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Abstract-It is well known that the exact calculation 
of network reliability is a #P-complete problem and 
that for large networks estimating the reliability using 
simulation techniques becomes attractive. For highly 
reliable networks, a Monte Carlo scheme called the 
Merge Process is one of the best performing algo- 
rithms, but with a relatively high computational cost 
per sample. The authors previously proposed a hybrid 
Monte Carlo scheme called the Tree Cut and Merge 
algorithm which can improve simulation performance 
by over seven orders of magnitude in some heteroge- 
neous networks. In homogeneous networks, however, 
the performance of the algorithm may degrade. In 
this paper, we first analyse the Tree Cut and Merge 
algorithm and explain why it does not perform well 
in some networks. Then a modification is proposed 
that subdivides the problem into smaller problems 
and introduces the Importance Sampling technique 
to the simulation process. The modified algorithm 
addresses the slow convergence problem in those hard 
cases while keeping the performance improvement in 
heterogeneous networks. Experiments and results are 
presented with some discussions. 

Index Terms-Network Reliability, Monte Carlo, Im- 
portance Sampling, Merge Process, Markov Process 

I. INTRODUCTION 

It is well known that for large networks the ex- 
act calculation of network reliability is difficult. 
Indeed, computing the probability that a graph 
is connected is a #P-complete problem [4], [16]. 
Methods like approximation [3], [ 111 and bounds 

[ 11, [2], [9] are available, however, their accuracy 
and scope are highly dependent on the properties 
(such as topology and size) of the networks. Hence, 
for large networks estimating the reliability using 
simulation techniques becomes attractive. In highly 
reliable networks such as modern communication 
networks, the probability of network failure is 
very low. Direct simulation of such rare events is 
slow and hence very expensive. Various techniques 
have been developed to produce better estimates. 
For example, Kumamoto proposed a very simple 
technique called Dagger Sampling to improve the 
Crude Monte Carlo simulation [14]. Fishman pro- 
posed Procedure Q which can provide reliability 
estimates as well as bounds [lo]. Colbourn and 
Harms proposed a technique that provides progres- 
sive bounds that eventually converge to an exact 
reliability value [5]. Easton and Wong proposed a 
sequential construction method [6]. Elperin, Gerts- 
bakh and Lomonosov proposed the Evolution Mod- 
els [7], [8]. Hui et al. improved the Evolution 
Models by employing the Cross-Entropy technique 
~ 3 1 .  

For highly reliable networks such as modern com- 
munication networks, the Monte Carlo scheme 
called the Merge Process [7], [8] proposed by 
Elperin et al. is one of the best performing algo- 
rithms. Instead of sampling in the combinatorial 
space of functioning edges, the Merge Process 
models the network’s evolution as a Markov Chain 
and samples from the edge permutation space. The 
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model avoids the rare event problem in combina- 
torial sampling and provides low sample variance. 
However, it has a relatively high computational cost 
per sample [15]. To combat the high complexity 
for the Merge Process, Hui et al. proposed a hybrid 
Monte Carlo scheme called the Tree Cut and Merge 
algorithm [ 121. It combines combinatorial sampling 
with permutation sampling together with some 
bounding techniques. The resultant algorithm can 
improve simulation performance by over 7 orders 
of magnitude in some heterogeneous networks. In 
homogeneous networks, however, the simulation 
performance may degrade. In some hard cases, the 
algorithm can take a long time to converge, similar 
to that of Crude Monte Carlo simulations. 

In this paper, we first define network reliability in 
Section 11. Then the Merge Process and the Tree 
Cut and Merge algorithm are briefly reviewed in 
Section 111. The proposed modification to the Tree 
Cut and Merge algorithm is presented in Section IV 
followed by the new Importance Sampling scheme 
in Section V. Experiments and results are presented 
in Section VI with some discussion. 

