
Spatial Process Generation

Dirk P. Kroese∗ Zdravko I. Botev†

1 Introduction

Spatial processes are mathematical models for spatial data; that is, spatially ar-
ranged measurements and patterns. The collection and analysis of such data
is of interest to many scientific and engineering disciplines, including the earth
sciences, materials design, urban planning, and astronomy. Examples of spatial
data are geo-statistical measurements, such as groundwater contaminant concen-
trations, temperature reports from different cities, maps of the locations of mete-
orite impacts or geological faults, and satellite images or demographic maps. The
availability of fast computers and advances in Monte Carlo simulation methods
have greatly enhanced the understanding of spatial processes. The aim of this
chapter is to give an overview of the main types of spatial processes, and show
how to generate them using a computer.

From a mathematical point of view, a spatial process is a collection of random
variables {Xt, t ∈ T } where the index set T is some subset of the d-dimensional
Euclidean space R

d. Thus, Xt is a random quantity associated with a spacial
position t rather than time. The set of possible values of Xt is called the state
space of the spatial process. Thus, spatial processes can be classified into four
types, based on whether the index set and state space are continuous or discrete.
An example of a spatial process with a discrete index set and a discrete state
space is the Ising model in statistical mechanics, where sites arranged on a grid
are assigned either a positive or negative “spin”; see, for example, [33]. Image
analysis, where a discrete number of pixels is assigned a continuous gray scale,
provides an example of a process with a discrete index set and a continuous state
space. A random configuration of points in R

d can be viewed as an example of
a spatial process with a continuous index sets and discrete state space {0, 1}. If,
in addition, continuous measurements are recorded at these points (e.g., rainfall
data), one obtains a process in which both the index set and the state space are
continuous.

Spatial processes can also be classified according to their distributional prop-
erties. For example, if the random variables of a spatial process jointly have a

∗School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Aus-
tralia; http://www.maths.uq.edu.au/~kroese/

†School of Mathematics and Statistics, The University of New South Wales, Sydney 2052,
Australia; http://web.maths.unsw.edu.au/~zdravkobotev/

1

multivariate normal distribution, the process is said to be Gaussian. Another
important property is the Markov property, which deals with the local condi-
tional independence of the random variables in the spatial process. A prominent
class of spatial processes is that of the point processes, which are character-
ized by the random positions of points in space. The most important example
is the Poisson process, whose foremost property is that the (random) numbers
of points in nonoverlapping sets are independent of each other. Lévy fields are
spatial processes that generalize this independence property.

The rest of this chapter is organized as follows. We discuss in Section 2 the
generation of spatial processes that are both Gaussian and Markov. In Section 3
we introduce various spatial point processes, including the Poisson, compound
Poisson, cluster, and Cox processes, and explain how to simulate these. Section 4
looks at ways of generating spatial processes based on theWiener process. Finally,
Section 5 deals with the generation of Lévy processes and fields.

2 Gaussian Markov Random Fields

A spatial stochastic process on R
2 or R3 is often called a random field. Figure 1

depicts realizations of three different types of random fields that are characterized
by Gaussian and Markovian properties, which are discussed below.

Figure 1: Illustrations of zero-mean Gaussian random fields. Left: Moving av-
erage spatial process. Middle: Stationary Gaussian random field on the torus.
Right: Gaussian Markov random field.

2.1 Gaussian Property

A stochastic process {X̃t, t ∈ T } is said to beGaussian if all its finite-dimensional
distributions are Gaussian (normal). That is, if for any choice of n and t1, . . . , tn ∈
T , we have

X
def
= (X1, . . . , Xn)

⊤ def
= (X̃t1, . . . , X̃tn)

⊤ ∼ N(µ,Σ) (1)

for some expectation vector µ and covariance matrix Σ. Hence, any linear
combination

∑n
i=1 biX̃ti has a normal distribution. A Gaussian process is de-

2

termined completely by its expectation function µ̃t = EX̃t and covariance
function Σ̃s,t = Cov(X̃s, X̃t). To generate a Gaussian process with expectation

function µ̃t and covariance function Σ̃s,t at positions t1, . . . , tn, one can sample
the multivariate normal random vector in (1) via the following algorithm.

Algorithm 2.1 (Gaussian Process Generator)

1. Construct the mean vector µ = (µ1, . . . , µn)
⊤ and covariance matrix Σ =

(Σij) by setting µi = µ̃ti, i = 1, . . . , n and Σij = Σ̃ti,tj , i, j = 1, . . . , n.

2. Find a square root A of Σ, so that Σ = AA⊤.

3. Generate Z1, . . . , Zn
iid∼ N(0, 1). Let Z = (Z1, . . . , Zn)

⊤.

4. Output X = µ+ AZ.

Using Cholesky’s square-root method, it is always possible to find a real-valued
lower triangular matrix A such that Σ = AA⊤. Sometimes it is easier to work
with a decomposition of the form Σ = BB∗, where B = B1 + iB2 is a complex
matrix with conjugate transpose B∗ = B⊤

1 − iB⊤
2 . Let Z = Z1 + iZ2, where Z1

and Z2 are independent standard normal random vectors, as in Step 3 above.
Then, the random vector X = ℜ(BZ) = B1Z1 − B2Z2 has covariance matrix Σ.

A Gaussian vector X ∼ N(µ,Σ) can also be simulated using its precision

matrix Λ = Σ−1. Let Z = D⊤Y, where Z
iid∼ N(0, 1). If DD⊤ is the (lower)

Cholesky factorization of Λ, then Y is a zero-mean multivariate normal vector
with covariance matrix

EYY⊤ = (D−1)⊤EZZ⊤D−1 = (DD⊤)−1 = Λ−1 = Σ .

The following algorithm describes how a Gaussian process can be generated using
a precision matrix.

Algorithm 2.2 (Gaussian Process Generator Using a Precision Matrix)

1. Derive the Cholesky decomposition Λ = DD⊤ of the precision matrix.

2. Generate Z1, . . . , Zn
iid∼ N(0, 1). Let Z = (Z1, . . . , Zn)

⊤.

3. Solve Y from Z = D⊤Y, using forward substitution.

4. Output X = µ+Y.

3

The Cholesky decomposition of a general n×n covariance or precision matrix
takes O(n3) floating point operations. The generation of large-dimensional Gaus-
sian vectors becomes very time-consuming for large n, unless some extra struc-
ture is introduced. In some cases the Cholesky decomposition can be altogether
avoided by utilizing the fact that any Gaussian vector can be written as an affine

transformation X = µ+ AZ of a “white noise” vector Z
iid∼ N(0, 1); as in Step 4

of Algorithm 2.1. An example where such a transformation can be carried out
directly is the following moving average Gaussian process X = {Xt, t ∈ T },
where T is a two-dimensional grid of equally-spaced points. Here each Xt is
equal to the average of all white noise terms Zs with s lying in a disc of radius r
around t. That is,

Xt =
1

Nr

∑

s : ‖t−s‖6r

Zs ,

where Nr is the number of grid points in the disc. Such spatial processes have
been used to describe rough energy surfaces for charge transport [5, 18]. The
following MATLAB program produces a realization of this process on a 200× 200
grid, using a radius r = 6. A typical outcome is depicted in the left pane of
Figure 1.

n = 300;

r = 6; % radius (maximal 49)

noise = randn(n);

[x,y]=meshgrid(-r:r,-r:r);

mask=((x.^2+y.^2)<=r^2); %(2*r+1)x(2*r+1) bit mask

x = zeros(n,n);

nmin = 50; nmax = 250;

for i=nmin:nmax

for j=nmin:nmax

A = noise((i-r):(i+r), (j-r):(j+r));

x(i,j) = sum(sum(A.*mask));

end

end

Nr = sum(sum(mask)); x = x(nmin:nmax, nmin:nmax)/Nr;

imagesc(x); colormap(gray)

2.2 Generating Stationary Processes via Circulant em-

bedding

Another approach to efficiently generate Gaussian spatial processes is to exploit
the structural properties of stationary Gaussian processes. A Gaussian process

4

{X̃t, t ∈ R
d} is said to be stationary if the expectation function, EX̃t, is constant

and the covariance function, Cov(X̃s, X̃t), is invariant under translations; that is

Cov(X̃s+u, X̃t+u) = Cov(X̃s, X̃t) .
An illustrative example is the generation of a stationary Gaussian on the

unit torus; that is, the unit square [0, 1] × [0, 1] in which points on opposite
sides are identified with each other. In particular, we wish to generate a zero-
mean Gaussian random process {X̃t} on each of the grid points {(i, j)/n, i =
0, . . . , n− 1, j = 0, . . . , n− 1} corresponding to a covariance function of the form

Cov(X̃s, X̃t) = exp{−c ‖s− t‖αT}, (2)

where ‖s− t‖T = ‖(s1− t1, s2− t2)‖T def
=

√∑2
k=1(min{|sk − tk|, 1− |sk − tk|})2 is

the Euclidean distance on the torus. Notice that this renders the process not only
stationary but also isotropic (that is, the distribution remains the same under
rotations). We can arrange the grid points in the order (0, 0), (0, 1/n), . . . , (0, 1−
1/n), (1/n, 0), . . . , (1− 1/n, 1− 1/n). The values of the Gaussian process can be
accordingly gathered in an n2 × 1 vector X or, alternatively an n× n matrix X.
Let Σ be the n2 × n2 covariance matrix of X. The key to efficient generation of
X is that Σ is a symmetric block-circulant matrix with circulant blocks. That is,
Σ has the form

Σ =




C1 C2 C3 . . . Cn

Cn C1 C2 . . . Cn−1

. . .
C2 C3 . . . Cn C1


 ,

where each Ci is a circulant matrix circ(ci1, . . . , cin). The matrix Σ is thus com-
pletely specified by its first row, which we gather in an n × n matrix G. The
eigenstructure of block-circulant matrices with circulant blocks is well known;
see, for example, [4]. Specifically, Σ is of the form

Σ = P ∗diag(γ)P, (3)

where P ∗ denotes the complex conjugate transpose of P , and P is the Kronecker
product of two discrete Fourier transform matrices; that is, P = F ⊗ F , where
Fjk = exp(−2πijk/n)/

√
n, j, k = 0, 1, . . . , n − 1. The vector of eigenvalues γ =

(γ1, . . . , γn2)⊤ ordered as an n × n matrix Γ satisfies Γ = nF ∗GF . Since Σ is a
covariance matrix, the component-wise square root

√
Γ is well-defined and real-

valued. The matrix B = P ∗diag(
√
γ) is a complex square root of Σ, so that X

can be generated by drawing Z = Z1 + iZ2, where Z1 and Z2 are independent
standard normal random vectors, and returning the real part of BZ. It will be
convenient to gather Z into an n× n matrix Z.

