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Abstract: Fisheries play multi-faceted roles in our society, economy, and environment, and the management
decisions often involve competing driving forces — for example, higher harvest is desirable for maximizing
economical benefits, but this may cause fishery collapse and is thus detrimental to the environment. The need
to account for multiple and possibly conflicting objectives make sustainable fishery management a highly
challenging task. This is further compounded by the large amount of uncertainties present in the problem: in
particular, our knowledge of the fishery system is limited, and the state of the fishery system is not directly
observable.

The Partially Observable Markov Decision Processes (POMDPs) — a general principled framework for se-
quential decision making for partially observable environments — is well-suited for sustainable fishery man-
agement: it is able to account for the long-term effect of actions, and it can conveniently take uncertainties into
account. A few recent works have explored the potential of using POMDPs for sustainable fishery manage-
ment. In this paper, we leverage recent advances in two sub-fields of machine learning, namely, deep learning
and reinforcement learning, to develop a novel approach for sustainable fishery management using POMDPs.

We first propose an offline reinforcement learning approach for sustainable fishery management. While typ-
ical reinforcement learning approaches learn an optimal policy by directly interacting with the environment,
offline reinforcement learning approaches learn an optimal policy using a dataset of past interactions with the
environment. This is a highly desirable feature for fishery management, in which the effect of a management
decision is only observed after many years, and poor decisions may lead to fisheries’ collapse. We believe this
perspective will allow us to tap into recent advances in offline reinforcement learning.

Our second contribution is a new algorithm, MOOR, which stands for MOdel-based Offline Reinforcement
learning algorithm for sustainable fishery management. MOOR first learns a POMDP fishery dynamics model
using catch and effort data, and then solves the POMDP using a state-of-the-art solver. In the model learning
step, we view the POMDP fishery dynamics model as a recurrent neural net (RNN), and leverage RNN learning
techniques to learn the model. This presents some new challenges, but we show that these can be overcome
with a few tricks to yield a very effective learning algorithm.

Finally, MOOR demonstrates strong performance in preliminary simulation studies. The learned models are
generally very similar to the true models. In addition, the management policies obtained using the learned
models perform similarly as the optimal management policies for the true models. While previous POMDP
studies for fishery management evaluate policy performance in the learned model, we evaluate the policy in the
true model, thus our results suggest that it is possible to develop a POMDP approach that can be robust against
mild model learning error. Moreover, although this paper focuses on fisheries applications, the approach is
general enough for other problems where the dynamics are nonlinear, though further research are needed to
understand the extent and efficiency of the method on other domains. Our source code will be made available
after the publication of the work.
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1 INTRODUCTION

Sustainable fishery management aims to use fisheries in a way that is beneficial to our society, economy, and
environment, for both the present and long-turn future. The importance and urgency of this problem is reflected
by one of the United Nations Sustainable Development Goals, which seeks to conserve and sustainably use
the oceans, seas and marine resources for sustainable development, in the recognition that the sustainability of
our oceans is under severe threat. Sustainable fishery management poses multiple challenges. One is the need
to balance between the conflicting objectives of harvest and conservation: while we want to catch more fish
to maximize economical benefits, we also want to avoid over-fishing so that the stock is sustainable. Another
challenge is the need to deal with the large amount of uncertainties present in fishery systems [Charles, 1998].
Two notable uncertainties are the uncertainty on the stock sizes as they are not directly observable, and the
lack of knowledge of the fishery system dynamics.

Recently, several works have explored the potential of Partially Observable Markov Decision Processes
(POMDPs) for sustainable fishery management [Memarzadeh et al., 2019; Filar et al., 2019], with the help
of scalable POMDP solvers [Kurniawati et al., 2008; Silver and Veness, 2010; Ye et al., 2017]. They demon-
strated that POMDP is capable of generating effective adaptive management strategies by taking partial ob-
servability and other uncertainties into account. It is noteworthy that Lane [1989] applied POMDP to the
related problem of decision making by fishermen, using a simplified small model due to the lack of a solver
for large POMDPs at that time.

As a model is rarely the same as the real world, it is important to develop effective model learning algorithm
and evaluate the sensitivity of the POMDP policy with respect to the POMDP model used. This issue has not
been considered by previous studies mentioned above, and we address it in this paper.