11. NETWORK RELIABILITY 

Consider an undirected graph (or network) 
G ( V ,  E ,K) ,  where V is the set of n vertices (or 
nodes), E is the set of m edges, and K G V is a set 
of terminal nodes, with IK(1 2 2 .  Associated with 
each edge e E E is a binary random variable X,, 
denoting the failure state of the edge. In particular, 
{X, = 1) is the event that the edge is operational, 
and { X e  = 0) is the event that it is not operational. 
We label the edges from 1 to m, and call the 
vector X = ( X I , .  . . , Xm) the (failure) state of 
the network, or the state of the set E. 

Next, we assume that the random variables 
{X,, e E E} are mutually independent. Let p ,  and 
qe denote the reliability and unreliability of e E E 
respectively. That is 

Pe = P[Xe  = 11 7 

qe = P[Xe = 01 = 1 - p,. 

The reliability r (G;p)  of the network is defined 
as the probability of K being connected by opera- 

tional edges. Further, let p = (PI, . . . ,p,). Thus, 

.(%PI = E[’p(X)I = cp(xc> B[X = 4, (1) 
X E S  

where S is the set of all 2m possible states of E 
and 

1 if K is connected, 
‘p (x )  = { 0 otherwise. 

This is the standard formulation of the reliability of 
unreliable systems (networks), see for example [ 11. 
The function ‘p is called the structure function of 
the unreliable system. Note that the reliability of the 
network is completely determined by the individual 
edge reliabilities since we do not consider node 
failures. 

In the rest of this paper, when G and p are assumed 
to be understood, we write T instead of T(G; p). For 
highly reliable networks it is sometimes more use- 
ful to analyse, or estimate, the system unreliability 

T=l-.. 

Let Q be any estimate of V obtained through Monte 
Carlo simulations, an important measure of the 
“efficiency” of the simulation is its relative error 

- 

111. HYBRID SAMPLING 

In this section we briefly overview the concepts 
used in the Merge Process and the Tree Cut and 
Merge algorithm. An example is given to illustrate 
the possible slow convergence in the Tree Cut and 
Merge algorithm with some explanations. 

A. Merge Process 

The easiest way to estimate T (or P) is to use 
Crude Monte Carlo (CMC) simulation. However, 
for small V (which is typical in communication 
networks) a large sample size is needed to esti- 
mate P accurately. To combat the problem of poor 
performance of the Crude Monte Carlo sampling in 
highly reliable networks, Elperin et al. [7] proposed 
a scheme known as the Merge Process (MP) to 
estimate the reliability of highly reliable networks. 
The idea is to model the network starting with all 
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edges failed and each edge e has an exponential 
repair time with repair rate A(e) = -log(q,), 
then the network state becomes a Markov process 
starting from isolated nodes and terminates with K 
connected. For a given trajectory, the probability 
of the network having reached the final state at 
any time t can be calculated by convolutions. At 
time t = 1 the probability of edge e functioning 
is (1 - q,), hence the probability of the network 
having reached the final state at t = 1 is the 
reliability of the network. 

The complexity of a single sample in the Merge 
Process, including generating a trajectory and com- 
puting the convolution, is O(n2), see [7], as com- 
pared to almost O(n) in the Crude Monte Carlo. 
This complexity may be an acceptable price for the 
low relative error when F -+ 0. 

B. Tree Cut and Merge 

The Merge Process simulation alway starts with 
the isolated node state. Hui et al. generalized the 
process to start at any state y and proposed a hybrid 
sampling scheme called the Tree Cut and Merge 
algorithm [12]. The edge set was partitioned into 
a minimum spanning tree T and its complement 
T = E \ T. The scheme then samples a random 
state in T and continues with the Merge Process 
using only the edge set T. In its intrinsic form, the 
Tree Cut and Merge scheme will not produce much 
improvement in performance over the Standard 
Merge Process. However, a bounding technique 
was also introduced in [12] which can produce 
orders of magnitude improvement in certain classes 
of network such as heterogeneous networks. Since 
T connects the whole network (assuming 6 is 
connected), K will always be connected if no edges 
fail in T. Furthermore, if only one edge is failed 
in T, it will partition the subgraph o(V,T) into 
two components. The subgraph can be “merged” 
into two super-nodes and T can be simplified to 
some self loops plus a single edge connecting the 
two super-nodes. Therefore the probability of K 
being connected given one edge is failed in T 
can be calculated in O(n2) time. Combined with 
the case of no failure in T, this give bounds to 
the network reliability. The Tree Cut and Merge 
scheme only needs to sample states in T which 
have two or more failed edges, this is achieved 

