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Abstract

The cross-entropy method is a versatile heuristic tool for solving difficult estima-
tion and optimization problems, based on Kullback–Leibler (or cross-entropy)
minimization. As an optimization method it unifies many existing population-
based optimization heuristics. In this chapter we show how the cross-entropy
method can be applied to a diverse range of combinatorial, continuous, and
noisy optimization problems.

1 Introduction

The cross-entropy (CE) method was proposed by Rubinstein (1997) as an adap-
tive importance sampling procedure for the estimation of rare-event probabili-
ties, that uses the cross-entropy or Kullback–Leibler divergence as a measure of
closeness between two sampling distributions. Subsequent work by Rubinstein
(1999; 2001) has shown that many optimization problems can be translated into
a rare-event estimation problem. As a result, adaptive importance sampling
methods such as the CE method can be utilized as randomized algorithms for
optimization. The gist of the idea is that the probability of locating an optimal
or near optimal solution using naive random search is a rare-event probability.
The cross-entropy method can be used to gradually change the sampling dis-
tribution of the random search so that the rare-event is more likely to occur.
For this purpose, using the CE distance, the method estimates a sequence of
sampling distributions that converges to a distribution with probability mass
concentrated in a region of near-optimal solutions.

To date, the CE method has been successfully applied to mixed integer
nonlinear programming (Kothari and Kroese 2009); continuous optimal con-
trol problems (Sani 2009, Sani and Kroese 2008); continuous multi-extremal
optimization (Kroese et al. 2006); multidimensional independent component
analysis (Szabó et al. 2006); optimal policy search (Busoniu et al. 2010); clus-
tering (Botev and Kroese 2004, Kroese et al. 2007b, Boubezoula et al. 2008);
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signal detection (Liu et al. 2004); DNA sequence alignment (Keith and Kroese
2002, Pihur et al. 2007); noisy optimization problems such as optimal buffer
allocation (Alon et al. 2005); resource allocation in stochastic systems (Co-
hen et al. 2007); network reliability optimization (Kroese et al. 2007a); vehicle
routing optimization with stochastic demands (Chepuri and Homem-de-Mello
2005); power system combinatorial optimization problems (Ernst et al. 2007);
and neural and reinforcement learning (Lörincza et al. 2008, Menache et al.
2005, Unveren and Acan 2007, Wu and Fyfe 2008).

A tutorial on the CE method is given in de Boer et al. (2005). A com-
prehensive treatment can be found in Rubinstein and Kroese (2004); see also
Rubinstein and Kroese (2007; Chapter 8). The CE method homepage is www.

cemethod.org.

2 From Estimation to Optimization

The CE method can be applied to two types of problems:

1. Estimation: Estimate ` = E[H(X)], where X is a random object taking
values in some set X and H is a function on X . An important special
case is the estimation of a probability ` = P(S(X) > γ), where S is
another function on X .

2. Optimization: Optimize (that is, maximize or minimize) a given objec-
tive function S(x) over all x ∈ X . S can be either a known or a noisy
function. In the latter case the objective function needs to be estimated,
e.g., via simulation.

In this section we review the CE method as an adaptive importance sampling
method for rare-event probability estimation, and in the next section we show
how the CE estimation algorithm leads naturally to an optimization heuristic.

Cross-Entropy for Rare-event Probability Estimation

Consider the estimation of the probability

` = P(S(X) > γ) = E[I{S(X)>γ}] =

∫
I{S(x)>γ} f(x;u) dx , (1)

where S is a real-valued function, γ is a threshold or level parameter, and
the random variable X has probability density function (pdf) f(·;u), which is
parameterized by a finite-dimensional real vector u. We write X ∼ f(·;u). If
X is a discrete variable, simply replace the integral in (1) by a sum. We are
interested in the case where ` is a rare-event probability ; that is, a very small
probability, say, less than 10−4. Let g be another pdf such that g(x) = 0 ⇒
H(x) f(x;u) = 0 for every x. Using the pdf g we can represent ` as

` =

∫
f(x;u) I{S(x)>γ}

g(x)
g(x) dx = E

[
f(X;u) I{S(X)>γ}

g(X)

]
, X ∼ g . (2)
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Consequently, if X1, . . . ,XN are independent random vectors with pdf g, writ-
ten as X1, . . . ,XN ∼iid g, then

̂̀=
1

N

N∑

k=1

I{S(Xk)>γ}
f(Xk;u)

g(Xk)
(3)

is an unbiased estimator of `: a so-called importance sampling estimator. It is
well known (see, for example, (Rubinstein and Kroese 2007; Page 132)) that
the optimal importance sampling pdf (that is, the pdf g∗ for which the variance
of ̂̀ is minimal) is the density of X conditional on the event S(X) > γ; that is,

g∗(x) =
f(x;u) I{S(x)>γ}

`
. (4)

The idea of the CE method is to choose the importance sampling pdf g from
within the parametric class of pdfs {f(·;v), v ∈ V} such that the Kullback–
Leibler divergence between the optimal importance sampling pdf g∗ and g is
minimal. The Kullback–Leibler divergence between g∗ and g is given by

D(g∗, g) =

∫
g∗(x) ln

g∗(x)

g(x)
dx = E

[
ln

g∗(X)

g(X)

]
, X ∼ g∗ . (5)

The CE minimization procedure then reduces to finding an optimal reference
parameter vector, v∗ say, by cross-entropy minimization:

v∗ = argmin
v

D(g∗, f(·;v))

= argmax
v

EuI{S(X)>γ} ln f(X;v)

= argmax
v

EwI{S(X)>γ} ln f(X;v)
f(X;u)

f(X;w)
, (6)

where w is any reference parameter and the subscript in the expectation op-
erator indicates the density of X. This v∗ can be estimated via the stochastic
counterpart of (6):

v̂ = argmax
v

1

N

N∑

k=1

I{S(X)>γ}
f(Xk;u)

f(Xk;w)
ln f(Xk;v) , (7)

where X1, . . . ,XN ∼iid f(·;w). The optimal parameter v̂ in (7) can often be
obtained in explicit form, in particular when the class of sampling distributions
forms an exponential family (Rubinstein and Kroese 2007; Pages 319–320). In-
deed, analytical updating formulas can be found whenever explicit expressions
for the maximal likelihood estimators of the parameters can be found (de Boer
et al. 2005; Page 36).

