CEMAB: A Cross-Entropy-based Method for
Large-Scale Multi-Armed Bandits

Erli Wang! **, Hanna Kurniawati?, and Dirk P. Kroese!

1 School of Mathematics and Physics, The University of Queensland Brisbane, QLD
4072, AUSTRALIA
2 School of Information Technology and Electrical Engineering, The University of
Queensland, Brisbane, QLD 4072, AUSTRALIA
e.wang2@ug.edu.au, hannakur@uq.edu.au, kroese@maths.uq.edu.au

Abstract. The multi-armed bandit (MAB) problem is an important
model for studying the exploration—exploitation tradeoff in sequential
decision making. In this problem, a gambler has to repeatedly choose
between a number of slot machine arms to maximize the total payout,
where the total number of plays is fixed. Although many methods have
been proposed to solve the MAB problem, most have been designed for
problems with a small number of arms. To ensure convergence to the
optimal arm, many of these methods, including state-of-the-art methods
such as UCB [2], require sweeping over the entire set of arms. As a
result, such methods perform poorly in problems with a large number
of arms. This paper proposes a new method for solving such large-scale
MAB problems. The method, called Cross-Entropy-based Multi Armed
Bandit (CEMAB), uses the Cross-Entropy method as a noisy optimizer
to find the optimal arm with as little cost as possible. Experimental
results indicate that CEMAB outperforms state-of-the-art methods for
solving MABs with a large number of arms.

Keywords: Cross-Entropy method, Sequential decision making, Multi-
armed bandit

1 Introduction

A fundamental question in sequential decision making is how to select the best
action sequence even if the consequence of each action may not be exactly known.
In its simplest form, this question can be studied as a Multi-Armed Bandit
(MAB) [9] problem. Under this framework, selecting an action is akin to select-
ing which slot machine to play from a number of such machines. The question
becomes how to balance between playing machines that have been giving good
rewards in the past (often called exploitation) and machines that have not been
tried before (often called exploration), such that the total reward received is as
close as possible to the total reward that would have been received if the player
had always played the highest-paying machine.

** Corresponding author

Many methods, such as e-greedy [13], softmax [11], and UCB [2], have been
proposed to solve the above problem of balancing exploration and exploitation.
In fact, many of such methods have become the foundation of today’s Reinforce-
ment Learning [11]. However, except for a few [4,6], most methods [5] try and
estimate the reward of each and every action, to ensure that the best action is
not missed. Therefore, their effectiveness is limited to problems with a relatively
small number of arms (e.g., fewer than 20). Unfortunately, this assumption is
quickly becoming unrealistic in a growing number of applications. For instance,
one can now choose from hundreds of drug cocktails —combinations of various
types of drugs at various dosages— in personalized medicine, choose one of hun-
dreds of different combinations of investment portfolios, and select a subset of
tens of millions of possible combinations of data and sensors that can be used to
analyze consumer preferences. As a result, most of today’s methods for solving
MABS [5] are no longer effective for solving the more recent large-scale problems.

To alleviate the difficulty of solving MABs with a large number of discrete
actions, we propose a novel method called Cross-Entropy-based Multi-Armed
Bandit (CEMAB). Key to CEMARB is the use of the Cross-Entropy (CE) method
[10] as a stochastic optimization method to identify the best action. By doing so,
CEMAB can significantly reduce the number of actions to test before identifying
the best action, assuming that the reward for pulling an arm is retrieved from
an unknown fixed distribution. Preliminary results on standard test cases for
MAB indicate that the number of arms to pull before CEMAB identifies the
(close to) optimal arms is not directly dependent on the number of arms in the
problem, which indicates that CEMAB is able to scale up well. This observation
is supported by our simulation results, where tests on various MAB problems
with up to 10,000 arms indicate that CEMAB outperforms state-of-the-art MAB
solvers on large problems.