- 

by sequentially sampling the edges in T, while 
modifying the edge failure probabilities on the fly 
to preserve the unbiased nature of the sample. 

The Tree Cut and Merge scheme works well with 
heterogeneous network (particularly if qe << 0.5) 
because it takes advantage of the fact that T has 
a higher chance of having no failed edges. For 
modern communication networks, the chance of T 
having two or more simultaneous failures is fairly 
small. As a result, the bounds produced by the 
algorithm are likely to be close to each other and so 
this reduces the sample variance of the Monte Carlo 
sampling. Another characteristic of the algorithm 
is that a smaller number of cuts in T leads to 
a smaller number of components, and hence the 
Merge Process will conclude more quickly. Again 
in most communication networks, the distribution 
of the number of cuts in T is heavily skewed to- 
wards a small number of link failures. Therefore the 
algorithm can take full advantage of such behavior. 

As successful as the Tree Cut and Merge scheme 
is, there is one weakness built into the algorithm. 
The first step of the sampling scheme, the “Tree 
Cut 2+” step, is essentially a Crude Monte Carlo 
sampling on a reduced population (those states 
having two or more failures in T). As long as there 
is a Crude Monte Carlo component in a scheme, 
there is a risk of poor performance in some extreme 
distributions. The following is one example of such 
a case. Consider the ALL-terminal reliability of 
a dodecahedron network with all links having a 
failure probability equal to lop6 (see Figure 1). 
Let XT be the random state of the edges in T and 

Pk = PIIXT( = k + 11 
be the probability of T having IC cuts, and let 

- 
Tk = P[Cp(X) = OllXTl = IC + 11 

be the system’s failure probability given there are 
IC cuts in T. Table I shows for the different number 
of cuts ( I C )  in T, its corresponding probabilities Pk, 
E and their products. Notice that the ratios PI : P2 
and P2 : P3 are about lo5 but all their contributions 
to the network failure probability (Pk x 6) are 
roughly the same. Given that the Tree Cut and 
Merge algorithm starts sampling from IC = 2, the 
events that T has three cuts are important but rare 
events. 
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TABLE I 
THE FIRST 6 CUT PROBABILITIES. 

8.k-23 

TABLE I1 
SLOW CONVERGENCE I N  AN EXTREME CASE. 

109 I 1.962e-17 4.53e-02 
True value I 2.000e-17 1 

Table I1 lists some typical simulation results of the 
Tree-Merge (2+) scheme with different numbers of 
samples taken. Notice that the estimated relative 
errors are quite low in lo6 and lo7 samples but 
their estimated F are in fact not close to the true 
value. With a million samples, one can only expect 
a few of them to have two or more cuts. Therefore 
it takes much more than a million samples to 
accurately estimate T and in this case, something 
like los - lo9 samples are required. 

IV. DIVIDE AND CONQUER 

In this section we present a simple method of 
mitigating the above weakness in the Tree Cut 
and Merge algorithm. It starts with modifying the 
Tree Cut 2+ step in the original scheme. Instead 
of randomly sampling states of T having two or 
more cuts, it samples states of T having exactly 
k cuts. By sampling T with 2 , .  . . , n - 1 cuts 
separately, one can improve the sample variance by 
other means such as the one described in Section 
V-A. Now we start with the detailed description of 
the Tree Cut step of the improved scheme. 