A complication in solving (7) is that for a rare-event probability ` most or
all of the indicators I{S(X)>γ} in (7) are zero, and the maximization problem
becomes useless. In that case a multi-level CE procedure is used, where a
sequence of reference parameters {v̂t} and levels {γ̂t} is constructed with the
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goal that the former converges to v∗ and the latter to γ. At each iteration t
we simulate N independent random variables X1, . . . ,XN from the currently
estimated importance sampling density f(·; v̂t−1) and let γ̂t be the (1 − %)-
quantile of the performance values S(X1), . . . , S(XN ), where % is a user specified
parameter called the rarity parameter. We then update the value of v̂t−1 to
v̂t, where v̂t is calculated using likelihood maximization (or equivalently cross
entropy minimization) based on the N e = d%Ne random variables for which
S(Xi) > γ̂t.

This leads to the following algorithm (Rubinstein and Kroese 2007; Page
238).

Algorithm 2.1 (CE Algorithm for Rare-Event Estimation) Given the sam-
ple size N and the parameter %, execute the following steps.

1. Define v̂0 = u. Let N e = d%Ne. Set t = 1 (iteration counter).

2. Generate X1, . . . ,XN ∼iid f(·; v̂t−1). Calculate Si = S(Xi) for all i, and
order these from smallest to largest: S(1) 6 . . . 6 S(N). Let γ̂t be the
sample (1 − %)-quantile of performances; that is, γ̂t = S(N−Ne+1). If
γ̂t > γ, reset γ̂t to γ.

3. Use the same sample X1, . . . ,XN to solve the stochastic program (7),
with w = v̂t−1. Denote the solution by v̂t.

4. If γ̂t < γ, set t = t + 1 and reiterate from Step 2; otherwise, proceed with
Step 5.

5. Let T = t be the final iteration counter. Generate X1, . . . ,XN1 ∼iid

f(·; v̂T ) and estimate ` via importance sampling, as in (3) with u = v̂T .

We now show how this estimation algorithm leads naturally to a simple opti-
mization heuristic.

Cross-Entropy Method for Optimization

To see how Algorithm 2.1 can be used for optimization purposes, suppose that
the goal is to find the maximum of S(x) over a given set X . Assume, for
simplicity, that there is only one maximizer x∗. Denote the maximum by γ∗,
so that

S(x∗) = γ∗ = max
x∈X

S(x) . (8)

We can now associate with the above optimization problem the estimation
of the probability ` = P(S(X) > γ), where X has some probability density
f(x;u) on X (for example corresponding to the uniform distribution on X )
and γ is close to the unknown γ∗. Typically, ` is a rare-event probability, and
the multi-level CE approach of Algorithm 2.1 can be used to find an importance
sampling distribution that concentrates all its mass in a neighborhood of the
point x∗. Sampling from such a distribution thus produces optimal or near-
optimal states. Note that, in contrast to the rare-event simulation setting,
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the final level γ = γ∗ is generally not known in advance, but the CE method
for optimization produces a sequence of levels {γ̂t} and reference parameters
{v̂t} such that ideally the former tends to the optimal γ∗ and the latter to the
optimal reference vector v∗ corresponding to the point mass at x∗; see, e.g.,
(Rubinstein and Kroese 2007; Page 251).

Algorithm 2.2 (CE Algorithm for Optimization)

1. Choose an initial parameter vector v̂0. Let N e = d%Ne. Set t = 1 (level
counter).

2. Generate X1, . . . ,XN ∼iid f(·; v̂t−1). Calculate the performances S(Xi)
for all i, and order them from smallest to largest: S(1) 6 . . . 6 S(N). Let
γ̂t be the sample (1−%)-quantile of performances; that is, γ̂t = S(N−Ne+1).

3. Use the same sample X1, . . . ,XN and solve the stochastic program

max
v

1

N

N∑

k=1

I{S(Xk)>bγt} ln f(Xk;v) . (9)

Denote the solution by v̂t.

4. If some stopping criterion is met, stop; otherwise, set t = t+1, and return
to Step 2.

Note that the estimation Step 5 of Algorithm 2.1 is missing in Algorithm 2.2,
because in the optimization setting we are not interested in estimating ` per
se. For the same reason the likelihood ratio term f(Xk;u)/f(Xk; v̂t−1) in (7)
is missing in (9).

To run the algorithm one needs to propose a class of parametric sampling
densities {f(·;v),v ∈ V}, the initial vector v̂0, the sample size N , the rarity
parameter %, and a stopping criterion. Of these the most challenging is the se-
lection of an appropriate class of parametric sampling densities {f(·;v),v ∈ V}.
Typically, there is not a unique parametric family and the selection is guided by
the following competing objectives. First, the class {f(·;v),v ∈ V} has to be
flexible enough to include a reasonable parametric approximation to the optimal
importance sampling density (4) for the estimation of the associated rare-event
probability `. Second, each density f(·;v) has to be simple enough to allow fast
random variable generation and closed-form solutions to the (weighted) max-
imum likelihood estimation program (9). In many cases these two competing
objectives are reconciled by using a standard statistical model for f(·;v), such as
the multivariate Bernoulli or Gaussian densities with independent components
of the vector X ∼ f(·;v). However, in some cases it is beneficial to consider the
more complicated Bernoulli or Gaussian mixture models, in which the estima-
tion program (9) is carried out using the EM algorithm (see Section 3.2). In the
examples that follow we primarily use the multivariate Bernoulli and Gaussian
densities for combinatorial and continuous optimization problems, respectively.
Note, however, that special parameterizations may be needed for problems such
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as the traveling salesman problem, where the optimization is carried out over a
set of possible permutations; see Rubinstein and Kroese (2004) for more details.