The evaluation of both Γ and X can be done efficiently by using the (appro-
priately scaled) two-dimensional Fast Fourier Transform (FFT2). In particular,

5

Γ is the FFT2 of the matrix G and X is the real part of the FFT2 of the ma-
trix

√
Γ ⊙ Z, where ⊙ denotes component-wise multiplication. The following

MATLAB program generates the outcome of a stationary Gaussian random field
on a 256 × 256 grid, for a covariance function of the form (2), with c = 8 and
α = 1. The realization is shown in the middle pane of Figure 1.

n = 2^8;

t1 = [0:1/n:1-1/n]; t2 = t1;

for i=1:n % first row of cov. matrix, arranged in a matrix

for j=1:n

G(i,j)=exp(-8*sqrt(min(abs(t1(1)-t1(i)), ...

1-abs(t1(1)-t1(i)))^2 + min(abs(t2(1)-t2(j)), ...

1-abs(t2(1)-t2(j)))^2));

end;

end;

Gamma = fft2(G); % the eigenvalue matrix n*fft2(G/n)

Z = randn(n,n) + sqrt(-1)*randn(n,n);

X = real(fft2(sqrt(Gamma).*Z/n));

imagesc(X); colormap(gray)

Dietrich and Newsam [10] and Wood and Chan [7, 34] discuss the generation
of general stationary Gaussian processes in R

d with covariance function

Cov(X̃s, X̃t) = ̺(s− t) .

Recall that if ̺(s− t) = ̺(‖s− t‖), then the random field is not only stationary,
but isotropic.

Dietrich and Newsam propose the method of circulant embedding, which
allows the efficient generation of a stationary Gaussian field via the FFT. The
idea is to embed the covariance matrix into a block circulant matrix with each
block being circulant itself (as in the last example), and then construct the ma-
trix square root of the block circulant matrix using FFT techniques. The FFT
permits the fast generation of the Gaussian field with this block circulant covari-
ance matrix. Finally, the marginal distribution of appropriate sub-blocks of this
Gaussian field have the desired covariance structure.

Here we consider the two-dimensional case. The aim is to generate a zero-
mean stationary Gaussian field over the n×m rectangular grid

G = {(i∆x, j∆y), i = 0, . . . , n− 1, j = 0, . . . , m− 1},

where ∆x and ∆y denote the corresponding horizontal and vertical spacing along
the grid. The algorithm can broadly be described as follows.

6

Step 1. Building and storing the covariance matrix. The grid points
can be arranged into a column vector of size nm to yield the m2n2 covariance
matrix Ωi,j = ̺(si − sj), i, j = 1, . . . , mn, where

sk
def
=

(
(k − 1) mod m,

⌊
k

m

⌋)
, k = 1, . . . , mn .

The matrix Ω has symmetric block-Toeplitz structure, where each block is a
Toeplitz (not necessarily symmetric) matrix. For example, the left panel of Fig-
ure 2 shows the block-Toeplitz covariance matrix with m = n = 3. Each 3 × 3
block is itself a Toeplitz matrix with entry values coded in color. For instance,
we have Ω2,4 = Ω3,5 = c.

Figure 2: Left panel: the symmetric block-Toeplitz covariance matrix Ω with
n = m = 3. Right panel: block-circulant matrix Σ of size ((2n−1)×(2m−1))2 =
25 × 25. The first three block rows of Ω are embedded in the upper left corners
of the first three block columns of the circulant matrix Σ.

Matrix Ω is thus uniquely characterized by its first block row (R1, . . . , Rn)
where each of the n blocks is an m × m Toeplitz matrix. The k-th m × m
Toeplitz matrix consists of the sub-block of Ω with entries

Ωi,j , i = 1, . . . , m, j = (km+ 1), . . . , (k + 1)m .

Notice that each block Rk is itself characterized by its first row and column.
(Each Toeplitz block Rk will be characterized by the first row only provided
the covariance function has the form ̺(s − t) = ̺(‖s‖, ‖t‖), in which case each
Rk is symmetric.) Thus, in general the covariance matrix can be completely
characterized by the entries of a pair of m×n and n×m matrices storing the first
columns and rows of all n Toeplitz blocks (R1, . . . , Rn). In typical applications,
the computation of these two matrices is the most time-consuming step.

7

Step 2. Embedding in block circulant matrix. Each Toeplitz matrix
Rk is embedded in the upper left corner of an 2m + 1 circulant matrix Ck. For
example, in the right panel of Figure 2 the embedded blocks R1, R2, R3 are shown
within bold rectangles. Finally, let Σ be the (2n− 1)(2m− 1)× (2n− 1)(2m− 1)
block circulant matrix with first block row given by (C1, . . . , Cn, C

⊤
n , . . . , C

⊤
2).

This gives the minimal embedding in the sense that there is no block circulant
matrix of smaller size that embeds Ω.

Step 3. Computing the square root of the block circulant matrix.
After the embedding we are essentially generating a Gaussian process on a torus
with covariance matrix Σ as in the last example. The block circulant matrix Σ
can be diagonalized as in (3) to yield Σ = P ∗diag(γ)P , where P is the (2n −
1)(2m−1)×(2n−1)(2m−1) two-dimensional discrete Fourier transform matrix.
The vector of eigenvalues γ is of length (2n − 1)(2m − 1) and is arranged in a
(2m − 1) × (2n − 1) matrix Γ so that the first column of Γ consists of the first
2m− 1 entries of γ, the second column of Γ consists of the next 2m− 1 entries
and so on. It follows that if G is an (2m−1)× (2n−1) matrix storing the entries
of the first block row of Σ, then Γ is the FFT2 of G. Assuming that γ > 0, we
obtain the square root factor B = P ∗diag(

√
γ), so that Σ = B∗B.

Step 4. Extracting the appropriate sub-block. Next, we compute the
FFT2 of the array

√
Γ⊙ Z, where the square root is applied component-wise to

Γ and Z is an (2m− 1)× (2n− 1) complex Gaussian matrix with entries Zj,k =

Uj,k + iVj,k, Uj,k, Vj,k
iid∼ N(0, 1) for all j and k. Finally, the first m× n sub-blocks

of the real and imaginary parts of FFT2(
√
Γ ⊙ Z) represent two independent

realization of a stationary Gaussian field with covariance Σ on the grid G. If
more realizations are required, we store the values

√
Γ and we repeat Step 4 only.

The complexity of the circulant embedding inherits the complexity of the FFT
approach, which is of order O(mn ln(m+ n)), and compares very favorably with
the standard Cholesky decomposition method of order O(m3n3).

As a numerical example (see [10]), Figure 3 shows a realization of a stationary
nonisotropic Gaussian field with m = 512, n = 384, ∆x = ∆y = 1, and covariance
function

̺(s− t) = ̺(h) =

(
1− h21

502
− h1h2

50× 15
− h22

152

)
exp

(
− h21
502

− h22
152

)
. (4)

The following MATLAB code implements the procedure described above with
covariance function (4).

n=384; m=512; % size of grid is m*n

% size of covariance matrix is m^2*n^2

tx=[0:n-1]; ty=[0:m-1]; % create grid for field

rho=@(x,y)((1-x^2/50^2-x*y/(15*50)-y^2/15^2)...

*exp(-(x^2/50^2+y^2/15^2)));

8

Figure 3: Realization of a stationary nonisotropic Gaussian field with covariance
function (4).

Rows=zeros(m,n); Cols=Rows;

for i=1:n

for j=1:m

Rows(j,i)=rho(tx(i)-tx(1),ty(j)-ty(1)); % rows of blocks

Cols(j,i)=rho(tx(1)-tx(i),ty(j)-ty(1)); % columns

end

end

% create the first row of the block circulant matrix

% with circulant blocks and store it as a matrix suitable for fft2

BlkCirc_row=[Rows, Cols(:,end:-1:2);

Cols(end:-1:2,:), Rows(end:-1:2,end:-1:2)];

% compute eigen-values

lam=real(fft2(BlkCirc_row))/(2*m-1)/(2*n-1);

if abs(min(lam(lam(:)<0)))>10^-15

error(’Could not find positive definite embedding!’)

else

lam(lam(:)<0)=0; lam=sqrt(lam);

end

% generate field with covariance given by block circulant matrix

F=fft2(lam.*complex(randn(2*m-1,2*n-1),randn(2*m-1,2*n-1)));

F=F(1:m,1:n); % extract sub-block with desired covariance

field1=real(F); field2=imag(F); % two independent fields

imagesc(tx,ty,field1), colormap bone

Extensions to three and more dimensions are possible, see [10]. For example,
in the three dimensional case the correlation matrix Ω will be symmetric block

9

Toeplitz matrix with each block satisfying the properties of a two dimensional
covariance matrix.

Throughout the discussion so far we have always assumed that the block
circulant matrix Σ is a covariance matrix itself. If this is the case, then we say that
we have a nonnegative definite embedding of Ω. A nonnegative definite embedding
ensures that the square root of γ is real. Generally, if the correlation between
points on the grid that are sufficiently far apart is zero, then a non-negative
embedding will exist, see [10]. A method that exploits this observation is the
intrinsic embedding method proposed by Stein [30] (see also [13]). Stein’s method
depends on the construction of a compactly supported covariance function that
yields to a nonnegative circulant embedding. The idea is to modify the original
covariance function so that it decays smoothly to zero. In more detail, suppose
we wish to simulate a process with covariance ̺ over the set {h : ‖h‖ 6 1,h > 0}.
To achieve this, we simulate a process with covariance function

ψ(h) =





c0 + c2‖h‖2 + ̺(h), ‖h‖ 6 1

φ(h), 1 6 ‖h‖ 6 R

0, ‖h‖ > R

, (5)

where the constants c0, c2, R > 1 and function φ are selected so that ψ is a
continuous (and as many times differentiable as possible), stationary and isotropic
covariance function on R

2. The process will have covariance structure of c0 +
c2‖h‖2 + ̺(h) in the disk {h : ‖h‖ 6 1,h > 0}, which can then be easily
transformed into a process with covariance ̺(h). We give an example of this
in Section 4.4, where we generate fractional Brownian surfaces via the intrinsic
embedding technique. Generally, the smoother the original covariance function,
the harder it is to embed via Stein’s method, because a covariance function that
is smoother close to the origin has to be even smoother elsewhere.

