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This chapter describes how difficult statistical estimation problems can often
be solved efficiently by means of the cross-entropy (CE) method. The CE
method can be viewed as an adaptive importance sampling procedure that
uses the cross-entropy or Kullback—Leibler divergence as a measure of closeness
between two sampling distributions. The CE method is particularly useful for
the estimation of rare-event probabilities. The method can also be used to solve
a diverse range of optimization problems. The optimization setting is described
in detail in the chapter entitled “The Cross-Entropy Method for Optimization”.

1 Introduction

The CE method was introduced by Rubinstein (1999; 2001), extending earlier
work on variance minimization (Rubinstein 1997). Originally, the CE method
was developed as a means of computing rare-event probabilities; that is, very
small probabilities — say less than 104, Naive Monte Carlo estimation of such
a probability requires a large simulation effort, inversely proportional to the
magnitude of the rare-event probability. The CE method is based on two ideas.
The first idea is to estimate the probability of interest by gradually changing
the sampling distribution, from the original to a distribution for which the rare
event is much more likely to happen. To remove the estimation bias, importance
sampling is used. The second idea is to use the CE distance to construct the
sequence of sampling distributions. This significantly simplifies the numerical
computation at each step, and provides fast and efficient algorithms that are
easy to implement by practitioners.

The CE method has been successfully applied to a diverse range of estima-
tion and optimization problems. References on estimation include Asmussen
et al. (2005), de Boer (2000), de Boer et al. (2004), Chan and Kroese (2010;
2011), Hui et al. (2005), Homem-de-Mello (2007), Kroese and Hui (2006),
Kroese and Rubinstein (2004), Rao (2010), and Ridder (2005). Parallel im-
plementations of the CE method are discussed in Evans (2009), Evans et al.
(2007), and other generalizations and advances are explored in Taimre (2009).
For many more references on optimization we refer to the accompanying chapter
in this handbook on CE optimization.

A tutorial on the CE method is given in de Boer et al. (2005). A com-
prehensive treatment can be found in Rubinstein and Kroese (2004); see also
Rubinstein and Kroese (2007; Chapter 8) and Kroese et al. (2011b; Chapter
13). The CE method homepage is www.cemethod.org.



2 Estimation Setting

The general setting of the CE method concerns the estimation of an expectation
¢ of the form

£=ByHX)] = [ Hex) f(x)dx. &

where H is a real-valued function and f is the probability density function
(pdf) of a random variable (possibly multidimensional) X. For simplicity it
is assumed that X is a continuous random variable. For the discrete case,
replace the integral in (1) with a sum. Of particular importance is the case
where H(x) = Ifg(x)>}, where S is another real-valued function (here and for
the rest of the chapter 14 denotes an indicator function of an event A). This
special case is further discussed in Section 2.4.
The crude Monte Carlo (CMC) estimator of ¢ is

N
~ 1
lemc = N kZlH(Xk),

where X1, ..., Xy are independent and identically distributed (iid) with density
f. We write Xy,..., Xy ~ijq f. It is not difficult to see (see, for example,
Rubinstein and Kroese (2007; Page 27)) that the relative error of the CMC
estimator is given by

def y/ Var( KCMC
REcmc =

For example, to obtain a relative error of 1% for a probability of ¢ = 1076, the
sample size N needs to be 100,

The idea behind importance sampling is to sample the {X;} from a different
pdf g, under which the rare event may be more likely, while compensating for
the bias thus introduced. In particular, let g be a pdf for which H(x) f(x) # 0
for every x. The expectation ¢ can be written as

fx) [ f (X)]
Ez/Hx—gxdx:E H(X)—] , 2
where the subscript g indicates that the expectation is taken with respect to ¢
rather than f. Consequently, if X1,..., Xy ~iiq g, then

~ 1

is an unbiased estimator of ¢. The quotient W (X) = & f(X)/g(X) is called the
likelihood ratio of X. Estimating ¢ via such an importance sampling estimator
may be beneficial, in terms of a smaller relative error for the same simulation
effort, if the importance sampling pdf g is chosen appropriately. Note that by
taking f = g one obtains the CMC estimator.