In applying Algorithm 2.2, the following smoothed updating has proven use-
ful. Let ṽt be the solution to (9) and 0 6 α 6 1 be a smoothing parameter,
then for the next iteration we take the parameter vector

v̂t = α ṽt + (1− α) v̂t−1 . (10)

Other modifications can be found in Kroese et al. (2006), Rubinstein and Kroese
(2004), and Rubinstein and Kroese (2007). The effect that smoothing has on
convergence is discussed in detail in Costa et al. (2007). In particular, it is shown
that for discrete binary optimization problems with non-constant smoothing
v̂t = αt ṽt + (1 − αt) v̂t−1, αt ∈ [0, 1] the optimal solution is generated with
probability 1 if the smoothing sequence {αt} satisfies:

∞∑

t=1

t∏

k=1

(1− αk)
n =∞ ,

where n is the length of the binary vector x. Other convergence results can be
found in Rubinstein and Kroese (2004) and Margolin (2005). Finally, significant
speed up can be achieved by using a parallel implementation of CE (Evans et al.
2007).

3 Applications to Combinatorial Optimization

When the state space X is finite, the optimization problem (8) is often re-
ferred to as a discrete or combinatorial optimization problem. For example, X

could be the space of combinatorial objects such as binary vectors, trees, paths
through graphs, permutations, etc. To apply the CE method, one needs to
first specify a convenient parameterized random mechanism to generate objects
X in X . An important example is where X = (X1, . . . ,Xn) has independent
components such that Xi = j with probability vi,j , i = 1, . . . , n, j = 1, . . . ,m.
In that case, the solution of the program in (9) at the t-th iteration is

v̂t,i,j =

∑N
k=1 I{S(Xk)>bγt}I{Xk,i=j}∑N

k=1 I{S(Xk)>bγt}

, i = 1, . . . , n, j = 1, . . . ,m , (11)

where X1, . . . ,XN are independent copies of X ∼ {v̂t−1,i,j} and Xk,i is the i-th
element of Xk (see de Boer et al. (2005; Page 56)). We call the set of vectors
satisfying S(Xk) > γ̂t the elite sample at iteration t. Thus, the updated proba-
bility v̂t,i,j is simply the number of elite samples for which the i-th component
is equal to j, divided by the total number of elite samples. Note that (11) is a
direct consequence, via (9), of the cross-entropy minimization program (6).

A possible stopping rule for combinatorial optimization problems is to stop
when the overall best objective value does not change over a number of it-
erations. Alternatively, one could stop when the sampling distribution has
“degenerated” enough. For example, when in (11) the {v̂t,i,j} differ less than
some small ε > 0 from the {v̂t−1,i,j}.

6



3.1 Knapsack Packing Problem

A well-known NP-complete combinatorial optimization problem is the 0-1 knap-
sack problem (Kellerer et al. 2004) defined as:

max
x

n∑

j=1

pjxj, xj ∈ {0, 1}, j = 1, . . . , n ,

subject to :
n∑

j=1

wi,jxj 6 ci, i = 1, . . . ,m .

(12)

Here {pj} and {wi,j} are positive weights, {ci} are positive cost parameters,
and x = (x1, . . . , xn). In order to define a single objective function, we adopt
the penalty function approach and define

S(x)
def
= β

m∑

i=1

I{P
j wi,j xj>ci} +

n∑

j=1

pj xj ,

where β = −∑n
j=1 pj. In this way, S(x) 6 0 if one of the inequality constraints

is not satisfied and S(x) =
∑n

j=1 pj xj is all of the constraints are satisfied.
As a particular example, consider the Sento1.dat knapsack problem given in
the appendix of Senju and Toyoda (1968). The problem has 30 constraints
and 60 variables. Since the solution vector x is binary, a simple choice for the
sampling density in Step 2 of Algorithm 2.2 is the multivariate Bernoulli density
f(x;v) =

∏n
j=1 v

xj

j (1 − vj)
1−xj . We apply Algorithm 2.2 to this particular

problem with N = 103 and N e = 20, v̂0 = (1/2, . . . , 1/2). Note that we do not
use any smoothing for v̂t (that is, α = 1 in (10)) and the solution v̂t of (9) at
each iteration is given by

v̂t,j =

∑N
k=1 I{bS(Xk)>bγt}

Xk,j
∑N

k=1 I{bS(Xk)>bγt}

, j = 1, . . . , n , (13)

where Xk,j is the j-th component of the k-th random binary vector X. In Step 4
of Algorithm 2.2 we stop the algorithm if dt = max16j6n{min{v̂t,j , 1− v̂t,j}} 6

0.01. Table 1 shows the typical evolution of the CE combinatorial optimization
algorithm on the Sento1.dat problem. For each iteration t we recorded the
threshold γ̂t, the largest value of S(Xk) in the current population, and the
value of the stopping criterion dt.

The global maximum value for this problem is 6704. Figure 1 shows the
evolution of the probability vector v̂t, which characterizes the multivariate
Bernoulli distribution f(·; v̂t). Note that v̂t converges to a binary vector corre-
sponding to the optimal solution.
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Table 1: Typical evolution of the CE method on the knapsack problem. The
last column shows the stopping value dt = max16j6n{min{v̂t,j , 1 − v̂t,j}} for
each t.

t γ̂t best score dt

1 −192450 −45420 0.495
2 −119180 1056 0.455
3 −48958 1877 0.395
4 −8953 3331 0.34
5 1186 3479 0.415
6 2039.5 4093 0.455
7 2836.5 4902 0.435
8 3791 5634 0.485

t γ̂t best score dt

9 4410 5920 0.46
10 5063.5 6246 0.46
11 5561 6639 0.452
12 5994.5 6704 0.47
13 6465.5 6704 0.46
14 6626 6704 0.355
15 6677 6704 0.346
16 6704 6704 0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
0

0.5

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
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1
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0

0.5

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
0
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0

0.5

1

i

t = 13

t = 10

t = 7

t = 4

t = 1

t = 16

Figure 1: The evolution of the probability vector v̂t.
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3.2 Boolean Satisfiability Problem

Let x = (x1, . . . , xn) be a binary vector and suppose c1(x), . . . , cm(x) are m
functions, called clause functions, such that ci : {0, 1}n → {0, 1}. For given
clauses, the objective is to find

x∗ = argmax
x∈{0,1}n

m∏

i=1

ci(x) . (14)

That is, to find a vector x∗ satisfying all clauses simultaneously. This Boolean
satisfiability (SAT) problem (Gu et al. 1997) is of importance in computer
science and operations research, because any NP-complete problem, such as the
traveling salesman problem, can be translated into a SAT problem in polynomial
time.