Our first contribution is to propose an offline reinforcement learning approach for sustainable fishery manage-
ment. This allows learning a management strategy from past fishery data without the need to wait for years
to observe the effect of a management decision, and eliminates the possibility of dangerous actions during the
learning phase. This perspective allows us to leverage recent advances in offline reinforcement learning for
sustainable fishery management. Secondly, we develop an instantiation of the approach, MOOR (MOdel-based
Offline Reinforcement learning for sustainable fishery management), which first learns a POMDP fishery dy-
namics model using catch and effort data, and then solves the POMDP using a state-of-the-art solver. The
learning algorithm is developed for the Beverton–Holt model, but in principle, our approach can be applied to
other fishery dynamics models. Finally, our simulation study demonstrates that our model learning algorithm
is fairly accurate, and the POMDP approach can be robust against mild model learning errors.

2 POMDP AND OFFLINE REINFORCEMENT LEARNING

We briefly describe POMDP and offline reinforcement learning in this section. These serve as building blocks
in our approach: our fishery model is a POMDP, and our solution approach is an offline reinforcement learning
algorithm.

POMDP. Partially observable Markov decision processes (POMDP) provide a general framework for se-
quential decision making for partially observable and uncertain environments. Formally, a POMDP is a 6-tuple
(S,A,Z, T,R,O). S is a set of states that the environment can be in, and A is a set of actions that the agent
can take. When the agent takes an action a ∈ A in state s ∈ S , the environment transitions to a new state
s′ ∈ S with transition probability T (s, a, s′) = p(s′|s, a). At the same time, it receives a reward R(s, a), and
an observation z ∈ Z with observation probability O(s′, a, z) = p(z|s′, a). Since the current environment
state is not fully observable, the agent maintains a belief b, which is a probability distribution on the states. If
we receive an observation z after executing action a, then we can use Bayes’ rule to update the current belief
b to a new belief:

τ(b, a, z) = p(s′|b, a, z) = O(s′, a, z)p(s′|a, b)
p(z|a, b)

(1)

where p(s′|a, b) =
∑
s∈S T (s, a, s

′)b(s), p(z|a, b) =
∑
s′∈S O(s′, a, z)p(s′|a, b).

An agent acts according to a policy π, which is a mapping from beliefs to actions. The value function Vπ(b)
computes the total expected discounted reward for the policy π when starting from a belief b:

Vπ(b) = E[
∞∑
t=0

γtR(St, At)|b, π], (2)
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where St, At refer to the state and the action at time step t, and γ ∈ (0, 1) is the discount factor.

An optimal policy π∗ is a policy that achieves the maximum value for each belief, that is, Vπ∗(b) ≥ Vπ(b) for
any policy π and any belief b.

Offline Reinforcement Learning. Reinforcement learning aims to learn an optimal policy by interacting
with the environment. Most reinforcement learning algorithms require direct interactions with the environ-
ment, but in domains such as healthcare it is expensive to obtain data via interactions and poor decisions made
in the learning phase may have dangerous consequences. Offline reinforcement learning aims to find an opti-
mal policy using previous experiences instead. It is well-suited to domains in which collecting online data is
expensive and dangerous, and has found applications in healthcare [Shortreed et al., 2011] and robotics [Ebert
et al., 2018].

3 MOOR FOR SUSTAINABLE FISHERY MANAGEMENT

In fishery management, it takes years to assess the effect of management decisions, and poor management
decisions may lead to fishery collapse. In other words, collecting experiences by directly interacting with the
environment is costly and potentially dangerous. We thus take the offline reinforcement learning approach.

We focus on model-based offline reinforcement learning (e.g., see Kidambi et al. [2020]), which first learns an
approximate environment model using the dataset, and then computes a near-optimal policy using the learned
environment model. To the best of our knowledge, existing works on model-based offline reinforcement
learning consider fully observable environments. However, in our case, the environment is partially observable
and is modelled as a POMDP, which is difficult to learn in general. A contribution of this paper is an algorithm
that can successfully learn high-quality POMDP fishery models.