2.1 Variance Minimization

The optimal importance sampling pdf, that is, the pdf g* for which the variance
of ¢ is minimal, is proportional to |H| f (see, e.g., Rubinstein and Kroese (2007;
Page 132)). Indeed, if H is strictly positive then under g* o< H f the importance
sampling estimator has zero wvariance. However, ¢g* is in general difficult to
evaluate; for example, when H > 0 the normalization constant of g* is precisely
£. Often the “nominal” pdf f can be embedded in a parameterized class of
densities {f(;v)}, where f corresponds to some f(-;u). A sensible approach
is to search for the best importance sampling pdf f (-;v);Athat is, find the
parameter v for which the importance sampling estimator ¢ has the smallest
variance. Since

Vary (0) = %VarV(H(X)W(X; u,v)) = % (Ey [H(X)*W (X;u,v)?] — 2) |

where W(X;u,v) = f(X;u)/f(X;v), the optimal v is found by solving the
following variance minimization program:

min E, [H(X)*W (X;u,v)?] .
v
This is in general not an easy problem.

2.2 Cross-Entropy Minimization

The idea of the CE method is to choose the importance sampling pdf g in a
specified class of pdfs such that the Kullback—Leibler divergence between the
optimal importance sampling pdf ¢* and ¢ is minimal. The Kullback—Leibler
divergence between two pdfs g and h is given by

D(g,h) =E, [ln %} = /g(x) ln% dx

(4)
= /g(x) Ing(x)dx — /g(x) In h(x)dx .

We assume from now on that the function H is positive, that the nominal
pdf f is parameterized by a finite-dimensional vector u; that is, f(x) = f(x;u),
and that the importance sampling pdf is f(-; v) for some parameter v. The CE
minimization procedure involves finding an optimal reference parameter vector,
v* say, by cross-entropy minimization:

v* = argminD(g", f(-;v))
= argmaX/H(x)f(x; u)ln f(x;v)dx
= argmax E, H (x) In f(X; V)

= argmax Ew H (x)W (X;u,w)In f(X; V), (5)



where w is any reference parameter. This v* can be estimated via the stochastic
counterpart of (5):

N
=R 1
v = argmax - ,;H(X’“) W (X u,w) In f(Xjiv) (6)

where Xy,..., Xy ~iq f(-;w). This leads to the following algorithm.

Algorithm 2.1 (CE Algorithm)

1. Choose a reference parameter w, e.g., w = u, and generate X1, ..., XN ~iid

flw).
2. Estimate the CE optimal parameter Vv from the stochastic program (6).

3. Generate Xq,...,Xn, ~id f(;V) and estimate ¢ via importance sam-
pling, as in (3).

It can be beneficial to iterate Steps 1 and 2 a number of times in Algo-
rithm 2.1; that is, in subsequent iterations the parameter w in Step 1 is chosen
as v, obtained in Step 2.

2.3 Updating Formulae

The main benefit of using CE program (6) over the corresponding variance
minimization program is that the former yields simple explicit solutions for
certain important cases. The optimization of (6) is similar to the calculation
of the maximum likelihood estimator of v for the pdf f(-;v). Indeed, by taking
the gradient of the sum in (6) and equating it to the zero vector 0, one obtains
v (under mild regularity conditions) as the solution to the equation

N
1
2 HX)W (X, w)Vin £(Xp;v) =0, (7)
k=1
where Vin f(X;v) is the well-known score function in maximum likelihood
estimation. We discuss two important special cases.

2.3.1 Exponential Families

Suppose that {f(-;n)} forms an m-dimensional exponential family in natural
parameter space; that is,

Fxim) = c(n) et h(x) (8)

where t(x) = (t1(x),...,tm(x))", e(n) > 0, and h(x) > 0, forallp = (v1,...,v) "

such that

A(n) L c(n) = ln/e"Tt(x) h(x)dx < oo .

(Replace the integral by a sum in the discrete case.)