2 Background and Related Work

2.1 Multi-armed Bandit Problem
The MAB problem was first described in [9]. In this problem, a gambler has to
decide which of several slot machines (often called arms) to play, where each
machine gives a different reward according to some unknown distribution. The
goal is to maximize the total reward of all the plays. Ideally, the player should
only pull the machine that yields, on average, the highest reward.

More formally, let the set of arms be denoted by K = {1,...,|K|}. Each arm
k € K corresponds to an unknown reward distribution Dy with support [0, 1]
and expectation py. In this paper, we assume that the reward distributions are
fixed (that is, they do not change over time) and independent of each other. At
each time step ¢, an arm k; € K is pulled and a reward rg,, drawn from Dy,,
is received. Many objective functions have been proposed for MAB [5]. In this
paper, we use the simple objective [9] to maximize the expected total reward
received within a fixed number T of plays, i.e.,

T T
r = max . 1
; kt] (kl,kg,..‘,kT)eKiT;Mkt ()

max E
(k1,k2,....kr)eKT

An equivalent goal is to minimize the total regret [2], which is:

T
. T - | 2
(k1,k2,r.¥.l,lI?T)€]CT (rlglea’%(lﬁk ;th> @)

Various methods for solving MAB have been proposed. The rest of this sub-
section provides a brief overview of the most commonly-used methods, which we
will use for comparison later on.

e-greedy [13]. The e-greedy method is the simplest and most widespread way
to solve the MAB problem. At each time step, the algorithm has a probability
¢ to select an arm uniformly at random (exploration) and a probability 1 —e
to choose the arm with the highest estimated reward so far (exploitation).
In general, this strategy does not converge to the optimal arm.

Softmax [11]. Softmax picks each arm with a probability according to its em-
pirical performance. The probability of each arm in Softmax can be based
on the Boltzmann distribution pj, = e+/7 / ZL’C:|1 efx/T where fi, is an esti-
mate of the expected reward uy and 7T is the temperature. If T is very small,
the arm with the highest estimated reward will have a large probability of
being chosen (exploitation). In contrast, when 7 is very large, all {p;} are
approximately equal, so that in this case Softmax is purely exploring.

Exp3 [3]. Exp3 (ezponential weight algorithm for exploration and exploitation)
is a famous variant of Softmax. The probability of choosing arm k£ is defined
by pr = (1—v)wg/ legl w;+7/|K|. The weights {w, } are updated after each
step. In particular, after arm k is chosen (yielding reward ry), the weight wy,
is updated as wy, < wy exp?”#/PxILl Tt can be shown that the “weak regret”,

defined as (T maxgex fbi — 23:1 rt), is bounded under Exp3.

UCBJ[2]. The UCB is a family of algorithms for which optimal logarithmic
regret can be achieved uniformly over time, assuming that all reward dis-
tributions have bounded support [2]. The simplest member of this family
is UCBI1. It records the number of times that each arm has been played,
visits(k), and after each choice k updates its current estimate of uy via
[+ fu + (rg — fix)/visits(k). At the beginning, each arm is played once
(full sweep). Subsequently, at each time ¢ arm k is chosen that satisfies
k = argmax;,_; || fix + V/Clogt/visits(k).

Thompson Sampling (TS)[1] Thompson sampling is a Bayesian sampling al-
gorithm based on [12]. For each arm k, the knowledge of the expected reward
1 is described by a Beta(ay, O) distribution. At time ¢, random variables
Op, k =1,...,|K]| are generated from each of these distributions. The index
k* corresponding to the largest of the {6} is the arm to play. If r is the cor-
responding reward, then a Bernoulli trial B with probability r is generated.
If B =1, then ag~ is increased by 1, otherwise [~ is increased by 1.

All of the above methods have been designed for various types of reward
function, e.g., stochastic and deterministic, and have various ways to commit to

arms that have performed well so far. However, they have not been designed for
problems with a large number of arms. In fact, the state-of-the art method, UCB,
explicitly requires a sweep of the entire set of arms, which will be problematic
when the MAB problem has hundreds or thousands of arms. This problem is
exactly the focus of our paper.