2.3 Markov Property

A Markov random field is a spatial stochastic process X = {Xt, t ∈ T } that
possesses a Markov property, in the sense that

(Xt |Xs, s ∈ T \ {t}) ∼ (Xt |Xs, s ∈ Nt),

where Nt is the set of “neighbors” of t. Thus, for each t ∈ T the conditional
distribution ofXt given all other values Xs is equal to the conditional distribution
of Xt given only the neighboring values.

Markov random fields are often defined via an undirected graph G = (V,E).
In such a graphical model the vertices of the graph correspond to the indices
t ∈ T of the random field, and the edges describe the dependencies between
the random variables. In particular, there is no edge between nodes s and t in

10

the graph if and only if Xs and Xt are conditionally independent, given all other
values {Xu,u 6= i, j}. In a Markov random field described by a graph G, the set
of neighbors Nt of t corresponds to the set of vertices that share an edge with t;
that is, those vertices that are adjacent to t. An example of a graphical model
for a 2-dimensional Markov random field is shown in Figure 4. In this case vertex
corner nodes have two neighbors and interior nodes have four neighbors.

Figure 4: A graphical model for 2D spatial process. Each vertex has at most four
neighbors.

Of particular importance are Markov random fields that are also Gaussian.
Suppose X is such a Gaussian Markov random field (GMRF), with corre-
sponding graphical model G = (V,E). We may think of X as a column vector of
n = |V | elements, or as a spatial arrangement of random variables (pixel values),
as in Figure 4. Without loss of generality we assume that EX = 0, and that the
index set T is identified with the vertex set V , whose elements are labeled as
1, 2, . . . , n. Because X is Gaussian, its pdf is given by

f(x) = (2π)−n/2
√
det(Λ) e−

1

2
x⊤Λx ,

where Λ = (λij) is the precision matrix. In particular, the conditional joint pdf
of Xi and Xj is

f(xi, xj | xk, k 6= i, j) ∝ exp

(
−1

2
(λiix

2
i + 2xi a + λijxixj + λjjx

2
j + 2xj b)

)
,

where a and b may depend on xk, k 6= i, j. This shows that Xi and Xj are con-
ditionally independent given {Xk, k 6= i, j}, if and only if λij = 0. Consequently,
(i, j) is an edge in the graphical model if and only if λij 6= 0. In typical applica-
tions (for example in image analysis) each vertex in the graphical model only has
a small number of adjacent vertices, as in Figure 4. In such cases the precision
matrix is thus sparse, and the Gaussian vector can be generated efficiently using,
for example, sparse Cholesky factorization [14].

As an illustrative example, consider the graphical model of Figure 4 on a
grid of n = m2 points: {1, . . . , m} × {1, . . . , m}. We can efficiently generate a

11

GMRF on this grid via Algorithm 2.2, provided the Cholesky decomposition can
be carried out efficiently. For this we can use for example the band Cholesky
method [14], which takes n(p2 + 3p) floating point operations, where p is the
bandwidth of the matrix; that is, p = maxi,j{|i− j| : λij = 0}. The right pane of
Figure 1 shows a realization of the GMRF on a 250× 250 grid, using parameters
λii = 2 for all i = 1, . . . , n and λij = −0.5 for all neighboring elements j ∈ Nj

of i = 1, . . . , n. The MATLAB code may be found in Section 5.1 of [19]. Further
details on such construction methods for GMRFs may be found, for example, in
the monograph by Rue and Held [28].

3 Point Processes

Point processes on R
d are spatial processes describing random configurations of

d-dimensional points. Spatially distributed point patterns occur frequently in
nature and in a wide variety of scientific disciplines such as spatial epidemiology,
material science, forestry, geography. The positions of accidents on a highway
during a fixed time period, and the times of earthquakes in Japan are examples
of one-dimensional spatial point processes. Two-dimensional examples include
the positions of cities on a map, the positions of farms with Mad Cow Disease in
the UK, and the positions of broken connections in a communications or energy
network. In three dimensions, we observe the positions of stars in the universe,
the positions of mineral deposits underground, or the times and positions of
earthquakes in Japan. Spatial processes provide excellent models for many of
these point patterns [2, 3, 9, 11]. Spatial processes also have an important role in
stochastic modeling of complex microstructures, for example, graphite electrodes
used in Lithium-ion batteries [31].

Mathematically, point processes can be described in three ways: (1) as ran-
dom sets of points, (2) as random-sized vectors of random positions, and (3) as
random counting measures. In this section we discuss some of the important
point processes and their generalizations, including Poisson processes, marked
point processes, and cluster processes.

3.1 Poisson Process

Poisson processes are used to model random configurations of points in space and
time. Let E be some subset of Rd and let E be the collection of (Borel) sets on E.
To any collection of random points {X1, . . . , XN} in E corresponds a random
counting measure X(A), A ∈ E defined by

X(A) =

N∑

i=1

I{Xi∈A}, A ∈ E , (6)

12

which counts the random number of points in A. We may identify the random
measure X defined in (6) with the random set {Xi, i = 1, . . . , N}, or with the
random vector (X1, . . . , XN). Note that the d-dimensional points xi, Xi etc. are
not written in boldface font here, in contrast to Section 2. The measure µ(A) =
EX(A), A ∈ E is called the mean measure of X. In most practical cases the
mean measure µ has a density λ, called the intensity; so that

µ(A) = EX(A) =

∫

A

λ(x) dx .

We will assume from now on that such an intensity function exists.
The most important point process which holds the key to the analysis of point

pattern data is the Poisson process. A random counting measure X is said to be
a Poisson random measure with mean measure µ if the following properties
hold:

1. For any set A ∈ E the random variable X(A) has a Poisson distribution
with mean µ(A). We write X(A) ∼ Poi(µ(A)).

2. For any disjoint sets A1, . . . , AN ∈ E , the random variablesX(A1), . . . ,X(AN)
are independent.

The Poisson process is said to be homogeneous if the intensity function is
constant. An important corollary of Properties 1 and 2 is:

3. Conditional upon X(E) = N , the points X1, . . . , XN are independent of
each other and have pdf g(x) = λ(x)/µ(E).

This result is the key to generating a Poisson random measure on R
d.

Algorithm 3.1 (Generating a Poisson Random Measure)

1. Generate a Poisson random variable N ∼ Poi(µ(E)).

2. Draw X1, . . . , XN
iid∼ g, where g(x) = λ(x)/µ(E), and return these as the

points of the Poisson random measure.

As a specific example, consider the generation of a 2-dimensional Poisson
process with intensity λ(x1, x2) = 300(x21 + x22) on the unit square E = [0, 1]2.
Since the pdf g(x1, x2) = λ(x)/µ(E) = 3(x21 + x22)/2 is bounded by 3, drawing
from g can be done simply via the acceptance–rejection method [27]. That is,
draw (X1, X2) uniformly on E and Z uniformly on [0, 3], and accept (X1, X2) if
g(X1, X2) 6 Z; otherwise repeat. This acceptance–rejection step is then repeated
N ∼ Poi(200) times. An alternative, but equivalent, method is to generate a
homogeneous Poisson process on E, with intensity λ∗ = 600, and to thin out the
points by accepting each point x with probability λ(x1, x2)/λ

∗. The following

13

MATLAB implements this thinning procedure. A typical realization is given in
Figure 5.

lambda = @(x) 300*(x(:,1).^2 + x(:,2).^2);

lamstar = 600;

N=poissrnd(lamstar); x = rand(N,2); % homogeneous PP

ind = find(rand(N,1) < lambda(x)/lamstar);

xa = x(ind,:); % thinned PP

plot(xa(:,1),xa(:,2))

0 1
0

1

Figure 5: A realization of a nonhomogeneous Poisson process with intensity
λ(x1, x2) = 300(x21 + x22) (contour lines shown) on the unit square.

3.2 Marked Point Processes

A natural way to extend the notion of a point process is to associate with each
point Xi ∈ R

d a mark Yi ∈ R
m, representing an attribute such as width, velocity,

weight etc. The collection {(Xi, Yi)} is called a marked point process. In a
marked point process with independent marking the marks are assumed to be
independent of each other and of the points, and distributed according to a fixed
mark distribution. The following gives a useful connection between marked point
processes and Poisson processes; see, for example, [9].

Theorem 3.1 If {(Xi, Yi)} is a Poisson process on R
d × R

m with intensity ζ ,
and K(x) =

∫
ζ(x, y) dy < ∞ for all x, then {Xi} is a Poisson process on R

d

with intensity K, and {(Xi, Yi)} is a marked Poisson process with mark density
ζ(x, ·)/K(x) on R

m.

A (spatial) marked Poisson process with independent marking is an important
example of a (spatial) Lévy process: a stochastic process with independent and
stationary increments (discussed in more detail in Section 5).

14

The generation of a marked Poisson process with independent marks is virtu-
ally identical to that of an ordinary (that is, non-marked) Poisson process. The
only difference is that for each point the mark has to be drawn from the mark
distribution. An example of a realization of a marked Poisson process is given in
Figure 6. Here the marks are uniformly distributed on [0,0.1], and the underlying
Poisson process is homogeneous with intensity 100.

0 1
0

1

Figure 6: A realization of a marked Poisson process with independent marking on
the unit square. The Poisson process has intensity 100. The marks are uniformly
distributed on [0,0.1] and correspond to the radii of the circles.

3.3 Cluster Process

In nature one often observes point patterns that display clustering. An example is
the spread of plants from a weed species where the plants are initially introduced
by birds at a number of geographically dispersed locations and the plants then
spread themselves locally.