We now show how one can apply Algorithm 2.2 to the SAT problem. First,
note that the function

∏m
i=1 ci(x) in (14) takes on only the values 0 or 1, and

is thus not suitable for the level approach in the CE method. A more suitable
and equivalent formulation is:

x∗ = argmax
x∈{0,1}n

S(x)
def
= argmax

x∈{0,1}n

m∑

i=1

ci(x) , (15)

where the function S : {0, 1}n → {1, . . . ,m}. In this way, the function S can be
used to measure the distance from our goal by indicating the number of satisfied
clauses (as opposed to simply indicating whether all clauses are satisfied or not).
As a specific example we consider the SAT instance uf75-01 from Hoos and
Stützle (2000).

To illustrate the role of the sampling distribution, we first use the same
method of generation as in the knapsack problem; that is, at each iteration
t the j-th component of X is generated according to a Ber(v̂t,j) distribution,
independently of all other components. The updating formula is thus (13). We
run the CE algorithm with a sample size of N = 104 and a rarity parameter of
% = 0.1, giving N e = 103 elite samples per iteration. We take v̂0 = (0.5, . . . , 0.5)
and do not use smoothing (α = 1). The upper panel of Figure 2 shows the
evolution of the method over the first 30 iterations. The figure shows the scores
of the best and worst performing elite samples at each iteration t, together
with the value S(x∗) = 325. The optimization gets close to the maximal level
325 (indicated by a horizontal line), but stops at 323. The reason why the CE
algorithm does not reach the maximum is that the sampling distribution is too
simple.

Next, instead of the basic multivariate Bernoulli model for f(·;v), we con-
sider the Bernoulli mixture model (see Section 4.2 for a discussion of parametric
mixture models)

f(x;v) =
K∑

k=1

wk

n∏

j=1

p
xj

k,j (1− pk,j)
1−xj ,

where K is the number of mixture components, w = (w1, . . . , wK) are the
weights (wk > 0,

∑
k wk = 1) associated with each component, each pk =

9



(pk,1, . . . , pk,n) is a vector of probabilities, and v = (w,p1, . . . ,pK) collects all
the unknown parameters (we assume that K is given). The greater flexibility
in the parametric model comes at a cost — the maximum likelihood program
(9) in Step 3 of Algorithm 2.2 no longer has a simple closed form solution.
Nevertheless, an approximate solution of (9) can be obtained using the EM
algorithm of Dempster et al. (1977), where the initial starting point for the
EM routine is chosen at random from the elite vectors. The lower panel of
Figure 2 shows the evolution of this CE algorithm using K = 6 components
for the Bernoulli mixture density and the same algorithmic parameters (N =
104, % = 0.1, α = 1, v̂0 = (0.5, . . . , 0.5)). With this setup the algorithm quickly
reaches the desired level of 325, justifying the extra computational cost of fitting
a parametric mixture model via the EM algorithm.

0 5 10 15 20 25 30
290

300

310

320

330

t

S
(x

)

0 5 10 15 20 25 30
290

300

310

320

330

t

S
(x

)

S(x∗) = 325

S(x∗) = 325

γ̂t

γ̂t

maxk S(Xk)maxk S(Xk)

maxk S(Xk)

Figure 2: Evolution of the CE algorithm on the uf75-01 SAT instance. The
upper panel corresponds to the case where f(x;v) is a multivariate Bernoulli
density and the lower panel corresponds to the case where f(x;v) is Bernoulli
mixture model with K = 6 components. Both panels show the best score,
maxk S(Xk), and γ̂t for each iteration t.

3.3 Network Planning Problem

An important integer optimization problem is the Network Planning Problem
(NPP). Here a network is represented as an undirected graph with edges (links)
that may fail with a given probability. The objective of the NPP is to optimally
purchase a collection of edges, subject to a fixed budget, so as to maximize the
network reliability — defined as the probability that all nodes in a given set of
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nodes are connected by functioning edges. Each edge comes with a pre-specified
cost and reliability (probability that it works). The NPP has applications in
engineering (Wang et al. 2009), telecommunications, transportation, energy
supply systems (de Silva et al. 2010, Kothari and Kroese 2009), computer and
social networking (Hintsanen et al. 2010). The difficulty in solving this problem
derives from the following aspects of the optimization.

1. Typically the computation of the reliability of large networks is a diffi-
cult #P-complete computational problem, which either requires Monte
Carlo simulation or sharp bounds on the reliability (Rubino 1998, Won
and Karray 2010). In the Monte Carlo case the NPP becomes a noisy
optimization problem, that is, the objective function values are estimated
from simulation.

2. For highly reliable networks, the network reliability is a rare-event proba-
bility. In such cases Crude Monte Carlo simulation is impractical and one
has to resort to sophisticated rare-event probability estimation methods
(Rubino and Tuffin 2009).

3. Even if the reliability could somehow be computed easily, thus dispensing
with the problems above, the NPP remains an NP-hard 0–1 knapsack
optimization problem with a nonlinear objective function. In response to
this, various optimization heuristics have been developed, such as sim-
ulated annealing (Cancela and Urquhart 1995) and genetic algorithms
(Dengiz et al. 1997, Reichelt et al. 2007).

4. Finally, the problem is constrained and for most optimization heuristics
like the simulated annealing and genetic algorithms, the penalty function
approach is inefficient.

Here we apply the CE method to tackle all of the above problems simultane-
ously. We now explain the implementation and mathematical details, largely
following Kroese et al. (2007a).