A. Tree Cutting 

If there are k failed links in T, they will partition 
the subgraph B(V,T) into exactly k + 1 compo- 
nents. Let X be the random state of all edges, and 
XT be the random state of the edges in T .  The 

network’s failure probability T can be expressed as: 

(2) 
n-1 

5: = P[(p(X) = 0, IXT( = k + 11 
k=O 
n-1 

= c P k G .  (3) 
k=O 

Since PO ... Pn-l can be calculated together in 
O(n2) time, the problem of estimating the network 
failure probability F is subdivided into n separate 
sub-problems of estimating the 6. For k 2 1, we 
can estimate G as follows: 

Tree k Cut: An outcome of the random state 
zT given there are exactly k cuts is generated 
by sequentially cutting the edges e E T as 
follows, see the Appendix for the proof. For 
the ith edge in T :  
If there are I edges failed before the i th edge, 
modify its failure probability to 

q; = qi ck-1-1,n-1-i 

ck-1,n-a 

where C is a triangular matrix of cut proba- 
bility with 

Ca,b = p[u cuts in the last b edges] 

0 U > b, 
n j > m - a  p j  a = 0, 

- II j>m-a qj a = b > O ,  -1 qm-b+lCa-l,b-l + pm-b+lCa,b-l otherwise. 

(4) 

This also gives a corresponding outcome 0 
of the initial state of the Merge Process. The 
complexity of this step is O(n - 1). 
Tree Merge: Let IL be the lattice of all proper 
partitions of G(V,E) as described in [12]. 
For each initial state of the Merge Process 0 
a@ the edge set T,  we define the sub-lattice 
IL: of L as the set of all successors of U that 
can be obtained by merging only the edges 
in T. Next we generate a random network 
state trajectory O, = ( Q , I T ~ , .  . . , 0 b )  in E,:, 
starting with state (TO = c until it becomes 
operational at state f f b .  Given an outcome 8, 
of e,, the probability of the network coming 
up after time t is given by the following 
convolution equation: 

g(0,; t )  = 1 - Conv(1-  exp[-X(ni) t]} 
O<i<b 

( 5 )  
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e E E ( a i )  

where E(ai) denotes the set of inter- 
component edges in oi. Please refer to [12] 
for the derivation of g(8,;t). At time 1, 
g(8,; 1) is the network failure probability 
given trajectory 8,. 

Let z = g(6,; 1) be the outcome of each simulation 
run. Then z is the outcome of the random variable 
2 = P[p(X) = OIIXTI = k + 11. 
If we take N independent samples 2(l), . . . , Z ( N )  
from 2, then 

N - 1 6 = - Z ( i )  
N i=l 

is an unbiased estimator of E. 

B. Reliability Bounds 

Since 6 is connected and T connects 6,  therefore 
ro = 0 and hence - 

n-1 

P = C P i F i  
i=l 

and 
0 5 P 5 1 - Po. 

There are only n - 1 edges in T and therefore n - 
1 single cut states; as a consequence PI can be 
calculated in O(n) time. For each such state there 
are only two components and therefore it takes at 
most one state jump to bring the network up. PI- 
can easily be evaluated without convolution and the 
complexity is O(n2). Combining F i  with Fij, an 
improved bound, 

P1Ti 5 T 5 P l c  + ( 1  - Po - PI) , 
can be calculated in time O(n2). 