2.2 Cross-Entropy (CE) Method for Noisy Optimization

The CE method [10] is a randomized optimization method that has proved to be
very useful for solving noisy optimization problems; i.e., optimization problems
in which the objective function is contaminated by noise. As the MAB problem
can be viewed as a type of noisy optimization problem, the CE can be viable.
To introduce the CE idea, suppose the goal is to find the optimum of a
function S(z) on a set X, where S(z) is not known, but estimates S(x) can be
obtained, e.g., by simulation. The CE method consists of the following steps:

1. Generate independent samples Xy, ..., Xy from some probability distribu-
tion on X, parameterized by a vector v. For every x € X, the corresponding
family of distributions should contain the “degenerate distribution” at x,
which assigns all its probability mass to the point x.

2. Obtain estimates of the corresponding function values S(Xl), .. .,S’(XN),
and identify the worst of the best N, = pN samples — the so-called elite
samples. Typically, p € (0.01,0.1).

3. Update the parameter v based on the elite samples. This involves the min-
imization of the Kullback-Leibler divergence (cross-entropy distance). In
practice this often means that the parameters are updated according to their
maximum likelihood estimates, using only the elite samples.

The method thus produces a sequence of parameters vy, va, ... that converges
to (approximately) the parameter value that corresponds to the degenerate dis-
tribution at the maximizer x*.

3 Cross-Entropy-based Multi-Armed Bandit (CEMAB)

3.1 The Method

The key idea of CEMAB is to transform the MAB problem into a simpler stochas-
tic optimization problem, and then solve this simpler problem using CE. To this
end, notice that, under the assumption that the reward distributions of the arms
do not change over time, the maximum reward of MAB (i.e., (1)) can be simpli-

fied as follows:
T
= T . 3

Solving the right hand side of (3) is in general simpler than solving the original
MAB problem (left hand side of (3)) because, the solutions of the simplified
problem lies in a space of size |K|, while the solution of the original problem

lies in a space of size |IC|T. This difference in computational complexity becomes

more pronounced as the number of arms increases. Therefore, to be effective in
solving MABs with a large number of arms, CEMAB finds the best sequence of
arms by searching the optimal arm to play.

Despite this simplification, the stochastic nature of MAB remains, as the
expected reward py of any arm k € K is not known a priori and can only be
estimated by playing the arm. Therefore, to keep the total reward high, CEMAB
strives to avoid using arms with low rewards as much as possible when searching
for the best arm. To this end, CEMAB adopts CE for noisy optimization and
modifies it to suit the nature of the MAB problem. It uses the quantile statistics
in CE and carefully adapts it to degrade the probability of selecting the bad arms
gracefully, such that it can find the best arm quickly, while avoiding pulling arms
with low reward as much as possible but without starving the arms that might be
optimal. The CEMAB algorithm is presented in Algorithm 1, which is followed
by a discussion of the algorithm.

Algorithm 1: CEMAB Method

Input: The number of arms ||, a (black box) function reward() to sample
random rewards. CE parameters: sample size N, elite sample size
N. = pN and learning rate a € (0,1). Maximum number of plays T' (for
simplicity, we assume T'= M N).

Output: Total reward G.

1 Set p 01><|;q, visits < le‘;q and p < (1/|’C|)1><“q.

2 for 7+ 1 to M do

3 A+] // empty matrix
4 for i <1 to N do

5 Draw an arm k from the discrete distribution parameterized by p.

6 r < reward(k) // Draw an immediate reward
7 G+ G+r.

8 visits(k) < visits(k) + 1.

0 w(k) < p(k) + (r — p(k)) /visits(h).
10 A+ [X; [k, n(k)]]. // Append row [k,pu(k)] to A
11 P < update(|]|, Ne, A)
12 Using the learning rate «, update p as

p<(l-a)p+ap. (4)

13 return G

To find the optimal arm k* (i.e., the arm that solves the right-hand-side
of (3)), CE starts by initializing the probability p of pulling a particular arm
uniformly (Line 1). It iteratively chooses an arm (say k € K) to play, based on the
probability p, receives a reward r, which is drawn randomly from the unknown
distribution Dy, and updates the estimated expected reward py (Line 9). This
sampling and estimation process repeats until one is confident that updating
the selection probability p will benefit the optimization procedure. Once the
probability is updated, the iterative sampling and estimation procedure repeats
using the new selection probability.