Let G(V ,E ,K ) be an undirected graph, where V = {1, . . . , v̇} is the set
of v̇ nodes (vertices), E = {1, . . . , n} is the set of n edges, and K ⊆ V with
|K | > 2 is the set of terminal nodes. Sometimes we may refer to an edge by
specifying the pair of nodes it connects, and write

E = {(v̇i, v̇j), . . . , (v̇k, v̇l)}, v̇i, v̇j , v̇k, v̇l ∈ V .

For example, in Figure 3 the edge set is given by

E = {(1, 2), (1, 3), (1, 6), (2, 3), (2, 4), (3, 4), (3, 6), (4, 5), (5, 6)} ,

and the set of terminal nodes is {2, 5}. For each e = 1, . . . , n let Be ∼ Ber(pe)
be a Bernoulli random variable with success probability pe indicating whether
the e-th link is operational. In other words, the event {Be = 1} corresponds
to edge e being operational and the event {Be = 0} corresponds to the edge
being nonoperational. It follows that each of the 2n states of the network can
be represented by a binary vector B = (B1, . . . , Bn). For example, the state of
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Figure 3: A reliability network with 6 nodes and 9 edges or links. The network
works if the two terminal nodes (filled circles) are connected by functioning
links. Failed links are indicated by dashed lines.

the network on Figure 3 can be represented as B = (0, 0, 1, 1, 1, 1, 1, 1, 0). Let
E [B] denote the set of operational edges corresponding to B. For example, the
set of operational edges on Figure 3 is

E [B] = {(1, 6), (2, 3), (2, 4), (3, 4), (3, 6), (4, 5)} ≡ {3, 4, 5, 6, 7, 8} .

The size of the set of edges E [B] is |E [B]| = B1 + · · ·+Bn. The reliability of the
network is the probability that all of the nodes in K are connected by the set
E [B] of operational edges. For a given set of edges E we define the structure
function Φ as

Φ[E ] =

{
1 if E contains a path connecting the nodes in K

0 if E does not contain a path connecting the nodes in K .

We can write the reliability of the network as

r =
∑

b

Φ(E [b])

n∏

e=1

pbe
e (1− pe)

1−be = EΦ(E [B]) ,

where Be ∼ Ber(pe), independently for all e = 1, . . . , n. Denote by x =
(x1, . . . , xn) the purchase vector with (e = 1, . . . , n)

xe =

{
1 if link e is purchased

0 if link e is not purchased.

Let us denote by c = (c1, . . . , cn) the vector of link costs. Define

B(x) = (B1x1, . . . , Bnxn)

S(x) = EΦ(E [B(x)]) ,

12



where S(x) is the reliability for a given purchase vector x. Then, the NPP can
be written as:

max
x

S(x)

subject to:
∑

e

xece 6 Cmax ,
(16)

where Cmax is the available budget. We next address the problem of estimating
S(x) for highly reliable networks using Monte Carlo simulation.

3.3.1 Permutation Monte Carlo and Merge Process

In principle, any of the sophisticated rare-event probability estimation meth-
ods presented in Rubino and Tuffin (2009) can be used to estimate S(x). Here
we employ the merge process (MP) of Elperin et al. (1991). Briefly, Elperin
et al. (1991) view the static network as a snapshot of a dynamical network,
in which the edges evolve over time — starting failed and eventually becom-
ing operational (or, alternatively, starting operational and eventually failing).
They exploit the fact that one can compute exactly the reliability of the net-
work, given the order in which the links of the network become operational,
and suggests a conditional Monte Carlo method as a variance reduction tool:
generate random permutations (indicating the order in which the links become
operational) and then evaluate the unreliability for each permutation.

Suppose Ex = E [x] = {e1, . . . , em} ⊆ E is the set of purchased links. The
corresponding link reliabilities are pe1, . . . , pem. Define λe = − ln(1− pe).

Algorithm 3.1 (Merge Process for Graph G(V , Ex, K ))

1. Generate Ei ∼ Exp(λei
) independently for all purchased links ei ∈ Ex.

Sort the sequence E1, . . . , Em to obtain the permutation (π(1), . . . , π(m))
such that

Eπ(1) < Eπ(2) < · · · < Eπ(m) .

Let D be a dynamic ordered list of nonoperational links. Initially, set

D = (eπ(1), eπ(2), . . . , eπ(m)) .

Compute

λ∗
1 =

∑

e∈D

λe

and set the counter b = 1.

2. Let e∗ be the first link in the list D . Remove link e∗ from D and add it
to the set U (which need not be ordered). Let Gb ≡ G(V ,U ,K ) be the
network in which all edges in U are working and the rest of the edges (all
edges in D) are failed.

3. If the network Gb is operational go to Step 6; otherwise, continue to Step 4.

13



4. Identify the connected component of which link e∗ is a part. Find all
links in D in this connected component. These are called redundant links,
because they connect nodes that are already connected. Denote the set of
redundant links by R.

5. Remove the links in R from D . Compute

λ∗
b+1 = λ∗

b − λe∗ −
∑

e∈R

λe =
∑

e∈D

λe .

Increment b = b + 1 and repeat from Step 2.

6. Let A be the b× b square matrix:

A =




−λ∗
1 λ∗

1 0 . . . 0
0 −λ∗

2 λ∗
2 . . . 0

...
...

. . .
. . .

...
0 . . . 0 −λ∗

b−1 λ∗
b−1

0 . . . 0 0 −λ∗
b




,

and let A∗ = (A∗
i,j) = eA =

∑∞
k=0

Ak

k! be the matrix exponential of A.
Output the unbiased estimator of the unreliability of the network

Z =

b∑

j=1

A∗
1,j .

For the NPP we use the following unbiased estimator of the reliability S(x):

Ŝ(x) = 1− 1

M

M∑

k=1

Zk, (17)

where Z1, . . . , ZM are independent realizations of Z from Algorithm 3.1. Note
that if Ex does not contain enough operational links to connect the nodes in
K , then the network reliability is trivially equal to 0.