In fact, it is possible to further compress the 
sample variance by evaluating E,.  . . ,% and es- 
timating only the Tlc+l,. . . ,=. Since there are 
Bin(n - 1,k) ways to make a k-cut to the tree 
which results in a k + 1 component network, 

it takes 0 ( in-k)(i-k-l) + 2kk2 time to per- 
form such a k-cut and exhaust all the associ- 
ated states. Therefore 6 can be com uted in 
0 (Bin(n - 1, I C )  ( ( n - k ) ( ; - k - l )  +zkk2)1  time. 
Then the reliability bounds are 

) 

k k n-1 

i= 1 i=l  i=k+l  

V. VARIANCE REDUCTION 

Since the problem of estimating 5: has been sub- 
divided into estimating Fj, . . . ,=, we have the 
flexibility of allocating the number of samples 
to each subproblem. In this section we discuss 
techniques to harness this flexibility in order to 
reduce the sample variance of the 5: estimate. Let 
Ni be the number of samples taken to estimate 5, 
then N = C N ~  

i 

is the total number of samples taken to estimate F. 
Alternatively, let w be the allocation vector where 

Ni wi = - 
N 

describes the proportion of samples used in esti- 
mating 5. The vector w can also be interpreted as 
a discrete probability distribution. 

A. Importance Sampling 

The sample variance of the network failure proba- 
bility estimate is given by 

v = var(F) 

= - E -  1 P?Va 

N wi 

where vi is the variance of 5 using the Tree Cut and 
Merge sampling. Then the following optimization 
program will minimize the sample variance of F. 

P?Va 
m i n x  - 

W W i  

subject to W i  2 0, wi = 1 
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The solution of the Program (6) is called the 
Importance Sampling density and is given by 

(7) 

Unfortunately, implementation of the Importance 
Sampling density w* as per Equation (7) is prob- 
lematic. The main difficulty lies in the prerequi- 
site of the unknown parameters vi. The estimated 
sample variance is an important indicator of the 
accuracy of an estimate, and so it is useful to 
estimate the variances vi in 2rder to calculate 
the estimated sample variance V. Fortunately, the 
simulation procedures can easily be modified to 
estimate vi as well as E. An adaptive pilot sim- 
ulation can be used to find the initial estimate of 
the parameters vi, then the estimated Importance 
Sampling density can be constructed by 

where ,?z is the estimate of vi. The density ŵ . is 
dynamically updated during the main simulations. 
The scheme can be implemented as follows: 

As the ?tal number of samples N -+ 00, ŵ . -+ 

w* and T + T. However, the rate_of convergence is 
sensitive to the initial value of w*. In the extreme 
case where the initial estimate P?G is near zero but 
the true value of Pfvi is not, it may result in an 
inaccurate estimate o f f .  To avoid such a problem, 
one can use the estimated relative error (rTi) as 
a guide to make sure the initial G are reasonably 
close to vi. The following adaptive pilot simulation 
is proposed to constrain the rZi to small values: 

Pilot Simulation: For each i where E is to be 
estimated: 

1) Take an additional batch of n (say 100) 

2) Calculate the estimated relative error of 6, 
simulation to estimate E and vi. 

3) Repeat from step 1 if r z  > p, where p is 
a constant. A value between 0.1 and 0.3 is 
usually sufficient for p. 

VI. NUMERICAL EXPERIMENTS 
Importance Sampling Scheme: 

Initialization 
Run the adaptive pilot simulation (see below) 
to obtain the initial estimates of and vi. 
Then initialize the Importance Sampling den- 
sity using Equation (8). 
Sampling 
According to the probability density 2, take 
an additional batch of 

Ni+ = [N+?l 

samples to refine the estimates 6 and 6, 
where N +  is the batch constant for the min- 
imum number of samples in each run. 
Update 
Update w* with the new estimates ,?z. Then 
repeat step 2 until the total number of sam- 
ples N reaches the predefined value or the 
estimated sample variance 

drops below the predefined level. 

(9) 

In this section, different variants of the Tree Cut and 
Merge algorithm are compared with the Standard 
Merge Process. The Relative llme Variance product 
(RTV) is used as a metric to compare different 
algorithms. It is defined as the simulation time 
(in seconds) multiplied by the (estimated) squared 
relative error. Since for a large number of iterations 
N ,  the simulation time is proportional to N and 
the relative error is inversely proportional to a, 
the RTV is a number that depends on the network 
and the performance of the algorithm being studied 
rather than on N .  The smaller the RTV value, the 
more efficient is the simulation algorithm. 

