider approximating the strong and weak solutions of the SDE:

d𝑋𝑡 =
1
𝑋𝑡

d𝑡 + d𝑊𝑡 , 𝑋0 = 𝑥 ≥ 0,

where𝑊 is a Wiener process.
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(a) Simulate an approximate realization of (𝑋𝑡 , 𝑡 ∈ [0, 1]), 𝑋0 = 𝑥 = 1 on the grid
0, ℎ, 2ℎ, . . . , 1 with step size ℎ = 1/(212 − 1) by approximating the solution
of the ODE (7.106) in Example 7.105 via the Euler method (𝑌𝑘 ≈ 𝑍𝑘ℎ and
𝑌0 = 0):

𝑌𝑘 = 𝑌𝑘−1 +
ℎ

𝑥 +𝑊(𝑘−1)ℎ + 𝑌𝑘−1
, 𝑘 = 1, 2, . . . .

In other words, simulate (𝑥 + 𝑊𝑘ℎ + 𝑌𝑘 , 𝑘 ≤ 212) as an approximation to
(𝑋𝑘ℎ, 𝑘 ≤ 212).

(b) Compare the approximation in part (a) with Euler’s approximation (𝑋𝑘 , 𝑘 ∈ N)
(i.e., 𝑋𝑡ℎ ≈ 𝑋𝑘 ) to the SDE:

(7.118) 𝑋𝑘 = 𝑋𝑘−1 +
ℎ

𝑋𝑘−1
+𝑊𝑘ℎ −𝑊(𝑘−1)ℎ, 𝑘 = 1, 2, . . . .

(c) The explicit or vanilla Euler approximation in (7.118) fails when 𝑋0 = 𝑥 = 0,
because the recursion requires division by 0 at 𝑘 = 1. This failure motivates the
implicit Euler method, in which the approximation (𝑋𝑘 , 𝑘 ∈ N) with 𝑋0 = 0
satisfies:

(7.119) 𝑋𝑘 = 𝑋𝑘−1 +
ℎ

𝑋𝑘
+𝑊𝑘ℎ −𝑊(𝑘−1)ℎ, 𝑘 = 1, 2, . . . .

Simulate a realization of 𝑋 on the grid 0, ℎ, 2ℎ, . . . , 1 with step size ℎ =

1/(212 − 1).
(d) Let 𝑾 be a three-dimensional Wiener process, so that its norm ∥𝑾∥ defines

a Bessel process, see Exercise 22, and the 𝑊 defined in formula (7.116) with
𝑑 = 3 and 𝒙 = 0 is a Wiener process. If we replace 𝑊 with 𝑊 in (7.119), we
obtain the approximate weak solution (𝑋𝑘ℎ, 𝑘 ∈ N, 𝑋0 = 0) to the SDE, where
𝑋 satisfies

𝑋𝑘 = 𝑋𝑘−1 +
ℎ

𝑋𝑘
+𝑊𝑘ℎ −𝑊(𝑘−1)ℎ, 𝑘 = 1, 2, . . . .

Using a realization of 𝑾 and its corresponding Wiener process 𝑊 , simulate
a sample path of the Bessel process ∥𝑾∥ on [0, 1] and compare it with the
corresponding sample path of 𝑋 .





APPENDIX A

SELECTED SOLUTIONS

We have included in this appendix a selection of solutions. These could be
used in a tutorial setting, for example.

Various exercises in this book have been inspired by and adapted from the references
mentioned in the preface. Additional sources for exercises are Feller (1970), Jacod
and Protter (2004), and Williams (1991).

A.1 Chapter 1
4. Write C = {𝐵𝑖, 𝑖 ∈ 𝐼}, where 𝐼 is a countable set of indexes and the {𝐵𝑖} are
disjoint with union 𝐸 . Let E be the collection of all sets of the form ∪ 𝑗∈𝐽𝐵 𝑗 , where
𝐽 ⊆ 𝐼. This is a𝜎-algebra on 𝐸 , because (a) 𝐸 = ∪𝑖∈𝐼𝐵𝑖 ∈ E; (b) the complement of
∪ 𝑗∈𝐽𝐵 𝑗 is ∪𝑘∈𝐼\𝐽𝐵𝑘 , and so is also in E; (c) the union of sets ∪ 𝑗∈𝐽𝑛𝐵 𝑗 , 𝑛 = 1, 2, . . .
is ∪ 𝑗∈∪𝑛𝐽𝑛𝐵 𝑗 , which also lies in E. Since E is a 𝜎-algebra that contains C, we have
E ⊇ 𝜎C. Conversely, each set from E lies in 𝜎𝐶, so 𝜎𝐶 = E.

9. We check the properties of Definition 1.6: (a) 𝐸 = 𝑓 −1𝐹 ∈ 𝑓 −1F since 𝐹 ∈ F ,
as F is a 𝜎-algebra on 𝐹; (b) Let 𝐴 ∈ 𝑓 −1F , then there exists 𝐵 ∈ F such that
𝐴 = 𝑓 −1𝐵. The complement of 𝐴 in 𝐸 is 𝐸 \ 𝐴 = ( 𝑓 −1𝐹) \ ( 𝑓 −1𝐵) = 𝑓 −1(𝐹 \ 𝐵).
This set belongs to 𝑓 −1F , since 𝐹 \ 𝐵 ∈ F , as F is a 𝜎-algebra on 𝐹; (c) Let
𝐴1, 𝐴2, . . . ∈ 𝑓 −1F , then there exist 𝐵1, 𝐵2, . . . ∈ F such that 𝐴𝑛 = 𝑓 −1𝐵𝑛. Taking
the union, we have ∪𝑛𝐴𝑛 = ∪𝑛 𝑓 −1𝐵𝑛 = 𝑓 −1 ∪𝑛 𝐵𝑛. Since F is a 𝜎-algebra,⋃
𝑛 𝐵𝑛 ∈ F and therefore

⋃
𝑛 𝐴𝑛 ∈ 𝑓 −1F .

11. We need to show that the finite additivity and continuity imply countable
additivity. Let 𝐵1, 𝐵2, . . . be disjoint and let 𝐵 := ∪∞

𝑖=1𝐵𝑖. Also, define 𝐴𝑛 := ∪∞
𝑖=𝑛
𝐵𝑖,

𝑛 = 1, 2, . . .. We have, by the finite additivity: 𝜇(𝐵) = ∑𝑛
𝑖=1 𝜇(𝐵𝑖) + 𝜇(𝐴𝑛+1). Now,
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𝑖=1 𝜇(𝐵𝑖) is increasing in 𝑛 and is bounded by 1, since 𝜇(𝐵) = 𝜇(𝐸) − 𝜇(𝐵𝑐) ≤ 1

by the finite additivity and the fact that 𝜇(𝐸) = 1. Hence, lim𝑛→∞
∑𝑛
𝑖=1 𝜇(𝐵𝑖) =∑∞

𝑖=1 𝜇(𝐵𝑖) exists, and 𝜇(𝐵) = lim𝑛→∞
∑𝑛
𝑖=1 𝜇(𝐵𝑖)+lim𝑛→∞ 𝜇(𝐴𝑛+1) =

∑∞
𝑖=1 𝜇(𝐵𝑖)+

0, using the continuity property, since 𝐴1, 𝐴2, . . . is decreasing to ∅.

14. The complement of (−∞, 𝑎] is (𝑎,∞). For 𝑎 < 𝑏, the intersection of (𝑎,∞)
and (−∞, 𝑏] is (𝑎, 𝑏]. Finally, (𝑎, 𝑏) = ∩𝑛>𝑁 (𝑎, 𝑏 − 1/𝑛] and {𝑎} = ∩𝑛>𝑁 (𝑎 −
1/𝑛, 𝑎 + 1/𝑛) for 𝑁 large enough.

15. Leb(Q) = ∑
𝑥∈Q Leb({𝑥}) = ∑

𝑥∈Q 0 = 0.

19. At step 𝑛 of the construction (starting with 𝑛 = 0) we take away the open intervals
𝐷𝑛,𝑖, 𝑖 = 1, . . . , 2𝑛. Each of these 2𝑛 intervals is of the form (3𝑘 −2, 3𝑘 −1)/3𝑛+1 for
some 𝑘 ∈ {1, . . . , 3𝑛}, and have Lebesgue measure (i.e., length) 3𝑛+1. The deleted
intervals form the open set 𝐷 := ∪∞

𝑛=0 ∪2𝑛
𝑖=1 𝐷𝑛,𝑖, and its complement in [0, 1] is

the closed Cantor set 𝐶. Since 𝐷 is a countable union of intervals, its Lebesgue
measure is easy to determine:

Leb(𝐷) =
∞∑︁
𝑛=0

2𝑛∑︁
𝑖=1

Leb(𝐷𝑛,𝑖) =
∞∑︁
𝑛=0

2𝑛 3−(𝑛+1) =
1
3

∞∑︁
𝑛=0

(
2
3

)𝑛
= 1.

Hence, Leb(𝐶) = 1−Leb(𝐷) = 0. At any stage 𝑛 in the construction, the remaining
set (that is, complement of∪2𝑛

𝑖=1𝐷𝑛,𝑖 in [0,1]) consists of the union of closed intervals,
and therefore has as many points as the interval [0, 1]. It therefore is plausible that
𝐶 has as many points as [0, 1]. To formally prove this, we need to show that there
exists a one-to-one function which maps each point in [0, 1] to a point in 𝐶. This
is done in Exercise 2.6.

26. (a) For fixed 𝑥, the function 𝑓𝑥 : 𝑦 ↦→ 𝑓 (𝑥, 𝑦) is a section of 𝑓 . By Ex-
ercise 12 it is F -measurable. Since 𝐾 (𝑥, ·) is a measure on (𝐹, F ), the
mapping 𝑥 ↦→ 𝐾 (𝑥, ·) 𝑓𝑥 is well-defined and in E, and the same holds for
𝑔𝑥 : 𝑦 ↦→ 𝑔(𝑥, 𝑦). By the linearity of the integral with respect to 𝐾 (𝑥, ·),
we have 𝑇 (𝑎 𝑓 + 𝑏𝑔) (𝑥) = 𝐾 (𝑥, ·) (𝑎 𝑓𝑥 + 𝑏𝑔𝑥) = 𝑎𝐾 (𝑥, ·) 𝑓𝑥 + 𝑏𝐾 (𝑥, ·)𝑔𝑥 =

𝑎(𝑇 𝑓 ) (𝑥) + 𝑏(𝑇 𝑓 ) (𝑥). In other words, 𝑇 is a linear mapping.
(b) If 𝑓𝑛 ↑ 𝑓 , with corresponding 𝑥-sections ( 𝑓𝑛,𝑥), then for each 𝑥, (𝑇 𝑓𝑛) (𝑥) =

𝐾 (𝑥, ·) 𝑓𝑛,𝑥 ↑ 𝐾 (𝑥, ·) 𝑓𝑥 = (𝑇 𝑓 ) (𝑥), by the Monotone Convergence Theorem,
since 𝐾 (𝑥, ·) is a measure. That is, 𝑇 is a continuous mapping.

(c) Let
M := { 𝑓 ∈ (E ⊗ F )+ : 𝑇 𝑓 ∈ E}.

It contains the indicator 1𝐸×𝐹 . Moreover, if 𝑓 , 𝑔 ∈ M are bounded, and
𝑎, 𝑏 ∈ R, then 𝑎 𝑓 + 𝑏𝑔 are bounded and, by the linearity of 𝑇 , they are in E
again. Finally, (b) shows that for any sequence of positive functions in M that
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increases to some 𝑓 , the latter also belongs to M. Hence, M is a monotone
class of functions. It also includes the indicators 1𝐴×𝐵, 𝐴 ∈ E, 𝐵 ∈ F , because
(𝑇1𝐴×𝐵) (𝑥) = 1𝐴 (𝑥)𝐾 (𝑥, 𝐵), where both 1𝐴 and 𝐾 (·, 𝑏) are in E+. It follows
from Theorem 1.33 that M countains all positive (as well as all bounded)
(E ⊗ F )-measurable functions.

A.2 Chapter 2
5. We have 𝐹 (𝑥) = 𝛼𝐹𝑑 (𝑥) + (1 − 𝛼)𝐹𝑐 (𝑥), where 𝐹𝑑 is the cdf of the constant 0
and 𝐹𝑐 is the cdf of the Exp(1) distribution. In terms of the Dirac measure at 0 and
the Lebesgue measure, the measure 𝜇 on (R,B) is given by:

𝜇(d𝑥) = 𝛼𝛿0(d𝑥) + (1 − 𝛼)1[0,∞) (𝑥) e−𝑥d𝑥.

6. (c) Note that 𝑞 is a strictly increasing function (swap the axes in the graph
of 𝐹 to obtain the graph of 𝑞). Each element 𝑥 ∈ 𝐷𝑛,𝑖 is mapped by 𝐹 to
𝑢 = (2𝑖 − 1)/2𝑛+1, and this 𝑢 is mapped by 𝑞 to the right-endpoint of 𝐷𝑛,𝑖.
Hence, no element of the set 𝐷 is in the range of 𝑞 and neither are the left-
endpoints of the {𝐷𝑛,𝑖}. Since 𝐹 (𝑥) ≤ 1 for all 𝑥 ∈ [0, 1], there is no 𝑢 such
that 𝑞(𝑢) = 1. Thus, the range of 𝑞 does not include 𝐷 ∪ 𝐶0. Now take any
𝑥 ∈ 𝐶 \ 𝐶0 and consider its value 𝑢 = 𝐹 (𝑥). By Exercise 1.24 (b), 𝑞(𝑢) = 𝑥,
because 𝐹 (𝑥 + 𝜀) > 𝐹 (𝑥) for every 𝜀 > 0. Thus, every 𝑥 ∈ 𝐶 \ 𝐶0 lies in the
range of 𝑞.

(d) Every element in [0, 1] is mapped to a unique element in the range 𝐶 \ 𝐶0 of
𝑞. Since 𝐶0 is a countable set, 𝐶 has as many elements as [0, 1] (or indeed
R), even though it has Lebesgue measure 0.

7. (a) The graphs are given in Figure A.1.
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Figure A.1: The functions 𝑋1, 𝑋2, and 𝑋3.

(b) The area under the graph of each 𝑋𝑛 is 1/2, so P(𝑋 = 1) = 1/2, and because
𝑋𝑛 only takes the values 0 and 1, 𝑋𝑛 ∼ Ber(1/2).
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(c) Take any finite set of indexes 𝑖1, . . . , 𝑖𝑛. For any selection 𝑥𝑖𝑘 ∈ {0, 1}, 𝑘 =

1, . . . , 𝑛, we have

P(𝑋𝑖1 = 𝑥𝑖1 , . . . , 𝑋𝑖𝑛 = 𝑥𝑖𝑛) = 2−𝑛 =
𝑛∏
𝑘=1

P(𝑋𝑖𝑘 = 𝑥𝑖𝑘 ).

8. (a) Since 𝑋 and 𝑌 are independent, the density 𝑓 of (𝑋,𝑌 ) with respect to
the Lebesgue measure on R2 is given by the product of the individual pdfs:
𝑓 (𝑥, 𝑦) = 1[0,1] (𝑥) × 1R+ (𝑦)e−𝑦, (𝑥, 𝑦) ∈ R2.

0

x

0.50
0 1

y

0.5

f
(x

;y
)

2 3 14

1

Figure A.2: The joint pdf of 𝑋 and 𝑌 .

(b) It follows from direct computation that

P ((𝑋,𝑌 ) ∈ [0, 1] × [0, 1]) =
∫
[0,1]×[0,1]

d𝑥 d𝑦 𝑓 (𝑥, 𝑦)

=

∫ 1

0
d𝑥

∫ 1

0
d𝑦 e−𝑦 = 1 − e−1.

(c) We have

P(𝑋 + 𝑌 < 1) =
∫ 1

0
d𝑥

∫ 1−𝑥

0
d𝑦 𝑓 (𝑥, 𝑦) =

∫ 1

0
d𝑥 P(𝑌 < 1 − 𝑥)

=

∫ 1

0
d𝑥

(
1 − e−(1−𝑥)

)
=

[
𝑥 − e−(1−𝑥)

]1

0
= e−1.

9. From Example 2.42 (on multivariate normal distributions), we see that 𝑿 has
a multivariate normal distribution with mean vector 0 and covariance matrix 𝚺 =

AA⊤. Using Example 2.40 (on linear transformations), it follows that 𝑿 has density

𝑓𝑿 (𝒙) =
𝑓𝒁 (A−1𝒙)

|A| =
(2𝜋)− 𝑛2
|A| e−

1
2 𝒙

⊤ (A−1)⊤A−1𝒙 =
(2𝜋)− 𝑛2√︁

|𝚺|
e−

1
2 𝒙

⊤𝚺−1𝒙 , 𝒙 ∈ R𝑛.
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This density is that of a standard normal random vector if and only if 𝚺 = I𝑛.
The geometric explanation is that the spherical symmetry of the standard normal
distribution is preserved by any orthogonal transformation (e.g., rotation).

10. (a) Since 𝑋 ∼ Exp(𝜆) and 𝑌 ∼ Exp(𝜇), we have P(𝑋 > 𝑥) = e−𝜆𝑥 and
P(𝑌 > 𝑦) = e−𝜇𝑦. Let 𝑍 := min(𝑋,𝑌 ). Then, 𝑍 > 𝑧 if and only if 𝑋 > 𝑧 and
𝑌 > 𝑧. Hence,

P(𝑍 > 𝑧) = P(𝑋 > 𝑧,𝑌 > 𝑧) = P(𝑋 > 𝑧)P(𝑌 > 𝑧) = e−(𝜆+𝜇)𝑧 .