The random vector t(X) is a sufficient statistic for n. Moreover, Ent(X) =

VA(n) and Covyy(t(X)) = V2A(n). The score function becomes V1n f(x;n) =
t(x) — VA(n). It follows that the solution 7 to (7) (replacing u,v,w with
0,n,w) satisfies

_ S HX)W (X, 0, )t(Xy,) ‘

VAt Sy H(Xp)W (X3 0,w)

9)

In particular, if the exponential family is reparameterized by the mean, v =
V A(n), then the CE optimal parameter Vv is explicitly given in the right-hand
side of (9).

Example 2.1 (Exponential Random Variables) Let Xj,..., X,, be inde-
pendent and identically distributed random variables with parameter . We
write Xq,..., X, ~iiqd Exp(6). Let ) be the reference parameter of the impor-
tance sampling pdf f(x;7) given by

m
i) = [T o1 = gre-nZass
=1

which is a 1-dimensional exponential family of the form (8), with t(x) =
—> ", x; and ¢(n) = n™. Note that under this importance sampling pdf,
X1,..., Xpn ~id Exp(n). Writing Hy, = H(Xy) and the likelihood ratio Wy =
f(Xg;0)/f(Xg;w) in (6), the CE optimal parameter 7 is found from

dInec(n)
dry U >t HiWi

_m > HiWi 357 X

)

where Xj; is the i-th component of Xj. Reparameterizing the Exp(n) distribu-
tion by the mean v = 1/n, the CE updating formula for v thus becomes:

chvzl H Wy, Y00 Xyi/m

o= i=1,...,n. (10)
N ) ) bl
> k=1 HiWi
2.3.2 Discrete Distributions
Suppose X1, ..., X, are iid random variables taking values 1, ..., m with prob-
abilities vy, ..., vy, respectively. Let v = (v1,...,vp-1). Note that v, =
(1 —v; —---—vpy_1). The (discrete) pdf of each component X is given by

m ; m—1 1_221_111{3021'} m—1 I
f(.I,V) _ H,Ui{z:z} — (1 _ Z ’Ui) % H vi{z:z} ,
=1

i=1 i=1

The m — 1 components of the corresponding score function are given by

dln f(z;v) _ Lip=iy B Lizem}

i=1,....m—1.
dv; Vi U



Substitution in (7), and using the abbreviations Hy = H(X}) and Wi,W (Xx; u, w),
shows that N
~ Zk:l Hi W, I{szi} ~
vV, = N Um -

>t HeWi Iix, —m)
The parameter v, can be found from the fact that v; + - - - +7,, = 1. Tt follows
that

5 S HyWy Lix =iy
=
Sohmy HiW

=1,....,m.

2.4 Rare-Event Simulation

Often the quantity of interest ¢ = EH(X) is a probability of the form ¢ =
P(S(X) > ~) for some function S and level 7; that is, H(x) = [{gx)>y}- A
complication in solving (6) or (7) occurs when ¢ is a rare-event probability. In
that case the optimization program and the updating formula becomes useless
for moderate sample size IV, because all (or most) of the values H(X},) are zero.
One remedy is to use a multi-level CE procedure instead, where a sequence of
reference parameters and levels is constructed with the goal that the former
converges to v* and the latter to . The idea is to first choose a level parameter
¢1 for which the event S(X) > 747 is not too rare under the original pdf f(-;u),
and then estimate the CE optimal parameter, say v; for this level via (6) (which
is now not devoid of meaning). Specifically, 7; is chosen as the sample (1 — p)-
quantile of S(X), based on a random sample Xi,..., Xy ~jq f(;u). This
procedure is then iterated by choosing 72 as the sample (1 — p)-quantile of
S(X), based on a random sample from f(-;Vy), estimating the optimal CE
parameter vy from (6), and so on. The complete procedure is summarized as
follows; see, e.g., Rubinstein and Kroese (2007; Page 238).

Algorithm 2.2 (CE Algorithm for Rare-Event Estimation)

1. Define vo = u. Let N® = [pN]. Sett =1 (iteration counter).

2. Generate X1, ..., XN ~id f(;Vi—1). Calculate S; = S(X;) for all i, and
order these from smallest to largest: Sy < ... < Sy Let 4 be the
sample (1 — o)-quantile of performances; that is, 7y = S(n_net1). If
At >y, reset 4 to 7.