An exact algorithm using exhaustive search to 
calculate in Equation (3) is also implemented 
to confirm that the simulations produce accurate 
estimates. A dodecahedron network (Figure 1) with 
different link reliabilities is used to test the different 
schemes. In each experiment, all the Monte Carlo 
algorithms were run for lo6 iterations and the 
parameter p in the pilot runs was set to 0.1. Table 
I11 lists the meaning of the labels used in the 
experimental results. 
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Fig. 1. Dodecahedron network & its Minimum Spanning Tree 

9 

TABLE I11 
DESCRIPTIONS OF DIFFERENT LABELS USED. 

Label 
MP 
TM (2+) 

TM (IS) 

t 
Q 
r 
r^e 
RTV 
bounds 

- 

Explanation 
Standard Merge Process algorithm 
Tree Cut & Merge algorithm with two or more 
cuts in each sample 
Tree Cut & Merge algorithm with Importance 
Sampling 
Simulation time for lo6 samples in sec 
Estimated network failure probability 
The true network failure probability 
Estimated relative error of Q 
Relative Time Variance product 
Bounds on the network unreliability calculated 
bv the algorithm 

Experiment 1: ALL-terminal reliability of a het- 
erogeneous unreliable network: In the first ex- 
periment, there are two groups of links: the first 
group is the minimum spanning tree (resembling a 
backbone network), and the second group consists 
of the remaining links with slightly lower reliability 
(resembling wireless backup links). In particular, 
the backbone links have failure probabilities of 
O.l%, and the backup links have failure proba- 
bilities of 1%. The ALL-terminal network failure 
probability is to be estimated and the results are 
listed in Table IV. The best performing algorithm 
in this experiment is the Tree-Merge IS scheme. 
It shows that the Tree-Merge IS scheme is able to 
further reduce the sample variance compared to the 
Tree-Merge (2+) scheme. 

Experiment 2: TWO-terminal reliability of a het- 
erogeneous unreliable network: The second ex- 
periment uses the same network as in the first 
experiment. This time we are estimating the TWO- 
terminal network failure probability (the two ter- 
minal nodes are marked by thick circles in Figure 
1). The results are listed in Table V and both 
Tree-Merge schemes perform substantially better 
than that of the Standard Merge scheme. The Tree- 

TABLE IV 
ALL-TERMINAL RELIABILITY OF A HETEROGENEOUS 

UNRELIABLE NETWORK. 

1 Scheme 11 MP I TM (2+) I TM (IS) I 

TABLE V 
TWO-TERMINAL RELIABILITY OF A HETEROGENEOUS 

UNRELIABLE NETWORK. 

1 Scheme 11 MP I TM (2+) I TM (IS) I 

Merge (2+) scheme performs slightly better but the 
differences are not significant. 

Experiment 3: ALL-terminal reliability of a het- 
erogeneous reliable network: The third experiment 
is the same as the first experiment except the 
backbone network is much more reliable, the link 
failure probability is 10W6 which is more realistic 
in shielded cable networks. The results are listed 
in Table VI and it has the same pattern as in 
Experiment 2, that is both Tree-Merge schemes 
have very similar performance. 

Experiment 4: TWO-terminal reliability of a homo- 
geneous reliable network: In the fourth experiment, 
the network is homogeneous and reliable. Each link 
has the same failure probability of and the 
TWO-terminal network failure probability is to be 
estimated. The results are listed in Table VII. In 

TABLE VI 
ALL-TERMINAL RELIABILITY OF A HETEROGENEOUS 

RELIABLE NETWORK. 

I Scheme )I MP I TM (2+) I TM (IS) I 
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TABLE VI1 
TWO-TERMINAL RELIABILITY OF A HOMOGENEOUS 

RELIABLE NETWORK. 