It follows that the cdf of 𝑍 is given by

𝐹𝑍 (𝑧) := 1 − P(𝑍 > 𝑧) = 1 − e−(𝜆+𝜇)𝑧,

which is the cdf of Exp(𝜆 + 𝜇).
(b) The desired result follows from direct computation:

P(𝑋 < 𝑌 ) =
∫ ∞

0
d𝑦

∫ 𝑦

0
d𝑥 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) =

∫ ∞

0
d𝑦 𝜇e−𝜇𝑦 (1 − e−𝜆𝑦)

= 𝜇

∫ ∞

0
d𝑦 (e−𝜇𝑦 − e−(𝜆+𝜇)𝑦) = 𝜇

[
− 1
𝜇

e−𝜇𝑦 + 1
𝜆 + 𝜇e−(𝜆+𝜇)𝑦

]∞
0

=
𝜆

𝜆 + 𝜇 .

11. Since 𝑋 ∼ U(−𝜋/2, 𝜋/2), 𝑓𝑋 (𝑥) = 1/𝜋, 𝑥 ∈ (−𝜋/2, 𝜋/2). Let 𝑌 := tan(𝑋).
We apply the transformation rule (2.39). The inverse transformation is given by
𝑥 = arctan(𝑦), with Jacobian |d𝑥/d𝑦 | = 1/(1 + 𝑦2). Hence,

𝑓𝑌 (𝑦) =
1

𝜋(1 + 𝑦2)
, 𝑦 ∈ R,

which is the pdf of the Cauchy distribution.

13. Let 𝑍 := |𝑋 |. The distribution of 𝑍 is called the half-normal distribution. Its
pdf is twice that of the N(0, 1) distribution on R+, so

𝑓𝑍 (𝑧) =
2

√
2𝜋

e−
1
2 𝑧

2
, 𝑧 ∈ R+.

Now apply the transformation rule (2.39) to 𝑌 := 𝑍2. The inverse transformation
𝑧 =

√
𝑦, 𝑦 > 0 has Jacobian | 𝜕𝑧

𝜕𝑦
| = 1/(2√𝑦), so

𝑓𝑌 (𝑦) = 𝑓𝑍 (𝑧)
1

2√𝑦 =
1

√
2𝜋

e−
1
2 𝑦𝑦−

1
2 =

(
1
2

) 1
2
𝑦−

1
2 e− 1

2 𝑦

Γ( 1
2 )

, 𝑦 > 0,

which is the pdf of Gamma( 1
2 ,

1
2 ) = 𝜒

2
1 .
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19. We have

𝜓(𝑡) =
∫
R

d𝑥
1
2

e−|𝑥 | ei𝑡𝑥 =

∫ 0

−∞
d𝑥

1
2

e𝑥(1+i𝑡) +
∫ ∞

0
d𝑥

1
2

e𝑥(−1+i𝑡)

=
1
2

1
1 + i𝑡

+ 1
2

1
1 − i𝑡

=
1

1 + 𝑡2
.

22. For 𝑓 = 𝑎1𝐴 of the form suggested, we have 𝑁 𝑓 = 𝑎𝑁 (𝐴), where 𝑁 (𝐴) ∼
Poi(𝜇(𝐴)). Hence, using the Laplace transform for the Poisson distribution, we
have

E e−𝑁 𝑓 = E e−𝑎𝑁 (𝐴) = e−𝜇(𝐴) (1−e−𝑎) = e−
∫
𝜇(d𝒙) (1−e−𝑎1𝐴 (𝒙) ) = e−𝜇(1−e− 𝑓 ) ,

where we have used the integral notation 𝜇 𝑓 for the last equation. So (2.80) holds
for this case. It also holds if 𝜇(𝐴) = ∞. Next, take 𝑓 a positive simple function
in canonical form; thus, 𝑓 =

∑𝑛
𝑖=1 𝑎𝑖1𝐴𝑖 , where the {𝐴𝑖} are disjoint and the {𝑎𝑖}

are in R+. Then, 𝑁 𝑓 =
∑𝑛
𝑖=1 𝑎𝑖𝑁 (𝐴𝑖), where the {𝑁 (𝐴𝑖)} are independent, and

𝑁 (𝐴𝑖) ∼ Poi(𝜇(𝐴𝑖)), 𝑖 = 1, . . . , 𝑛. Therefore,

E e−𝑁 𝑓 =
𝑛∏
𝑖=1

E e−𝑎𝑖𝑁 (𝐴𝑖) = e−
∑𝑛
𝑖=1 𝜇(𝐴𝑖) (1−e−𝑎𝑖 )

= e−
∫
𝜇(d𝒙) (1−e−

∑𝑛
𝑖=1 𝑎𝑖1𝐴𝑖 (𝒙) ) = e−𝜇(1−e− 𝑓 ) ,

so that (2.80) holds again. For a general 𝑓 ∈ E+, take a sequence ( 𝑓𝑛) of positive
simple functions increasing to 𝑓 . By the Bounded Convergence Theorem 2.36
(applied to each outcome),

E e−𝑁 𝑓 = lim
𝑛

E e−𝑁 𝑓𝑛 = lim
𝑛

e−𝜇(1−e− 𝑓𝑛 ) = e−𝜇(1−e− 𝑓 ) ,

where the last equality follows from the Monotone Convergence Theorem applied
to the measure 𝜇 and the sequence (1 − e− 𝑓𝑛) ↑ 1 − e− 𝑓 .

A.3 Chapter 3
4. (a) If 𝑁 ≤ 𝑛, then there is a 𝑘 ≤ 𝑛 such that |𝑆𝑘 | > 𝑎, which implies that

max𝑘≤𝑛 |𝑆𝑘 | > 𝑎. Conversely, if max𝑘≤𝑛 |𝑆𝑘 | > 𝑎, then there is a 𝑘 ≤ 𝑛 such
that |𝑆𝑘 | > 𝑎, which implies that 𝑁 ≤ 𝑛.

(b) For 𝑘 < 𝑛, 𝑆𝑘 =
∑𝑘
𝑖=1 𝑋𝑖 and 𝑆𝑛 − 𝑆𝑘 =

∑𝑛
𝑖=𝑘+1 𝑋𝑖, so 𝑆𝑘 only depends on

𝑋1, . . . , 𝑋𝑘 and 𝑆𝑛 − 𝑆𝑘 depends only on 𝑋𝑘+1, . . . , 𝑋𝑛. By (a), the event
{𝑁 ≤ 𝑘} depends on 𝑋1, . . . , 𝑋𝑘 and {𝑁 ≤ 𝑘 − 1} depends on 𝑋1, . . . , 𝑋𝑘 , so
that {𝑁 = 𝑘} only depends on 𝑋1, . . . , 𝑋𝑘 .
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(c) By (b),

E[𝑆𝑘 (𝑆𝑛 − 𝑆𝑘 )1{𝑁=𝑘}] = E[𝑆𝑘1{𝑁=𝑘}] E[𝑆𝑛 − 𝑆𝑘 ]︸       ︷︷       ︸
= 0

= 0 for all 𝑘 < 𝑛

and trivally also for 𝑘 = 𝑛.
(d) We have

E𝑆2
𝑛1{𝑁=𝑘} ≥ E[(𝑆2

𝑘 + 2𝑆𝑘 (𝑆𝑛 − 𝑆𝑘 ))1{𝑁=𝑘}]
= E[(𝑆2

𝑁 + 2𝑆𝑁 (𝑆𝑛 − 𝑆𝑘 ))1{𝑁=𝑘}]
≥ E[𝑎2

1{𝑁=𝑘}] + 2𝑎E[𝑆𝑛 − 𝑆𝑘 ]E1{𝑁=𝑘} = 𝑎2 P(𝑁 = 𝑘).

(e) Using (a) and (d), we have

Var 𝑆𝑛 = E 𝑆2
𝑛 ≥ E

[
𝑆2
𝑛

𝑛∑︁
𝑘=1

1{𝑁≤𝑘}

]
≥ 𝑎2

𝑛∑︁
𝑘=1

P(𝑁 = 𝑘)

= 𝑎2 P(𝑁 ≤ 𝑛) = 𝑎2 P(max
𝑘≤𝑛

|𝑆𝑘 | > 𝑎).

10b. The characteristic function of 𝑋𝑛/𝑛 is given by

𝜓𝑛 (𝑟) :=
𝜆/𝑛

e−i𝑟/𝑛 − (1 − 𝜆/𝑛)
=

𝜆

𝜆 + 𝑛
(
e−i𝑟/𝑛 − 1

) =
𝜆

𝜆 + (−i𝑟 + 𝑜(1))

as 𝑛 → ∞. We see that 𝜓𝑛 (𝑟) converges to 𝜓(𝑟) = 𝜆/(𝜆 − i𝑟), which we recognize
as the characteristic function of the Exp(𝜆) distribution.

11. (a) The characteristic function of 𝑋1 is

𝜙𝑋1 (𝑟) := E ei 𝑟𝑋1 = e−|𝑟 |, 𝑟 ∈ R.

It follows that the characteristic function of 𝑆𝑛 is

𝜙𝑆𝑛 (𝑟) := (E ei 𝑟𝑋1)𝑛 = e−𝑛 |𝑟 | = e−|𝑛 𝑟 | = E e𝑛 𝑟 𝑋1 , 𝑟 ∈ R.

The distribution of 𝑆𝑛/𝑛 is thus the same as that of 𝑋1. Hence, (𝑆𝑛/𝑛) trivially
converges in distribution to a Cauchy random variable.

(b) We have that

P(𝑀𝑛 ≤ 𝑥) = [P(𝑋 ≤ 𝑛𝑥/𝜋)]𝑛 =
(
1
2
+ arctan(𝑛𝑥/𝜋)/𝜋

)𝑛
.
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Hence, for 𝑥 ≤ 0 we get
(

1
2 + arctan(𝑛𝑥/𝜋)/𝜋

)𝑛
≤ (1/2)𝑛 → 0, and for 𝑥 > 0

we have (by L’Hôpital’s rule):

ln
[
lim
𝑛

(
1
2
+ arctan(𝑛𝑥/𝜋)/𝜋

)𝑛]
= lim

𝑛

ln
(

1
2 + arctan(𝑛𝑥/𝜋)/𝜋

)
1/𝑛

= lim
𝑛

1/(1 + [𝑛𝑥/𝜋]2)
1
2 + arctan(𝑛𝑥/𝜋)/𝜋

𝑥/𝜋2

−1/𝑛2

= lim
𝑛

−𝑛2𝑥

𝜋2 + 𝑛2𝑥2 = −1/𝑥.

Hence,
lim
𝑛

P(𝑀𝑛 ≤ 𝑥) = exp(−1/𝑥), 𝑥 > 0.

21. Since𝑌 is integrable, we have E |𝑌 |1{|𝑌 |>𝑏} → 0 as 𝑏 → ∞ by Proposition 3.30.
The condition 𝑓 (𝑥)/𝑥 ↑ ∞ as 𝑥 ↑ ∞ implies that for any 𝜀 > 0, we can always find
a 𝑏 such that 𝑓 (𝑥)/𝑥 ≥ 1/𝜀 for all 𝑥 ≥ 𝑏 > 0. Therefore,

𝜀−1 |𝑋 |1{|𝑋 |>𝑏} ≤
𝑓 ( |𝑋 |)
|𝑋 | |𝑋 |1{|𝑋 |>𝑏} ≤ 𝑓 ( |𝑋 |)1{|𝑋 |>𝑏}

implies that

𝜀−1 sup
𝑋∈K

E|𝑋 |1{|𝑋 |>𝑏} ≤ sup
𝑋∈K

E 𝑓 ( |𝑋 |)1{|𝑋 |>𝑏} ≤ sup
𝑋∈K

E 𝑓 ( |𝑋 |) = 𝑐1 < ∞.

Hence, for any 𝜀 > 0, there is a sufficiently large 𝑏 such that sup𝑋∈K E|𝑋 |1{|𝑋 |>𝑏} ≤
𝜀𝑐1, which is another way to express the fact that sup𝑋∈K E|𝑋 |1{|𝑋 |>𝑏} → 0 as
𝑏 ↑ ∞. Hence, K is UI by Proposition 3.30.

31. (a) This follows from:

|𝜓𝑋𝑛,𝑌𝑛 (𝒓) − 𝜓𝑋,𝑐 (𝒓) | ≤ |𝜓𝑋𝑛,𝑐 (𝒓) − 𝜓𝑋,𝑐 (𝒓) | + |𝜓𝑋𝑛,𝑌𝑛 (𝒓) − 𝜓𝑋𝑛,𝑐 (𝒓) |
= |ei𝑟2𝑐 E (ei𝑟1𝑋𝑛 − ei𝑟1𝑋) | + |E ei(𝑟1𝑋𝑛+𝑟2𝑐) (ei𝑟2 (𝑌𝑛−𝑐) − 1) |
≤ |ei𝑟2𝑐 | × |E(ei𝑟1𝑋𝑛 − ei𝑟1𝑋) | + E |ei(𝑟1𝑋𝑛+𝑟2𝑐) | × |ei𝑟2 (𝑌𝑛−𝑐) − 1|
≤ |𝜓𝑋𝑛 (𝑟1) − 𝜓𝑋 (𝑟1) | + E |ei𝑟2 (𝑌𝑛−𝑐) − 1|.

(b) We use the fact that

|ei𝑥 − 1| =
���∫ 𝑥

0 d𝜃 iei𝜃
��� ≤ ∫ 𝑥

0 d𝜃 |iei𝜃 | = |𝑥 |, 𝑥 ∈ R

to obtain the bound:

E |ei𝑟2 (𝑌𝑛−𝑐) − 1| = E |ei𝑟2 (𝑌𝑛−𝑐) − 1|1{|𝑌𝑛−𝑐 |>𝜀} + E |ei𝑟2 (𝑌𝑛−𝑐) − 1|1{|𝑌𝑛−𝑐 |≤𝜀}
≤ 2E1{|𝑌𝑛−𝑐 |>𝜀} + E |𝑟2(𝑌𝑛 − 𝑐) |1{|𝑌𝑛−𝑐 |≤𝜀}
≤ 2P[|𝑌𝑛 − 𝑐 | > 𝜀] + |𝑟2 | 𝜀.
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(c) The first term in the right-hand side of (3.52) goes to 0, since 𝑋𝑛 d→ 𝑋 , and
Theorem 3.24 implies that 𝜓𝑋𝑛 (𝑟1) −→ 𝜓𝑋 (𝑟1). The second term in the right-
hand side of (3.52) also goes to 0, as 𝑌𝑛 d→ 𝑐 and 𝜀 is arbitrary in (b). It follows
that 𝒁𝑛

d→ 𝒁 and, by the continuity of 𝑔, we have 𝑔(𝒁𝑛) d→ 𝑔(𝒁); that is,
𝑔(𝑋𝑛, 𝑌𝑛) d→ 𝑔(𝑋, 𝑐).

36. First, the symmetry of the distribution shows that E𝑋𝑘 = 0 so that E𝑋𝑛 = 0.
Second, a direct computation shows that

Var 𝑋𝑘 = E𝑋2
𝑘 =

2𝑘2

2𝑘2 + 1 − 1
𝑘2 = 2 − 1

𝑘2 ,

so that

Var(
√
𝑛 𝑋𝑛) =

1
𝑛

𝑛∑︁
𝑘=1

E𝑋2
𝑘 = 2 − 1

𝑛

𝑛∑︁
𝑘=1

1
𝑘2 → 2.

Next, we show that
√
𝑛 𝑋𝑛

d→ 𝑍 . Since∑︁
𝑘

P( |𝑋𝑘 | ≠ 1) =
∑︁
𝑘

1
𝑘2 < ∞,

the first part of the Borel–Cantelli Lemma 3.14 shows that
∑
𝑘 1{|𝑋𝑘 |≠1} < ∞ almost

surely. This implies that there is an almost surely finite random integer 𝑁 such that
|𝑋𝑘 | = 1 for 𝑘 > 𝑁 . Suppose that 𝑌1, 𝑌2, . . . are iid with P(𝑌 = 1) = P(𝑌 = −1) =
1/2. Then, for sufficiently large 𝑛 > 𝑁 , we can write:

√
𝑛 𝑋𝑛 =

∑𝑁
𝑘=1(𝑋𝑘 − 𝑌𝑘 )√

𝑛︸             ︷︷             ︸
a.s.→0

+
∑𝑁
𝑘=1𝑌𝑘 +

∑𝑛
𝑘>𝑁 𝑋𝑘√

𝑛︸                   ︷︷                   ︸
=:𝑍𝑛

.

Since the distribution of 𝑋𝑘 , conditional on |𝑋𝑘 | = 1, is the same as that of 𝑌 ,
we deduce that 𝑍𝑛 has the same distribution as 1√

𝑛

∑𝑛
𝑘=1𝑌𝑘 . An application of the

Central Limit Theorem 3.45 to 1√
𝑛

∑𝑛
𝑘=1𝑌𝑘 then yields that 𝑍𝑛 d→ 𝑍 or, equivalently,

that
√
𝑛 𝑋𝑛

d→ 𝑍 .

A.4 Chapter 4
4. We have that

P(𝑋 = 𝑥 | 𝑋 + 𝑌 = 𝑧) = P(𝑋 = 𝑥, 𝑋 + 𝑌 = 𝑧)
P(𝑋 + 𝑌 = 𝑧) =

P(𝑌 = 𝑧 − 𝑥, 𝑋 = 𝑥)
P(𝑋 + 𝑌 = 𝑧)

=
P(𝑌 = 𝑧 − 𝑥) × P(𝑋 = 𝑥)

P(𝑋 + 𝑌 = 𝑧) =
exp(−𝜇) 𝜇𝑧−𝑥

(𝑧−𝑥)! × exp(−𝜆) 𝜆𝑥
𝑥!

exp(−𝜇 − 𝜆) (𝜇+𝜆)𝑧
𝑧!

=
𝑧!