3. Use the same sample Xq,...,Xy to solve the stochastic program (6),
with w = V;_1. Denote the solution by V.

4. If 3y < 7, set t =t + 1 and reiterate from Step 2; otherwise, proceed with
Step 5.

5. Let T be the final iteration counter. Generate Xi,...,Xn, ~ia f(;V7)
and estimate £ via importance sampling, as in (3).



Apart from specifying the family of sampling pdfs, the sample sizes N and Ny,
and the rarity parameter o (typically between 0.01 and 0.1), the algorithm is
completely self-tuning. The sample size N for determining a good reference
parameter can usually be chosen much smaller than the sample size Ny for
the final importance sampling estimation, say N = 1000 versus N; = 100,000.
Under certain technical conditions the deterministic version of Algorithm 2.2 is
guaranteed to terminate (reach level 7) provided that g is chosen small enough;
see Section 3.5 of Rubinstein and Kroese (2004).

Example 2.2 (Stochastic Activity Network) Figure 1 shows an example
of a stochastic activity network. Such networks are frequently used in process
management to schedule concurrent activities of some project from start to
finish. Each arc in the network corresponds to an activity, and is weighted by
the duration of that activity. The nodes in the network represent milestones.
Any activity originating from a milestone can only be started once all activities
leading to that milestone have been completed. The maximal project duration
corresponds to the length of the longest path in the graph. Figure 1 shows a
stochastic activity network with ten activities. Suppose the durations of the
activities are independent exponential random variables X1, ..., X1, each with
means 1.

Start 7 finish

5

Figure 1: A stochastic activity network.

Let S(X) denote length of the longest path in the graph; that is,

S(X) =maxL; ,

where
Ly = X1+ X4+ Xo,
Ly = X35+ Xe + Xo ,
Ly = X3+ Xg,
Ly= X3+ X7+ X0,
Ls=Xo+ X5+ Xy .
Suppose the objective is to estimate the rare-event probability P(S(X) > 20) us-

ing importance sampling where the random vector X = (X7,..., Xj0) has inde-
pendent exponentially distributed components with mean vector v = (vy,. .., v1).



Note that the nominal pdf is obtained by setting v; = 1 for all i. At the
t-th iteration of the multilevel CE Algorithm 2.2, the solution to (6) with
H(X) = I{gx)>5,} is, similar to (10), given by

~ 25:1 Lesxi) 250 Wk Xki

Ut =

, (11)

N
> k=1 Lsxi) =7 W

where X1,...,X§ ~iid f(-;{/\t_l), Wy = f(Xk;u)/f(Xk;Vt_l), and X}; is the
i-th element of X..

Table 1 lists the successive estimates for the optimal importance sampling
parameters obtained from the multilevel CE algorithm, using N = 10° and
o =0.1.

Table 1: Convergence of the sequence {(7;,Vy)}.

t Yt Vi

0 - 1 1 1 1 1 1 1 1 1 1

1 7.05 1.479 1.453 1.763 1.473 1.441 1.398 1.427 1.147 1.707 1.732
2| 11.09 | 1.794 1.826 2.422 1.773 1.798 1.735 1.731 1.176 2.449 2.444
311469 | 2.034 2.034 3.056 2213 2167 2.125 1.982 1.040 3.070 2.977
4 | 17.87 | 2.097 2297 3.570 2.352 2327 2.281 2593 1.021 3.614 3.842
5 1 20.00 | 2.936 2.548 3.683 2,537 2.628 2.454 2.227 1.209 4.004 3.683

The last step in Algorithm 2.2 gives an estimate of 1.72 - 107 with an
estimated relative error of 2%, using a sample size of Ny = 10%. A typical crude
Monte Carlo estimate (that is, taking v.= u = (1,1,...,1)) using the same
sample size is 3- 1076, with an estimated relative error of 60%, and is therefore
of little use.