3.3.2 Sampling with a Budget Constraint

While it is possible to incorporate the budget constraint via a penalty function
added to (17), here we take a more direct approach, in which we generate a
sample of n dependent Bernoulli random variables such that the constraint∑

e ceXe 6 Cmax is satisfied. In other words, in Step 2 of Algorithm 2.2
we sample random purchase vectors X1, . . . ,XN from a parametric density
f(·;v), v = (v1, . . . , vn), that takes into account the budget constraint in (16)
and is implicitly defined via the following algorithm (Kroese et al. 2007a).
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Algorithm 3.2 (Purchase vector generation) Given the vector v, set i =
1 and execute the following steps.

1. Generate U1, . . . , Un
iid∼ U(0, 1) and let π be the permutation which satisfies

Uπ(1) < Uπ(2) < · · · < Uπ(n).

2. If cπ(i) +
∑i−1

e=1 cπ(e)Xπ(e) 6 Cmax, generate U ∼ U(0, 1) and set Xπ(i) =
I{U<vπ(i)}; otherwise, set Xπ(i) = 0.

3. If i < n, increment i = i + 1 and repeat from Step 2; otherwise, deliver
the random purchase vector X = (X1, . . . ,Xn).

We can interpret v as a vector of purchase probabilities. The aim of the CE
optimization Algorithm 2.2 is then to construct a sequence of probabilities
{v̂t, t = 0, 1, 2, 3} that converges to a degenerate (binary) vector x∗ correspond-
ing to the optimal purchase vector. The updating of v̂t at each iteration is given
by (9) with S replaced by the estimated Ŝ. The solution of (9) is:

ṽt,j =

∑N
k=1 I{bS(Xk)>bγt}

Xk,j
∑N

k=1 I{bS(Xk)>bγt}

, j = 1, . . . , n . (18)

For clarity we now restate the CE optimization algorithm as applied to the
NPP.

Algorithm 3.3 (CE Optimization for NPP)

1. Let v̂0 = (1/2, . . . , 1/2). Let N e = d%Ne, where % is the user-specified
rarity parameter. Set t = 1 (level counter).

2. Generate independent purchase vectors X1, . . . ,XN using Algorithm 3.2
with v = v̂t. For each purchase vector estimate the reliability Ŝ(Xi) using
the merge process estimator (17) and rank the reliabilities from smallest
to largest: S(1) 6 . . . 6 S(N). Let γ̂t be the sample (1 − %)-quantile of
reliabilities; that is, γ̂t = S(N−Ne+1).

3. Use the same sample X1, . . . ,XN to estimate the purchase probabilities
via (18).

4. Smooth the purchase probabilities in Step 3 to obtain v̂t with

v̂t,j = α ṽt,j + (1− α) v̂t−1,j , j = 1, . . . , n .

5. If
max

16j6n
{min{v̂t,j , 1− v̂t,j}} 6 ε

for some small ε, say ε = 10−2, stop; otherwise, set t = t + 1 and repeat
from Step 2.

We now illustrate the method on the complete graph K10 given in Figure 4.
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Figure 4: A complete graph with 10 nodes and 45 edges.

The costs and reliabilities for the graph were generated in the (quite arbi-
trary) pseudo-random fashion as follows.

Algorithm 3.4 (Generation of Costs and Reliabilities for a K10 graph)
Set i = 0 and j = 1
while j 6 45 do

i← i + 1
b = 1− (7654321 mod (987 + i))/105

if b > 0.99 and b 6= pk for all k then
pj = b
cj = 20/ exp(8

√
1− b)

j ← j + 1
end if

end while

We let K = {1, 4, 7, 10} and Cmax = 250. We apply Algorithm 3.3 with N =
100, N e = 10 (% = 0.1), α = 1/2, and ε = 10−2. For the merge process estimator
(17) we used M = 100. The estimated overall purchase vector corresponds to
the following edges:

E [x∗] = {2, 3, 4, 6, 7, 8, 9, 11, 14, 17, 21, 24, 25, 27, 28, 29, 30, 32, 40, 42, 45}

with a total cost of 241.2007. These edges are drawn thicker on Figure 4.
Using M = 105 samples in (17) we obtained the estimate 4.80 × 10−16 (with
an estimated relative error of 1.7%) of the corresponding unreliability of the
purchased network.
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4 Continuous Optimization

When the state space is continuous, in particular when X = R
n, the optimiza-

tion problem is often referred to as a continuous optimization problem. The
CE sampling distribution on R

n can be quite arbitrary and does not need to be
related to the function that is being optimized. The generation of a random vec-
tor X = (X1, . . . ,Xn) ∈ R

n in Step 2 of Algorithm 2.2 is most easily performed
by drawing the n coordinates independently from some 2-parameter distribu-
tion. In most applications a normal (Gaussian) distribution is employed for
each component. Thus, the sampling density f(·;v) of X is characterized by a
vector of means µ and a vector of variances σ2 (and we may write v = (µ,σ2)).
The choice of the normal distribution is motivated by the availability of fast
normal random number generators on modern statistical software and the fact
that the maximum likelihood maximization (or cross-entropy minimization) in
(9) yields a very simple solution — at each iteration of the CE algorithm the
parameter vectors µ and σ2 are the vectors of sample means and sample vari-
ance of the elements of the set of N e best performing vectors (that is, the elite
set); see, for example, Kroese et al. (2006). In summary, the CE method for
continuous optimization with a Gaussian sampling density is as follows.

Algorithm 4.1 (CE for Continuous Optimization: Normal Updating)

1. Initialize: Choose µ̂0 and σ̂2
0. Set t = 1.

2. Draw: Generate a random sample X1, . . . ,XN from the N(µ̂t−1, σ̂
2
t−1)

distribution.

3. Select: Let I be the indices of the N e best performing (=elite) samples.
Update: For all j = 1, . . . , n let

µ̃t,j =
∑

k∈I

Xk,j/N
e (19)

σ̃2
t,j =

∑

k∈I

(Xk,j − µ̃t,j)
2/N e. (20)

4. Smooth:

µ̂t = αµ̃t + (1− α)µ̂t−1, σ̂t = ασ̃t + (1− α)σ̂t−1 . (21)

5. If maxj{σ̂t,j} < ε stop and return µt (or the overall best solution gen-
erated by the algorithm) as the approximate solution to the optimization.
Otherwise, increase t by 1 and return to Step 2.
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For constrained continuous optimization problems, where the samples are
restricted to a subset X ⊂ R

n, it is often possible to replace the normal sam-
pling with sampling from a truncated normal distribution while retaining the
updating formulas (19)–(20). An alternative is to use a beta distribution.