𝑥!(𝑧 − 𝑥)!
𝜇𝑧−𝑥𝜆𝑥

(𝜆 + 𝜇)𝑧 =
(
𝑧

𝑥

)
𝑝𝑧−𝑥 (1 − 𝑝)𝑥 ,
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where 𝑝 := 𝜆/(𝜆 + 𝜇).

7. First observe that {𝑁𝑘 = 𝑗} = {𝑆 𝑗−1 = 𝑘 − 1, 𝑋 𝑗 = 1}. Thus,

P(𝑁𝑘 = 𝑗) = P(𝑋 𝑗 = 1 | 𝑆 𝑗−1 = 𝑘 − 1)P(𝑆 𝑗−1 = 𝑘 − 1) = 𝑝
(
𝑗 − 1
𝑗 − 𝑘

)
𝑝𝑘−1(1 − 𝑝) 𝑗−𝑘

=

(
𝑗 − 1
𝑗 − 𝑘

)
𝑝𝑘 (1 − 𝑝) 𝑗−𝑘 , 𝑗 = 𝑘, 𝑘 + 1, . . . .

This gives a negative binomial distribution starting at 𝑘 .

11. The MGF of 𝑍 is given by

E exp(𝑠𝑍) = EE[exp(𝑠𝑍) | 𝑋3]

= E exp
(

𝑠2

2(1+𝑋2
3 )

)
× exp

(
𝑠2𝑋2

3
2(1+𝑋2

3 )

)
= exp(𝑠2/2),

which implies that 𝑍 is standard normal.

16. If the distribution satisfies the Markov property (a), then (b) follows trivially.
Now we show that (b) implies (a).

Conditional on 𝑋𝑡 , consider the joint distribution of 𝑋𝑡+1 and 𝑋𝑘 for some
arbitrary 𝑘 < 𝑡. By assumption, (𝑋𝑡+1, 𝑋𝑘 ) | 𝑋𝑡 has a jointly normal distribution.
This means that if the conditional covariance

E[𝑋𝑡+1𝑋𝑘 | 𝑋𝑡] − E[𝑋𝑡+1 | 𝑋𝑡] × E[𝑋𝑘 | 𝑋𝑡]

is 0, then 𝑋𝑡+1 and 𝑋𝑘 are conditionally independent. To simplify, consider

E[𝑋𝑡+1𝑋𝑘 | 𝑋𝑡] = E[ E[𝑋𝑡+1𝑋𝑘 | 𝑋 𝑗 , 𝑗 ≤ 𝑡] | 𝑋𝑡]
= E[ 𝑋𝑘 E[𝑋𝑡+1 | 𝑋 𝑗 , 𝑗 ≤ 𝑡] | 𝑋𝑡]
= E[ 𝑋𝑘 E[𝑋𝑡+1 | 𝑋𝑡] | 𝑋𝑡]
= E[𝑋𝑡+1 | 𝑋𝑡] × E[𝑋𝑘 | 𝑋𝑡] .

Since the conditional covariance is 0, we can deduce that 𝑋𝑡+1, 𝑋𝑘 , given 𝑋𝑡 , are
independent. Since 𝑘 < 𝑡 was arbitrary, this shows that given 𝑋𝑡 , the future 𝑋𝑡+1 is
independent of the past {𝑋𝑘 , 𝑘 < 𝑡}.

A.5 Chapter 5
3. (a) Integrability and adaptedness are evident. The martingale property follows

from:

E𝑛𝑍𝑛+1 = E𝑛 [𝑋𝑛 + 2𝐵𝑛 − 1] − (𝑛 + 1) (𝑝 − 𝑞)
= 𝑋𝑛 + (𝑝 − 𝑞) − (𝑛 + 1) (𝑝 − 𝑞) = 𝑋𝑛 − 𝑛(𝑝 − 𝑞) = 𝑍𝑛.
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(b) The martingale property for the stopped martingale (𝑍𝑛∧𝑇 ) shows thatE𝑍𝑛∧𝑇 =

E𝑍0 = 𝑎 for all 𝑛. Since 𝑇 is almost surely finite, 𝑍𝑛∧𝑇 ↑ 𝑍𝑇 and so, by the
Monotone Convergence Theorem,

E𝑍𝑇 = 𝑎.

Since
E𝑍𝑇 = E𝑋𝑇 − E𝑇 (𝑝 − 𝑞) = 𝑏 P(𝑋𝑇 = 𝑏) − (𝑝 − 𝑞) E𝑇,

we have
E𝑇 =

𝑏 P(𝑋𝑇 = 𝑏) − 𝑎
𝑝 − 𝑞 ,

where P(𝑋𝑇 = 𝑏) is given in (5.34).

4. (a) Let 𝑀𝑛 := 𝑋2
𝑛 − 𝑛 and 𝑈𝑛 := 2𝐵𝑛+1 − 1 for 𝑛 ∈ N. Integrability and adap-

tedness for the process (𝑀𝑛) are evident. The martingale property follows
from:

E𝑛𝑀𝑛+1 = E𝑛𝑋2
𝑛+1 − (𝑛 + 1) = E𝑛 (𝑋𝑛 +𝑈𝑛+1)2 − (𝑛 + 1)

= E𝑛 [𝑋2
𝑛 + 2𝑋𝑛𝑈𝑛+1 +𝑈2

𝑛+1] − (𝑛 + 1)
= 𝑋2

𝑛 + 2𝑋𝑛E𝑛𝑈𝑛+1 + E𝑛𝑈2
𝑛+1 − (𝑛 + 1) = 𝑋2

𝑛 + 0 + 1 − (𝑛 + 1) = 𝑀𝑛.

(b) In the same way as in Example 5.33, we may assume that 𝑇 is almost surely
finite. The martingale property for the stopped martingale (𝑀𝑛∧𝑇 ) combined
with the finiteness of 𝑇 shows that

E𝑀𝑇 = 𝑀0 = 0.

But also, E𝑀𝑇 = E𝑋2
𝑇
− E𝑇 = 𝑎2 − E𝑇 , so that E𝑇 = 𝑎2.

5. The process 𝑌 is integrable since 0 ≤ 𝑌𝑛 = 2𝑛 (1 − 𝑋𝑛) ≤ 2𝑛. As 𝑌𝑛 is a (measur-
able) function of 𝑋𝑛, we have 𝜎(𝑋0, . . . , 𝑋𝑛) = 𝜎(𝑌0, . . . , 𝑌𝑛) and 𝑌 is adapted to
the natural filtration.The martingale property follows from:

E𝑛𝑌𝑛+1 = E𝑛2𝑛+1(1 − 𝑋𝑛+1) = 2𝑛+1 (1 − E𝑛𝑋𝑛+1)
= 2𝑛+1 (1 − (1 + 𝑋𝑛)/2) = 2𝑛+1(1 − 𝑋𝑛)/2 = 𝑌𝑛.

10. (a) We have (𝑇 | 𝑋1 = 1) = 1, and (𝑇 | 𝑋1 = −1) is distributed as 1 + 𝑇 ′ + 𝑇 ′′,
where 𝑇 ′ and 𝑇 ′′ are independent copies of 𝑇 . Hence, 𝐺 satisfies

𝐺 (𝑧) = EE𝑋1 𝑧
𝑇 =

1
2
𝑧 + 1

2
𝑧𝐺2(𝑧).

This quadratic equation has two solutions. But only the stated solution yields
a valid probability generating function.
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(b) We have

𝐺 (𝑧) = 𝑧−1

(
1 −

∞∑︁
𝑘=0

( 1
2
𝑘

)
(−1)𝑘 𝑧2𝑘

)
=

∞∑︁
𝑘=1

( 1
2
𝑘

)
(−1)𝑘−1𝑧2𝑘−1.

From this, we conclude that P(𝑇 = 2𝑘) = 0 for 𝑘 = 1, 2, . . . and

P(𝑇 = 2𝑘 − 1) =
( 1

2
𝑘

)
(−1)𝑘−1, 𝑘 = 1, 2, . . . .

Consequently, using again Newton’s formula, we have

P(𝑇 < ∞) =
∞∑︁
𝑘=1

( 1
2
𝑘

)
(−1)𝑘−1 = −

∞∑︁
𝑘=1

( 1
2
𝑘

)
(−1)𝑘 = 1 −

∞∑︁
𝑘=0

( 1
2
𝑘

)
(−1)𝑘

= 1 − (1 − 1)1/2 = 1.

Also,

E𝑇 =

∞∑︁
𝑘=1

𝑘

( 1
2
𝑘

)
(−1)𝑘−1 = lim

𝑧↑1
𝐺′(𝑧) = lim

𝑧↑1

1 −
√

1 − 𝑧2

𝑧2
√

1 − 𝑧2
= ∞.

13. (a)
E𝑛𝑌𝑛+1 = E𝑛 e𝜃𝑀𝑛+1 ≥ exp(𝜃 E𝑛𝑀𝑛+1) = e𝜃𝑀𝑛 ,

where we have use the fact that e𝜃𝑥 is a convex function in 𝑥 for any 𝜃 ∈ R and
applied Jensen’s inequality (Lemma 2.45).

(b) In (5.43), take 𝑏 := e𝜃𝑥 and 𝑌𝑛 := e𝜃𝑀𝑛 .
(c) By repeated conditioning (see (4.5)), we have

E e𝜃𝑀𝑛 = EE𝑛−1 exp (𝜃𝑀𝑛−1 + 𝜃 (𝑀𝑛 − 𝑀𝑛−1))

= E [exp(𝜃𝑀𝑛−1) E𝑛−1 exp(𝜃 (𝑀𝑛 − 𝑀𝑛−1))] ≤ E e𝜃𝑀𝑛−1 e
1
2 𝜃

2𝑐2
𝑛 ,

(d) Repeatedly applying the bound in (d), and noting that 𝑀0 = 0, gives the bound

E e𝜃𝑀𝑛 ≤ exp

(
1
2𝜃

2
𝑛∑︁
𝑘=1

𝑐2
𝑛

)
.

Hence,

P
(
max
𝑘≤𝑛

𝑀𝑘 ≥ 𝑥
)
≤ exp

(
−𝜃𝑥 + 1

2𝜃
2

𝑛∑︁
𝑘=1

𝑐2
𝑘

)
.

We now find the value 𝜃∗ which minimizes the upper bound. The exponent is
quadratic in 𝜃 so 𝜃∗ = 𝑥/(∑𝑛

𝑘=1 𝑐
2
𝑘
).
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15. Let 𝑟 be the probability given in (5.34). Then, (𝑀𝑛∧𝑇 ) converges almost surely
and in 𝐿1 to a random variable that takes the values 0 and 𝑏 with probabilities 1− 𝑟
and 𝑟, respectively.

23. We will show that (𝑀𝑛, 𝑛 = 1, 2, . . .) is a UI martingale. Theorem 5.52 then
implies that it converges almost surely and in 𝐿1 to an integrable random vari-
able. Adaptedness is evident from the fact that 𝑀𝑛 is measurable with respect to
𝜎(𝑋1, . . . , 𝑋𝑛). For uniform integrability it suffices to show that sup𝑛 E𝑀2

𝑛 < ∞,
using Item 3 of Proposition 3.34, with 𝑓 (𝑥) := 𝑥2. Indeed, we have

E𝑀2
𝑛 =

𝑛∑︁
𝑗=1

E𝑋2
𝑗 𝑗

−2 =

𝑛∑︁
𝑗=1

𝑗−2 <

∞∑︁
𝑗=1

𝑗−2 < ∞.

Finally, the martingale property follows from:

E𝑛𝑀𝑛+1 = E𝑛
𝑛+1∑︁
𝑗=1

𝑋 𝑗 𝑗
−1 = E𝑛 (𝑛 + 1)−1𝑋𝑛+1 +

𝑛∑︁
𝑗=1

𝑋 𝑗 𝑗
−1 = 𝑀𝑛,

where we have used the fact that the {𝑋𝑛} are independent zero-mean random
variables.

A.6 Chapter 6

4. Define 𝑿 := [𝑊𝑡1 , . . . ,𝑊𝑡𝑑 ]⊤ and 𝒕 := [𝑡1, . . . , 𝑡𝑑]⊤. Let ( 𝒕 (𝑛)) be a sequence in
R𝑑 , with all its components lying in 𝐷𝑛, that converges to 𝒕 as 𝑛 → ∞. Denote by
𝑿 (𝑛) the random vector whose 𝑘th component is𝑊 (𝑛)

𝑡𝑘
, 𝑘 = 1, . . . , 𝑑. Since𝑊 (𝑛) is

a zero-mean Gaussian process with covariance E𝑊 (𝑛)
𝑠 𝑊

(𝑛)
𝑡 = 𝑠 ∧ 𝑡 for all 𝑠, 𝑡 ∈ 𝐷𝑛,

we have that 𝑿 (𝑛) is Gaussian with mean vector 0 and covariance matrix 𝚺𝑛 with
(𝑖, 𝑗)th element 𝑡 (𝑛)

𝑖∧ 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 𝑑}. Obviously, 𝚺𝑛 converges elementwise to
the matrix𝚺with (𝑖, 𝑗)th element 𝑡𝑖∧ 𝑗 . Since, (𝑿 (𝑛)) converges almost surely to 𝑿, it
converges in distribution. The characteristic function of 𝑿 is thus, by Theorem 3.24,
equal to the limit of e−𝒓⊤𝚺𝑛 𝒓/2 as 𝑛 → ∞, which is e−𝒓⊤𝚺𝒓/2, showing that 𝑿 is
multivariate Gaussian with mean vector 0 and covariance matrix 𝚺. Consequently,
(𝑊𝑡) is a zero-mean Gaussian process with covariance function E𝑊𝑠𝑊𝑡 = 𝑠 ∧ 𝑡.

9. Let 𝑇 be the exit time and define 𝑝 := P𝑥 (𝑋𝑇 = 𝑏). Applying Doob’s stopping
Theorem 5.83 to the stopped martingale (𝑊𝑇∧𝑡), we have E𝑥𝑊𝑇∧𝑡 = E𝑥𝑊0 = 𝑥 for
every 𝑡. Since 𝑎 ≤ 𝑊𝑇∧𝑡 ≤ 𝑏, lim𝑡→∞ E𝑥𝑊𝑇∧𝑡 = E𝑥 lim𝑡→∞𝑊𝑇∧𝑡 = E𝑥𝑊𝑇 , by the
Bounded Convergence Theorem 2.36. Consequently, we have

𝑥 = E𝑥𝑊𝑇 = 𝑎 P𝑥 (𝑊𝑇 = 𝑎) + 𝑏 P𝑥 (𝑊𝑡 = 𝑏) = 𝑎(1 − 𝑝) + 𝑏𝑝,
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from which the first result follows. For the second result, define 𝑀𝑡 := 𝑊2
𝑡 − 𝑡, 𝑡 ≥ 0.

Obviously, |𝑀𝑡 | ≤ 𝑎2 ∨ 𝑏2 + 𝑇 for 𝑡 ∈ [0, 𝑇]. Hence, if E𝑥𝑇 < ∞, we can apply
Proposition 5.96 to conclude that E𝑥𝑀0 = E𝑥𝑀𝑇 , leading to:

𝑥2 = E𝑥𝑀0 = E𝑥𝑀𝑇 = (1 − 𝑝) (𝑎2 − E𝑥𝑇) + 𝑝(𝑏2 − E𝑥𝑇),

which shows that

E𝑥𝑇 = (1 − 𝑝)𝑎2 + 𝑝𝑏2 − 𝑥2 = (𝑥 − 𝑎) (𝑏 − 𝑥).

To verify that indeed E𝑥𝑇 < ∞, write

E𝑥𝑇 =

∫ ∞

0
d𝑡 P𝑥 (𝑇 > 𝑡)

and consider 𝑡 ∈ [𝑘 − 1, 𝑘) for some 𝑘 = 1, 2, . . .. The event {𝑇 > 𝑡} = {𝑊𝑠 ∈
(𝑎, 𝑏) for all 𝑠 ∈ [0, 𝑡]} is contained in the event {𝑎 < 𝑊1 < 𝑏} ∩ {𝑎 < 𝑊2 −𝑊1 <
𝑏} ∩ · · · ∩ {𝑎 < 𝑊𝑘 − 𝑊𝑘−1 < 𝑏}, and so P𝑥 (𝑇 > 𝑡) ≤ 𝜃𝑘1[𝑘,𝑘+1) (𝑡), where
𝜃 := sup𝑥 P𝑥 (𝑎 < 𝑊1 < 𝑏) < 1. Hence, E𝑥𝑇 ≤ 𝜃/(1 − 𝜃) < ∞.

12. Let 𝑌 := 1/𝑇𝑥 . Then, 𝑌 ∼ Gamma(1/2, 𝑥2/2). Since 𝑌 has no probability
mass at 0, we have 1 = P(𝑌 > 0) = P(𝑇𝑥 < ∞), as had to be shown. Moreover,

E𝑇𝑥 =
∫ ∞

0
d𝑡 𝑡 𝑓𝑇𝑥 (𝑡) ≥

∫ ∞

1
d𝑡

𝑥
√

2𝜋𝑡
e−𝑥

2/2 = ∞.

22. As 𝑇𝑏 < 𝑇𝑐,

P(𝑇𝑏 < 𝑇−𝑎 < 𝑇𝑐) = P(𝑇𝑏 < 𝑇−𝑎, 𝑇−𝑎 < 𝑇𝑐)
= P(𝑇−𝑎 < 𝑇𝑐 | 𝑇𝑏 < 𝑇−𝑎)P(𝑇𝑏 < 𝑇−𝑎).