3 Extensions

3.1 Sampling Directly from the Zero-Variance Distribution

For certain rare-event estimation problems it is possible to (approximately) sam-
ple directly from the zero-variance importance sampling pdf ¢*, for example via
Markov chain Monte Carlo. By sampling directly from ¢g* one can estimate the
CE optimal parameters in a single step and without likelihood ratios. The idea
was first introduced in Chan (2010). This approach could be advantageous for
high-dimensional problems, where the likelihood degeneracy can pose a serious
impediment to importance sampling; see, for example, Rubinstein and Kroese
(2007; Page 133).

To explain the idea, suppose ¢ = P(S(X) > ~) is the rare event of interest,
where X ~ f(-;u). The zero-variance importance sampling density ¢g* is simply
the conditional pdf f given the event S(X) > ~; that is,

. Fxu) I >
g (X) _ g{S( )>7} )




The CE optimal parameter v* is

v = argmax/l{s(x»v}f(x; u)ln f(x;v)dx

= argmax Eg- In f(x;v)dx ,
v

which can be estimated via the sample average approximation:

N
— 1
v = argflnax N kz_l In f(Xg;v) , (12)

where Xy,..., Xy is an (approximate) sample from ¢g*. This leads to the fol-
lowing algorithm.

Algorithm 3.1 (CE Algorithm via the Zero-Variance Distribution)

1. Generate a random sample Xy, ..., Xy from the density g* and find the
solution to (12).

—

2. Generate a sample Xq,...,X s from the density f(-;v*) and estimate ¢
via importance sampling, as in (3).

Note that no likelihood ratio or indicator is involved. As a result, the algo-
rithm does not only afford substantial computational saving in high-dimensional
settings, its solution is more robust and numerically stable as well. Generat-
ing draws from g¢*, however, requires additional effort, but with the advent of
Markov chain Monte Carlo (MCMC) methods, this problem is well studied and
a variety of techniques are available to our disposal. In particular, sampling
from the zero-variance pdf g* can be achieved without knowledge of £. The
number of draws required to estimate v* is typically much smaller than that
required in the multi-level CE algorithm. As (12) is a maximum likelihood type
estimator, where sample is taken from g* instead of f(-;v), the solution can of-
ten be obtained analytically. Note, finally, that in this approach the function S
must be explicitly available, while in the standard CE method any importance
sampling pdf can be used, in conjunction with the likelihood ratio.

Example 3.1 (Binomial Distribution) To compare the quality of the opti-
mal reference parameter estimators for the multi-level CE Algorithm 2.2 and
the zero-variance CE Algorithm 3.1, consider the estimation of P(S(X) > v),
where S(X) = X7 + -+ X,,, v = n S for some 8 € (0,1), and X; ~ Ber(p;),
i=1,...,n, independently. The nominal density is thus f(x;p) = [[;-, p;" (1—
pi)' 7%, where x = (x1,...,2,) and p = (p1,...,pn). We wish to locate the
optimal importance density within the parametric family f(x;q) indexed by
a=1(q1,--.,qn), where ¢; € (0,1) for i = 1,...,n. The CE optimal parameter
q* follows from the maximization program

max Z < pi(1— pi)(l_xi)> (Z zilng + (1 — ;) In(1 — q@)) )
1 i=1

x:Sn(x) >y \i=



which yields the closed-form expression

n
DORES | R

x:iSn(x)>y  i=1 .
q: = , 7=1,...,n.

J n
> IIwa-s

x:5n (x) >y i=1

In particular, if all the p; are identical, then ¢} = [6n] /n. We estimate q* via
the multi-level CE procedure and by sampling from the zero-variance pdf. As
a numerical example, we first set n = 80, § = 0.6 and p; =--- = p, = 0.1. For
the multi-level CE method, we set N = 10000 and ¢ = 0.01. The algorithm
terminates at the 5th iteration, requiring a total of 50000 draws. For the zero-
variance CE procedure, we run a Gibbs sampler with 10 parallel chains, each
has a length of 1000, and the total budget is therefore 10000. It is also worth
mentioning that drawing from ¢g* via the Gibbs sampler in this case only requires
generating Bernoulli draws. The empirical cumulative distribution functions
(cdf) of the CE and “zero-variance CE” estimates, together with the optimal
reference parameter calculated analytically, are presented in Figure 2.