Let C be a point process of “centers” and associate with each c ∈ C a point
process Xc, which may include c. The combined set of points X = ∪c∈CX

c

constitutes a cluster process. If C is a Poisson process, then X is called a
Poisson cluster process.

As a specific example, consider the following Hawkes process. Here, the
center process C is a Poisson process on R

d (or a subset thereof) with some
intensity function λ(·). The clusters are generated as follows. For each c ∈ C,
independently generate “first-generation offspring” according to a Poisson process
with intensity ̺(x− c), where ̺(·) is a positive function on R

d with integral less
than unity. Then, for each first-generation offspring c1 generate a Poisson process
with intensity ̺(x − c1), and so on. The collection of all generated points forms

15

the Hawkes process. The requirement that
∫
̺(y) dy < 1 simply means that the

expected number of offspring of each point is less than one.
Figure 7 displays a realization for R2 with the cluster centers forming a Poisson

process on the unit square with intensity λ = 30. The offspring intensity is here

̺(x1, x2) =
α

2πσ2
e−

1

2σ2 (x
2
1+x2

2), (x1, x2) ∈ R
2, (7)

with α = 0.9 and with σ = 0.02. This means that the number N of offspring for
a single generation from a parent at position (x1, x2) has a Poisson distribution
with parameter α. And given N = n, the offspring are iid distributed according
to a bivariate normal random vector with independent components with means
x1 and x2 and both variances σ2. In Figure 7 the cluster centers are indicated by
circles. Note that the process possibly has points outside the displayed box. The
MATLAB code is given below.

0 1
0

1

Figure 7: Realization of a two-dimensional Hawkes process with centers (encir-
cled) forming a Poisson process on [0, 1] × [0, 1] with intensity λ = 30. The
offspring intensity is given in (7).

lambda = 30; %intensity of initial points (centers)

mean_children = 0.9; %mean number of children of each point

X = zeros(10^5,2); %initialise the points

N = poissrnd(lambda); %number of centers

X(1:N,:) = rand(N,2); %generate the centers

total_so_far = N; %total number of points generated

next = 1;

while next < total_so_far

nextX = X(next,:); %select next point

16

N_children = poissrnd(mean_children); %number of children

NewX = repmat(nextX,N_children,1) + 0.02*randn(N_children,2);

X(total_so_far+(1:N_children),:) = NewX; %update point list

total_so_far = total_so_far+N_children;

next = next+1;

end

X=X(1:total_so_far,:); %cut off unused rows

plot(X(:,1),X(:,2),’.’)

3.4 Cox Process

Suppose we wish to model a point pattern of trees given that we know the soil
quality h(x1, x2) at each point (x1, x2). We could use a non-homogeneous Poisson
process with an intensity λ that is an increasing function of h; for example,
λ(x1, x2) = eα+βh(x1,x2) for some known α > 0 and β > 0. In practice, however,
the soil quality itself could be random, and be described via a random field.
Consequently, one could could try instead to model the point pattern as a Poisson
process with a random intensity function Λ. Such processes were introduced by
Cox as doubly stochastic Poisson processes and are now called Cox processes [8].

More precisely, we say that X is a Cox process driven by the random inten-
sity function Λ if conditional on Λ the point process X is Poisson with intensity
function λ. Simulation of a Cox process on a set T ⊂ R

d is thus a two-step
procedure.

Algorithm 3.2 (Simulation of a Cox Process)

1. Simulate a realization λ = {λ(x), x ∈ T } of the random intensity Λ.

2. Given Λ = λ, simulate X as an inhomogeneous Poisson process with inten-
sity λ.

Figure 8(a) shows a realization of a Cox process on the unit square T = [0, 1]×
[0, 1], with a random intensity whose realization is given in Figure 8(b). The
random intensity at position (x1, x2) is either 3000 or 0, depending on whether
the value of a random field on T is negative or not. The random field that we
used is the stationary Gaussian process on the torus described in Section 2.

17

0 1
0

1

(a)

0 1
0

1

(b)

Figure 8: Realization of a Cox process: (a) on a square generated by a the
random intensity function given in (b). The black points have intensity 3000 and
the white points have intensity 0.

Given an outcome of the random intensity, the Cox process is constructed by
generating a homogeneous Poisson process with rate 3000 on T and accepting
only those points for which the random intensity is non-zero. The value of the
intensity is taken to be constant within each square {(i + u)/n, (j + v)/n), 0 6

u, v 6 1}, i, j = 0, . . . , n − 1. The following MATLAB code is to be appended
to the code used for the stationary Gaussian process generation on the torus in
Section 2.

Lambda = ones(n,n).*(X < 0); %random intensity

%imagesc(Lambda); set(gca,’YDir’,’normal’)

Lambda = Lambda(:); %reshape as a column vector

N = poissrnd(3000);

P = rand(N,2); %generate homogenous PP

Pn = ceil(P*n); %PP scaled by factor n

K = (Pn(:,1)-1)*n + Pn(:,2); % indices of scaled PP

ind = find(Lambda(K)); %indices for which intensity is 1

Cox = P(ind,:); %realization of the Cox process

plot(Cox(:,1),Cox(:,2),’.’);

Neyman and Scott [25] applied the following Cox process to cosmology. Used
to model the positions of stars in the universe, it now bears the name Neyman–
Scott process. SupposeC is a homogeneous Poisson process in R

d with constant
intensity κ. Let the random intensity Λ be given by

Λ(x) = α
∑

c∈C

k(x− c)

for some α > 0 and some d-dimensional probability density function k. Such a

18

Cox process is also a Poisson cluster process. Note that in this case the cluster
centers are not part of the Cox process. Given a realization of the cluster center
process C, the cluster of points originating from c ∈ C form a non-homogeneous
Poisson process with intensity k(x− c), x ∈ R

d, independently of the other clus-
ters. Drawing such a cluster via Algorithm 3.1 simply means that (1) the number
of points Nc in the cluster has a Poi(α) distribution, and (2) these Nc points are
iid distributed according to pdf k(x− c).

A common choice for pdf k is k(x) ∝ I{‖x‖6r}, first proposed by Matérn [23].
The resulting process is called a Matérn process. Thus, for a Matérn process
each point in the cluster with center c is uniformly distributed within a ball
of radius r at c. If instead a N(c, σ2I) distribution is used, where I is the d-
dimensional identity matrix, then the process is known as a (modified) Thomas
process [24].

Figure 9 shows a realization of a Matérn process with parameters κ = 20,
α = 5 and r = 0.1 on [0, 1] × [0, 1]. Note that the cluster centers are assumed
to lie on the whole of R2. To show a genuine outcome of the process within the
window [0, 1]× [0, 1] it suffices to consider only the points that are generated from
centers lying in square [−r, 1 + r]× [−r, 1 + r].

0 1
0

1

Figure 9: A realization of a Matérn process with parameters κ = 20, α = 5, and
r = 0.1. The process extends beyond the shown window. The cluster centers
(the centers of the circles) are not part of the point pattern.

The following MATLAB program was used.

X = zeros(10^5,2); %initialise the points

kappa = 20; alpha = 5; r = 0.1; %parameters

meanpts=kappa*(1 + 2*r)^2;

N = poissrnd(meanpts); %number of cluster centers

C = rand(N,2)*(1+2*r) - r; ;%draw cluster centers

total_so_far = 0;

19

for c=1:N

NC = poissrnd(alpha); %number of points in cluster

k = 0;

while k < NC %draw uniformly in the n-ball via accept-reject

Y = 2*r*rand(1,2) - r; %candidate point

if norm(Y) < r

X(total_so_far+k+1,:) = C(c,:) + Y;

k = k+1;

end

end

total_so_far = total_so_far + NC;

end

X = X(1:total_so_far,:); %cut off unused rows

plot(X(:,1),X(:,2),’.’)

axis([0, 1,0, 1])

A versatile generalization the Neyman–Scott process is the Shot noise Cox
process [21], where the random intensity is of the form

Λ(x) =
∑

(cj ,γj)∈Z

γj k(cj, x) ,

and {(cj , γj)} are the points of an inhomogeneous Poisson process Z on R
d ×

R+ with intensity function ζ , and k is a kernel function; that is, k(c, ·) is a
probability density function (on R

d) for each c ∈ R
d. By Theorem 3.1, if there

exists a function K(c) : Rd → R+ such that

K(c) =

∫ ∞

0

ζ(c, γ) dγ <∞ ,

then C = {c : (c, γ) ∈ Z} is a Poisson process with intensity function K, and Z
is a marked Poisson process with mark density ζ(c, ·)/K(c). This decomposition
of the shot noise Cox process into a marked Poisson process suggests a method
for simulation.

Algorithm 3.3 (Simulation of a Shot-Noise Cox Process)

1. Draw the points C of an inhomogeneous Poisson process with intensity func-
tion K(c).

2. For each cj ∈ C, draw the corresponding mark γj from the density ζ(cj, ·)/K(cj).

3. For each cj ∈ C, draw Nj ∼ Poi(γj).

20

4. Draw for each cj ∈ C, Nj points from the kernel k(cj, x). The collection
of all points drawn at this step constitutes a realization from the shot-noise
Cox process.

A special case of the shot-noise Cox process, and one that appears frequently
in the literature, is the shot-noise G Cox process. Here the intensity function
ζ is of the form

ζ(c, γ) = βγα−1 exp(−λγ)/Γ(1 + α) ,

where β > 0, α > 0, λ > 0, and

K(c) =

∫ ∞

0

ζ(c, γ) dγ = βλ−α/α <∞ .

Hence, Z is a marked Poisson process, where the intensity function of the centers
is K(c) = βλ−α/α and the marks are independently and identically Gamma(α, λ)
distributed; see [24] and [6] for more information.