Then,
P(𝑇𝑏 < 𝑇−𝑎) =

𝑎

𝑏 + 𝑎 ,

where we used Exercise 9. The strong Markov property of the Wiener process means
that 𝑊𝑡+𝑇𝑏 −𝑊𝑇𝑏 , 𝑡 ≥ 0 is a Wiener process and independent of F +

𝑇𝑏
. Conditioning

on hitting 𝑏 before −𝑎, we have:

P(𝑇−𝑎 < 𝑇𝑐 | 𝑇𝑏 < 𝑇−𝑎) = P(𝑇−𝑎−𝑏 < 𝑇𝑐−𝑏) =
𝑐 − 𝑏

𝑐 − 𝑏 + | − 𝑎 − 𝑏 | =
𝑐 − 𝑏
𝑐 + 𝑎 .

Hence,

P(𝑇𝑏 < 𝑇−𝑎 < 𝑇𝑐) =
( 𝑎

𝑏 + 𝑎

) (
𝑐 − 𝑏
𝑐 + 𝑎

)
.
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26. Recall from (5.18) that the total variation of (𝑁𝑠, 𝑠 ∈ [0, 𝑡]) is given by:

sup
Π𝑛

𝑛−1∑︁
𝑘=0

|𝑁𝑠𝑘+1 − 𝑁𝑠𝑘 |.

Since 𝑁𝑠𝑘 can be interpreted as the number of arrivals up to time 𝑠𝑘 , the process
is increasing: 𝑁𝑠𝑘+1 ≥ 𝑁𝑠𝑘 . Therefore, |𝑁𝑠𝑘+1 − 𝑁𝑠𝑘 | = 𝑁𝑠𝑘+1 − 𝑁𝑠𝑘 and the total
variation equals the telescoping sum:

sup
Π𝑛

𝑛−1∑︁
𝑘=0

(𝑁𝑠𝑘+1 − 𝑁𝑠𝑘 ) = 𝑁𝑡 − 𝑁0 = 𝑁𝑡 .

For the quadratic variation, consider the fact that the value of Δ𝑁𝑠𝑘 := 𝑁𝑠𝑘+1 − 𝑁𝑠𝑘
belongs to the set N of natural numbers and Δ𝑁𝑠𝑘 > 0 only if (𝑠𝑘 , 𝑠𝑘+1] contains
at least one jump/arrival. Since ∥Π𝑛∥ → 0, and the Poisson process is right-
continuous and left-limited, there is a large enough 𝑛 such that (𝑠𝑘 , 𝑠𝑘+1] contains
no more than one arrival. Therefore,

lim
𝑛↑∞

𝑛−1∑︁
𝑘=0

(𝑁𝑠𝑘+1 − 𝑁𝑠𝑘 )2 =
∑︁

𝑘:Δ𝑁𝑠𝑘>0
[Δ𝑁𝑠𝑘 ]2 = 𝑁𝑡 .

An alternative derivation uses the results from Example 5.20. Namely, since∫ 𝑡

0 𝑁𝑠− d𝑁𝑠 = 𝑁𝑡 (𝑁𝑡 − 1)/2 and
∫ 𝑡

0 𝑁𝑠 d𝑁𝑠 = (𝑁𝑡 + 1)𝑁𝑡/2, we can write

lim
𝑛↑∞

𝑛−1∑︁
𝑘=0

[Δ𝑁𝑠𝑘 ]2 = lim
𝑛↑∞

𝑛−1∑︁
𝑘=0

𝑁𝑠𝑘+1Δ𝑁𝑠𝑘 − lim
𝑛↑∞

𝑛−1∑︁
𝑘=0

𝑁𝑠𝑘Δ𝑁𝑠𝑘

=

∫ 𝑡

0
𝑁𝑠 d𝑁𝑠 −

∫ 𝑡

0
𝑁𝑠− d𝑁𝑠 = 𝑁𝑡 .

A.7 Chapter 7
2. The process (𝑊𝐶 (𝑡)) is zero-mean, has independent increments, and is Gaussian.
The same properties hold for (𝑍𝑡). To show that the two processes have the same
distribution, it thus remains to show that for every 𝑡 the variance of 𝑊𝐶 (𝑡) is equal
to the variance of 𝑍𝑡 . But this is immediate from

E𝑊2
𝐶 (𝑡) = Var𝑊𝐶 (𝑡) = 𝐶 (𝑡) =

∫ 𝑡

0
𝑓 2(𝑠) d𝑠 = E𝑍2

𝑡 .

11. The derivative of the function ℎ satisfies

ℎ′(𝑡) =
(
𝑓 (𝑡) − 𝑐

∫ 𝑡

0
𝑓 (𝑠) d𝑠

)
𝑐e−𝑐𝑡 ≤ 𝑔(𝑡) 𝑐e−𝑐𝑡 ,
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so that, by integration of ℎ′(𝑠) from 0 to 𝑡, we find that

ℎ(𝑡) ≤
∫ 𝑡

0
𝑔(𝑠) 𝑐e−𝑐𝑠 d𝑠.

Multiplying both sides with e𝑐𝑡 gives

𝑐

∫ 𝑡

0
𝑓 (𝑠) d𝑠 = e𝑐𝑡ℎ(𝑡) ≤ 𝑐

∫ 𝑡

0
e𝑐(𝑡−𝑠)𝑔(𝑠) d𝑠,

which shows the result for 𝑐 ≠ 0. The case 𝑐 = 0 is trivial.

22. (a) The process𝑊 is a martingale that has quadratic variation (see Exercise 8):

⟨𝑊⟩𝑡 =
𝑑∑︁
𝑖=1

∫ 𝑡

0
𝜎2
𝑠,𝑖 d𝑠 =

∫ 𝑡

0

𝑑∑︁
𝑖=1

𝜎2
𝑠,𝑖︸  ︷︷  ︸

= 1

d𝑠 = 𝑡.

Consequently, by Lévy’s characterization in Example 7.61, 𝑊 is a Wiener
process.

(b) Let 𝑋𝑡 := ∥𝒙 + 𝑾 𝑡 ∥. By the multidimensional Itô formula in Theorem 7.51
applied to ∥𝒙 +𝑾 𝑡 ∥, we have

d𝑋𝑡 =
𝑑∑︁
𝑖=1

𝑥𝑖 +𝑊𝑡,𝑖

∥𝒙 +𝑾 𝑡 ∥
d𝑊𝑡,𝑖 +

𝑑 − 1
2𝑋𝑡

d𝑡.

In other words, the process 𝑋 satisfies the SDE

d𝑋𝑡 =
𝑑 − 1
2𝑋𝑡

d𝑡 + d𝑊𝑡 , 𝑋0 = 𝑥,

where𝑊 is a Wiener process.

23. The following MATLAB code generates the process ((𝑋𝑡 , 𝑌𝑡), 𝑡 ≥ 0).

alpha = 1; sigma = 0.5;
a1 = @(x1,x2,t) x2;
a2 = @(x1,x2,t) x1*(alpha-x1^2)-x2;
b1 = @(x1,x2,t) 0 ;
b2 = @(x1,x2,t) sigma*x1;
n=10^6; h=10^(-3); t=h.*(0:1:n); x1=zeros(1,n+1); x2=x1;
x1(1)=-2;
x2(1)=0;
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for k=1:n
x1(k+1)=x1(k)+a1(x1(k),x2(k),t(k))*h+ ...
b1(x1(k),x2(k),t(k))*sqrt(h)*randn;
x2(k+1)=x2(k)+a2(x1(k),x2(k),t(k))*h+ ...
b2(x1(k),x2(k),t(k))*sqrt(h)*randn;

end
step = 100; %plot each 100th value
figure(1),plot(t(1:step:n),x1(1:step:n),'k-')
figure(2), plot(x1(1:step:n),x2(1:step:n),'k-');

Figure A.3 shows two plots of interest. That left pane shows that the process
oscillates between two modes.

0 500 1000
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-2 -1 0 1 2
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1

2

Figure A.3: Typical trajectories for the Duffing–Van der Pol Oscillator.





APPENDIX B

FUNCTION SPACES

This appendix reviews a number of topics from functional analysis, including
metric, normed, and Hilbert spaces. The emphasis is on 𝐿2 function spaces and
their orthonormal bases.

The development of mathematics often involves the continual generalization of basic
concepts. For example, the set of natural numbers N is generalized to the set of
integers Z and rational numbers Q, which are then further generalized to the sets R
andC of real and complex numbers, which offer yet more generalizations in the form
of multidimensional spaces of numbers and spaces of functions. While it may lead to
a sometimes overwhelming growth of abstractions, this constant generalization can
also bring about a simplification of ideas by identifying common patterns, leading
to fundamental constructs such as metric, normed, and inner product spaces.

B.1 Metric Spaces
A metric space is a set of elements (or points) equipped with a metric function that
assigns a “distance” between any two elements of the set.

Definition B.1: Metric Space

The pair (𝐸, 𝑑), where 𝐸 is a set and 𝑑 : 𝐸 × 𝐸 → R+ is a metric on 𝐸 , is
called a metric space if for all 𝑥, 𝑦, 𝑧 ∈ 𝐸 :
1. (Finiteness): 0 ≤ 𝑑 (𝑥, 𝑦) < ∞; that is, 𝑑 is positive and finite.
2. (Zero): 𝑑 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.
3. (Symmetry): 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥).
4. (Triangle inequality): 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦).
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Example B.2 (Metric Spaces) The quintessential metric space is the space R𝑛,
equipped with the Euclidean metric:

𝑑𝑛 (𝒙, 𝒚) :=
√︃
(𝑥1 − 𝑦1)2 + · · · + (𝑥𝑛 − 𝑦𝑛)2.

Another important example is the space of bounded functions on the interval [0, 1],
equipped with the metric: 𝑑 (𝑥, 𝑦) := sup𝑡∈[0,1] |𝑥(𝑡) − 𝑦(𝑡) |.

Example B.3 (Isometry) A mapping 𝑓 : 𝐸 → 𝐸 between the two metric spaces
(𝐸, 𝑑) and (𝐸, 𝑑) is called an isometry if 𝑓 preserves distances between any 𝑥, 𝑦 ∈ 𝐸 :

𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝑑 (𝑥, 𝑦).

For instance, suppose that U ∈ R𝑛×𝑚 is an orthonormal matrix. Then, the mapping
𝒙 ↦→ U𝒙, where 𝒙 ∈ R𝑚, is a linear isometry from the Euclidean space (R𝑚, 𝑑𝑚) to
(R𝑛, 𝑑𝑛), because for any 𝒙, 𝒚 ∈ R𝑚 we have

𝑑2
𝑛 (U𝒙,U𝒚) = (𝒙 − 𝒚)⊤U⊤U(𝒙 − 𝒚) = 𝑑2

𝑚 (𝒙, 𝒚).

On a metric space 𝐸 we can define “open” sets to be unions (not necessarily
countable) of sets of the form {𝒚 ∈ 𝐸 : 𝑑 (𝒙, 𝒚) < 𝑟}, where 𝑟 is a positive real
number. In the case where 𝐸 = R𝑑 is equipped with the Euclidean metric, this set
is simply an “open ball” centered at 𝒙 with radius 𝑟. More generally, we can define
a collection of open sets T , as follows:

Definition B.4: Topological Space

The pair (𝐸,T), where 𝐸 is a set and T is a collection of subsets of 𝐸 , is
called a topological space, provided that T satisfies:
1. ∅ ∈ T and 𝐸 ∈ T .
2. Any (not necessary countable) union of sets in T belongs to T .
3. Any finite intersection of sets in T belongs to T .
The sets in T are called open sets and T is called a topology on 𝐸 .

All metric spaces are topological spaces. In a topological space (𝐸,T) the
collection of open sets {O𝛼, 𝛼 ∈ R} is called an open cover of 𝐹 ⊆ 𝐸 , provided
that each O𝛼 ⊂ 𝐸 and 𝐹 ⊆ ∪𝛼O𝛼. A subcover is a subset of {O𝛼, 𝛼 ∈ R} that still
covers 𝐹.

Convergence in metric spaces is similar to convergence inR. In particular, we say
that a sequence (𝑥𝑛) in a metric space (𝐸, 𝑑) converges to 𝑥 ∈ 𝐸 , if 𝑑 (𝑥𝑛, 𝑥) → 0
as 𝑛→ ∞. A convergent sequence has a unique limit and is bounded; that is,
sup𝑛 𝑑 (𝑥𝑛, 𝑟) < ∞ for some 𝑟 ∈ 𝐸 .
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Example B.5 (Metric Continuity) Suppose that both (𝑥𝑛) and (𝑦𝑛) converge in
𝐸 ; that is, 𝑑 (𝑥𝑛, 𝑥) → 0 and 𝑑 (𝑦𝑛, 𝑦) → 0 for some 𝑥, 𝑦 ∈ 𝐸 . Then, 𝑑 (𝑥𝑛, 𝑦𝑛) →
𝑑 (𝑥, 𝑦). Indeed, by the triangle inequality we have:

𝑑 (𝑥𝑛, 𝑦𝑛) ≤ 𝑑 (𝑥𝑛, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑦𝑛),
𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑥𝑛) + 𝑑 (𝑥𝑛, 𝑦𝑛) + 𝑑 (𝑦𝑛, 𝑦).

Hence, using the symmetry 𝑑 (𝑥𝑛, 𝑥) = 𝑑 (𝑥, 𝑥𝑛) and 𝑑 (𝑦, 𝑦𝑛) = 𝑑 (𝑦𝑛, 𝑦), we obtain:

|𝑑 (𝑥𝑛, 𝑦𝑛) − 𝑑 (𝑥, 𝑦) | = [𝑑 (𝑥𝑛, 𝑦𝑛) − 𝑑 (𝑥, 𝑦)] ∨ [𝑑 (𝑥, 𝑦) − 𝑑 (𝑥𝑛, 𝑦𝑛)]
≤ [𝑑 (𝑥𝑛, 𝑥) + 𝑑 (𝑦, 𝑦𝑛)] ∨ [𝑑 (𝑥, 𝑥𝑛) + 𝑑 (𝑦𝑛, 𝑦)]
≤ 𝑑 (𝑥𝑛, 𝑥) + 𝑑 (𝑦𝑛, 𝑦) → 0.

Example B.6 (Heine–Cantor Theorem) Suppose that we have two metric
spaces, (𝐸, 𝑑) and (𝐸, 𝑑), and a continuous function 𝑓 : 𝐸 → 𝐸 . Here, the con-
tinuity of 𝑓 means that for any 𝜀 > 0 and 𝑥 ∈ 𝐸 , there exists a 𝛿 > 0 (depending on
𝜀 and 𝑥) such that

(𝑦 ∈ 𝐸 and 𝑑 (𝑥, 𝑦) < 𝛿) ⇒ 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀.

In other words, 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀 for all 𝑦 ∈ 𝐸 satisfying 𝑑 (𝑥, 𝑦) < 𝛿.
The Heine–Cantor theorem asserts that if the set 𝐸 is closed and bounded, then

𝑓 is uniformly continuous; that is, for any 𝜀 > 0 there exists a 𝛿 > 0 (depending
solely on 𝜀) such that

((𝑥, 𝑦) ∈ 𝐸 × 𝐸 and 𝑑 (𝑥, 𝑦) < 𝛿) ⇒ 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀.

Without loss of much generality we next prove the Heine–Cantor theorem in the
case where 𝐸 := [0, 1] and 𝑑 (𝑥, 𝑦) := |𝑥 − 𝑦 |.

First, the continuity of 𝑓 implies that for each 𝜀 > 0 and 𝑥 ∈ [0, 1], there exists a
𝛿𝑥 > 0 such that 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀/2 for all 𝑦 satisfying |𝑦− 𝑥 | < 𝛿𝑥 . In particular,
𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀/2 whenever 𝑦 belongs to the open set O𝑥 := {𝑦 : |𝑦−𝑥 | < 𝛿𝑥/2}.

Second, the Heine–Borel property of R states that bounded closed intervals are
compact; that is, every open cover of such a set has a finite subcover. This implies
that the collection {O𝑥 , 𝑥 ∈ [0, 1]}, which is an open cover of [0, 1] ⊆ ∪𝑥∈[0,1]O𝑥 ,
has a finite subcover, so that [0, 1] ⊆ ∪𝑛

𝑘=1{𝑦 : |𝑥𝑘 − 𝑦 | < 𝛿𝑥𝑘/2} for some finite 𝑛
and 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1].

Finally, consider all 𝑥, 𝑦 ∈ [0, 1] satisfying |𝑥 − 𝑦 | < 𝛿 := min𝑘 𝛿𝑥𝑘/2. For each
𝑦, define 𝑘𝑦 := argmin𝑘 |𝑥𝑘 − 𝑦 | and apply the triangle inequality:

|𝑥 − 𝑥𝑘𝑦 | ≤ |𝑥 − 𝑦 | + |𝑦 − 𝑥𝑘𝑦 | < 𝛿 + 𝛿 ≤ min
𝑘
𝛿𝑥𝑘 .
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Therefore, for all 𝑥, 𝑦 ∈ [0, 1] satisfying |𝑥 − 𝑦 | < 𝛿, we have

𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑥𝑘𝑦 )) + 𝑑 ( 𝑓 (𝑥𝑘𝑦 ), 𝑓 (𝑦)) <
𝜀

2
+ 𝜀

2
= 𝜀.

Given the metric space (𝐸, 𝑑), a sequence of elements 𝑥1, 𝑥2, . . . ∈ 𝐸 satisfying

(B.7) 𝑑 (𝑥𝑚, 𝑥𝑛) → 0 as 𝑚, 𝑛→ ∞,

is called a Cauchy sequence in the metric space (𝐸, 𝑑).

Example B.8 (Cauchy Sequences and Existence of a Limit) Suppose that (𝑥𝑛)
is a sequence in (𝐸, 𝑑) that converges to 𝑥 ∈ 𝐸 . By the triangle inequality, for any
integers 𝑚 and 𝑛, we have

𝑑 (𝑥𝑚, 𝑥𝑛) ≤ 𝑑 (𝑥𝑚, 𝑥) + 𝑑 (𝑥, 𝑥𝑛) → 0.