Algorithm 2: update(|K|, N, A) for CEMAB-truncated

1 for k + 1 to |K| do
2 Rearrange A by sorting its rows according to the second column, from

largest to smallest.

8 | P(k) = 3 S0 Iag=k)

4 return p

Algorithm 3: update(|K|, —, A) for CEMAB-proportional

1 for k + 1 to |K| do
2 L For each arm k sampled in A, get the latest estimate p(k).

_ _ pru(k)

3 | plk) =5, LG

4 return p

Key to the performance of CE is how it updates its selection probability
(Lines 11-12). A straightforward application of CE for noisy optimization would
estimate the expected reward of all of the arms, and only after all estimates
are improved, the probability p is updated. However, in the MAB problem, an
estimate of the expected reward of any arm can only be improved by playing an
arm, and each play incurs a reward. Therefore, CEMAB updates the probability
p in an asynchronous manner: It clusters a sequence of N samples of the arm
into a single batch and updates the probability p after each batch ends. Note
that at the end of each batch the estimated expected reward of some of the arms
may not have improved at all. Therefore, a smoothing mechanism (Line 12) is
needed, to avoid being overcommitted to the new estimate of the different arms
and also to guarantee that each arm has a non-zero probability of being visited.

Similar to most CE-based algorithms, CEMAB updates the probability p
on the basis of the estimate S of the samples. The question is how the prob-
ability p should be updated based on the set of samples (Line 11). To this
end, we propose two strategies: CEMAB-truncated and CEMAB-proportional.
In CEMAB-truncated, we use the traditional CE updating formula, ignoring any
arm that does not make it to the elite sample set. Specifically, the probability
update rule for CEMAB-truncated is in Algorithm 2. In CEMAB-proportional,
we assign the probability based on the estimated values S of each arm after the
batch ends, and never set the probability of selecting an arm to be zero. The
description of this update strategy is given in Algorithm 3.

3.2 Time Complexity and Convergence Properties

Similar to many state-of-the-art methods for solving MABs, such as Exp3 [3] and
UCB [2], the most time-consuming part of CEMAB is its update step, i.e., Line
11 of Algorithm 1. For CEMAB-truncated, each update will take O(N log(N) +
max(|K|, N.)), where the first component is due to sorting the samples within
a batch (Line 2 of Algorithm 2). For CEMAB-proportional, each update will
take O(|K]). Although Thompson sampling, Exp3 and UCB (current state-of-

the-art methods) require O(|K]) for each update too, the number of updates
for CEMAB is much less than for these two methods. Exp3 and UCB update
their probability for selecting an arm at each step, but CEMAB updates its
probability for selecting the arms only once per batch, i.e., M = T'/N times for
a total of T plays.

CEMAB-proportional is guaranteed to converge to the optimal expected re-
ward, assuming that the cumulative distribution function of the reward of the
optimal arm is strictly increasing. The proof is a straightforward application of
the proof of the CE-proportional algorithm for noisy optimization [7]. We do
not have a theoretical proof that CEMAB-truncated will converge to the op-
timal expected reward. However, under the aforementioned assumption on the
cumulative distribution function, CEMAB-truncated converges to the quantile
of the total reward function. This proof is a straightforward application of the
proof of the commonly used CE algorithm for noisy optimization in [8]. CEMAB-
truncated is more aggressive in its distribution update compared to CEMAB-
proportional, and therefore we can expect that CEMAB-truncated tends to con-
verge to a particular arm faster than CEMAB-proportional, which is good if the
quantile function of the total reward is equivalent to the expected total reward.