3.5 Point Process Densities

Let X be a point process with mean measure µ on a bounded region E ⊂ R
d. We

assume that the expected total number of points µ(E) is finite. We may view X
as a random object taking values in the space X = ∪∞

n=0 ({n} ×En), where En

is the Cartesian product of n copies of E. Note that in this representation the
coordinates of X are ordered: X = (N, (X1, . . . , XN)). We identify each vector
(N,X) with X. If, for every set {n} × A with A a measurable set in En we can
write

P(X ∈ {n} ×A) =

∫

A

f(x1, . . . , xn) dx1 . . .dxn ,

then f(x) is the probability density function or simply density of X on X (with
respect to the Lebesgue measure on X). Using the identification (n,x) = x,
we can view f(x) as the joint density of the random variable N and the N -
dimensional vector X, where each component of X takes values in E. Using a
Bayesian notation convention where all pdfs and conditional pdfs are indicated
by the same symbol f , we have f(x) = f(n,x) = f(n)f(x |n), where f(n) is
the (discrete) pdf of the random number of points N , and f(x |n) is the joint
pdf of X1, . . . , Xn given N = n. As an example, for the Poisson process on E
with intensity function λ(x) and mean measure µ we have, in correspondence to
Algorithm 3.1,

f(x) = f(n) f(x |n) = e−µ(E){µ(E)}n
n!

n∏

i=1

λ(xi)

µ(E)
=

e−µ(E)

n(x)!

n(x)∏

i=1

λ(xi) , (8)

where n(x) is the number of components in x. Conversely, the expression for the
pdf in (8) shows immediately how X can be generated; that is, via Algorithm 3.1.

A general recipe for generating a point process X is thus:

21

1. draw N from the discrete pdf f(n);

2. given N = n, draw (X1, . . . , Xn) from the conditional pdf f(x |n).

Unfortunately, the pdf f(n) and f(x |n) may not be available explicitly. Some-
times f(x) is known up to an unknown normalization constant. In such cases
one case use Markov Chain Monte Carlo (MCMC) to simulate from f(x).
The basic idea of MCMC is to run a Markov chain long enough so that its limit-
ing distribution is close to the target distribution. The most well-known MCMC
algorithm is the following; see, for example, [27].

Algorithm 3.4 (Metropolis–Hastings Algorithm) Given a transition
density q(y |x), and starting from an initial state X0, repeat the following steps
from t = 1 to N :

1. Generate a candidate Y ∼ q(y |Xt).

2. Generate U ∼ U(0, 1) and set

Xt+1 =

{
Y, if U ≤ α(Xt,Y)

Xt otherwise,
(9)

where α(x,y) is the acceptance probability, given by:

α(x,y) = min

{
f(y) q(x |y)
f(x) q(y |x) , 1

}
. (10)

This produces a sequence X1,X2, . . . of dependent random vectors, with Xt ap-
proximately distributed according to f(x), for large t. Since Algorithm 3.4 is
of the acceptance–rejection type, its efficiency depends on the acceptance prob-
ability α(x,y). Ideally, one would like the proposal transition density q(y |x)
to reproduce the desired pdf f(y) as faithfully as possible. For a random
walk sampler the proposal state Y, for a given current state x, is given by
Y = x + Z, where Z is typically generated from some spherically symmetrical
distribution. In that case the proposal transition density pdf is symmetric; that
is q(y |x) = q(x |y). It follows that the acceptance probability is:

α(x,y) = min

{
f(y)

f(x)
, 1

}
. (11)

As a specific example, suppose we wish to generate a Strauss process [17,
32]. This is a point process with density of the form

f(x) ∝ βn(x)γs(x) ,

22

where β, γ > 0 and s(x) is the number of pairs of points where the two points
are within distance r of each other. As before, n(x) denotes the number of
points. The process exists (that is, the normalization constant is finite) if γ 6 1;
otherwise, it does not exist in general [24].

We first consider simulating from f(x |n) for a fixed n. Thus, f(x |n) ∝
γs(x), where x = (x1, . . . , xn). The following MATLAB program implements a
Metropolis–Hastings algorithm for simulating a (conditional) Strauss process with
n = 200 points on the unit square [0, 1] × [0, 1], using the parameter values
γ = 0.1 and r = 0.2. Given a current state x = (x1, . . . , xn), the proposal state
Y = (Y1, . . . , Yn) is identical to x except for the J-th component, where J is a
uniformly drawn index from the set {1, . . . , n}. Specifically, YJ = xJ + Z, where
Z ∼ N(0, (0.1)2). The proposal Y for this random walk sampler is accepted with
probability α(x,Y) = min{γs(Y)/γs(x), 1}. The function s(x) is implemented
below as numpairs.m.

23

gam = 0.1;

r = 0.2;

n = 200;

x = rand(n,2); %initial pp

K = 10000;

np= zeros(K,1);

for i=1:K

J = ceil(n*rand);

y = x;

y(J,:) = y(J,:) + 0.1*randn(1,2); %proposal

if (max(max(y)) > 1 || min(min(y)) <0)

alpha =0; %don’t accept a point outside the region

elseif (numpairs(y,r) < numpairs(x,r))

alpha =1;

else

alpha = gam^numpairs(y,r)/gam^numpairs(x,r);

end

R = (rand < alpha);

x = R*y + (1-R)*x; %new x-value

np(i) = numpairs(x,r);

plot(x(:,1),x(:,2),’.’);

axis([0,1,0,1])

refresh; pause(0.0001);

end

function s = numpairs(x,r)

n = size(x,1);

D = zeros(n,n);

for i = 1:n

D(i,:) = sqrt(sum((x(i*ones(n,1),:) - x).^2,2));

end

D = D + eye(n);

s = numel(find((D < r)))/2;

end

A typical realization of the conditional Strauss process is given in the left pane
of Figure 10. We see that the n = 200 points are clustered together in groups.
This pattern is quite different from a typical realization of the unconditional
Strauss process, depicted in the right pane of Figure 10. Not only are there
typically far fewer points, but also these points tend to “repel” each other, so

24

that the number of pairs within a distance of r of each other is small. The radius
of each circle in the figure is r/2 = 0.1. We see that in this case s(x) = 3, because
3 circle pairs overlap.

0 1
0

1

0 1
0

1

Figure 10: Left: Conditional Strauss process with n = 200 points and parameters
γ = 0.1 and r = 0.2. Right: Strauss process with β = 100, γ = 0.1, and r = 0.2.

To generate the (unconditional) Strauss process using the Metropolis–Hastings
sampler, the sampler needs to be able to “jump” between different dimensions
n. The reversible jump sampler [15, 27] is an extension of the Metropolis–
Hastings algorithm designed for this purpose. Instead of one transition density
q(y |x), it requires a transition density for n, say q(n |m), and for each n a
transition density q(y |x, n) to jump from x to an n-dimensional vector y.

Given a current state Xt of dimension m, Step 1 of Algorithm 3.4 is replaced
with

1a. Generate a candidate dimension n ∼ q(n |m).

1b. Generate an n-dimensional vector Y ∼ q(y |Xt, n).

And in Step 2 the acceptance ratio in (10) is replaced with

α(x,y) = min

{
f(n,y) q(m |n) q(x |y, m)

f(m,x) q(n |m) q(y |x, n) , 1
}
. (12)

The MATLAB program below implements a simple version of the reversible
jump sampler, suggested in [12]. From a current state x of dimension m, a
candidate dimension is chosen to be either m+1 or m−1, with equal probability.
Thus, q(m + 1 |m) = q(m − 1 |m) = 1/2, m = 1, 2, The first transition
corresponds to the birth of a new point; the second to the death of a point.
On the occasion of a birth, a candidate Y is generated by simply appending a
uniform point on [0, 1]2 to x. The corresponding transition density is therefore
q(y |x, m) = 1. On the occasion of a death, the candidate Y is obtained from

25

x by removing one of the points of x at random and uniformly. The transition
density is thus q(y |x, m) = 1/n(x). This gives the acceptance ratios:

• Birth:

α(x,y) = min

{
βn(y)γs(y) 1

n(y)

βn(x)γs(x)1
, 1

}
= min{(βγs(y)−s(x))/n(y), 1} .

• Death:

α(x,y) = min

{
βn(y)γs(y)1

βn(x)γs(x) 1
n(x)

, 1

}
= min{(γs(y)−s(x) n(x))/β, 1} .

r = 0.1; gam = 0.2; beta = 100; %parameters

n = 200; x = rand(n,2); %initial pp

K = 1000;

for i=1:K

n = size(x,1);

B = (rand < 0.5);

if B %birth

xnew = rand(1,2);

y = [x;xnew];

n = n+1;

else %death

y = setdiff(x,x(ceil(n*rand),:),’rows’);

end

if (max(max(y)) > 1 || min(min(y)) <0)

alpha =0; %don’t accept a point outside the region

elseif (numpairs(y,r) < numpairs(x,r))

alpha =1;

elseif B %birth

alpha = beta*gam^(numpairs(y,r) - numpairs(x,r))/n;

else %death

alpha = n*gam^(numpairs(y,r) - numpairs(x,r))/beta;

end

if (rand < alpha)

x = y;

end

plot(x(:,1),x(:,2),’.’);

axis([0,1,0,1]); refresh; pause(0.0001);

26

4 Wiener Surfaces

Brownian motion is one of the simplest continuous-time stochastic processes, and
as such has found myriad applications in the physical sciences [20]. As a first step
toward constructing Brownian motion we introduce the one-dimensional Wiener
process {Wt, t ∈ R+}, which can be viewed as a spatial process with a continuous
index set on R+ and with a continuous state space R.

4.1 Wiener Process

A one dimensional Wiener process is a stochastic process {Wt, t > 0} charac-
terized by the following properties: (1) the increments of Wt are stationary and
normally distributed, that is, Wt −Ws ∼ N(0, t − s) for all t > s > 0; (2) W
has independent increments, that is, for any t1 < t2 6 t3 < t4, the increments
Wt4 − Wt3 and Wt2 − Wt1 are independent random variables (in other words,
Wt −Ws, t > s is independent of the past history of {Wu, 0 6 u 6 s}); (3)
continuity of paths, that is, {Wt} has continuous paths with W0 = 0.

The simplest algorithm for generating the process uses the Markovian (in-
dependent increments) and Gaussian properties of the Wiener process. Let
0 = t0 < t1 < t2 < · · · < tn be the set of distinct times for which simula-
tion of the process is desired. Then, the Wiener process is generated at times
t1, . . . , tn via

Wtk =
k∑

i=1

√
tk − tk−1 Zi, k = 1, . . . , n ,

where Z1, . . . , Zn
iid∼ N(0, 1). To obtain a continuous path approximation to the

path of the Wiener process, one could use linear interpolation on the points
Wt1 , . . . ,Wtn . A realization of a Wiener process is given in the middle panel of
Figure 11.