In other words, any sequence which converges to a limit in 𝐸 is a Cauchy sequence.
While every convergent sequence in 𝐸 is a Cauchy sequence, the converse is not
necessarily true. For example, if (𝐸, 𝑑) is the set of real numbers on (0, 1] with
metric 𝑑 (𝑥, 𝑦) := |𝑥 − 𝑦 |, then the sequence 𝑥𝑛 = 1/𝑛, 𝑛 = 1, 2, . . . is a Cauchy
sequence, but it does not have a limit in 𝐸 (it has a limit in [0, 1]).

Definition B.9: Complete Metric Space

A metric space (𝐸, 𝑑) is said to be complete if every Cauchy sequence (𝑥𝑛)
in (𝐸, 𝑑) converges to some 𝑥 ∈ 𝐸 .

That is to say, the metric space (𝐸, 𝑑) is complete if the condition (B.7) implies
that lim𝑛 𝑑 (𝑥𝑛, 𝑥) = 0 for some 𝑥 ∈ 𝐸 . Being a Cauchy sequence in (𝐸, 𝑑) is a
necessary (but not a sufficient) condition for the existence of a limit in 𝐸 . However,
if the space (𝐸, 𝑑) is complete, then being a Cauchy sequence is sufficient to
guarantee a limit in 𝐸 . We can deduce the completeness of the real line R with the
metric 𝑑 (𝑥, 𝑦) = |𝑥− 𝑦 | from the Bolzano–Weierstrass theorem; see Proposition 3.2.

We now consider a number of special metric spaces.

B.2 Normed Spaces
A set𝑉 is called a real (or complex) vector space if its elements satisfy the algebraic
rules of addition and scalar multiplication:

If 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑉 , then 𝛼 𝑥 + 𝛽 𝑦 ∈ 𝑉 for all 𝛼, 𝛽 ∈ R (or C).
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In this section we assume that𝑉 is a vector space. Typical examples to have in mind
are the Euclidean space R𝑛 and the space 𝐶 [0, 1] of continuous functions on the
interval [0, 1]. A normed space is a vector space equipped with a norm, defined as
follows:

Definition B.10: Norm

A norm is a function ∥ · ∥ : 𝑉 → R+, which assigns a size to each element of
𝑉 and satisfies for all 𝑥, 𝑦 ∈ 𝑉 and scalar 𝛼 ∈ C:
1. (Zero): ∥𝑥∥ = 0 if and only if 𝑥 = 0.

2. (Scaling): ∥𝛼𝑥∥ = |𝛼 | ∥𝑥∥.
3. (Triangle inequality): ∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥.

A normed space with norm ∥ · ∥ is also a metric space, with metric

𝑑 (𝑥, 𝑦) := ∥𝑥 − 𝑦∥, 𝑥, 𝑦 ∈ 𝑉.

We say that the norm ∥ · ∥ induces the metric 𝑑 and write (𝑉, ∥ · ∥) for the corres-
ponding metric space. In principle, we can measure distances in 𝑉 using metrics
not derived from norms. However, only a metric induced by a norm takes full
advantage of the algebraic structure of the vector space 𝑉 .

Definition B.11: Banach Space

A normed space that is complete is said to be a Banach space.

Example B.12 (Space of Polynomial Functions with Supremum Norm) Con-
sider the normed space (𝑉, ∥ · ∥), where 𝑉 is the space of all polynomials on [0, 1]
and ∥𝑥∥ := sup𝑡∈[0,1] |𝑥(𝑡) | is the supremum norm. Define the 𝑛-degree polynomial
function:

𝑥𝑛 (𝑡) :=
𝑛∑︁
𝑘=0

𝑥(𝑘/𝑛)
(
𝑛

𝑘

)
𝑡𝑘 (1 − 𝑡)𝑛−𝑘 , 𝑡 ∈ [0, 1],

where 𝑥 : [0, 1] → R is a given non-polynomial continuous function on the interval
[0, 1]. The Weierstrass approximation theorem, proved in Exercise 3.33, asserts
that lim𝑛 ∥𝑥𝑛 − 𝑥∥ = 0. Therefore, by the triangle inequality:

∥𝑥𝑛 − 𝑥𝑚 ∥ ≤ ∥𝑥𝑛 − 𝑥∥ + ∥𝑥 − 𝑥𝑚 ∥ → 0 as 𝑚, 𝑛→ ∞.

In other words, (𝑥𝑛) is a Cauchy sequence in (𝑉, ∥ · ∥) that converges to an 𝑥 ∉ 𝑉 .
We conclude that, by definition, the metric space (𝑉, ∥ · ∥) is not complete.
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The next example shows that if we enlarge the space 𝑉 of polynomial functions
to the space 𝐶 [0, 1] of continuous functions on [0, 1] and retain the supremum
norm, then the resulting normed space (𝐶 [0, 1], ∥ · ∥) is complete.

Example B.13 (Space of Continuous Functions with Supremum Norm) The
space𝐶 [0, 1] of continuous functions on [0, 1], equipped with the supremum norm,
is a Banach space. To show that (𝐶 [0, 1], ∥ · ∥) is a complete space, we need to
show that lim𝑚,𝑛→∞ ∥𝑥𝑚 − 𝑥𝑛∥ = 0 implies the existence of an 𝑥 ∈ 𝐶 [0, 1] such that
∥𝑥𝑛 − 𝑥∥ → 0.

For an arbitrary 𝑠 ∈ [0, 1], the sequence (𝑎𝑛, 𝑛 ∈ N) := (𝑥𝑛 (𝑠), 𝑛 ∈ N) is a
Cauchy sequence of real numbers, because |𝑎𝑛 − 𝑎𝑚 | ≤ ∥𝑥𝑛 − 𝑥𝑚 ∥ → 0. Hence,
by the completeness of the normed space (R, | · |), we know that there exists a limit
𝑎 ∈ R such that |𝑎 − 𝑎𝑛 | → 0, and we define 𝑥(𝑠) := 𝑎. In other words, we have
that |𝑥(𝑠) − 𝑥𝑛 (𝑠) | → 0 for every 𝑠 ∈ [0, 1] or, equivalently, that ∥𝑥 − 𝑥𝑛∥ → 0.

It remains to show that 𝑥 ∈ 𝐶 [0, 1]. For an arbitrary 𝜀 > 0, choose 𝑁 large
enough such that ∥𝑥 − 𝑥𝑛∥ ≤ 𝜀/4 for 𝑛 ≥ 𝑁 . Since 𝑥𝑁 ∈ 𝐶 [0, 1], there exists a
𝛿𝜀 > 0 such that |𝑡 − 𝑠 | < 𝛿𝜀 implies |𝑥𝑁 (𝑠) − 𝑥𝑁 (𝑡) | ≤ 𝜀/2. Finally, the condition
|𝑡 − 𝑠 | < 𝛿𝜀 and the triangle inequality yield:

|𝑥(𝑠) − 𝑥(𝑡) | ≤ |𝑥(𝑠) − 𝑥𝑁 (𝑠) | + |𝑥𝑁 (𝑠) − 𝑥𝑁 (𝑡) | + |𝑥𝑁 (𝑡) − 𝑥(𝑡) |
≤ 2∥𝑥 − 𝑥𝑁 ∥ + |𝑥𝑁 (𝑠) − 𝑥𝑁 (𝑡) | ≤ 𝜀,

(B.14)

proving that 𝑥 ∈ 𝐶 [0, 1].

The following example shows that if we replace the supremum norm in Ex-
ample B.13 with the 𝐿1 norm, then the resulting space is no longer complete:

Example B.15 (Space of Continuous Functions with 𝐿1 Norm) Let 𝜆 be the
Lebesgue measure on (R,B) and define the norm on the space𝐶 [0, 1] of continuous
functions on [0, 1] via:

∥𝑥∥ := 𝜆( |𝑥 |1[0,1]) =
∫ 1

0
d𝑡 |𝑥(𝑡) |.

The normed space (𝐶 [0, 1], ∥ · ∥) is not a Banach space. To see this, define the
sequence (𝑥𝑛) of continuous functions on [0, 1]:

𝑥𝑛 (𝑡) := 𝑛
(
𝑡 − 1

2

)+
× 1[0, 12+ 1

𝑛 ] (𝑡) + 1( 1
2+

1
𝑛
,1] (𝑡), 𝑡 ∈ [0, 1] .

This is a Cauchy sequence: ∥𝑥𝑚 − 𝑥𝑛∥ = 1
2(𝑚∧𝑛) −

1
2(𝑚∨𝑛) → 0 for 𝑚, 𝑛→ ∞, which

converges to a discontinuous function:

lim
𝑛
𝑥𝑛 (𝑡) =

{
0 if 𝑡 ∈ [0, 1/2],
1 if 𝑡 ∈ (1/2, 1] .



Appendix B. Function Spaces 331

Another important example of a Banach space is the 𝐿𝑝 space of random
variables defined in Section 2.5.

Theorem B.16: Completeness of 𝐿𝑝

The space 𝐿𝑝 is complete for every 𝑝 ∈ [1,∞].

Proof. Let (𝑋𝑛) be a Cauchy sequence in 𝐿𝑝; i.e., ∥𝑋𝑚 − 𝑋𝑛∥𝑝 → 0 as 𝑚, 𝑛→ ∞.
We are going to construct the limit 𝑋 to which (𝑋𝑛) converges in 𝐿𝑝 norm, as
follows: take a subsequence (𝑛𝑘 , 𝑘 ∈ N) such that ∥𝑋𝑚 − 𝑋𝑛𝑘 ∥𝑝 < 2−𝑘 for 𝑚 ≥ 𝑛𝑘 ,
and define 𝑌𝑘 := 𝑋𝑛𝑘 − 𝑋𝑛𝑘−1 for 𝑘 > 1 and 𝑌0 := 𝑋𝑛0 . Then,

𝑋𝑛𝑘 =

𝑘∑︁
𝑖=0
𝑌𝑖, 𝑘 ∈ N, where

∞∑︁
𝑖=0

∥𝑌𝑖∥𝑝 < ∞.

For each 𝜔 ∈ Ω, define

𝑍𝑘 (𝜔) :=
𝑘∑︁
𝑖=0

|𝑌𝑖 (𝜔) | and 𝑍 (𝜔) :=
∞∑︁
𝑖=0

|𝑌𝑖 (𝜔) |.

Since 𝑍𝑛 a.s.→ 𝑍 , and hence 𝑍 𝑝𝑛 a.s.→ 𝑍 𝑝, we have by the Monotone Convergence The-
orem that ∥𝑍 ∥𝑝 < ∞; that is, 𝑍 ∈ 𝐿𝑝. In particular, sup𝑘 |𝑋𝑛𝑘 | ≤ 𝑍 < ∞ almost
surely, which implies that 𝑋𝑛𝑘

a.s.→ 𝑋 :=
∑∞
𝑖=0𝑌𝑖 as 𝑘 ↑ ∞. Also, 𝑋 ∈ 𝐿𝑝, because

|𝑋 | ≤ 𝑍 and so ∥𝑋 ∥𝑝 ≤ ∥𝑍 ∥𝑝 < ∞. Since |𝑋 − 𝑋𝑛𝑘 |𝑝 ≤ (2𝑍)𝑝 ∈ 𝐿1, it follows
that ∥𝑋𝑛𝑘 − 𝑋 ∥𝑝 → 0. Finally, from the fact that (𝑋𝑛) is a Cauchy sequence and the
triangle inequality:

∥𝑋𝑛 − 𝑋 ∥𝑝 ≤ ∥𝑋𝑛 − 𝑋𝑛𝑘 ∥𝑝 + ∥𝑋𝑛𝑘 − 𝑋 ∥𝑝 → 0,

we conclude that 𝑋𝑛 𝐿𝑝→ 𝑋 . □

B.3 Inner Product Spaces
The next natural enhancement of a vector space 𝑉 is to bestow it with a geometry
via the introduction of an inner product, taking values in either C or R. The former
is used in the definition below. The resulting space 𝑉 with the inner product norm
is called an inner product space.
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Definition B.17: Inner Product

An inner product on 𝑉 is a mapping ⟨·, ·⟩ from 𝑉 ×𝑉 to C that satisfies:
1. ⟨𝛼𝑥1 + 𝛽𝑥2, 𝑦⟩ = 𝛼⟨𝑥1, 𝑦⟩ + 𝛽⟨𝑥2, 𝑦⟩ for all 𝛼, 𝛽 ∈ C.
2. ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩.
3. ⟨𝑥, 𝑥⟩ ≥ 0.
4. ⟨𝑥, 𝑥⟩ = 0 if and only if 𝑥 = 0 (the zero element).

We say that two elements 𝑥 and 𝑦 in𝑉 are orthogonal to each other with respect
to an inner product if ⟨𝑥, 𝑦⟩ = 0. Given an inner product on 𝑉 , we define a norm on
𝑉 via

∥𝑥∥ :=
√︁
⟨𝑥, 𝑥⟩.

The fact that
√︁
⟨𝑥, 𝑥⟩ is a norm and satisfies the properties in Definition B.10 follows

readily from the following properties of the inner product:

Theorem B.18: Properties of the Inner Product

1. (Cauchy–Schwarz inequality): |⟨𝑥, 𝑦⟩| ≤ ∥𝑥∥∥𝑦∥ for any 𝑥, 𝑦 ∈ 𝑉 , with
equality achieved if and only if 𝑥 = 𝛼𝑦 for some constant 𝛼 ∈ C.

2. (Triangle inequality): ∥𝑥 − 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥ for any 𝑥, 𝑦 ∈ 𝑉 .

3. (Continuity): If ∥𝑥𝑛 − 𝑥∥ → 0 and ∥𝑦𝑛 − 𝑦∥ → 0, then ⟨𝑥𝑛, 𝑦𝑛⟩ → ⟨𝑥, 𝑦⟩.

Proof. Without loss of generality, we may assume that ∥𝑥∥ ∥𝑦∥ > 0; otherwise, the
Cauchy–Schwarz inequality is trivial. Since ⟨𝑥 − 𝛼𝑦, 𝑥 − 𝛼𝑦⟩ = ∥𝑥 − 𝛼𝑦∥2 ≥ 0, we
have

0 ≤ ⟨𝑥 − 𝛼𝑦, 𝑥 − 𝛼𝑦⟩ = ∥𝑥∥2 − 𝛼⟨𝑥, 𝑦⟩ − 𝛼[⟨𝑦, 𝑥⟩ − 𝛼∥𝑦∥2] .
Substituting 𝛼 = ⟨𝑦, 𝑥⟩/∥𝑦∥2 yields the inequality:

0 ≤ ∥𝑥 + 𝛼𝑦∥2 = ∥𝑥∥2 − |⟨𝑥, 𝑦⟩|2/∥𝑦∥2,

from which we deduce the Cauchy–Schwarz inequality. Furthermore, ∥𝑥∥2 −
|⟨𝑥, 𝑦⟩|2/∥𝑦∥2 is 0 if and only if ∥𝑥 − 𝛼𝑦∥2 = 0 or, equivalently, 𝑥 = 𝛼𝑦.

The triangle inequality follows from an application of Cauchy–Schwarz as fol-
lows:

∥𝑥 − 𝑦∥2 =
��∥𝑥∥2 + ∥𝑦∥2 − ⟨𝑥, 𝑦⟩ − ⟨𝑦, 𝑥⟩

��
≤ ∥𝑥∥2 + ∥𝑦∥2 + |⟨𝑥, 𝑦⟩| + |⟨𝑦, 𝑥⟩|
≤ ∥𝑥∥2 + ∥𝑦∥2 + ∥𝑥∥∥𝑦∥ + ∥𝑦∥∥𝑥∥ = (∥𝑥∥ + ∥𝑦∥)2.
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To show the continuity statement, note that by adding and subtracting ⟨𝑥, 𝑦𝑛⟩ and
using the triangle inequality, we obtain

|⟨𝑥𝑛, 𝑦𝑛⟩ − ⟨𝑥, 𝑦⟩| ≤ |⟨𝑥𝑛, 𝑦𝑛⟩ − ⟨𝑥, 𝑦𝑛⟩| + |⟨𝑥, 𝑦𝑛⟩ − ⟨𝑥, 𝑦⟩|
≤ |⟨𝑥𝑛 − 𝑥, 𝑦𝑛⟩| + |⟨𝑥, 𝑦𝑛 − 𝑦⟩|
≤ ∥𝑥𝑛 − 𝑥∥ × ∥𝑦𝑛∥ + ∥𝑥∥ × ∥𝑦𝑛 − 𝑦∥ → 0,

where we used the Cauchy–Schwarz inequality twice in the last line. □

An inner product space that is complete is called a Hilbert space. One of the
most fundamental Hilbert spaces is the 𝐿2 space1 of functions.

Definition B.19: 𝐿2 Space

Let (𝐸, E, 𝜇) be a measure space and define the inner product:

(B.20) ⟨ 𝑓 , 𝑔⟩ :=
∫
𝐸

𝜇(d𝒙) 𝑓 (𝒙) 𝑔(𝒙).

The Hilbert space 𝐿2(𝐸, E, 𝜇) is the vector space of functions from 𝐸 to C
that satisfy ∥ 𝑓 ∥2 := ⟨ 𝑓 , 𝑓 ⟩ < ∞. Any pair of functions 𝑓 and 𝑔 that are
𝜇-everywhere equal, that is, ∥ 𝑓 − 𝑔∥ = 0, are identified as one and the same.

Of particular interest is the space 𝐿2 [0, 1], where 𝐸 is the interval [0, 1], E is
the Borel 𝜎-algebra thereon (i.e., B[0,1]), and 𝜇 is the Lebesgue measure restricted
to [0, 1] (i.e., Leb[0,1]).