4 Experimental Results

The goal of our experiments are two-fold: First is to test the proposed methods
against existing MAB methods on well-known benchmarks and understand the
properties of the proposed methods better (Section 4.1), so as to also help us
in setting the parameters for tests on large MAB problems. The second and
ultimate goal is to test the performance of our proposed methods on large MAB
problems (Section 4.2).

We compare the empirical performance of e-greedy (with 0 initialization),
e-greedy (play once), Softmax, Exp3, and UCBI1, with our proposed CE-based
methods on discrete (Bernoulli) and continuous (truncated Gaussian) reward
distributions. Note that we use two types of e-greedy: One initializes the estimate
of the expected reward to zero (denoted as E1), while the other initializes the
estimate of the expected reward based on the reward received when playing the
arm once (denoted as E2). The reason for these two versions is that we found
significant performance differences between e-greedy with these two different
initializations, as will be seen later on.

4.1 Small-Scale M ABs

Experimental Setup
We test our methods and comparators on 10 small-scale MAB problems, with
up to 10 arms. Table 1 details the reward distributions of these problems.

The first 6 problems (i.e., B1-B6) are MABs with discrete reward distri-
butions, which is the benchmark used in [2]. The reward of each arm in each
of these problems is sampled from a Bernoulli distribution, where the success
probability corresponds to the probability of generating a reward of 1 and the
failure probability corresponds to the probability of generating a reward of 0.

For example, B1 defines an MAB with 2 arms, where the reward of arm 1 follows
a Bernoulli distribution with success probability 0.9, while the reward of arm
2 follows a Bernoulli distribution with success probability 0.6. B1-B3 specify
MABs with 2 arms and B4-B6 define MABs with 10 arms, where the reward
of each arm is Bernoulli distributed. Note that B3 and B6 are relatively “diffi-
cult”, because the reward of the optimal arm has a higher variance and the gaps
W —pr, k=1,...,10 are small.

The last 4 problems (i.e., G1-G4) are MABs with continuous reward distri-
butions, in particular truncated normal distributions with support [0, 1]. Table 1
specifies the mean and standard deviation of the Gaussian distribution of each
arm in each MAB problem. In this set of problems, G2 and G4 are quite challeng-
ing. The standard deviations of the reward distributions in these two problems
are large and the support of these distributions also overlap significantly, which
makes it difficult to distinguish between the best arm and bad arms.

Table 1: Bz refers to Bernoulli distributions and Gz to truncated Gaussian
distributions.

1 2 3 4 5 6 7 8 9 10
Mean of B1 0.9 0.6
Mean of B2 0.9 0.8
Mean of B3 | 0.55 0.45
Mean of B4 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Mean of B5 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6
Mean of B6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Mean of G1 0.3 0.6
Std of G1 0.2 0.2
Mean of G2 0.3 0.6
Std of G2 0.6 0.2
Mean of G3 0.5 0.2 0.4 0.3 0.8 0.1 0.7 0.8 0.3 0.9
Std of G3 0.3 0.2 0.3 0.1 0.1 0.2 0.5 0.4 0.2 0.1
Mean of G4 0.5 0.2 0.4 0.3 0.8 0.1 0.7 0.8 0.3 0.9
Std of G4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

To set the parameters for testing, we first run a set of preliminary tests for
each algorithm on each problem in Table 1 with a wide range of parameters.
The parameters are summarized in Table 2. For each algorithm, the best param-
eters are those that maximize the most problems across the 10 MAB problems
described above.

Results

Fig. 1 presents the performance of CEMAB and the comparator methods in
B5, B6, G3, and G4, which are the more difficult problems among the 10 small
problems defined in Table 1. The trend for the performance of the other MAB
problems is similar, and hence we do not present them due to space constraints.