Given the Wiener processWt, we can now define the d-dimensional Brownian
motion process via

X̃t = µ t+ Σ1/2Wt, Wt = (W
(1)
t , . . . ,W

(d)
t)⊤, t > 0 , (13)

whereW
(1)
t , . . . ,W

(d)
t are independent Wiener processes and Σ is a d×d covariance

matrix. The parameter µ ∈ R
d is called the drift parameter and Σ is called the

diffusion matrix.
One approach to generalizing the Wiener process conceptually or to higher

spatial dimensions is to use its characterization as a zero-mean Gaussian pro-
cess (see Section 2.1) with continuous sample paths and covariance function
Cov(Wt,Ws) = min{t, s} for t, s > 0. Since 1

2
(|t|+ |s| − |t− s|) = min{t, s}, we

can consider the covariance function 1
2
(|t|+ |s| − |t− s|) as a basis for generaliza-

tion. The first generalization is obtained by considering a continuous zero-mean

27

Gaussian process with covariance ̺(t, s) = 1
2
(|t|α + |s|α − |t− s|α), where α is a

parameter such that α = 1 yields the Wiener process. This generalization gives
rise to fractional Brownian motion discussed in the next section.

4.2 Fractional Brownian Motion

A continuous zero-mean Gaussian process {Wt, t > 0} with covariance function

Cov(Wt,Ws) =
1

2
(|t|α + |s|α − |t− s|α) , t, s > 0 (14)

is called fractional Brownian motion (fBm) with roughness parameter α ∈
(0, 2). The process is frequently parameterized with respect to H = α/2, in which
case H ∈ (0, 1) is called the Hurst or self-similarity parameter. The notion of
self-similarity arises, because fBm satisfies the property that the rescaled process
{c−H Wc t, t > 0} has the same distribution as {Wt, t > 0} for all c > 0.

Generation of fBm on the uniformly spaced grid 0 = t0 < t1 < t2 < · · · < tn =
1 can be achieved by first generating the increment process {X1, X2, . . . , Xn},
where Xi =Wi −Wi−1, and then delivering the cumulative sum

Wti = cH
i∑

k=1

Xk, i = 1, . . . , n, c = 1/n .

The increment process {X1, X2, . . . , Xn} is called fractional Gaussian noise
and can be characterized as a discrete zero-mean stationary Gaussian process
with covariance

Cov(Xi, Xi+k) =
1

2
(|k + 1|α − 2|k|α + |k − 1|α) , k = 0, 1, 2, . . .

Since the fractional Gaussian noise is stationary, we can generate it efficiently
using the circulant embedding approach in Section 2.2. First, we compute the
first row (r1, . . . , rn+1) of the symmetric Toeplitz (n + 1) × (n + 1) covariance
matrix Ω with elements Ωi+1,j+1 = Cov(Xi, Xj), i, j = 0, . . . , n. Second, we
build the first row of the 2n × 2n circulant matrix Σ, which embeds Ω in the
upper left (n + 1) × (n + 1) corner. Thus, the first row of Σ is given by r =
(r1, . . . , rn+1, rn, rn−1, . . . , r2). We now seek a factorization of the form (3). Here,
λ is the one-dimensional FFT of r defined as the linear transformation λ = F r
with Fj,k = exp(−2πijk/(2n))/

√
2n, j, k = 0, 1, . . . , 2n − 1. Finally, the real

and imaginary parts of the first n + 1 components of F ∗diag(
√
λ)Z, where Z is

a 2n × 1 complex valued Gaussian vector, yield two independent realizations of
fractional Brownian noise. Figure 11 shows how the smoothness of fBm depends
on the Hurst parameter. Note that H = 0.5 corresponds to Wiener motion.
The following MATLAB code implements the circulant embedding method for fBm.

28

Figure 11: Fractional Brownian motion for different values of the Hurst parameter
H . From left to right we have H = 0.3, 0.5, 0.9.

n=2^15; % grid points

H = 0.9; %Hurst parameter

r=nan(n+1,1); r(1) = 1;

for k=1:n

r(k+1) = 0.5*((k+1)^(2*H) - 2*k^(2*H) + (k-1)^(2*H));

end

r=[r; r(end-1:-1:2)]; % first rwo of circulant matrix

lambda=real(fft(r))/(2*n); % eigenvalues

W=fft(sqrt(lambda).*complex(randn(2*n,1),randn(2*n,1)));

W = n^(-H)*cumsum(real(W(1:n+1))); % rescale

plot((0:n)/n,W);

4.3 Fractional Wiener Sheet in R
2

A simple spatial generalization of the fractional Brownian motion is the fractional
Wiener sheet in two dimensions. The fractional Wiener sheet process on the
unit square is the continuous zero-mean Gaussian process {Wt, t ∈ [0, 1]2} with
covariance function

Cov(Wt,Ws) =
1

4
(|s1|α + |t1|α − |s1 − t1|α)(|s2|α + |t2|α − |s2 − t2|α) , (15)

which is simply a product form extension of (14). For the special case of α = 1,
we can also write the covariance as Cov(Wt,Ws) = min{t1, s1} min{t2, s2}.

As in the one-dimensional case of fBm, we can consider the two-dimensional
fractional Gaussian noise process {Xi,j, i, j = 1, . . . , n}, which can be used
to construct a fractional Wiener sheet on a uniformly spaced square grid via the
cumulative sum

Wti,tj = n−2H
i∑

k=1

j∑

l=1

Xk,l , i, j = 1, . . . , n .

29

Note that this process is self-similar in the sense that (mn)−H
∑m

k=1

∑n
l=1Xk,l

has the same distribution as X1,1 for all m,n, and H , see [22].
Generating a the two-dimensional fractional Gaussian noise process requires

that we generate a zero-mean stationary Gaussian process with covariance [26]

Cov(Xi,j, Xi+k,j+l) =
|k + 1|α − 2|k|α + |k − 1|α

2
× |l + 1|α − 2|l|α + |l − 1|α

2

for k, l = 0, 1, . . . , n. We can thus proceed to generate this process using the
circulant embedding method in Section 2.2. The generation of the Wiener sheet
forH = 0.5 is particularly easy since then all of the Xi,j are independent standard
normally distributed. Figure 12 shows realizations of fractional Wiener sheets for
H = 1

2
α ∈ {0.2, 0.5, 0.8} with n = 29.

H = 0.2 H = 0.5 H = 0.8

Figure 12: Fractional Wiener sheets with different Hurst parameter H .

Two objects which are closely related to Wt are the Wiener pillow and
the Wiener bridge, which are zero-mean Gaussian processes on [0, 1]d with
covariance functions Cov(Wt,Ws) =

∏d
i=1(min(ti, si)−tisi) and

∏d
i=1min(ti, si)−∏d

i=1 tisi, respectively.

4.4 Fractional Brownian Field

Fractional Brownian surface or field in two dimensions can be defined as the
zero-mean Gaussian process {X̃t, t ∈ R

2} with nonstationary covariance function

Cov(X̃s, X̃t) = ˜̺(s, t) = ‖s‖α + ‖t‖α − ‖s− t‖α . (16)

The parameter H = α
2
∈ (0, 1) is the Hurst parameter controlling the rough-

ness of the random field or surface. Contrast this isotropic generalization of the
covariance (14) with the product form extension of the covariance in (15).

Generation of X̃t over a unit (quarter) disk in the first quadrant involves the
following steps. First, we use Dietrich and Newsam’s method (Section 2.2) to
generate a stationary Gaussian field X̆t with covariance function over the quarter
disk {h : ‖h‖ 6 1,h > 0}

˘̺(s, t) = c0 + c2‖s− t‖2 − ‖s− t‖α

30

for some constants c0, c2 > 0 whose selection will be discussed later. Once we
have generated X̆t, the process X̃t is obtained via the adjustment:

X̃t = X̆t − X̆0 +
√
2c2 t

⊤Z, Z = (Z1, Z2)
⊤, Z1, Z2

iid∼ N(0, 1) .

It is straightforward to verify that the covariance structure of X̃t over the disk
{h : ‖h‖ 6 1,h > 0} is given by (16). It now remains to explain how we
generate the process X̆t. The idea is to generate the process on [0, R]2, R > 1
via the intrinsic embedding of Stein (see (5)) using the covariance function:

ψ(h) =





c0 + c2‖h‖2 − ‖h‖α, ‖h‖ 6 1
β(R−‖h‖)3

‖h‖
, 1 6 ‖h‖ 6 R

0, ‖h‖ > R

, (17)

where depending on the value of α, the constants R > 1, β > 0, c2 > 0, c0 > 0 are
defined in Table 1.

0 < α 6 1.5 1.5 < α < 2

R 1 2

β 0 α(2−α)
3R(R2−1)

c2
1
2
α α−β(R−1)2(R+2)

2

c0 1− c2 β(R− 1)3 + 1− c2

Table 1: Parameter values needed to ensure that (17) allows for a nonnegative
circulant embedding.

Note that for α > 1.5, the parameters needed for a nonnegative embedding
are more complex, because a covariance function that is smoother close to the
origin has to be even smoother elsewhere. In particular, for α > 1.5 the choice
of constants ensures that ψ is twice continuously differentiable as a function of
‖h‖. Notice that while we generate the process X̃t over the square grid [0, R]2,

we are only interested in X̃t restricted inside the quarter disk with covariance
˘̺(s, t). Thus, in order to reduce the computational effort, we would like to have
R > 1 as close as possible to 1. While the optimal choice R = 1 guarantees a
nonnegative embedding for all α 6 1.5, in general we need R > 1 to ensure the
existence of a minimal embedding for α > 1.5. The choice R = 2 given in Table 1
is the most conservative one that guarantees a nonnegative circulant embedding
for α > 1.5. Smaller values of R that admit a nonnegative circulant embedding
can be determined numerically [30, Table 1]. As a numerical example consider
generating a fractional Brownian surface with m = n = 1000 and for Hurst
parameter H ∈ (0.2, 0.5, 0.8). Figure 13 shows the effect of the parameter on the
smoothness of the surface, with larger values providing a smoother surface.

31

Figure 13: Fractional Brownian fields with different roughness parameter α = 2H .