A set of functions {𝑢𝑖, 𝑖 ∈ 𝐼} is called an orthonormal system for a Hilbert space
𝐿2(𝐸, E, 𝜇) if

⟨𝑢𝑖, 𝑢 𝑗 ⟩ =
{

1 if 𝑖 = 𝑗 ,

0 if 𝑖 ≠ 𝑗 .

It follows then that the {𝑢𝑖} are linearly independent; that is, the only linear com-
bination

∑
𝑗 𝛼 𝑗𝑢 𝑗 (𝒙) that is equal to 𝑢𝑖 (𝒙) for all 𝒙 is the one where 𝛼𝑖 = 1 and

𝛼 𝑗 = 0 for 𝑗 ≠ 𝑖. Although the general theory allows for uncountable index set 𝐼,
it can be proved that when 𝐸 is a bounded and closed subset of R𝑑 , then the set 𝐼
must be countable. For simplicity, we will henceforth assume that 𝐼 is countable,
and without loss of generality 𝐼 := N.

Let (𝑉, ∥ · ∥) be the Hilbert space 𝐿2(𝐸, E, 𝜇). An orthonormal system {𝑢𝑖, 𝑖 ∈
N} is called an orthonormal basis if there is no 𝑓 ∈ 𝑉 , other than the 0 function, that

1Note that Definition B.19 involves a space of complex-valued functions, in contrast to the 𝐿2

space of square-integrable random variables in Section 2.5 (with 𝐸 = Ω, E = H , and 𝜇 = P), where
we used real-valued functions.
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is orthogonal to all the {𝑢𝑖, 𝑖 ∈ N}. Any orthonormal system satisfies the following
inequality:

Theorem B.21: Bessel Inequality

For any orthonormal system {𝑢𝑖, 𝑖 ∈ N}, ∑∞
𝑖=0 |⟨ 𝑓 , 𝑢𝑖⟩|2 ≤ ∥ 𝑓 ∥2 for all 𝑓 ∈ 𝑉 .

Proof. Let 𝑓𝑛 :=
∑𝑛
𝑖=0⟨ 𝑓 , 𝑢𝑖⟩𝑢𝑖, so that

⟨ 𝑓𝑛, 𝑓 ⟩ =
𝑛∑︁
𝑖=0

⟨ 𝑓 , 𝑢𝑖⟩⟨𝑢𝑖, 𝑓 ⟩ =
𝑛∑︁
𝑖=0

|⟨ 𝑓 , 𝑢𝑖⟩|2

is real (implying that ⟨ 𝑓𝑛, 𝑓 ⟩ = ⟨ 𝑓 , 𝑓𝑛⟩) and

⟨ 𝑓𝑛, 𝑓𝑛⟩ =
𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

⟨ 𝑓 , 𝑢𝑖⟩⟨𝑢𝑖, 𝑓 ⟩⟨𝑢𝑖, 𝑢 𝑗 ⟩ =
𝑛∑︁
𝑖=0

|⟨ 𝑓 , 𝑢𝑖⟩|2.

Since ⟨ 𝑓 − 𝑓𝑛, 𝑓𝑛⟩ = 0, we deduce that 𝑓𝑛 is orthogonal to 𝑓 − 𝑓𝑛. Hence, from

0 ≤ ⟨ 𝑓 − 𝑓𝑛, 𝑓 − 𝑓𝑛⟩ = ⟨ 𝑓 , 𝑓 − 𝑓𝑛⟩ = ⟨ 𝑓 , 𝑓 ⟩ − ⟨ 𝑓 , 𝑓𝑛⟩,

we obtain ⟨ 𝑓𝑛, 𝑓𝑛⟩ =
∑𝑛
𝑖=0 |⟨ 𝑓 , 𝑢𝑖⟩|2 ≤ ∥ 𝑓 ∥2. Since ⟨ 𝑓𝑛, 𝑓𝑛⟩ is increasing and

bounded from above, it follows that it converges to a limit: lim𝑛↑∞ ∥ 𝑓𝑛∥2 =∑∞
𝑖=0 |⟨ 𝑓 , 𝑢𝑖⟩|2 ≤ ∥ 𝑓 ∥2. □

Orthonormal bases satisfy the following stronger result, the consequence of
which is that in a Hilbert space (𝑉, ∥ · ∥) with orthonormal basis {𝑢𝑖, 𝑖 ∈ N} every
element 𝑓 ∈ 𝑉 can be written as

𝑓 =

∞∑︁
𝑖=0

⟨ 𝑓 , 𝑢𝑖⟩ 𝑢𝑖,

in the sense that the approximation 𝑓𝑛 :=
∑𝑛
𝑖=0⟨ 𝑓 , 𝑢𝑖⟩ 𝑢𝑖 converges to 𝑓 in the norm

on 𝑉 .

Theorem B.22: Parseval Identity

It holds that
∑∞
𝑖=0 |⟨ 𝑓 , 𝑢𝑖⟩|2 = ∥ 𝑓 ∥2 for any 𝑓 in a Hilbert space (𝑉, ∥ · ∥) if

and only if {𝑢𝑖, 𝑖 ∈ N} is an orthonormal basis for (𝑉, ∥ · ∥).

Proof. First, suppose that Parseval’s identity holds for any 𝑓 in the Hilbert space
𝑉 . If {𝑢𝑖, 𝑖 ∈ N} is not an orthonormal basis, there exists a nonzero 𝑓 ∈ 𝑉 such
that ⟨ 𝑓 , 𝑢𝑖⟩ = 0 for all 𝑖 ∈ N. This, however, contradicts Parseval’s identity, because
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0 < ∥ 𝑓 ∥2 =
∑∞
𝑖=0 |⟨ 𝑓 , 𝑢𝑖⟩|2 =

∑∞
𝑖=0 0 = 0 is impossible. Hence, {𝑢𝑖, 𝑖 ∈ N} must be

an orthonormal basis.
Conversely, suppose that {𝑢𝑖, 𝑖 ∈ N} is an orthonormal basis, so that ⟨ℎ, 𝑢𝑖⟩ = 0

for all 𝑖 ∈ N implies that ℎ = 0. For an arbitrary 𝑓 ∈ 𝑉 , let 𝑓𝑛 :=
∑𝑛
𝑖=0⟨ 𝑓 , 𝑢𝑖⟩𝑢𝑖. Since

for 𝑛 > 𝑚 → ∞we have that ∥ 𝑓𝑚− 𝑓𝑛∥2 =
∑𝑛
𝑖=𝑚 |⟨ 𝑓 , 𝑢𝑖⟩|2 → 0 is a Cauchy sequence

in the complete space (𝑉, ∥ · ∥), ( 𝑓𝑛) converges (in norm) to an element of 𝑉 . This
element 𝑔 := lim 𝑓𝑛 must be 𝑓 , because, ⟨ 𝑓 − 𝑓𝑛, 𝑢𝑖⟩ = ⟨ 𝑓 , 𝑢𝑖⟩ − ⟨ 𝑓𝑛, 𝑢𝑖⟩ = 0 for all
𝑖 ≤ 𝑛 and so, by the continuity of the inner product, ⟨ 𝑓 −𝑔, 𝑢𝑖⟩ = lim⟨ 𝑓 − 𝑓𝑛, 𝑢𝑖⟩ = 0
for all 𝑖 ∈ N. In other words, 𝑓 =

∑∞
𝑖=1⟨ 𝑓 , 𝑢𝑖⟩𝑢𝑖, implying Parseval’s identity. □

B.4 Sturm–Liouville Orthonormal Basis
Let L be the linear differential operator that maps a twice differentiable function 𝑢
into the function L𝑢 defined by:

[L𝑢] (𝑥) := −
d
d𝑥

[
𝑝(𝑥) d𝑢

d𝑥
]
+ 𝑞(𝑥)𝑢(𝑥)

𝑤(𝑥) ,

where 𝑝, 𝑤 are positive functions on [0, 1] and 𝑝, 𝑝′, 𝑤, 𝑞 are all continuous.
Let 𝐿2( [0, 1],B[0,1] , 𝜇) be the Hilbert space with 𝜇(d𝑥) = 𝑤(𝑥) d𝑥. One of

the simplest ways to construct a countable infinite-dimensional orthonormal basis
{𝑢𝑘 } for 𝐿2( [0, 1],B[0,1] , 𝜇) is to find all the distinct eigenvalue and eigenfunction
pairs {(𝜆𝑘 , 𝑢𝑘 )} of the Sturm–Liouville ordinary differential equation with separated
boundary conditions:

(L𝑢𝑘 ) (𝑥) − 𝜆𝑘 𝑢𝑘 (𝑥) = 0,
𝑐1 𝑢𝑘 (0) + 𝑐2 𝑢

′
𝑘 (0) = 0,

𝑐3 𝑢𝑘 (1) + 𝑐4 𝑢
′
𝑘 (1) = 0,

(B.23)

where |𝑐1 | + |𝑐2 | > 0 and |𝑐3 | + |𝑐4 | > 0. Using integration by parts and the
separated boundary conditions in (B.23), it is straightforward to show that L is
a self-adjoint linear operator with respect to the inner product (B.20); that is,
⟨𝑢𝑘 ,L𝑢 𝑗 ⟩ = ⟨L𝑢𝑘 , 𝑢 𝑗 ⟩. Hence, from (B.23) we can write

(𝜆𝑘 − 𝜆 𝑗 )⟨𝑢𝑘 , 𝑢 𝑗 ⟩ = ⟨𝜆𝑘𝑢𝑘 , 𝑢 𝑗 ⟩ − ⟨𝑢𝑘 , 𝜆 𝑗𝑢 𝑗 ⟩ = ⟨L𝑢𝑘 , 𝑢 𝑗 ⟩ − ⟨𝑢𝑘 ,L𝑢 𝑗 ⟩ = 0.

The last equation implies that:

1. (𝜆𝑘 − 𝜆𝑘 )∥𝑢𝑘 ∥2 = 0 for 𝑘 = 𝑗 (that is, each eigenvalue 𝜆𝑘 is real) and

2. the eigenfunctions 𝑢𝑘 and 𝑢 𝑗 are orthogonal to each other, provided that
𝜆𝑘 ≠ 𝜆 𝑗 .
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All of the eigenvalues can be shown to be real and distinct, and so they form an
increasing sequence, 𝜆0 < 𝜆1 < 𝜆2 < · · · .

Example B.24 (Sine Orthonormal Basis) Choosing 𝑤(𝑥) = 𝑝(𝑥) = 1, 𝑞(𝑥) = 0
and 𝑐2 = 𝑐4 = 0, one can verify that the eigenvalues 𝜆𝑘 = 𝑘2 and eigenfunctions
sin(𝑘𝜋𝑥) satisfy (B.23). Hence,

√
2 sin(𝑘𝜋𝑥), 𝑘 = 1, 2, 3, . . . is an orthonormal

basis for 𝐿2 [0, 1].
An alternative half-sine basis results from choosing 𝑤(𝑥) = 𝑝(𝑥) = 1, 𝑞(𝑥) = 0

and 𝑐2 = 𝑐3 = 0. One can verify that the eigenvalues 𝜆𝑘 = (𝑘 +1/2)2 and eigenfunc-
tions sin( [𝑘 + 1/2]𝜋𝑥) satisfy (B.23). Hence,

√
2 sin( [𝑘 + 1/2]𝜋𝑥), 𝑘 = 0, 1, 2, . . .

is also an orthonormal basis for 𝐿2 [0, 1].

Example B.25 (Cosine Orthonormal Basis) Choosing𝑤(𝑥) = 𝑝(𝑥) = 1, 𝑞(𝑥) =
0 and 𝑐1 = 𝑐3 = 0, one can verify that the eigenvalues 𝜆𝑘 = 𝑘2 and eigenfunctions
cos(𝑘𝜋𝑥) satisfy (B.23). Hence, the cosine functions 𝑢0(𝑥) = cos(0𝜋𝑥), 𝑢𝑘 (𝑥) =√

2 cos(𝑘𝜋𝑥), 𝑘 = 1, 2, . . . form an orthonormal basis for 𝐿2 [0, 1]. For example,
consider the indicator function 1[0,𝑡] on [0, 1]. The approximation

1
(𝑚)
[0,𝑡] (𝑥) =

𝑚−1∑︁
𝑘=0

⟨1[0,𝑡] , 𝑢𝑘⟩ 𝑢𝑘 (𝑥) = 𝑡 + 2
𝑚∑︁
𝑘=1

sin(𝑘𝜋𝑡)
𝑘𝜋

cos(𝑘𝜋𝑥), 𝑥 ∈ [0, 1],

converges to1[0,𝑡] in the corresponding norm: ∥1(𝑚)
[0,𝑡]−1[0,𝑡] ∥ → 0. Therefore, from

the continuity property in Theorem B.18 we can deduce the pointwise convergence
of the inner product ⟨1(𝑚)

[0,𝑠] , 1
(𝑚)
[0,𝑡]⟩ → ⟨1[0,𝑠] , 1[0,𝑡]⟩, and we can write

(B.26) 𝑠 ∧ 𝑡 = ⟨1[0,𝑠] , 1[0,𝑡]⟩ = 𝑠 𝑡 +
∞∑︁
𝑘=1

√
2 sin(𝑘𝜋𝑠)
𝑘𝜋

√
2 sin(𝑘𝜋𝑡)
𝑘𝜋

.

Yet another basis follows from 𝑤(𝑥) = 𝑝(𝑥) = 1, 𝑞(𝑥) = 0 and 𝑐1 = 𝑐4 = 0, so
that the eigenvalues 𝜆𝑘 = (𝑘 + 1/2)2 and eigenfunctions cos( [𝑘 + 1/2]𝜋𝑥) satisfy
(B.23), giving the orthonormal basis

√
2 cos(𝑘𝜋𝑥/2), 𝑘 = 1, 3, 5, . . . for 𝐿2 [0, 1].

With this basis we can write

(B.27) 𝑠 ∧ 𝑡 = ⟨1[0,𝑠] , 1[0,𝑡]⟩ =
∑︁

𝑘=1,3,...

2
√

2 sin(𝑘𝜋𝑠/2)
𝑘𝜋

2
√

2 sin(𝑘𝜋𝑡/2)
𝑘𝜋

.

B.5 Hermite Orthonormal Basis
Another useful orthonormal basis can be constructed from the Hermite polynomials,
defined via

ℏ𝑛 (𝑥) := (−1)𝑛 exp(𝑥2/2) d𝑛

d𝑥𝑛
exp(−𝑥2/2), 𝑛 = 0, 1, 2, . . . ,
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or explicitly via

ℏ𝑛 (𝑥) = 𝑛!
⌊𝑛/2⌋∑︁
𝑘=0

(−1)𝑘
𝑘!(𝑛 − 2𝑘)!2𝑘

𝑥𝑛−2𝑘 .

The definition of the Hermite polynomials implies the following properties:

ℏ′𝑛 (𝑥) = 𝑛 ℏ𝑛−1(𝑥),
ℏ𝑛+1(𝑥) = 𝑥 ℏ𝑛 (𝑥) − ℏ′𝑛 (𝑥),

exp(𝑥𝑡 − 𝑡2/2) = ∑∞
𝑘=0

𝑡𝑘

𝑘! ℏ𝑘 (𝑥).

Each ℏ𝑘 (𝑥) satisfies the Sturm–Liouville ODE (B.23) of the form:

(exp(−𝑥2/2)︸        ︷︷        ︸
=:𝑝(𝑥)

𝑢′(𝑥))′ + 𝑘︸︷︷︸
=:𝜆𝑘

exp(−𝑥2/2)︸        ︷︷        ︸
=:𝑤(𝑥)

𝑢(𝑥) = 0,

subject to the boundary conditions: exp(−𝑥2/2)𝑢(𝑥) → 0 and exp(−𝑥2/2)𝑢′(𝑥) →
0 as 𝑥 → ±∞. Note that the boundary conditions at infinity differ from those in
(B.23), but similar integration by parts computations establish the orthogonality
property with respect to the inner product (B.20): ⟨ℏ𝛼, ℏ𝛽⟩ = 𝛼!

√
2𝜋 1{𝛼=𝛽}.

Since ∫R d𝑥 𝑓 (𝑥)𝑥𝑛 exp(−𝑥2) = 0 for all 𝑛 ∈ N implies that 𝑓 = 0 almost every-
where, the Hermite polynomials form an orthogonal basis of 𝐿2(R,B, 𝑤(𝑥) d𝑥),
with 𝑤(𝑥) = exp(−𝑥2/2). Hence, any function 𝑓 in this space can be approximated
via 𝑓 (𝑚) (𝑥) = ∑𝑚−1

𝑘=0
⟨ 𝑓 ,ℏ𝑘⟩
𝑘!
√

2𝜋
ℏ𝑘 (𝑥) such that ∥ 𝑓 − 𝑓 (𝑚) ∥ → 0.

Example B.28 (Hermite Functions) Using the properties of the Hermite poly-
nomials, we can show that the Hermite functions:

𝜓𝑛 (𝑥) :=
exp(−𝑥2/4)√︁

𝑛!
√

2𝜋
ℏ𝑛 (𝑥), 𝑛 ∈ N

form an orthonormal basis of 𝐿2(R,B,Leb); i.e., ∫ d𝑥 𝜓𝑚 (𝑥)𝜓𝑛 (𝑥) = 1{𝑚=𝑛}, and
hence any function therein can be approximated with 𝑓 (𝑚) (𝑥) :=

∑𝑚−1
𝑘=0 𝑐𝑘 𝜓𝑘 (𝑥),

where 𝑐𝑘 := ∫ d𝑥 𝑓 (𝑥)𝜓𝑛 (𝑥).