Scheme MP TM (2+) TM (IS) 
t 752 43 66 
Q 1.984e-18 2.982e-24 1.997e-18 

I hounds II n/a I 11.000 

TABLE VI11 
IMPROVED PERFORMANCEBY EMPLOYING MORE 

EXHAUSTIVE SEARCH. 

[ Scheme I TM (IS) 4+ 

2.OOOe-18 

RTV 2.99e-12 

this experiment, the best performing scheme is the 
Standard Merge. Notice that despite the fact that 
the RTV value of the Tree-Merge (2+) scheme is 
the lowest, its estimate has not converged to the 
true value yet. It shows that in this network, the 
Crude Monte-Carlo component in the Tree-Merge 
(2+) scheme is taking its toll. It would take much 
more than lo6 samples for this scheme to produce 
an accurate estimate for this network. On the other 
hand, the variance reduction schemes performed 
reasonably well. 

The Tree-Merge IS scheme quickly calculates the 
reliability bounds and fully utilises their associated 
knowledge. Furthermore, it allows us to easily 
choose where to stop exhaustive search, hence it 
is possible to further compress the sample variance 
by spending more time on the search. For instance, 
if we choose to use exhaustive search for up to 
k = 3, it produces exceptional performance as 
listed in the Table VIII. However, such a tactic may 
not work in large networks as the time needed for 
the exhaustive search grows quickly with IC. 

Conclusions of the experiments: In heterogeneous 
networks where the original Tree Cut and Merge 
algorithm is good, the variance reduction schemes 
introduced in this paper have similar performance 
to the original scheme. In some cases the overhead 
slightly slows down the simulation without reduc- 

ing the variance significantly while in another case 
the variance reduction overcame the speed over- 
head. In homogeneous networks where the Tree- 
Merge (2+) scheme does not perform as well as 
the standard Merge Process, the variance reduction 
schemes improve the performance to a comparable 
level (further experiments are not shown in this 
paper). If one is willing to spend more time on 
exhaustive search in homogeneous networks, the 
variance reduction schemes can significantly out- 
perform the standard Merge Process, as in Ex- 
periment 4. The most important contribution of 
the variance reduction schemes is that they vastly 
improve the robustness of the Tree Cut and Merge 
algorithm. In some harsh cases, such as the homo- 
geneous reliable networks in Example 4, the Tree- 
Merge (2+) scheme may take billions of samples to 
converge whereas the variance reduction schemes 
bring it down to around a hundred thousand. 

VII. CONCLUSIONS 

The Tree Cut and Merge algorithm is a hybrid 
sampling technique developed to speed up sim- 
ulations by taking advantage of the topological 
knowledge in heterogeneous networks. The original 
Tree-Merge (2+) scheme works as designed and 
produces reliability bounds in a very short time. 
However, the scheme can have problems in some 
difficult cases where it can take billions of samples 
to converge. The reason for the slow convergence 
is due to the Crude Monte Carlo component in 
the Tree-Cut step of the scheme. In an effort to 
reduce the sample variance, this paper introduced 
the Importance Sampling technique to mitigate this 
weakness in the Tree-Merge (2+) scheme. The 
resultant Tree-Merge IS scheme successfully im- 
proves the Tree-Merge (2+) scheme in hard cases 
without impeding the performance in other cases. 
The 

0 

b 

0 

key benefits of the new scheme are: 

It improves the robustness of the Tree Cut and 
Merge algorithms and provides comparable 
performance to the standard Merge Process in 
homogeneous networks. 
It keeps the speed benefit of the Tree Cut and 
Merge algorithms in heterogeneous networks. 
By dividing f into F , . .  . ,=, tighter 
bounds are readily available to the new scheme 
if higher levels of exhaustive search are used. 
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The Tree-Merge IS scheme requires a pilot sim- 
ulation to obtain the initial allocation vector, the 
information learned in this stage may be further 
utilized. One possible application is to determine 
whether the exhaustive search should extend to 
higher levels. For example, if the estimated number 
of samples needed to estimate is comparable to 
the state count for exhaustive search, one might 
want to use exhaustive search instead. 