Smoothing, as in Step 4, is often crucial to prevent premature shrinking of
the sampling distribution. Another approach is to inject extra variance into the
sampling distribution, for example by increasing the components of σ2, once
the distribution has degenerated; see the examples below and Botev and Kroese
(2004).

4.1 Optimal Control

Optimal control problems have been studied in many areas of science, engi-
neering, and finance. Yet the numerical solution of such problems remains
challenging. A number of different techniques have been used, including non-
linear and dynamic programming (Bertsekas 2007), ant colony optimization
(Borzabadi and Mehne 2009), and genetic algorithms (Wuerl et al. 2003). For
a comparison among these methods see Borzabadi and Heidari (2010). In this
section we show how to apply the CE Algorithm 4.1 to optimal control problems
over a fixed interval of time. As a particular example we consider the following
nonlinear optimal control problem:

min
u∈U

J{u} = min
u∈U

∫ 1

0

(
2 z1(τ)− u(τ)

2

)
dτ

subject to:
dz1

dτ
= u− z1 + z2 e−z2

2/10

dz2

dτ
= u− π5/2 z1 cos

(π

2
u
)

z1(0) = 0, z2(0) = 1, |u(τ)| 6 1, τ ∈ [0, 1]

where the function u belongs to the set U of all piecewise continuous func-
tions on [0, 1]. To obtain an approximate numerical solution we translate the
infinite-dimensional functional optimization problem into a finite-dimensional
parametric optimization problem. A simple way to achieve this is to divide the
interval [0, 1] into n − 1 subintervals [τ1, τ2], . . . , [τn−1, τn] and approximate u
via a spline that interpolates the points {(τi, xi)}, where x = (x1, . . . , xn) is a
vector of control points. For a given vector x of control points we can write the
approximation as the linear combination:

u(·) ≈ ux(·) =

n∑

k=1

xkφk(·) ,

where {φk ∈ U } are interpolating polynomials. For example, one of the sim-
plest choices gives the nearest neighbor interpolation (τn+1 = τn and τ0 = τ1):

φk(τ) = I

{
τk + τk−1

2
< τ <

τk+1 + τk

2

}
. (22)
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The objective now is to find the optimal ux(·) that solves the finite-dimensional
control problem:

min
x

S(x) = min
x

∫ 1

0

(
2 z1(τ)− ux(τ)

2

)
dτ

subject to:
dz1

dτ
= ux − z1 + z2 e−z2

2/10

dz2

dτ
= ux − π5/2 z1 cos

(π

2
ux

)

z1(0) = 0, z2(0) = 1, |ux(τ)| 6 1, τ ∈ [0, 1].

(23)

To find the optimal vector of control points x = (x1, . . . , xn) we apply
Algorithm 4.1 in the following way.

1. In Step 2 we sample each component Xi of X from a N(µ̂t,j , σ̂
2
t,j) distri-

bution, which is truncated to the interval [−1, 1]. This ensures that the
approximation ux(·) is constrained in the interval [−1, 1].

2. We divide the time interval [0, 1] into n − 1 equal subintervals and use
(22) for the approximating curve. This gives an optimization problem of
n dimensions.

3. For a given ux we solve the nonlinear ODE system in (23) using the
Runge–Kutta formulae of Dormand and Prince (1980).

4. The sample size is N = 100, the stopping parameter ε = 0.01, and µ̂0 = 0
and σ̂0 = (10, . . . , 10), and N e = 20. Since this is a minimization problem
and N e = 20, the elite samples are the first 20 control vectors that give
the lowest score S(x). We applied smoothing only to the parameter σ

with α = 0.5.
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Figure 5: The evolution of the CE optimization method on the nonlinear opti-
mal control problem with n = 11 control points. The graphs show the control
uµt

(·) for t = 1, 10, 20, and the final t = 49. The control points µt are shown
as dots on the curve uµt

(·).

Figure 5 shows the typical evolution of the CE optimization Algorithm 4.1
with n = 11 control points. The figure shows the approximation ux(·) and
the control points x = µt (where µt is the mean vector given in (19)) for
t = 1, 10, 20, and the final iteration t = 49. For each graph we have recorded
the corresponding value of J . In particular, for this simulation the smallest
value found is J{ux(·)} = 0.02691. Observe the qualitative behavior of the
optimal control: u starts near 1 and gradually decreases to u = −1 until at
about τ = 0.7 the control abruptly switches to u = 1 and remains so till the
final time τ = 1.
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Figure 6: Evolution of the vector σ̂t for iterations t = 5, . . . , 49.

Figure 6 shows the evolution of the standard deviation vector σ̂t associated
with the sampling distribution N(µ̂t, σ̂

2
t ) of each random control vector X.

Notice that all of the components of σ̂t shrink to zero as the iterations progress,
and that since σ̂t,7 and σ̂t,8 are the last to decay, the control points x6 and x7

are the last to converge.
It is desirable to investigate the dependence of the solution on the number

of control points. Note that while increasing the number of control points
x improves the approximation of u, it also makes the optimization problem
more difficult, because of the increased dimensions of the optimization problem.
Figure 7 shows the evolution of the CE optimization Algorithm 4.1 with n = 21
control points, where the interval [0, 1] is again subdivided into equal segments.
The algorithmic setup and the values of all parameters are kept the same. In
this case the optimization effort was larger and the algorithm terminated in 88
iterations. Observe that as a result of using more control points we were able
to achieve a lower minimum for J , namely, J{ux(·)} = 0.018395.