Our MOOR algorithm consists of three steps as shown in Algorithm 1. It first learns the parameters of a
continuous POMDP model using given catch and effort data, where in practice, catch can be measured in
various ways such as the number or the mass of caught fish, and effort is typically measured as the number
of the total fishing hours scaled to take fishing power of the gears into account. A discretized versionM of
the continuous POMDP is then obtained using a Monte Carlo method described in [Filar et al., 2019]. Details
of the parameters used in the method are provided in Section 4. Finally, we make use of efficient solvers for
large discrete POMDPs to find an optimal policy π∗ forM. We used the DESPOT algorithm [Ye et al., 2017]
in our experiments.

Algorithm 1: MOOR
Input: Catch data c1:T , effort data e1:T

1 (ρ,K,B0, q)← OfflineModelLearning(c1:T , e1:T )
2 M← ModelDiscretization(ρ,K,B0, q)
3 Find an optimal policy π∗ forM

Below, we provide details on the continuous POMDP model and our model learning algorithm.

3.1 Fishery POMDPs

In our POMDP model, the state is the population biomass, an action is an amount of fishing effort, the obser-
vation after an action is the amount of catch, and the reward is simply defined as the catch, which serves as a
measure of the profit. The state is not directly observable, but partially observable via the amount of catch.

Our transition dynamics and observation model are based on a combination of the Beverton–Holt model [Bev-
erton and Holt, 2012] and a popular catch model. The Beverton–Holt model is a deterministic model that
relates the current population biomass Bt to the population biomass Bt+1 at the next time step via

Bt+1 = f(Bt;K, ρ) =
ρKBt

(ρ− 1)Bt +K
, (3)

where the parameters ρ and K are known as the proliferation rate and the carrying capacity respectively. We
used the catch model below:

Ct = g(Bt, et; q) + ε, with g(Bt, et; q) = qetBt, (4)

where Ct is the amount of catch, et is the amount of effort, q is a constant called the catchability constant, and
ε is a random noise drawn from a fixed Gaussian distribution.
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Our transition model builds on the Beverton–Holt model and the catch model described above, and has the
following form:

Bt+1 = f(Bt;K, ρ)− g(Bt, et; q). (5)

Our observation model is simply the catch model given in Eq. (4).

To sum up, our continuous fishery POMDP model has four parameters: initial biomass B0, the carrying
capacity K, the proliferation rate ρ and the catchability constant q. We describe how to learn these parameters
in next few paragraphs.

3.2 Model learning

We describe how to learn the POMDP model parameters ρ,K,B0, q using given catch data c1:T =
(c1, c2, . . . , cT ) and efforts data e1:T = (e1, . . . , eT ).

We learn the parameters by minimizing the quadratic error

L(ρ,K,B0, q) =

T∑
t=1

(g(Bt, et; q)− ct)2. (6)

where Bt evolves according Eq. (5) with g defined in Eq. (4). Minimizing L is the same as maximizing the
likelihood under the Gaussian noise assumption in Eq. (4).

The loss function L is a complex function of the parameters, though there are only four parameters. We
consider gradient-based optimization algorithms for minimizing L. While in principle the gradient of L can be
calculated in a closed-form, this is a tedious task. We address this issue by leveraging on recent development
in deep learning.

Figure 1. The fishery POMDP as an RNN.

The key observation behind our learning algorithm is that
the fishery POMDP is in fact an RNN. This is shown
schematically in Figure 1. At time step t, the hidden state
of the RNN is the biomassBt, the input is the effort et, and
the hidden state is updated using the recurrence Eq. (5).
The output is the predicted catch ĉt = g(Bt, et; q). This
perspective suggests that we can exploit existing tools for
learning general RNNs. In particular, we can make use
of the automatic differentiation tools in major deep learn-
ing platforms such as PyTorch [Paszke et al., 2019] and
Tensorflow [Abadi et al., 2016] to obtain the gradient au-
tomatically from an implementation of the loss function
L.

For the choice of the optimization algorithm, we cannot use the stochastic gradient descent (SGD) algorithm
which is commonly used to train RNNs in the deep learning literature. This is because we only have one
training sequence, thus we do not have stochastic gradients calculated on randomly sampled batches of training
sequences. We also note that gradient descent generally fails to learn the true parameters despite extensive
tuning of the step size. This is mainly due to two difficulties: (a) The scale of the parameters are very different,
and their derivatives can be of very different magnitudes. When using a gradient-based method, the parameters
with a large derivative can easily dominate in the training process in the sense that updates in the other variables
often become too small. (b) The final solution obtained using gradient descent depends heavily on the initial
solution, suggesting that the loss function L can easily trap gradient descent in poor local optima.