Table 2: Parameter Range

Method

Parameters Tested

Best Parameter

CEMAB-truncated
CEMAB-proportional

N €[50, 100], p € [0.1,0.5], @ € [0.6, 1]
N € [50,100], o € [0.7,1]

N=50,p=05a=08
N =50,a=0.7

e-greedy (E1 and E2) | € € [0.01,0.4] e =0.1 (E1), e = 0.05 (E2)
Softmax t € [0.01,0.5] t=0.1
Exp3 v €10.1,0.7] N =0.2
UCB c € [0.05, 3] C=01

Total Regret on B5 Total Regret on B6
2000 2000
I 7=2,000 Il 7=2,000
[T=10,000 [T=10,000
1 1500 [17=20,000 % 1500 [17=20,000
< [
[} (3]
¥ 1000 ¥ 1000
8 IS
o o
= 500 = 500
0 0
I) > O 2% S N R S R
K& oIS @@6*09 < K & ¢ < RSP
2y g
Methods Methods
Total Regret on G3 Total Regret on G4
2000 5000
Il T=2,000 Il T=2,000
[E7=10,000 4000 [7=10,000
g 1500 [17=20,000 3 [17=20,000
I L
5l g
X 1000 x
< =
(e} (o]
= s00 =

(=}

S S S VR > O S T S VR % O
K & o &S Ké\r&‘” &K & & ¢ S o(é(&*‘ &<
& <
Methods Methods

Fig.1: The average total regret on 4 problem sets, B5, B6, G3 and G4. All
algorithms use the best parameters and all experiments are repeated 50 times.

In this set of problems, TS achieves the lowest total regret in B5 and B6,
followed by UCB and both CEMABs. In G3 and G4, UCB takes first place,
while one of the CEMABS is second. The reason is that in B6 the best arm (i.e.,
arm 1) does not show significant performance difference at the beginning, and it
is quite easy for CE-truncated to underestimate this arm and set a probability
zero during updating step. Once this happens, CEMAB-truncated fails to iden-
tify the best arm, and as time progresses the difference in the total regret will
become more apparent. However, by avoiding this aggressive update, CEMAB-
proportional perform well and is similar to UCB in G4. It is important to note
that the best empirical parameter here is C' = 0.1, rather than the default value
C =2

Softmax and Exp3, have the worst performance. In Softmax, the use of the
Boltzmann distribution is likely to exaggerate an arm with a “good” estimate.
For Exp3, it is important to note that this method is designed for non-stochastic
MAB problems. a particular arm is highly influenced by only the current reward
rather than the current estimate of the reward for each arm, which is a downside
for stochastic problems, which we address in this paper.

It is also interesting to note that the performance of the simplest algorithm,
e-greedy, differs significantly when applying different initializations. Variant E1
initializes the reward estimate of each arm with 0, while variant E2 initializes
the reward estimate based on the reward received when playing the arm once.
The performance of E2 is better in this set of small-scale problems. However, in
the next section we will see that E1 is better for large-scale problems.

10

4.2 Large-scale M ABs

To assess CEMAB’s performance for large problems, we test the algorithms on
problems with an increasing number of arms. For each number of arms, we test
the algorithms on four different MAB problems, as shown in Table 3, which
consists of two LB (Large Bernoulli) that represent MABs whose reward distri-
butions are Bernoulli distributed and two LG (Large Gaussian) that represent
MABs whose reward distributions are truncated Gaussian with support [0, 1].

Table 3: Large-scale MAB Settings

LB1 wi ~ U(0,1)

LB2 10% of pr ~ U(0.75,1) and the rest of uj ~ U(0, 0.25)

LG1 n ~U(0,1), 0% ~ U(0,0.25)

LG2 10% of pr ~ U(0.75,1) and the rest of up ~ U(0,0.25), o ~ U(0,0.25)

For LB1, the success probability (i.e., the probability of sampling a reward of
1) of each reward distribution is uniformly sampled from (0, 1). For LB2, 10% of
the arms have rewards drawn from a Bernoulli distribution whose success prob-
ability is sampled from (0.75,1) and 90% have rewards drawn from a Bernoulli
distribution whose success probability is sampled from (0,0.25). For LG1, the
means are uniformly sampled from interval (0,1), while for LG2, 10% of the
means are sampled from (0.75,1) uniformly at random and 90% are sampled
from (0,0.25) uniformly at random. The standard deviations for both LG1 and
LG2 are sampled uniformly at random from (0,0.25) for each arm. All of these
parameters for the reward distributions are sampled independently for each arm.
It is not hard to see that LB2 and LG2 is harder than LB1 and LGI, since it
requires a strategy that has a good capability of exploring, rather than keep
playing the best arm so far.