Figure 2: The empirical distribution function of the CE estimates.
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It is evident that the multilevel CE estimates fluctuate more widely com-
pared to those obtained by the zero-variance version, even though the sim-
ulation budget for the former is five times as large. Using a sample size of
N = 50000, typical importance sampling estimates for the multi-level and zero-
variance approaches are 3 - 1072 and 7.96 - 10728, respectively, with estimated
relative errors 0.3 and 0.01. The true probability is approximately 8.10 - 10728,
It is important to note that the multilevel CE estimation procedure can be
considerably improved by simply increasing the sample size for estimating the
parameters, for example from 10000 to 100000. Similar experiments indicate
that as the dimension n of the problem gets larger, the multi-level CE estimates

10



become more unreliable, compared to the zero-variance counterpart, which are
essentially unaffected by the increase in dimension.

The result from this toy example suggests a reason why the multi-level
CE method fails to give accurate estimates in high-dimensional settings: the
reference parameter vector obtained is suboptimal, and therefore the resulting
importance density does not sufficiently mimic the behavior of ¢g*. In principle
one can increase the accuracy of the multi-level CE estimates by increasing
the sample size N or the rarity parameter o. In either case, however, the total
simulation effort would increase, and in moderately high-dimensional problems,
this approach might not be practical. On the other hand, the result also suggests
that if we avoid the multi-level maximization procedure and estimate v* directly
via (12), we can improve the performance of the standard CE procedure.

Example 3.2 (Stochastic Activity Network (Continued)) This is to show
how the zero-variance CE approach can be applied to the stochastic activity
network of Example 2.2.

We can sample from the zero-variance pdf g* using the Gibbs sampler.
This requires sampling from the marginal distributions of ¢* conditional on
the values of the other components. Consider first sampling X; conditional
on To,...,rig. If any of the lengths L;,7 = 2,...,5 is greater than or equal
to 7, then the marginal distribution of X given zo,... 219 is simply equal to
the nominal distribution (that is, Exp(1)). However, if every Lo, ..., Lig is less
than v, then in order for L; to exceed 7, X has to be greater than or equal to
min{y—xz4—x¢,0}. Hence, to sample from the marginal conditional distribution
in this case, draw Z ~ Exp(1) and compute X; = Z + min{y — x4 — x¢,0}.
That is X is drawn from a truncated exponential distribution. Similarly, given
Z1,%3,...,%10, X2 is drawn from its original distribution if max;<s4 L; > ;
otherwise, set Xo = min{y — x5 — x10,0} + Z, where Z ~ Exp(1l). More
precisely, the Gibbs sampling procedure for this problem is as follows.

Algorithm 3.2 (Gibbs Sampling for the Stochastic Activity Network)

1. Initialize X such that S(X) > v. Set t =1 (counter).
2. Fori=1 ton=10:

(a) Let &; be the set of paths containing link i.
(b) If maxyg », Ly, > v, then draw X; ~ Exp(1).
(c) Otherwise, set X; = 0 and compute L = maxyep, L. Draw Z ~
Exp(1) and set X; = Z + max{y — L,0}.
3. Sett=1t+1. Ift > N (sample size) stop; otherwise, return to Step 2.

The estimate and relative error are comparable to the ones obtained via
the multi-level approach. See also Chan (2010) for an application to a high-
dimensional network.

11



3.2 Transformed Likelihood Ratio

The transform likelihood ratio (TLR) method (Kroese and Rubinstein 2004) is
a convenient constructing efficient importance sampling estimators.

The idea is to apply a simple change of variable step to the estimation
problem and then to apply the CE method to find the optimal importance
sampling parameter for the transformed problem. Suppose the objective is to
estimate ¢ = EH(X). The main step is to write X as a function of another
random vector, say as

X = G(Z). (13)

If we define N
H(Z) = H(G(Z)) ,

then estimating ¢ is equivalent to estimating

¢ =E[H(Z)] . (14)

As an example, consider the one-dimensional case were X ~ Weib(a, \). Since
X has the same distribution as Z/® /), where Z ~ Exp(1), we have H(Z) =
H\ "' ZY) and £ = E[H(A~ Z1/)] .