To address the two observed difficulties, our final learning algorithm is the Limited-memory BFGS (L-BFGS)
algorithm [Liu and Nocedal, 1989], combined with a few tricks. L-BFGS is a quasi-Newton method and is
better at exploiting the surface geometry to find an optimal solution as compared to gradient descent, but does
not require Hessian computation as in Newton’s method. To address the first issue of different parameter scales,
we scale the effort and catch data to the range of [0, 1], by dividing them with their maximums respectively.
Specifically, let cmax and emax be the maximum catch and the maximum effort. We will first convert c1:t to
c̃1:t with c̃i = ci/cmax, and convert e1:t to ẽ1:t with ẽi = ei/emax. Now we need to minimize

L̃(ρ,K,B0, q) =

T∑
t=1

(g(Bt, ẽt; q)− c̃t)2. (7)



J.Ju et al., MOOR: Model-based Offline Reinforcement Learning for Sustainable Fishery Management

If ρ̃∗, K̃∗, B̃∗0 , q̃∗ are the minimizers of L̃(ρ,K,B0, q), then ρ∗ = ρ̃∗, K∗ = K̃∗cmax, B∗0 = B̃∗0cmax,
q∗ = q̃∗/emax are the minimizers of L(ρ,K,B0, q). To address the second issue of poor local minimizers,
the initial parameters, for the normalized objective function L̃, are all set to 1 added with a small amount of
random noise. The initial values of 1 are chosen because with these values, the biomass will never become
negative in Eq. (5) as f(Bt;K, ρ) = Bt and g(Bt, et; q) ≤ Bt. In addition, we also use the commonly used
trick of running the optimization process multiple times, until L(ρ,K,B0, q) is less than a certain threshold or
when a maximum number of runs is reached.

4 SIMULATION STUDY

We evaluate the performance of MOOR by performing a simulation study to answer the following questions:

1. How do the model learning algorithm perform? We compare the learned parameters and the learned
population dynamics model with the true ones.

2. How do the final learned policies perform? In particular, how good are the final learned policies in the
presence of model learning error – i.e. how do the value of the learned policy compared with the optimal
policy computed for the true model?

We consider fishery systems with different proliferation rates in our simulation study. We briefly describe
our evaluation process as shown in Figure 2 before presenting the details. We first generate some catch and
effort data, then use MOOR to learn a policy π∗. The value of the policy π∗ is then estimated by simulating
it multiple times. To assess the effect of model learning error, we compare the estimated value of π∗ with the
estimated value of the optimal policy found by DESPOT for the true model.

Figure 2. Performance evaluation for MOOR.

Groundtruth model and data generation. The groundtruth model for the environment is assumed to be
the model of the form in Eq. (5). For the model parameters (ρ,K,B0, q), we choose K = 1000, B0 = 5000,
q = 0.005, and consider three proliferation rates ρ = 1.3, 2.0 and 3.0, representing low, medium, and high
proliferation rates respectively.

For data generation, we first randomly generate 50 effort values drawn from N(10, 3), then we generate the
corresponding catches using Eq. (4) with the noise set to 0.

Model learning. We repeated optimization using L-BFGS multiple times. We stop when the quadratic error
(sum of squared errors) is less than 1 (which makes the root mean squared error less than 1% of the minimum
true catch), or when the number of runs reaches 30. In each trial, L-BFGS is run for 15 iterations with a
learning rate of 0.5.