We were not able to obtain a lower value for J using more than 21 points
due to the increased complexity of the optimization. In addition, smooth cubic
splines did not yield better solutions than the simple nearest neighbor interpo-
lation due to the discontinuous nature of the optimal control.
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Figure 7: The evolution of the CE optimization method on the nonlinear opti-
mal control problem with n = 21 control points. The optimization terminated
in 88 iterations and achieved the minimum of J{ux(·)} = 0.018395.

For more examples of using the CE method for optimal control problems
see Sani and Kroese (2008), Sani (2010). In addition to a number of simple
examples, Sani and Kroese (2008) apply the CE method to the optimization of
a large scale model for the spread of HIV/AIDS.

4.2 Maximum Likelihood Optimization

Mixture models are widely used for clustering and pattern recognition (McLach-
lan and Peel 2000). A finite mixture pdf is a density of the form

f(y) =

c∑

k=1

wk fk(y),

where {wk} are probabilities summing to 1, {fk} are pdfs, and c is the num-
ber of mixture components. The pdfs {fk} may or may not belong to a single
parametric family. The fitting of mixture models is best carried out using the
principle of maximum likelihood and requires the maximization of a likelihood
function with many local maxima and saddle points. Typically, the EM algo-
rithm of Dempster et al. (1977) is the most efficient method for fitting of mixture
models when {fk} belong to the exponential family of parametric pdfs. How-
ever, the EM algorithm is either inapplicable or inefficient when the densities
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{fk} are not part of an exponential family or are not continuous with respect
to some of its model parameters. For example, consider a mixture consisting
of one d-dimensional Gaussian and c − 1 uniform densities on d-dimensional
rectangles:

f(y;θ) =
w1 e−

1
2

Pd
i=1(yi−ν1,i)

2/ς21,i

(2π)
d
2

∏d
i ς1,i

+
c∑

k=2

wk

d∏

i=1

I
{
|yi − νk,i| < 1

2ςk,i

}

ςk,i
. (24)

Here, (νk,1, . . . , νk,d) and (ςk,1, . . . , ςk,d) are the location and scale parameters
of the k-th component, and

θ = ((ν1,1, . . . , νc,d), (ς1,1, . . . , ςc,d), (w1, . . . , wc))

summarizes all model parameters. The log-likelihood function given the data
y1, . . . ,yn is S(θ) =

∑n
j=1 ln f(yj ;θ), which is not continuous with respect

to all parameters, because the support of each uniform component depends
on the scale parameters {ςk,i, k > 2}. We now show how to apply the CE

method to solve the optimization program θ̂ = argmaxθ∈Θ S(θ), where Θ is
the set for which all ςk,i > ςlow > 0 for some threshold ςlow and {wk} are
probabilities summing to one. Note that ςlow must be strictly positive to ensure
that maxθ∈Θ S(θ) <∞.

In Step 2 of Algorithm 4.1 the population X1, . . . ,XN corresponds to ran-
domly generated proposals for the parameter θ = X. Thus, the CE parameter
vectors µ and σ2 are of length (2d + 1)c, with the first d c elements associated
with the location parameters of the mixture, the next d c elements associated
with the scale parameters, and the last c elements associated with the mixture
weights. In particular, we sample the locations ν1,1, . . . , νc,d from the normal
distributions N(µ1, σ

2
1), . . . ,N(µc d, σ

2
c d). To account for the constraints on the

scale parameters of the mixture we sample ς1,1, . . . , ςc,d from the normal dis-
tributions N(µc d+1, σ

2
c d+1), . . . ,N(µ2c d, σ

2
2c d) truncated to the set [ςlow,∞). To

generate the mixture weights {wk} we need to sample positive random vari-
ables ω1, . . . , ωc such that

∑
k ωk = 1. For this purpose we generate all weights

from truncated normal distributions in a random order (specified by a random
permutation), as in the following algorithm.

Algorithm 4.2 (Generation of Mixture Weights)

Require: The last c elements of the CE parameter vectors µ and σ2.
Generate a random permutation π of 1, . . . , c.
for k = 1, . . . , (c− 1) do

Generate wπ(k) from the normal distribution N(µ2dc+π(k), σ
2
2dc+π(k)) trun-

cated to the interval [0, 1− (wπ(1) + · · · + wπ(k−1))].
end for
Set wπ(c) = 1− (wπ(1) + · · ·+ wπ(c−1)).
return Random mixture weights w1, . . . , wc.

As a particular example, consider fitting the mixture model (24) to the
n = 200 random points depicted on Figure 8. The data are pseudo-random
variables generated from (24) with c = 3, weights (w1, w2, w3) = (1/2, 1/4, 1/4),
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Figure 8: A sample of size 200 from a mixture of two uniform and a Gaussian
distributions. Superimposed is the contour plot of the fitted mixture density
f(y; θ̂).

We applied Algorithm 4.1 with N = 100, N e = 10, α = 0.5, ε = ςlow = 0.01,
and µ̂0 = (1, . . . , 1) and σ̂0 = (10, . . . , 10). The algorithm terminated after
t = 89 iterations with the overall maximum log-likelihood of S(θ̂) = −707.7593.
Figure 8 shows the estimated mixture model. The model appears to fit the data
well. In addition, the true value of the parameters θ gives S(θ) = −710.7937 <
S(θ̂), which suggests that θ̂ is the global maximizer. We found that for fitting
mixture models the CE algorithm is not sensitive to the initial conditions and
works satisfactorily for 0.2 ≤ α ≤ 0.8.
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5 Summary

We have described the CE method for combinatorial and continuous optimiza-
tion. In summary, any CE algorithm for optimization involves the following
two main iterative phases:

1. Generate a random sample of objects in the search space X (trajecto-
ries, vectors, etc.) according to a specified probability distribution.

2. Update or refit the parameters of that distribution based on the N e best
performing samples (the so-called elite samples) using CE minimization.

An important part of the algorithm involves the selection of a suitable prob-
ability density that allows for simple random variable generation and simple
updating formulae (arising from the CE minimization) for the parameters of
the density. For most optimization problems standard parametric models such
as the multivariate Bernoulli and Gaussian densities (for discrete and continu-
ous problems, respectively) are adequate. Finally, the CE method is a robust
tool for noisy continuous or discrete optimization problems.
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