To apply the cross-entropy method, assume that Z has a density h(z; ) in
some class of densities {h(z;7)}. Then we can seek to estimate ¢ efficiently via
importance sampling. In particular, by analogy to (3), we obtain the following

TLR estimator:

N
~ 1 - __
l=+ k}_jlmzk) W(Zy:0.m) . (15)
where h(Z:0)
W(Z :0,m) = MEk;Y)
(238, 7) h(Zk;n)

and Zj, ~ h(z;n). As an example, consider again the Weib(c, ) case. Using the
transform X = Z/ /A, we could apply importance sampling to Z ~ Exp(1),
using an Exp(n) class of distributions. Thus, h(z;7n) = ne~"* is the importance
sampling pdf, with 7 = # = 1 as the nominal parameter. Hence, in this case, v
in (15) reduces to

A R 1/a\ T
E:N;H<>\ 7} )W(Zk,e,n), (16)

with ( ) 0z
—~ h(Z; 0 e "4k
G0 = 3y = e

and Zj ~ Exp(n).
To find the optimal parameter vector n* of the TLR estimator (15) we can
solve, by analogy to (5), the following CE program:

n* = argmax K, | H(Z) W(Z; 0,7)Inh(Z; n)] (17)
n

12



and similarly for the stochastic counterpart of (17).

To obtain simple updating formulas one would typically choose the dis-
tribution of Z from an exponential family of distributions, as is explained in
Section 2.3. Below we present the TLR algorithm for estimating ¢ = E[H (X)],
assuming that X is a random vector with independent, continuously distributed
components.

Algorithm 3.3 (TLR Method)

1. For a given random vector X, find a transformation G such that X =
G(Z), with Z ~ h(z;0). For example, take Z with all components being
itd and distributed according to an exponential family (e.g., Exp(1)).

2. Generate a random sample Zy, ..., Zy from h(-;T).

3. Solve the stochastic counterpart of the program (17)). Iterate if necessary.
Denote the solution by 7.

4. Generate a (larger) random sample Zy, ..., Zn, from h(-;1) and estimate
¢ =E[H(G(Z))] via the TLR estimator (15), taking m = 7.

The advantage of the TLR method is its universality and it ability to avoid
the computational burden while directly delivering the analytical solution of
the stochastic counterpart of the program (17).

Example 3.3 (Elliptical Distributions) A random vector X = (X1,...,X,)
is said to have an elliptical distribution with location vector w, dispersion ma-
trix ¥ and, radial c¢df F', written X ~ Ellipt(p, X, F'), if X can be written in the
form

X = p+ RBY , (18)

where Y is a uniform vector on the n-dimensional sphere, R is a random variable
with cdf F, independent of Y, and B is a matrix such that BBT = X. Note
that a random vector that is uniformly distributed on the n-dimensional sphere
can be obtained by normalizing an n-dimensional standard normal random
vector: Y = Z/||Z||, with Z ~ N(0, I,,); see, for example, Kroese et al. (2011b).
Blanchet and Rojas-Nandayapa (2011) consider efficient simulation procedures
for estimating probabilities of the form

(=P 4 2y, (19)

where X ~ Ellipt(p, X, F)). We show how such quantities can be quickly com-
puted via the TLR method. Defining

S(R,Y)=eX1 ... 4 e¥n,

where the {X;} are related to the {Y;} and R via (18), the idea is to write (19)
as
(= P(S(R.Y) > )
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and to estimate the latter by performing importance sampling on the distribu-
tion of R only. Suppose, for simplicity, that R ~ Exp(1) and that the importance
sampling distribution is Exp(1/07) where v is obtained at the last step of a
CE procedure. This means that ¢ is estimated as

N1

S

= 3 2 lstrvsn W (20)
k=1

where Wy, = Ope~(1=1/91)Ex  Because {Exp(1/v),v > 0} is an exponential
family parameterized by its mean, the optimal reference parameter at the ¢-th
iteration of the CE algorithm is given by

N
| >\ Wi R,
Oy = Zk,1 {S(Ry,Yr) 27} "V KAk 7 (21)

N
D k=1 18R Y1) 250 Wi

where W, = 0,_je~(1=1/%=1)Fx  This leads to the following procedure.
Algorithm 3.4
1. Setvg=u=1andt =1.