We used the following MATLAB code for the generation of the surfaces.

H=0.8; % Hurst parameter

R=2; % [0,R]^2 grid, may have to extract only [0,R/2]^2

n=1000; m=n; % size of grid is m*n; covariance matrix is m^2*n^2

tx=[1:n]/n*R; ty=[1:m]/m*R; % create grid for field

Rows=zeros(m,n);

for i=1:n

for j=1:m % rows of blocks of cov matrix

Rows(j,i)=rho([tx(i),ty(j)],[tx(1),ty(1)],R,2*H);

end

end

BlkCirc_row=[Rows, Rows(:,end-1:-1:2);

Rows(end-1:-1:2,:), Rows(end-1:-1:2,end-1:-1:2)];

% compute eigen-values

lam=real(fft2(BlkCirc_row))/(4*(m-1)*(n-1));

lam=sqrt(lam);

% generate field with covariance given by block circular matrix

Z=complex(randn(2*(m-1),2*(n-1)),randn(2*(m-1),2*(n-1)));

F=fft2(lam.*Z);

F=F(1:m,1:n); % extract sub-block with desired covariance

[out,c0,c2]=rho([0,0],[0,0],R,2*H);

field1=real(F); field2=imag(F); % two independent fields

field1=field1-field1(1,1); % set field zero at origin

% make correction for embedding with a term c2*r^2

field1=field1 + kron(ty’*randn,tx*randn)*sqrt(2*c2);

[X,Y]=meshgrid(tx,ty);

field1((X.^2+Y.^2)>1)=nan;

surf(tx(1:n/2),ty(1:m/2),field1(1:n/2,1:m/2),’EdgeColor’,’none’)

colormap bone

The code uses the function rho.m, which implements the embedding (17).

32

function [out,c0,c2]=rho(x,y,R,alpha)

% embedding of covariance function on a [0,R]^2 grid

if alpha<=1.5 % alpha=2*H, where H is the Hurst parameter

beta=0;c2=alpha/2;c0=1-alpha/2;

else % parameters ensure piecewise function twice differentiable

beta=alpha*(2-alpha)/(3*R*(R^2-1));

c2=(alpha-beta*(R-1)^2*(R+2))/2;

c0=beta*(R-1)^3+1-c2;

end

% create continuous isotropic function

r=sqrt((x(1)-y(1))^2+(x(2)-y(2))^2);

if r<=1

out=c0-r^alpha+c2*r^2;

elseif r<=R

out=beta*(R-r)^3/r;

else

out=0;

end

5 Spatial Levy Processes

Recall from Section 4.1 that the Brownian motion process (13) can be charac-
terized as a continuous sample path process with stationary and independent
Gaussian increments. The Lévy process is one of the simplest generalizations of
the Brownian motion process, in cases where either the assumption of normal-
ity of the increments, or the continuity of the sample path is not suitable for
modeling purposes.

5.1 Lévy Process

A d-dimensional Lévy process {Xt, t ∈ R+} with X0 = 0 is a stochastic process
with a continuous index set on R+ and with a continuous state space R

d defined
by the following properties: (1) the increments of {Xt} are stationary, that is,
(Xt+s−Xt) has the same distribution as Xs for all t, s > 0; (2) the increments of
{Xt} are independent, that is, Xti −Xti−1

, i = 1, 2, . . . are independent for any
0 6 t0 < t1 < t2 < · · · ; and (3) for any ε > 0, we have P(‖Xt+s −Xt‖ > ε) = 0
as s ↓ 0.

From the definition it is clear that Brownian motion (13) is an example of
a Lévy process, with normally distributed increments. Brownian motion is the
only Lévy process with continuous sample paths. Other basic examples of Lévy

33

processes include the Poisson process {Nt, t > 0} with intensity λ > 0, where
Nt ∼ Poi(λt) for each t, and the compound Poisson process defined via

Jt =

Nt∑

k=1

δXk, Nt ∼ Poi(λt) , (18)

where δX1, δX2, . . . are iid random variables, independent of {Nt, t > 0}. We
can more generally express Jt as Jt =

∫ t

0

∫
Rd xN(ds, dx), where N(ds, dx) is

a Poisson random counting measure on R+ × R
d (see Section 3.1) with mean

measure E[N([0, t] × A)], A ∈ E , equal to the expected number of jumps of size
A in the interval [0, t].

A crucial property of Lévy processes is infinite divisibility. In particular, if
we define Y

(n)
j = Xj t/n−X(j−1) t/n, then using the stationarity and independence

properties of the Lévy process, we obtain that for each n > 2 the {Y(n)
1 } are inde-

pendent and identically distributed random variables with the same distribution
as Xt/n. Thus, for a fixed t we can write

Xt ∼ Y
(n)
1 + · · ·+Y(n)

n , for any n > 2 , (19)

and hence by definition the random vector Xt is infinitely divisible (for a
fixed t). The Lévy–Khintchine theorem [29] gives the most general form of the
characteristic function of an infinitely divisible random variable. Specifically,
the logarithm of the characteristic function of Xt (the so-called characteristic
exponent) is of the form

lnE[ei s
⊤Xt] = i t s⊤µ− 1

2
t s⊤Σs + t

∫

Rd

(
ei s

⊤x − 1− i s⊤x I{‖x‖61}

)
ν(dx) , (20)

for some µ ∈ R
d, covariance matrix Σ and measure ν such that ν({0}) = 0,

∫

‖x‖>1

ν(dx) <∞ and

∫

‖x‖61

‖x‖2ν(dx) <∞ ⇔
∫

Rd

min{1, ‖x‖2}ν(dx) <∞ .

(21)
The triplet (µ,Σ, ν) is referred to as the characteristic triplet defining the
Lévy process. The measure ν is referred to as the Lévy measure. Note that
for a general ν satisfying (21), the integral

∫
Rd

(
ei s

⊤x − 1
)
ν(dx) in (20) does

not converge separately. In this sense i s⊤x I{‖x‖61} in (20) serves the purpose of
enforcing convergence under the very general integrability condition (21). How-
ever, if in addition to (21) the measure ν satisfies

∫
Rd min{1, ‖x‖}ν(dx) <∞ and

ν(Rd) <∞, then the integral in (20) can be separated as t
∫
Rd(e

i s⊤x − 1)ν(dx)−
i t s⊤

∫
‖x‖61

x ν(dx), and the characteristic exponent simplifies to

i t s⊤µ∗ − 1

2
t s⊤Σ s

︸ ︷︷ ︸
Brownian motion term

+ t

∫

Rd

(
ei s

⊤x − 1
)
ν(dx)

︸ ︷︷ ︸
Poisson process term

,

34

where µ∗ = µ−
∫
‖x‖61

x ν(dx). We can now recognize this characteristic exponent

as the one corresponding to the process {Xt} defined by Xt = tµ∗+Σ1/2Wt+Jt,
where tµ∗+Σ1/2Wt defines a Brownian motion (see (13)) and {Jt} is a compound
Poisson process (18) with jump size distribution δX1 ∼ ν(dx)/λ. Thus, ν(dx)
can be interpreted as the intensity of the jump sizes in this particular Lévy
process. In a similar way, it can be shown that the most general Lévy process
{Xt} with characteristic triplet (µ,Σ, ν) and integrability condition (21) can be

represented as the limit in probability of a process {X(ε)
t } as ε ↓ 0, where X

(ε)
t

has the Lévy-Itô decomposition

X
(ε)
t = tµ+ Σ1/2Wt + Jt +

(
J
(ε)
t − t

∫

ε<‖x‖61

x ν(dx)

)
(22)

with the following independent components:

1. {tµ + Σ1/2Wt} is the Brownian motion (13), which corresponds to the
i t s⊤µ− 1

2
t s⊤Σ s part of (20).

2. {Jt} is a compound Poisson process of the form (18) with λ =
∫
‖x‖>1

ν(dx)

and increment distribution δX1 ∼ ν(dx)/λ over ‖x‖ > 1, which corresponds
to the

∫ t

0

∫
‖x‖>1

(ei s
⊤x − 1)ν(dx) dt part in the characteristic exponent (20).

3. {J(ε)
t } is a compound Poisson process with λ = ν(ε < ‖x‖ 6 1) and in-

crement distribution ν(dx)/λ over ε < ‖x‖ 6 1, so that the compensated

compound Poisson process {J(ε)
t − t

∫
ε<‖x‖61

x ν(dx)} corresponds to the
∫ t

0

∫
‖x‖61

(
ei s

⊤x − 1− i s⊤x
)
ν(dx) dt part of (20) in the limit ε ↓ 0.

The Lévy–Itô decomposition immediately suggests an approximate generation
method — we generate {X(ε)

t } in (22) for a given small ε, where the Brownian
motion part is generated via the methods in Section 4.1 and the compound Pois-
son process (18) in the obvious way. We are thus throwing away the very small
jumps of size less than ε. For d = 1 it can then be shown [1] that the error

process {Xt −X
(ε)
t } for this approximation is a Lévy process with characteristic

triplet (0, 0, ν(dx)I{|x|<ε}) and variance Var(Xt −X
(ε)
t) = t

∫ ε

−ε
x2ν(dx).

A given approximation X
(εn)
t can always be further refined by adding smaller

jumps of size [εn+1, εn] to obtain:

X
(εn+1)
t = X

(εn)
t + J

(εn+1)
t − t

∫

εn+1<‖x‖6εn

x ν(dx) , εn > εn+1 > 0 ,

where the compound Poisson process {J(εn+1)
t } has increment distribution given

by ν(dx)/ν(εn+1 < ‖x‖ 6 εn) for all εn+1 < ‖x‖ 6 εn. For a more sophisticated
method of refining the approximation see [1].

35

As an example consider the Lévy process {Xt} with characteristic triplet
(µ, 0, ν), where ν(dx) = α e−x/x dx for α, x > 0 and µ =

∫
|x|61

x ν(dx) = α(1 −
e−1). Here, in addition to (21), the infinite measure ν satisfies the stronger inte-
grability condition

∫
R
min{1, |x|}ν(dx) < ∞ and hence we can write Xt = tµ −

t
∫
|x|61

x ν(dx) +
∫ t

0

∫
R
xN(ds, dx) =

∫ t

0

∫
R+
xN(ds, dx), where E[N(ds, dx)] =

ds ν(dx).