For these tests, each algorithm uses the best parameters as found in Table 2.
The results of these tests for |[K| = 100,1000, and 10000 are summarized in
Table 4. The results indicate that, as the number of arms increases, CEMAB
outperforms all other methods, including UCB. The reason for the significantly
decreasing performance of UCB is that it must play each arm at least once to
estimate the performance of each arm, so that it can converge to the optimal
solution. However, exactly because of this, its performance becomes impractical
as the number of arms increases. On the other hand, CEMAB incrementally
improves its estimate on the performance of the arms based on sampling, without
ever requiring to play the entire set of arms at first. This causes the convergence
property of CEMAB to be weaker than UCB, but its empirical performance to
be significantly better in large problems.

It is also interesting to note that the simple e-greedy with zero initial estimate
(E1) is a relatively strong competitor. In fact, for problems with a large number
of arms, this simple methods is a stronger competitor than the state-of-the-art
UCB. Note that for the Gaussian reward case, the gap between rewards is much
less than for the Bernoulli case. As a result, even if an arm that is played is not
very good, the reward obtained by playing a better arm will not be much higher.
This could be a reason why the performance of E1 is comparable to CEMAB’s
in the Gaussian, while it loses in the Bernoulli case.

11

Table 4: The average total reward for large MABs. All algorithms use the best
parameters (as per Table 2) and all experiments are repeated 200 times. The
best method is highlighted in boldface. If the difference between the best and
second best method is not statistically significant (meaning that one method lies
in the 95% confidence interval of the other), we highlight both of them.

LB1 LB2
The number of plays T' The number of plays T'
|K| Method [1,000 5,000 10,000 20,000 |1,000 5,000 10,000 20,000

CE1 893 4749 9569 19207 718 4106 8342 16817
CE2 806 4612 9463 19184 741 4192 8571 17341
E1l 864 4572 9230 18547 820 4139 8288 16597
100 E2 868 4686 9460 19010 767 4167 8437 17022
UCB 833 4674 9538 19225 787 4311 8788 17796
softmax | 859 4407 8866 17798 801 4127 8305 16686
Exp3 580 3564 7702 16285 241 2610 6202 13550
TS 856 4695 9557 19323 678 4168 8634 17615
CE1l 896 4788 9651 19380 784 4493 9130 18402
CE2 810 4655 9559 19409 792 4538 9297 18850
E1l 868 4510 9131 18496 771 4352 8885 18019
1,000 E2 500 4129 8802 18532 197 3852 8635 18217
UCB 499 3812 8358 17906 197 3730 8568 18361
softmax | 875 4470 8989 18043 853 4445 8976 18074
Exp3 507 2666 5643 12378 202 1122 2601 7114
TS 580 4027 8957 18886 305 3949 8925 18897
CE1 895 4784 9644 19367 795 4554 9251 18649
CE2 809 4655 9554 19393 800 4574 9358 18969
E1l 863 4479 9025 18158 761 4322 8812 17818
10, 000 E2 515 2492 5013 14126 181 1004 2007 11022
UCB 515 2486 5007 12135 182 1004 2007 9880
softmax | 832 4341 8786 17734 776 4264 8725 17734
Exp3 500 2510 5040 10154 201 1006 2026 4109

TS 511 2707 5811 13091 207 1191 3081 10433
LG1 LG2
The number of plays T' The number of plays T'
| K| Method |1,000 5,000 10,000 20,000 |[1,000 5,000 10,000 20,000