2. Generate Ry,..., Ry ~iq Exp(Us—1) and (independently) Zy ~ N(O, 1),
k=1,...,N. Let Yy, = Zy/||Zs||, k=1,...,N.

3. Set Xy = p + RpBYy, calculate the performances S(Ry, YY) and order
these from smallest to largest: Sy < -+ < S(n). Let ¢ be the sample
(1 — o)-quantile of performances. If 7, > =y, reset 4y to 7.

4. Update vy via (21), using the same Ry, ..., Ry as obtained in Step 2.

5 If 3y <=, set t =t + 1 and reiterate from Step 2; otherwise, proceed with

Step 6.
6. Let T' be the final iteration counter. Generate Ry, ..., Ry, ~iq Exp(0r)
and Y1,...,Yn,, and estimate { via importance sampling as in (20).

As a numerical example, consider the 10-dimensional case with pu =0, ¥ = I
(identity), R ~ Exp(1), and v = 3 - 103. Using a sample size of N = 103 the
following CE parameter was found after three iterations: v3 = 12.05. Using
importance sampling with a sample size of 10° the rare-event probability was
estimated as 3.91-107% with an estimated relative error of 1.2%. For v = 3-10°,
using the same sample sizes, the probability was estimated (after five iterations)
as 9.3 - 107Y with an estimated relative error of 2.6%.

3.3 Root Finding

In many applications one needs to estimate, for given ¢, the root, v, of the
nonlinear equation

Pu(S(X) = 7) = Eul[I{sx)>] = ¢ (22)
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rather than estimate ¢ itself. We call such a problem a root-finding problem.
One can obtain v using the CE method, by finding a good reference vector
v such that v can be estimated accurately as the smallest number 7 such that

Ny

1 ~
E Z I{S(Xk)Q'ﬂ?}W(XM u, VT) < l. (23)
k=1

To find such a reference vector vy one can simply modify the multi-level
CE Algorithm 2.2 as follows.

Algorithm 3.5 (Root-Finding Algorithm)
1. Define vo =u, N°=[(1 —o)N]. Sett=1.
2. Generate a random sample Xq,..., Xy from the density f(-;Vi_1).

3. Calculate the performances S(Xi),...,S(Xn). Order the performances
from smallest to largest: Si1y < ... < Sny). Let ¢ = Sne).

4. Calculate 0, = max{/, & Zszl Lisx) 290 W (X u, vi1) }

5. Solve the stochastic program (6) with w = V,_1, using the same sample
X4i,...,Xy. Denote the solution by V.

0. Ith = {, proceed to Step 7; otherwise, let t = t 4+ 1 and reiterate from
Step 2.

7. Estimate 7y via the right-hand side of (23), using a sample Xy, ..., X, ~
f(;¥vr), where T is the final iteration number.

Example 3.4 (Root Finding for the Stochastic Activity Network) Consider
the stochastic activity network in Example 2.2. Suppose we wish to estimate

for which ~
P(S(X)=~)=107".

Table 2 shows a typical outcome of Algorithm 3.5, with a sample size of N = 10°
and o = 0.1. A typical estimate of v using a sample size of N; = 10° is 18.08
with an estimated relative error of 0.1%.

Table 2: Convergence of the sequence {(¢;,v;)}.

gt | Vi
- 1 1 1 1 1 1 1 1 1 1
0.1 146 144 1.77 144 144 144 143 116 1.72 1.70
4.28-107% | 1.74 1.83 254 1.79 1.81 1.75 1.78 1.19 239 245
1.75-107% | 204 1.99 325 210 201 200 224 1.07 3.11 3.11
1.00-107° | 242 228 392 218 228 215 268 1.03 3.54 4.12

=W N = O
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