B.6 Haar Orthonormal Basis
For every pair of integers 𝑛 ≥ 0 and 𝑘 = 0, 1, . . . , 2𝑛 − 1, the Haar function ℎ𝑛,𝑘 is
defined by:

ℎ𝑛,𝑘 (𝑥) := 2𝑛/2 ×


1 if 𝑘

2𝑛 ≤ 𝑥 < 𝑘+ 1
2

2𝑛 ,

−1 if 𝑘+ 1
2

2𝑛 ≤ 𝑥 < 𝑘+1
2𝑛 ,

0 otherwise.
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Note that all Haar functions are 0 outside the interval [0, 1]. With (B.20) as the
inner product for the Hilbert space 𝐿2 [0, 1], we have:

⟨ℎ𝑛,𝑘 , ℎ𝑚,𝑙⟩ =
{

1 if 𝑛 = 𝑚, 𝑘 = 𝑙,

0 otherwise.

In addition, ⟨1, ℎ𝑛,𝑘⟩ = ∫ 1
0 d𝑥 ℎ𝑛,𝑘 (𝑥) = 0, implying that the constant 1 is orthogonal

to all Haar functions. The set of Haar functions with the addition of the constant
function 1, that is, {ℎ𝑛,𝑘 , 𝑛 ≥ 0, 𝑘 = 0, . . . , 2𝑛 − 1} ∪ {1}, forms an orthonormal
basis of 𝐿2 [0, 1]. In other words, for every 𝑓 ∈ 𝐿2 [0, 1] we have the approximation

𝑓 (𝑚) (𝑥) := ⟨ 𝑓 , 1⟩ +
𝑚−1∑︁
𝑛=0

2𝑛−1∑︁
𝑘=0

⟨ 𝑓 , ℎ𝑛,𝑘⟩ ℎ𝑛,𝑘 (𝑥),

where ∥ 𝑓 − 𝑓 (𝑚) ∥ → 0 as 𝑚 ↑ ∞ and ∥ · ∥ is the norm on 𝐿2 [0, 1].
While the expansion above uses two indexes 𝑛 and 𝑘 , we can define a single-index

set of orthonormal functions:

ℎ0(𝑥) := 1[0,1] (𝑥), ℎ 𝑗 (𝑥) := ℎ𝑛,𝑘 (𝑥), 𝑗 = 2𝑛 + 𝑘,

and thus obtain the more familiar expansion 𝑓 (𝑚) (𝑥) = ∑𝑚−1
𝑗=0 ⟨ 𝑓 , ℎ 𝑗 ⟩ ℎ 𝑗 (𝑥).

Example B.29 (Schauder Functions) A useful set of functions derived from
the Haar basis are the tent-like or Schauder functions, defined for 𝑛 ≥ 0, 𝑘 =

0, 1, . . . , 2𝑛 − 1 by

𝑐𝑛,𝑘 (𝑡) := ⟨1[0,𝑡] , ℎ𝑛,𝑘⟩ = 2−𝑛/2−1 [1 − |2𝑛+1𝑡 − 2𝑘 − 1|]+.

Figure B.30 shows the characteristic tent-like shape of all 𝑐𝑛,𝑘 for 𝑛 = 0, 1, 2.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Figure B.30: Tent-like functions: 𝑐0,0 is the blue dotted line; 𝑐1,0 and 𝑐1,1 are given
as the red thick line; 𝑐2,0, 𝑐2,1, 𝑐2,2, 𝑐2,3 are depicted as the black dash-dot line.
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One advantage of the Haar basis over the trigonometric basis is that each Haar
function is very localized (nonzero over a vanishingly small interval), and thus
easily permitting stronger types of convergence. For example, if 𝑓 is continuous on
[0, 1], then the pointwise convergence of 𝑓 (𝑚) to 𝑓 is uniform:

sup
𝑥∈[0,1]

| 𝑓 (𝑥) − 𝑓 (𝑚) (𝑥) | → 0.





APPENDIX C

EXISTENCE OF THE LEBESGUE
MEASURE

In this appendix we prove the existence of the Lebesgue measure on
((0, 1],B(0,1]), following Billingsley (1995).

We first show the countable additivity of the Lebesgue pre-measure on 𝐸 := (0, 1].
Denote by I the set of subintervals of 𝐸 of the form (𝑐, 𝑑], and let E0 be the algebra
of sets that are finite unions of intervals in I.

Recall that an algebra E0 on 𝐸 is a collection of subsets of 𝐸 that contains
𝐸 itself, and that is closed under complements and finite unions. Recall also that
a pre-measure is a set function 𝜆 : E0 → [0,∞], with 𝜆(∅) = 0 that satisfies the
countable additivity property:

(C.1) 𝜆

( ∞⋃
𝑘=1

𝐴𝑘

)
=

∞∑︁
𝑘=1

𝜆(𝐴𝑘 )

for every sequence 𝐴1, 𝐴2, . . . of disjoint sets in E0 with ∪𝑛𝐴𝑛 ∈ E0.
Define on E0 the natural “length” pre-measure 𝜆. When 𝜆 is applied to intervals,

we use the notation | · | instead. Thus, for disjoint intervals {(𝑎𝑘 , 𝑏𝑘 ]}:

𝜆

(
𝑛⋃
𝑘=1

(𝑎𝑘 , 𝑏𝑘 ]
)
=

����� 𝑛⋃
𝑘=1

(𝑎𝑘 , 𝑏𝑘 ]
����� = 𝑛∑︁

𝑘=1
(𝑏𝑘 − 𝑎𝑘 ).

We want to show that this pre-measure is countably additive. We do this
in two steps. First, we prove it for intervals, and then for general sets in E0.
Below, 𝐼 = (𝑎, 𝑏] and 𝐼𝑘 = (𝑎𝑘 , 𝑏𝑘 ] are bounded intervals of lengths |𝐼 | = 𝑏 − 𝑎
and |𝐼𝑘 | = 𝑏𝑘 − 𝑎𝑘 .
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Proposition C.2: Countable Additivity for Intervals

If 𝐼 = ∪∞
𝑘=1𝐼𝑘 and the {𝐼𝑘 } are disjoint, then |𝐼 | = ∑∞

𝑘=1 |𝐼𝑘 |.

Proof. We are going to prove the theorem by showing:

1. If
⋃∞
𝑘=1 𝐼𝑘 ⊆ 𝐼, and the {𝐼𝑘 } are disjoint, then

(C.3)
∞∑︁
𝑘=1

|𝐼𝑘 | ≤ |𝐼 |.

2. If
⋃∞
𝑘=1 𝐼𝑘 ⊇ 𝐼 (the {𝐼𝑘 } need not be disjoint), then

(C.4)
∞∑︁
𝑘=1

|𝐼𝑘 | ≥ |𝐼 |.

We first show (C.3) for finite sums (that is,
∑𝑛
𝑘=1 |𝐼𝑘 | ≤ |𝐼 |), using induction.

The statement is obviously true for 𝑛 = 1. Suppose it is true for 𝑛 − 1. Without
loss of generality, we may assume 𝑎𝑛 is the largest among 𝑎1, . . . , 𝑎𝑛. Then,⋃𝑛−1
𝑘=1(𝑎𝑘 , 𝑏𝑘 ] ⊆ (𝑎, 𝑎𝑛], so that, by the induction hypothesis,

∑𝑛−1
𝑘=1(𝑏𝑘 − 𝑎𝑘 ) ≤

𝑎𝑛 − 𝑎, and hence:

(C.5)
𝑛∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘 ) ≤ 𝑎𝑛 − 𝑎 + 𝑏𝑛 − 𝑎𝑛 ≤ 𝑏 − 𝑎.

The infinite sum case follows directly from this. Namely, from the finite sum case,
we have that (C.5) holds for every 𝑛 ≥ 1. But this can only be the case if

∞∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘 ) ≤ 𝑏 − 𝑎.

To prove (C.4), we again consider first the finite sum and then the infinite
sum case. We use again induction to show |𝐼 | ≤ ∑𝑛

𝑘=1 |𝐼𝑘 |, which is true for
𝑛 = 1. Suppose it is true for 𝑛 − 1. Without loss of generality, we may assume
𝑎𝑛 < 𝑏 ≤ 𝑏𝑛. If 𝑎𝑛 ≤ 𝑎, the result is obvious. If 𝑎𝑛 > 𝑎, then (draw a picture)
(𝑎, 𝑎𝑛] ⊆

⋃𝑛−1
𝑖=1 (𝑎𝑘 , 𝑏𝑘 ], so that

∑𝑛−1
𝑘=1(𝑏𝑘−𝑎𝑘 ) ≥ 𝑎𝑛−𝑎 by the induction hypothesis,

and hence:
𝑛∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘 ) ≥ (𝑎𝑛 − 𝑎) + (𝑏𝑛 − 𝑎𝑛) ≥ 𝑏 − 𝑎.

For the infinite sum case, suppose that (𝑎, 𝑏] ⊆ ∪∞
𝑘=1(𝑎𝑘 , 𝑏𝑘 ]. If 0 < 𝜀 < 𝑏 − 𝑎, the

open intervals {(𝑎𝑘 , 𝑏𝑘 + 𝜀2−𝑘 )} cover the closed interval [𝑎 + 𝜀, 𝑏]. The Heine–
Borel property of the real-number system states that bounded closed intervals are
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compact; that is, every (infinite) cover of such a set has a finite subcover; see also
Example B.6. Thus,

[𝑎 + 𝜀, 𝑏] ⊆ ∪𝑛𝑘=1(𝑎𝑘 , 𝑏𝑘 + 𝜀2
−𝑘 )

for some 𝑛. But then

(𝑎 + 𝜀, 𝑏] ⊆ ∪𝑛𝑘=1(𝑎𝑘 , 𝑏𝑘 + 𝜀2
−𝑘 ).

Consequently, using the finite case,

𝑏 − (𝑎 + 𝜀) ≤
𝑛∑︁
𝑘=1

(𝑏𝑘 + 𝜀2−𝑘 − 𝑎𝑘 ) ≤
∞∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘 ) + 𝜀.

Since 𝜀 > 0 was arbitrary, we have

𝑏 − 𝑎 ≤
∞∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘 ).

This completes the proof for intervals. □

Next, we prove the countable additivity for arbitrary sets in E0. Recall that we
used the notation 𝜆(𝐴) = |𝐴| if 𝐴 is an interval.

Theorem C.6: Countable Additivity for Sets

Let 𝐴 ∈ E0 be of the form 𝐴 = ∪∞
𝑘=1𝐴𝑘 , where the {𝐴𝑘 } are disjoint and in

E0. Then,

𝜆(𝐴) =
∞∑︁
𝑘=1

𝜆(𝐴𝑘 ).

Proof. We can write (for certain intervals {𝐼𝑖} and {𝐽𝑘 𝑗 }):

𝐴 =

𝑛⋃
𝑖=1

𝐼𝑖 and 𝐴𝑘 =

𝑚𝑘⋃
𝑗=1
𝐽𝑘 𝑗 .

It follows that

𝐴 =

𝑛⋃
𝑖=1

∞⋃
𝑘=1

𝑚𝑘⋃
𝑗=1

(𝐼𝑖 ∩ 𝐽𝑘 𝑗 ).

Note that the {𝐼𝑖 ∩ 𝐽𝑘 𝑗 } are disjoint and lie in I. Moreover,
𝑛⋃
𝑖=1

(𝐼𝑖 ∩ 𝐽𝑘 𝑗 ) =
𝑛⋃
𝑖=1

𝐼𝑖︸︷︷︸
𝐴

∩𝐽𝑘 𝑗 = 𝐽𝑘 𝑗 ,
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as 𝐽𝑘 𝑗 ⊆ 𝐴. Thus, we have, by the countable additivity for intervals:

𝜆(𝐴) =
𝑛∑︁
𝑖=1

|𝐼𝑖 | =
𝑛∑︁
𝑖=1

∞∑︁
𝑘=1

𝑚𝑘∑︁
𝑗=1

|𝐼𝑖 ∩ 𝐽𝑘 𝑗 | =
∞∑︁
𝑘=1

𝑚𝑘∑︁
𝑗=1

|𝐽𝑘 𝑗 | =
∞∑︁
𝑘=1

𝜆(𝐴𝑘 ).

□

If in Proposition C.2 the {𝐴𝑘 } are not disjoint, we still have countable subaddit-
ivity:

(C.7) 𝜆(𝐴) ≤
∞∑︁
𝑘=1

𝜆(𝐴𝑘 ).

The proof is exactly the same as in Proposition 1.42.

We next show the existence of the Lebesgue measure on (𝐸, E) for 𝐸 := (0, 1]
and E := B(0,1] . Recall that E0 is the algebra of sets that are finite unions of disjoint
intervals of the form (𝑐, 𝑑], and that 𝜆 is the pre-measure on E0, which we have just
shown to be countably additive. The proof of existence relies on the definition of
two objects: 𝜆 and M.

Definition C.8: Outer Measure 𝜆

The outer measure of 𝜆 is the set function 𝜆 that assigns to each 𝐴 ∈ 2𝐸 (that
is, for each 𝐴 ⊆ 𝐸) the value

(C.9) 𝜆(𝐴) := inf
∑
𝑛 𝜆(𝐴𝑛),

where the infimum is over all sequences 𝐴1, 𝐴2, . . . of E0-sets satisfying
𝐴 ⊆ ∪𝑛𝐴𝑛.

Note that 𝜆 is not actually a measure, as the set 2𝐸 is simply too big for it to be
countably additive. We can also define an inner measure,

𝜆(𝐴) := 1 − 𝜆(𝐴𝑐), 𝐴 ∈ 2𝐸 .

The outer measure 𝜆 has properties reminiscent of those of a measure, such as
positivity 𝜆(𝐴) ≥ 0 and monotonicity 𝜆(𝐴) ≤ 𝜆(𝐵), when 𝐴 ⊆ 𝐵. Also, 𝜆(∅) = 0.
The following countable subadditivity property is important as well:

Lemma C.10: The Outer Measure 𝜆 is Countably Subadditive

For any collection of sets in 𝐸 (not necessarily disjoint), it holds that

(C.11) 𝜆
(
∪∞
𝑛=1 𝐴𝑛

)
≤ ∑∞

𝑛=1 𝜆(𝐴𝑛).



Appendix C. Existence of the Lebesgue Measure 345

Proof. Take 𝜀 > 0 and choose 𝐵𝑛𝑘 ∈ E0 such that 𝐴𝑛 ⊆ ∪𝑘𝐵𝑛𝑘 and
∑
𝑘 𝜆(𝐵𝑛𝑘 ) <

𝜆(𝐴𝑛) + 𝜀 2−𝑛. Because ∪𝑛𝐴𝑛 ⊆ ∪𝑛,𝑘𝐵𝑛𝑘 , it follows that

𝜆
(
∪∞
𝑛=1 𝐴𝑛

)
≤ ∑

𝑛,𝑘 𝜆(𝐵𝑛𝑘 ) <
∑∞
𝑛=1 𝜆(𝐴𝑛) + 𝜀,

showing (C.11), as 𝜀 is arbitrary. □

Definition C.12: The Collection M

The collection M consists of all sets 𝐴 ∈ 2𝐸 for which

(C.13) 𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐴𝑐 ∩ 𝐶) = 𝜆(𝐶) for every 𝐶 ∈ 2𝐸 .

Taking 𝐶 = 𝐸 , this implies that 𝜆(𝐴) = 𝜆(𝐴) for every 𝐴 ∈ M. The following
lemma shows that M is an algebra. Later on we will show that it is in fact a
𝜎-algebra.

Lemma C.14: The Collection M is an Algebra

The collection M contains 𝐸 and is closed under complements and finite
unions. Hence, it is an algebra on 𝐸 .

Proof. The collection M is obviously closed under complements and contains 𝐸 .
To show that it is closed under finite unions, we need to show that 𝐴 ∪ 𝐵 ∈ M for
any 𝐴, 𝐵 ∈ M. Take any 𝐶 ∈ 2𝐸 . By the countable (and hence finite) subadditivity
of 𝜆 in (C.11), we have

(C.15) 𝜆(𝐶) ≤ 𝜆((𝐴 ∩ 𝐵) ∩ 𝐶) + 𝜆((𝐴 ∩ 𝐵)𝑐 ∩ 𝐶).

Since the reverse inequality also holds:

𝜆(𝐶) = 𝜆(𝐵 ∩ 𝐶) + 𝜆(𝐵𝑐 ∩ 𝐶)
= 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶) + 𝜆(𝐴𝑐 ∩ 𝐵 ∩ 𝐶) + 𝜆(𝐴 ∩ 𝐵𝑐 ∩ 𝐶) + 𝜆(𝐴𝑐 ∩ 𝐵𝑐 ∩ 𝐶)
≥ 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶) + 𝜆

(
(𝐴𝑐 ∩ 𝐵 ∩ 𝐶) ∪ (𝐴 ∩ 𝐵𝑐 ∩ 𝐶) ∪ (𝐴𝑐 ∩ 𝐵𝑐 ∩ 𝐶)

)
= 𝜆((𝐴 ∩ 𝐵) ∩ 𝐶) + 𝜆((𝐴 ∩ 𝐵)𝑐 ∩ 𝐶),

we have in fact equality in (C.15), which shows that 𝐴∪𝐵 ∈ M, by Definition C.12.
□

When the outer measure 𝜆 is restricted to M, we have the following form of
countable additivity. Take 𝐶 = 𝐸 to get the usual countable additivity.
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Lemma C.16: The Outer Measure 𝜆 Restricted to M is Countably Ad-
ditive

If {𝐴𝑘 } ∈ M are disjoint, then for any 𝐶 ∈ 2𝐸 :

(C.17) 𝜆
(
(∪𝑘𝐴𝑘 ) ∩ 𝐶

)
=

∑
𝑘 𝜆(𝐴𝑘 ∩ 𝐶).