Model discretization. The continuous versions of the learned POMDP model and the groundtruth POMDP
models are generally not the same, but their discrete versions need to have shared actions and observations,
so that we can evaluate a policy computed using the discretized learned model on the discretized groundtruth
model. To ensure this, a continuous state space [0,K] is discretized into d KLs

e states, with the i-th state
representing [(i− 1)Ls,min(iLs,K)), where Ls = 1, 000 in our experiments, leading to around 10 states in
the discrete models. We used the same intervals to represent the discretized observations for the observation
space. For a continuous model, we only need to consider action (i.e., effort) not more than amax = 1

q , because
the catch cannot exceed the biomass in C = qeB. We discretize the action spaces for the learned model and
the groundtruth model into intervals of length La (except that the last may be truncated), then choose their
midpoints as the discretized actions. We chose La = 15 in our experiments, leading to around 15 actions in
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Table 1. Results of model learning and policy learning.
learned parameters policy values

ρ ρ̂ K̂ B̂0 q̂ learned models groundtruth models

1.3 1.3001 9985.77 4991.60 0.005 12949 ± 168.28 12818 ± 139.08
2.0 1.9902 10914.07 5501.46 0.0045 33667 ± 191.51 34860 ± 136.70
3.0 3.0009 9986.70 4991.65 0.0050 56201 ± 134.01 56178 ± 173.58

the discrete models. Finally, we follow Filar et al. [2019] to obtain the discretized transition dynamics and
observation model, by drawing 10,000 randomly sampled (s′, o) for each (s, a).

Policy search. We used the DESPOT [Ye et al., 2017] algorithm to solve the discretized POMDP model.

Figure 3. Evaluation for learned models.

Policy evaluation. Figure 3 illustrates how we estimate a pol-
icy π’s value. We start with an initial belief b0. At time step t,
we compute the action π(bt). The world (i.e., the groundtruth
model) executes the action, and generates the resulting re-
ward and observation. The simulator (i.e., the learned POMDP
model) then updates the belief bt using Eq. (1). We run the pol-
icy 500 times, with 100 time steps for each run. The average
total discounted reward with a discount factor γ = 0.95 is then
calculated as an estimate of the policy value.

4.1 Quality of learned models

The learned parameters (ρ̂, K̂, B̂0, q̂) for the three groundtruth models are shown in the left subtable of Table 1.
Note that for the true parameters, we only show the value of ρ as other parameter values are the same. The
learned parameters are generally very accurate, with less than 1% error, except that for ρ = 2, the values of K̂
and B̂0 are around 10% larger, while that of q̂ is around 10% smaller. The larger errors for ρ = 2 suggests that a
mild error in q̂ can be compensated by small errors of opposite signs in r̂ and K̂, in the sense that the predicted
catches (qetBt values) are kept about the same as those obtained using the true model. Thus recovering the
true parameters appears more difficult than learning a functionally similar model. Figure 4 shows the plots for
the learned population models and the groundtruth population models. For ρ = 1 and ρ = 3, the two curves
are nearly the same, which is expected as the learned parameters are all very accurate. For ρ = 2, despite an
error of around 10% for K̂, B̂0 and q̂, the two curves still appear to be very close to each other.

Figure 4. Plots of B′ = f(B;K, ρ) against B for the groundtruth and learned Beverton–Holt models.

4.2 Quality of learned policies

The right subtable of Table 1 shows the average total discounted rewards of the policies computed for the
learned POMDP models and the corresponding groundtruth models, together with their standard errors. To
take the randomness in model discretization into account, we generated three discretized models for each
continuous fishery POMDP model, performed 500 runs for the policy computed for each of them, and then
used all the 1,500 runs to calculate the average total discounted rewards and the standard error.

The results show that learned policies achieves the same level of performance as the policies computed for the
groundtruth models. This is not surprising for the case of ρ = 1 and ρ = 3, because the learned models are
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nearly the same as the groundtruth models. Interestingly, for the case of ρ = 2, despite around 10% errors in
three of the four parameters (K̂, B̂0 and q̂), the value of the learned policy is only around 3.5% smaller than
the policy computed for the groundtruth model. Thus MOOR is relatively robust against model learning error
in this case.

5 CONCLUSION

We proposed MOOR, a model-based offline reinforcement learning algorithm for sustainable fishery manage-
ment. MOOR learns a management strategy using past catch and effort data. Our simulation study shows that
MOOR learns high-quality models and policies.

Our results suggest the potential of offline reinforcement learning for sustainable fishery management, and
will be interesting to further explore recent advances in offline reinforcement learning. In addition, inspired by
recent developments in deep learning, we developed a gradient-based algorithm for learning a fishery POMDP
model. We focused on the deterministic Beverton–Holt dynamics model as an initial investigation, but our
technique can be applied to models with alternative population dynamics, and to other domains with nonlinear
dynamics.
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