REFERENCES 

R. Barlow and F. Proschan. Statistical Theory of Reliability 
and Life Testing. Holt, Rinehart & Wilson, 1975. 
R.E. Barlow and A. Marshall. Bounds for distributions 
with monotone hazard rate, I and 11. Ann. Maths. Statist., 
35:1234-1274, 1964. 
Yu Burtin and B. Pittle. Asymptotic estimates of the 
reliability of a complex system. Engrg. Cybem., 10(3):445 
- 451, 1972. 
C. Colboum. The combinatorics of Network Reliability. 
Oxford University Press, 1987. 
C. Colboum and D. Harms. Evaluating performability: 
Most probable states and bounds. Telecommunication 
Systems, 2:275-300, 1994. 
M.C. Easton and C.K. Wong. Sequential destruction 
method for Monte Carlo evaluation of system reliability. 
IEEE Transactions on Reliability, R-29:27-32, 1980. 
T. Elperin, I Gertsbakh, and M. Lomonosov. Estimation 
of network reliability using graph evolution models. IEEE 
Transactions on Reliability, 40(5):572-581, DE 1991. 
T. Elperin, I Gertsbakh, and M. Lomonosov. An evolution 
model for Monte Carlo estimation of equilibrium network 
renewal parameters. Probability in the Engineering and 
Informational Sciences, 6~457-469, 1992. 
J.D Esary, E Proschan, and D.W. Walkup. Association of 
random variables, with applications. Ann. math. Statist., 
38:1466-1474, 1967. 
G. Fishman. A Monte Carlo sampling plan for estimating 
network reliability. Operations Research, 34(4):581-594, 
Jul-Aug 1986. 
I Gertsbakh. Reliubiliw theory with Application to Pre- 
ventive maintenance. Springer, 2000. 
K-P. Hui, N. Bean, M. Kraetzl, and D. Kroese. The tree cut 
and merge algorithm for estimation of network reliability. 
Probability in the Engineering and Informational Sciences, 
17(1):24-45, 2003. 
K-P. Hui, N. Bean, M. Kraetzl, and D. Kroese. The 
cross-entropy method for network reliability estimation. 
To appear in the Annals of Operations Research, 2004. 
H. Kumamoto, K. Tanaka, K. Inoue, and E. J. Henley. Dag- 
ger sampling Monte Carlo for system unavailability evalu- 
ation. IEEE Transactions on Reliability, R-29(2):376-380, 
1980. 
M. Lomonosov. On Monte Carlo estimates in network re- 
liability. Probability in the Engineering and Informational 
Sciences, 8:245-264, 1994. 
J .  Provan and M. Ball. The comoplexity of counting cuts 
and of computing the probability that a graph is connected. 
SIAM Journal of computing, 12:771-787, 1982. 

APPENDIX 

Consider a graph with edge set E = { e l , .  . . , e,} 
where edge ei has a failure probability of qi (or a 
functioning probability of pi = 1 - qi). Let Yi be 
the binary random variable associated with edge ei .  
In particular, { y Z  = 1) is the event that the edge is 
failed, and { y Z  = 0 )  is the event that the edge is 
operational. 

We want to unbiasedly sample the network state 
given there are exactly k failed links, that is, 
CY, = k. This can be achieved through the se- 
quential sampling technique, sampling edge states 
one by one and modifying the failure probability 
according to the states of previous edges. 

Consider the i th edge in E, if there are 1 edges 
failed before the i th edge, the probability of ei 
having failed given that exactly k 2 1 edges have 
failed in E is 

1 
r I 1 

r 1 

r 1 

Since y Z ,  y3 are independent if i # j ,  therefore 
r 1 

y j = k - l - l  J 
r 1 

q: = 

- - qi ck-1-1,m-i 

Ck-l,m-i+l ’ 
where C is the cut probabilities matrix defined in 
Equation (4). 
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