Proof. We first prove the case for a finite collection 𝐴1, . . . , 𝐴𝑛 by induction, starting
with 𝑛 = 2. In that case, if 𝐴1∪𝐴2 = 𝐸 , then the statement follows from the definition
of M in (C.13). If 𝐴1 ∪ 𝐴2 is smaller than 𝐸 , take 𝐶 := (𝐴1 ∪ 𝐴2) ∩𝐷 and 𝐴 := 𝐴1
in (C.13) and use the disjointness of 𝐴1 and 𝐴2 to conclude that

𝜆(𝐴1 ∩ 𝐷) + 𝜆(𝐴2 ∩ 𝐷) = 𝜆((𝐴1 ∪ 𝐴2) ∩ 𝐷),

showing that the induction statement holds for 𝑛 = 2. Suppose that (C.17) holds for
𝑛 − 1 disjoint sets 𝐴1, . . . , 𝐴𝑛−1 in M. Then, by the induction hypothesis and the
case 𝑛 = 2, we have for any 𝐶,

𝜆
(
(∪𝑛𝑘=1𝐴𝑘 ) ∩ 𝐶

)
= 𝜆

(
(∪𝑛−1

𝑘=1𝐴𝑘 ) ∩ 𝐶
)
+ 𝜆

(
𝐴𝑛 ∩ 𝐶

)
=

∑𝑛
𝑘=1 𝜆

(
𝐴𝑘 ∩ 𝐶

)
,

completing the induction step. For an infinite sequence 𝐴1, 𝐴2, . . . of disjoint sets,
we have, by the monotonicity of 𝜆:

𝜆
(
(∪∞

𝑘=1𝐴𝑘 ) ∩ 𝐶
)
≥ 𝜆

(
(∪𝑛𝑘=1𝐴𝑘 ) ∩ 𝐶

)
=

∑𝑛
𝑘=1 𝜆

(
𝐴𝑘 ∩ 𝐶

)
for all 𝑛, so that

𝜆
(
(∪∞

𝑘=1𝐴𝑘 ) ∩ 𝐶
)
≥ ∑∞

𝑘=1 𝜆
(
𝐴𝑘 ∩ 𝐶

)
.

The proof is completed by observing that the reverse inequality also holds, by the
countable subadditivity of 𝜆 in (C.11). □

The following proposition contains all the ingredients needed for the existence
proof:

Proposition C.18: Four Main Properties of 𝜆 and M

1. M is a 𝜎-algebra.
2. 𝜆 restricted to M is countably additive.
3. E0 ⊂ M.
4. For 𝐴 ∈ E0, we have

(C.19) 𝜆(𝐴) = 𝜆(𝐴) = |𝐴|.

Proof.
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1. We have already proved thatM is an algebra in Lemma C.14. To show that it is a
𝜎-algebra, let 𝐴1, 𝐴2, . . . be inM and 𝐵1 := 𝐴1 and 𝐵𝑛 := 𝐴𝑛\𝐴𝑛−1, 𝑛 = 2, 3, . . .,
as illustrated in Figure 1.44 in Chapter 1. The {𝐵𝑘 } are disjoint and in M. By
the countable additivity of 𝜆 on M (see Lemma C.16), we have for any 𝐶 ∈ 2𝐸 :

𝜆(∪𝑘𝐵𝑘 ∩ 𝐶) + 𝜆((∪𝑘𝐵𝑘 )𝑐 ∩ 𝐶) = 𝜆(𝐶).

Thus, (C.13) holds for the set ∪𝑘𝐵𝑘 and the latter therefore lies in M. But since
∪𝑛
𝑘=1𝐵𝑘 = 𝐴𝑛 and ∪∞

𝑘=1𝐵𝑘 = ∪∞
𝑘=1𝐴𝑘 , the latter also lies in M. In other words,

M is closed under countable unions.
2. We have already proved this in Lemma C.16.
3. We need to show that for any 𝐴 ∈ E0 it holds that

𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐴𝑐 ∩ 𝐶) = 𝜆(𝐶) for all 𝐶 ∈ 2𝐸 .

Similar to the proof of Lemma C.10, take 𝜀 > 0 and choose sets {𝐴𝑛} in E0
such that 𝐶 ⊆ ∪𝑛𝐴𝑛 and

∑
𝑛 𝜆(𝐴𝑛) ≤ 𝜆(𝐶) + 𝜀. This can always be done, by

the way 𝜆 is defined. Define sets 𝐹𝑛 := 𝐴𝑛 ∩ 𝐴 and 𝐺𝑛 = 𝐴𝑛 ∩ 𝐴𝑐, 𝑛 = 1, 2, . . ..
These sets lie in M as it is an algebra. Note that ∪𝑛𝐹𝑛 contains 𝐶 ∩ 𝐴 and ∪𝑛𝐺𝑛

contains 𝐶 ∩ 𝐴𝑐. Thus, by the definition of 𝜆 and the finite additivity of 𝜆, we
have

𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐴𝑐 ∩ 𝐶) ≤
∑︁
𝑛

𝜆(𝐹𝑛) +
∑︁
𝑛

𝜆(𝐺𝑛) =
∑︁
𝑛

𝜆(𝐴𝑛) ≤ 𝜆(𝐶) + 𝜀.

Since 𝜀 is arbitrary, this shows that 𝜆(𝐴 ∩𝐶) + 𝜆(𝐴𝑐 ∩𝐶) ≤ 𝜆(𝐶). The reverse
inequality holds also, by the countable subadditivity of 𝜆 in Lemma C.10.

4. From the definition (C.9) of the outer measure it is clear that 𝜆(𝐴) ≤ 𝜆(𝐴) for
all 𝐴 ∈ E0. To show that also 𝜆(𝐴) ≤ 𝜆(𝐴), we use the countable additivity of
𝜆 proved in Theorem C.6. In particular, let 𝐴 ⊆ ∪𝑛𝐴𝑛, where 𝐴 and 𝐴𝑛, 𝑛 =

1, 2, . . . are in E0. Then,

(C.20) 𝜆(𝐴) ≤ 𝜆
( ∞⋃
𝑛=1

(𝐴 ∩ 𝐴𝑛)
)
≤

∞∑︁
𝑛=1

𝜆(𝐴 ∩ 𝐴𝑛) ≤
∞∑︁
𝑛=1

𝜆(𝐴𝑛).

The second inequality follows from the countable subadditivity of the pre-
measure 𝜆, which can be proved in exactly the same way as for proper measures
(see Proposition 1.42). As (C.20) holds for any choice of {𝐴𝑛}, it must hold that
𝜆(𝐴) ≤ inf

∑
𝑛 𝜆(𝐴𝑛) = 𝜆(𝐴).

□
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Using Proposition C.18, the existence of the Lebesgue measure can now be
proved with a few brush strokes.

Theorem C.21: Existence of the Lebesgue Measure

The outer measure 𝜆 restricted to B(0,1] is a probability measure that extends
the pre-measure 𝜆.

Proof. From Proposition C.18, the outer measure 𝜆 restricted to M is a proper
measure on (𝐸,M), as it is countably additive and M is a 𝜎-algebra. Also, we
have

E0 ⊂ 𝜎(E0) ⊂ M ⊂ 2𝐸 .

So, 𝜆 is also a measure on (𝐸, 𝜎(𝐸0)), where 𝜎(𝐸0) = B(0,1] . That 𝜆 is an
extension of 𝜆 follows from (C.19). Finally, the fact that 𝜆(𝐸) = 𝜆(𝐸) = 1 shows
that it is a probability measure. □

Note that the proofs above hold verbatim for any probability pre-measure 𝜆 on
(𝐸, E0); that is, 𝜆 is 𝜎-additive and 𝜆(𝐸) = 1. Theorem 1.45 then guarantees that
𝜆 can be uniquely extended to a measure on (𝐸, 𝜎(E0)).
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absolutely continuous, 26
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affine transformation, 55
algebra, 3
almost everywhere, 22
almost sure convergence, 94
𝛼-stable process, 226
augmented filtration, 186, 213
autonomous SDE, 278
axiom of choice, 2

B
Banach space, 56, 329
Bernoulli distribution, 45
Bessel process, 235, 303
Bessel SDE, 295, 296
beta distribution, 45
binomial distribution, 45
Blumenthal’s 0 − 1 law, 215
Bolzano–Weierstrass theorem, 92,
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Borel 𝜎-algebra, 4
bounded convergence theorem, 50
bounded variation, 162, 231

branching process, 198
Brownian bridge, 290
Brownian motion, 71, 204, 278

geometric –, 298
standard –, 204

C
canonical approximation, 246
Cantor

function, 86
set, 2, 86, 215

Cartesian product, 4, 6
Cauchy

distribution, 85
process, 85
sequence, 328

Cauchy–Schwarz inequality, 59, 300
central limit theorem, 113
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function, 63, 100
triplet, 83

Chebyshev’s inequality, 96
Cholesky factorization, 54, 70, 88
closed and bounded set, 327
common random variables, 298
complement of event, 36
complete, 328

convergence, 94
Hilbert space, 328
probability space, 213
probability space, 185

compound Poisson process, 78
concave function, 58
conditional probability, 128
conditional expectation, 124

version of –, 125
convergence

almost sure –, 94
complete –, 94
in 𝐿𝑝 norm, 102
in distribution, 100
in probability, 98
sure –, 93

convex
function, 56
hull, 74

correlation coefficient, 53
countable additivity, 15
countable subadditivity, 17, 344
counting measure, 15
covariance, 53, 59

function, 70
matrix, 54, 55
properties, 54

covariation of Itô processes, 270
cumulative distribution function, 42

D
d-system, 4
denseness, 248
density of a measure, 25

diffusion
coefficient, 204
function, 278

Dirac measure, 15
discrete

𝜎-algebra, 21
measure, 16
uniform distribution, 45

disjoint events, 36
dispersion, 266
distribution, 41

Bernoulli –, 45
beta –, 45
binomial –, 45
Cauchy –, 85
discrete uniform –, 45
double exponential –, 88
exponential –, 45
gamma –, 45
Gaussian –, 45
geometric –, 45
infinitely divisible –, 81
marginal –, 47
multivariate normal –, 55
negative binomial –, 45
normal –, 45
Pareto –, 45
Poisson –, 45
positive normal –, 223
uniform –, 45
Weibull –, 45

distribution function, 42
dominated convergence theorem, 50
Doob martingale, 188
double exponential distribution, 88
drift

function of an SDE, 278
of a Brownian motion, 204
of an Itô process, 266

dyadic numbers, 140, 210
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E
eigenfunction, 335
eigenvalue, 335
empty set, 36
Euler’s method, 297
expectation

function, 70
vector, 53, 55

exponential distribution, 45
exponential martingale, 219
extended dominated convergence

theorem, 118
extended real line, 8
extension of a measure, 32

F
Fatou’s lemma, 50

reverse –, 119
𝐹 distribution, 44
filtration, 68

augmented –, 213
right-continuous –, 213

finite-dimensional distributions, 70
function

concave –, 58
convex –, 56
harmonic –, 228
Hermite –, 337
indicator –, 9
integrable –, 21
numerical –, 8
real-valued –, 8
simple –, 9

functional inverse, 33, 86, 87

G
gambler’s ruin problem, 168
gamma

distribution, 45
function, 44
process, 83

Gaussian
distribution, 45

process, 70
geometric Brownian motion, 298
geometric distribution, 45
Girsanov’s theorem, 293
Gronwall’s inequality, 301

H
Hölder continuous function, 140, 234
Haar

basis, 209
function, 337

harmonic function, 228
heat equation, 218, 229
Heine–Borel property, 327, 342
Heine–Cantor theorem, 120, 265, 327
Hermite

function, 337
polynomial, 336

Hilbert space, 56, 333
hitting time, 220
holding rate, 148

I
image measure, 26, 27
implicit Euler, 305
indefinite integral, 25, 33, 292
independent

𝜎-algebras, 68
and identically distributed (iid),

47, 112
increments, 202
random variables, 69

indicator function, 9, 39
indistinguishable processes, 247
infimum, 10
infinitely divisible distribution, 81
infinitesimal generator, 229, 288
inner measure, 344
inner product, 332
integrable

function, 21
random variable, 56
square –, 56
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integral, 20
indefinite –, 25, 33
Lebesgue –, 21
Lebesgue–Stieltjes –, 162
Riemann –, 21

integrand, 162, 241
integration by parts, 275
integrator, 162, 241
intensity function, 72
inverse image, 7
isometry, 166, 244, 326
Itô diffusion, 278
Itô integral, 164, 242, 244, 251, 278
Itô process, 241, 265

covariation, 270
in R𝑑 , 270
integration by parts, 275
integration with respect to –, 266
quadratic variation, 267

Itô’s formula
for Itô processes, 269
for the Wiener process, 263
multivariate –, 271

Itô–Stratonovich, 290, 301

J
Jacobian, 52
jointly normal, see multivariate

normal
jump measure, 81

K
Karhunen–Loève expansion, 209
Kolmogorov

backward equations, 229, 287
forward equations, 229, 287

Kronecker lemma, 115
Krylov condition, 293, 302

L
Lévy

kernel, 149
measure, 226

process, 79, 201
Lévy’s characterization theorem,

277, 294
Langevin SDE, 280
Laplace

functional, 72
operator, 218
transform, 59

law of large numbers, 112
Lebesgue measure, 16
Lebesgue–Stieltjes integral, 162
Lévy

measure, 78, 81
process, 78

Lévy–Itô decomposition, 82
limit inferior, 10
limit superior, 10
linear isometry, 255
Lipschitz continuity, 282
local martingale, 187

in R𝑑 , 276
local time, 225
localization, 262
localizing sequence, 187, 262
𝐿𝑝 space, 55

M
marginal distribution, 47
Markov

chain, 143, 144
chain generation, 147
process

time-homogeneous –, 143
property, 143
transition function, 143

Markov’s inequality, 96
martingale

Doob –, 188
reversed-time –, 178

mean measure, 72
mean-reverting process, 280
measurable space, 4
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standard –, 130
measure

Dirac –, 15
finite –, 15
image –, 26, 27
inner –, 344
Lebesgue –, 16
outer –, 344
probability –, 15, 36
space, 15
theory, 1
uniqueness, 18

memoryless property, 129
mesh of a segmentation, 162
metric, 325
metric space, 116, 325
Minkowski’s inequality, 57
modification of a stochastic process,

140
modulus of continuity, 233
moment generating function, 59
monotone class

of functions, 13
monotone class theorem

for functions, 13
for sets, 5

monotone convergence, 50
multivariate

normal distribution, 55

N
natural filtration, 68
negative binomial distribution, 45
negligible set, 22, 185
Newton’s formula, 62, 153, 195, 318
norm, 329
normal distribution, 45, 55

multivariate –, 55
positive –, 223

Novikov condition, 293
numerical function, 8

O
open cover, 326
open sets, 326
order statistics, 154
Ornstein–Uhlenbeck process, 280
orthonormal

basis, 333
system, 333

outer measure, 344

P
p-system, 4
Pareto distribution, 45
partition, 9
past information until a stopping

time, 157
Picard iteration, 282
Poisson

distribution, 45
random measure, 72, 226

polarization identity, 254
positive normal distribution, 223
positive semidefinite, 54, 70
power set, 3
predictable process, 150, 164, 165,

169, 241, 243
probability

complete – space, 213
conditional –, 128
density function, 43
distribution, 41
generating function, 60
mass function, 43, 46
measure, 15, 36
transition kernel, 27

process
Brownian motion –, 71
diffusion –, 278
gamma –, 83
Gaussian –, 70
geometric Brownian motion –,

298
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Itô –, 265, 270
Lévy –, 78
Markov chain –, 147
Ornstein–Uhlenbeck –, 280
Poisson –, 75
Wiener

time-change –, 257
Wiener –, 71, 241

product
𝜎-algebra, 6
measure, 19
rule for Itô processes, 275
space, 6, 40

progressively measurable, 247, 261
projection property, 124

Q
𝑄-matrix, 148
quadratic variation, 267

of a Wiener process, 230
of an Itô process, 267

quantile, 87

R
Radon–Nikodym theorem, 26
random

counting measure, 72
experiment, 35
variable, 38
vector

covariance of –, 54
expectation of –, 53

walk, 47, 80, 146, 159, 203
rate function of a Poisson random

measure, 72
real-valued function, 8
reflected Wiener process, 224
restriction of a measure, 32
right-continuous filtration, 186, 213

S
sample space, 35
Schauder functions, 338

section of a function, 32
segmentation, 162, 230
semimartingale, 261
separable 𝜎-algebra, 182
𝜎-algebra, 3

Borel –, 4
generator of –, 4

Σ-finite, 15
𝜎-finite, 15
simple process, 242
sine series expansion

of Wiener process, 209
Slutsky’s theorem, 120
square integrability, 56
stable process, 226
standard Brownian motion, 204
standard deviation, 53
standard measurable space, 130
stochastic differential equation, 297

multidimensional –, 278
time-homogeneous –, 278

stochastic exponential, 288, 293
stochastic integral, 72, 78, 148, 150,

162
Stolz–Cesàro limit, 115
stopping time, 156
strong solution

of an SDE, 284
Student’s 𝑡 distribution, 44
Sturm–Liouville, 335
subadditivity

countable –, 17
subcover, 326
subgradient, 56
supremum, 10
supremum norm, 329

T
tail 𝜎-algebra, 180
time-homogeneous SDE, 278
topological space, 4, 326
topology, 326
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total variation, 162, 231
trace

of a measure, 32
of a measure space, 31

transition
density, 218
kernel, 27
matrix, 145
rate, 148

triangle inequality, 57

U
uniform distribution, 45
uniform norm, 211
uniformly continuous, 327
uniformly integrable, 104, 107, 160,

176, 177, 179
uniqueness of a measure, 18

V
variance, 53, 59
variation of a function, 162, 231
vector space, 328
version of a function, 26, 125

W
weak Novikov condition, 302
Weibull distribution, 45
Weierstrass approximation theorem,

120, 329
Wiener process, 71, 201, 241

𝑑-dimensional –, 205
time-change, 257
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