CE1 885 4624 9297 18644 772 4378 8884 17897
CE2 800 4484 9150 18512 767 4435 9068 18341
E1l 868 4463 8973 17995 783 4411 8977 18109
100 E2 877 4562 9177 18415 879 4685 9443 18956
UCB 804 4450 9110 18506 863 4777 9705 19578
softmax | 833 4242 8513 17067 813 4282 8682 17551
Exp3 559 3449 7457 15737 281 2752 6678 14878
TS 785 4406 9071 18477 851 4779 9706 19580
CE1 876 4599 9254 18564 778 4405 8937 18004
CE2 782 4441 9109 18499 763 4381 8990 18236
E1l 865 4532 9180 18542 768 4340 8895 18043
1,000 E2 499 4358 9183 18835 238 4051 8818 18351
UCB 500 3560 7750 16852 238 3440 8071 17711
softmax | 811 4125 8281 16609 816 4235 8535 17165
Exp3 504 2624 5493 11865 242 1287 2831 7095
TS 563 3713 8186 17729 312 3670 8378 18004
CE1l 877 4612 9281 18618 779 4394 8913 17951
CE2 788 4470 9153 18572 770 4369 8934 18113
E1l 876 4568 9247 18656 774 4313 8815 17894
10, 000 E2 488 2475 4997 14736 241 1207 2394 11942
UCB 488 2477 4997 12390 240 1207 2393 9131
softmax | 794 4102 8275 16648 740 4030 8227 16690
Exp3 501 2506 5027 10108 239 1200 2412 4865
TS 507 2661 5637 12469 244 1339 3164 9783

12

5 Conclusion

We proposed a new approach, CEMAB, for solving MABs with a large number of
discrete arms. It uses the Cross-Entropy method as a noisy optimization method
to search for the best arm with as little regret as possible. We presented and
evaluated the CEMAB algorithm with two variants for the updating procedure.
Using results on CE for noisy optimization, one of the variants is guaranteed to
converge to the optimal arm, under certain conditions on the reward function.
Empirical results on a number of MAB problems with an increasing number of
arms indicate that CEMAB outperforms state-of-the-art methods.

Acknowledgments

This work was supported by the Australian Research Council Centre of Excel-
lence for Mathematical and Statistical Frontiers (ACEMS) under grant number
CE140100049. Erli Wang would also like to acknowledge the support from the
University of Queensland through the UQ International Scholarships scheme.

References

1. Agrawal, S., Goyal, N.: Analysis of thompson sampling for the multi-armed bandit
problem. In: COLT. pp. 39-1 (2012)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine learning 47(2-3), 235-256 (2002)

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The non-stochastic multi-
armed bandit problem. STAM Journal on Computing 32(1), 48-77 (2002)

4. Bubeck, S., Munos, R., Stoltz, G., Szepesvari, C.: X-armed bandits. Journal of
Machine Learning Research 12(May), 1655-1695 (2011)

5. Burtini, G., Loeppky, J., Lawrence, R.: A survey of online experiment design with
the stochastic multi-armed bandit. arXiv preprint arXiv:1510.00757 (2015)

6. Coquelin, P.A., Munos, R.: Bandit algorithms for tree search. In: UAL pp. 67-74
(2007)

7. Goschin, S.; Littman, M.L., Ackley, D.H.: The effects of selection on noisy fit-
ness optimization. In: Proceedings of the 13th annual conference on Genetic and
evolutionary computation. pp. 2059-2066. ACM (2011)

8. Goschin, S., Weinstein, A., Littman, M.L.: The cross-entropy method optimizes
for quantiles. In: ICML (3). pp. 1193-1201 (2013)

9. Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society 58(5), 527-535 (1952)

10. Rubinstein, R.Y., Kroese, D.P.: The cross-entropy method: a unified approach
to combinatorial optimization, Monte-Carlo simulation and machine learning.
Springer (2004)

11. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(1998)

12. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3/4), 285-294 (1933)

13. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, University of
Cambridge England (1989)