The leftmost panel of Figure 14 shows an outcome of the approximation X
(ε1)
t

in (22) over t ∈ [0, 1] for ε1 = 1 and α = 10. The middle and rightmost

panels show the refinements X
(ε2)
t and X

(ε3)
t , respectively, where (ε1, ε2, ε3) =

(1, 0.1, 0.001). Note that the refinements add finer and finer jumps to the path.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14
ǫ1 = 1

t

X
(ǫ

1
)

t

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14
ǫ2 = 0.1

t

X
(ǫ

2
)

t

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20
ǫ3 = 0.001

t

X
(ǫ

3
)

t

Figure 14: Approximate gamma process realizations obtained by throwing away
jumps smaller than εi.

This process is called a gamma process and can be generated more sim-
ply using the fact that the increments {Xjt/n −X(j−1)t/n} have a known gamma
distribution [19, Page 212]. The gamma process is an example of an increasing
Lévy process (that is, Xt > Xs almost surely for all t > s) called a Lévy sub-
ordinator. A Lévy subordinator {Xt, t > 0} has characteristic triplet (µ, 0, ν)
satisfying the positive jump property ν((−∞, 0]) = 0 and the positive drift prop-

erty 0 6 µ−
∫ 1

0
xν(dx) <∞.

5.2 Lévy Sheet in R
2

One way of generalizing the Lévy process to the spatial case is to insist on the
preservation of the infinite divisibility property. In this generalization, a spatial
Lévy process or simply a Lévy sheet {Xt, t ∈ R

2} possesses the property that
(Xt1, . . . , Xtn) is infinitely divisible for all indexes t1, . . . , tn ∈ R

2 and any integer
n (see (19)). To construct such an infinitely divisible process, consider stochastic
integration with respect to a random infinitely divisible measure Λ defined
as the stochastic process {Λ(A), A ∈ E} with the following properties:

1. For any set A ∈ E the random variable Λ(A) has an infinitely divisible
distribution with Λ(∅) = 0 almost surely.

36

2. For any disjoint sets A1, A2, . . . ∈ E , the random variables Λ(A1),Λ(A2), . . .
are independent and Λ(∪iAi) =

∑
i Λ(Ai).

An example of a random infinitely divisible measure is the Poisson random mea-
sure (6) in Section 3.1. As a consequence of the independence and infinite di-
visibility properties, the characteristic exponent of Λ(A), A ∈ E has the Lévy–
Khintchine representation (20):

lnE[ei sΛ(A)] = i s µ̃(A)− 1

2
s2(σ̃(A))2 +

∫

R

(
ei sx − 1− i s x I{|x|61}

)
ν̃(dx,A) ,

where µ̃ is an additive set function, σ̃ is a measure on the Borel sets E , the
measure ν̃(·, A) is a Lévy measure for each fixed A ∈ E (so that ν̃({0}, A) = 0
and

∫
R
min{1, x2}ν̃(dx,A) < ∞), and ν̃(dx, ·) is a Borel measure for each fixed

dx. For example, Xt = Λ((0, t]) defines a one-dimensional Lévy process.
We can then construct a Lévy sheet {Xt, t ∈ R

2} via the stochastic integral

Xt =

∫

Rd

κt(x) Λ(dx), t ∈ R
2 , (23)

where κt : R
d → R is a Hölder continuous kernel function for all t ∈ R

2, which
is integrable with respect to the random infinitely divisible measure Λ. Thus,
the Lévy sheet (23) is a stochastic integral with a deterministic kernel function
as integrand (determining the spatial structure) and a random infinitely divisible
measure as integrator [16].

Consider simulating the Lévy sheet (23) over t ∈ [0, 1]2 for d = 2. Truncate
the region of integration to a bounded domain, say [0, 1]2, so that κt(x) = 0 for
each x 6∈ [0, 1]2 and t ∈ [0, 1]2. Then, one way of simulating {Xt, t ∈ [0, 1]2} is
to consider the approximation

X
(n)
t =

n−1∑

i=0

n−1∑

j=0

κt(i/n, j/n) Λ(△i,j), △i,j ≡
[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
, (24)

where all Λ(△i,j) are independent infinitely divisible random variables with char-
acteristic triplet (µ̃(△i,j), σ̃(△i,j), ν̃(· ,△i,j)). Under some technical conditions

[16], it can be shown that X
(n)
t converges to Xt in probability as n ↑ ∞.

As an example, consider generating (24) on the square grid {(i/m, j/m), i, j =
0, . . . , m− 1} with the kernel function

κt(x1, x2) = (r2 − ‖x− t‖2) I{‖x−t‖6r}, t ∈ [0, 1]2 ,

and Λ(△i,j)
iid∼ Gamma(α|△i,j|, β), |△i,j| = 1/n2 for all i, j, where Gamma(α, β)

denotes the density of the gamma distribution with pdf βαxα−1e−βx/Γ(α), x >

0. The corresponding limiting process {Xt} is called a gamma Lévy sheet.

37

Figure 15 shows realizations of (24) for m = n = 100 and r = 0.05, α = β ∈
{102, 105}, so that we have the scaling E[Λ(△i,j)] = α/(β n2) = 1/n2.

α = 10
2

α = 10
5

Figure 15: Gamma Lévy random sheet realizations for different values of the
shape parameter α.

Note that the sheet exhibits more bumps for smaller values of α than for large
values of α. For a method of approximately generating (23) using wavelets see
[16].

Acknowledgement

This work was supported by the Australian Research Council under grant number
DP0985177.

References

[1] S. Asmussen and J. Rosiński. Approximations of small jumps of Lévy
processes with a view towards simulation. Journal of Applied Probability,
38(2):482–493, 2001.

[2] A. Baddeley. Spatial Point Processes and their Applications. Springer Lec-
ture Notes in Mathematics (1892), 2007.

[3] A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan. Case Studies in
Spatial Point Process Modeling. Springer Lecture Notes in Statistics (185),
2006.

[4] S. Barnett. Matrices, Methods and Applications. Oxford Applied Mathe-
matics and Computing Sciences Series, 1990.

38

[5] T. Brereton, D. P. Kroese, O. Stenzel, V. Schmidt, and G. Baumier. Ef-
ficient simulation of charge transport in deep-trap media. In C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, editors,
Proceedings of the 2012 Winter Simulation Conference, 2012.

[6] A. Brix. Generalized gamma measures and shot-noise cox processes. Ad-
vances in Applied Probability, 31:929–953, 1999.

[7] G. Chan and A. T. A. Wood. Simulation of stationary Gaussian vector fields.
Statistics and Computing, 9:265–268, 1999.

[8] D. Cox. Some statistical methods connected with series of events. Journal
of the Royal Statistical Society, B, 17(24):129–164, 1955.

[9] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point
Processes Volumes 1 and 2. Springer Series in Statistics, 2003.

[10] C. R. Dietrich and G. N. Newsam. Fast and exact simulation of stationary
Gaussian processes through circulant embedding of the covariance matrix.
SIAM Journal on Scientific Computing, 18(4):1088–1107, 1997.

[11] P. J. Diggle. Statistical Analysis of Spatial Point Patterns. Oxford University
Press, London, New York, 2003.

[12] Charles J. Geyer and Jesper Mller. Simulation procedures and likelihood
inference for spatial point processes. Scandinavian Journal of Statistics,
21(4):pp. 359–373, 1994.

[13] T. Gneiting, H. Seveikova, D. B. Percival, M. Schlather, and Y. Jiang. Fast
and exact simulation of large Gaussian lattice systems in R

2: Exploring the
limits. Journal of Computational and Graphical Statistics, 15(3):483–501,
2006.

[14] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
University Press, third edition, 1996.

[15] P. J. Green. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82(4):711–732, 1995.

[16] W. Karcher, H.-P. Scheffler, and E. Spodarev. Simulation of infinitely divis-
ible random fields. Communications in Statistics – Simulation and Compu-
tation, 42:215–246, 2013.

[17] F. P. Kelly and B. D. Ripley. A note on Strauss’s model for clustering.
Biometrika, 63(2):357–360, 1976.

39

[18] M. Kendall and J. K. Ord. Time Series. Oxford University Press, Oxford,
third edition, 1990.

[19] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods.
Wiley, New Jersey, 2011.

[20] G. F. Lawler. Introduction to Stochastic Processes. Chapman & Hall/CRC,
FL, 2006.

[21] J. Møller. Shot noise cox process. Advances in Applied Probability, 35(3):614–
640, 2003.

[22] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, frac-
tional noises and applications. SIAM Review, 10(4):422–437, 1968.

[23] B. Matérn. Spatial variation. Meddelanden fr̊an Statens Skogsforskningsin-
stitut, 49:1–144, 1960.

[24] J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation for
Spatial Point Processes. Chapman & Hall/CRC, 2004.

[25] J. Neyman and E. L. Scott. Statistical approach to problems of cosmology.
Journal of the Royal Statistical Society. Series B (Methodological), 20(1):1–
43, 1958.

[26] H. Qian, G. M. Raymond, and J. B. Bassingthwaighte. On two-dimensional
fractional Brownian motion and fractional Brownian random field. Journal
of Physics A: Mathematical and General, 31(28), 1998.

[27] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-
Verlag, New York, second edition, 2004.

[28] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Appli-
cations. Chapman & Hall, London, 2005.

[29] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge
University Press, Cambridge, 1999.

[30] M. L. Stein. Fast and exact simulation of fractional Brownian motion. Jour-
nal of Computational and Graphical Statistics, 11(3):587–599, 2002.

[31] O. Stenzel, D. P. Kroese D. Westhoff, I. Manke, and V. Schmidt. Graph-
based simulated annealing: A hybrid approach to stochastic modeling of
complex microstructures. submitted, 2012.

[32] D. J. Strauss. Analysing binary lattice data with the nearest-neighbor prop-
erty. Journal of Applied Probability, 12(4):702–712, 1975.

40

[33] R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte
Carlo simulations. Physical Review Letters, 58(2):86–88, 1987.

[34] A.T.A. Wood and G. Chan. Simulation of stationary Gaussian process in
[0, 1]d. Journal of Computational and Graphical Statistics, 3:409–432, 1994.

41

