Noname manuscript No.
(will be inserted by the editor)

Splitting for Multi-objective Optimization

Qibin Duan - Dirk P. Kroese

Received: date / Accepted: date

Abstract We introduce a new multi-objective optimization (MOO) methodology based the
splitting technique for rare-event simulation. The method generalizes the elite set selection of
the traditional splitting framework, and uses both local and global sampling to sample in the
decision space. In addition, an e-dominance method is employed to maintain good solutions.
The algorithm was compared with state-of-the art MOO algorithms using a prevailing set of
benchmark problems. Numerical experiments demonstrate that the new algorithm is competitive
with the well-established MOO algorithms and that it can outperform the best of them in various
cases.

Keywords Splitting method - Multi-objective optimization - Pareto front - Pareto set -
Benchmarking - Inverted Generational Distance

1 Introduction

Many optimization problems arising in science, engineering, economics, finance and logistics,
have multiple, and often conflicting, objectives. It is natural to formulate such problems as
multi-objective optimization (MOO) problems, also known as multi-criteria or vector optimiza-
tion problems. In such problems, the goal is to optimize multiple conflicting objective functions
simultaneously. Unlike single-objective optimization, there does not usually exist a single solu-
tion that optimizes all objective functions, and so one usually has a (possibly infinite) number
of solutions with optimal trade-offs. The set of such solutions is called the Pareto optimal front.
Research that focuses on solving MOPs usually aims to find the Pareto optimal front, which is
a NP-hard problem.

It is, in principle, possible to obtain the Pareto front by solving many single-objective op-
timization problems; each corresponding to a specific preference ordering of the objectives.
However, this is very time-consuming. Instead, it is often useful to take an evolutionary al-
gorithm approach to find the Pareto front, as such algorithms can deal with the multitude

Qibin Duan - Dirk P. Kroese

School of Mathematics and Physics, The University of Queensland
Brisbane 4072, Australia

E-mail: q.duan@ugq.edu.au

E-mail: kroese@maths.uq.edu.au

2 Qibin Duan, Dirk P. Kroese

of candidate solutions simultaneously. Many multi-objective evolutionary algorithms (MOEAs)
have been proposed over the last two decades; examples are the non-dominated sorting genetic
algorithm (NSGAII)[7], Pareto-archive evolution strategy (PAES)[10], multi-objective particle
swarm optimization (MOPSO) [5], multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) [22], generalized differential evolution 3 (GDE3) [13], multi-objective cross-
entropy method (MOCE)[21], and multi-objective artificial bee colony (MOABC) [1]. For more
information on MOEAS, see a recent survey [25]. These algorithms usually originate from single-
objective optimization counterparts.

In [8] a new optimization method was introduced based on the well-known splitting method
for rare-event simulation; see, e.g., [19, Chapter 9] for a recent and detailed description of the
splitting method. This optimization method, called SCO (Splitting for Continuous Optimization),
has proved to be very successful for solving single-objective optimization problems. However, it
was not clear if and how the method could be generalized to tackle MOO problems. Our aim in
this paper is to extend the SCO algorithm to the multi-objective case. The resulting algorithm
is called Multi-Objective Splitting (MOS).

Because there is a substantial difference between multi-objective and single-objective opti-
mization, the methodology of the single-objective SCO method must be modified significantly
to make the splitting idea work for MOO problems. First, when selecting the “elite set” the
traditional sorting method is not suitable, so we provide a new method for constructing the elite
set. Second, to obtain better candidates in the “splitting stage”, we use a combination of the
global sampling strategy used in [8] and a new local sampling strategy. Third, to keep track of
all the good solutions ever find, we use an external “archive” of solutions.

The rest of the paper is organized as follows. In Section 2, we review the basic knowledge
about Pareto optimality and give the main ideas of how the splitting method from rare-event
simulation can be used as a technique for single-objective optimization. In Section 3, the details
of the new MOS algorithm are given, which includes algorithms for the construction of the
elite set, sampling strategies, and rules to update the archive solutions. In Section 4 we test
the proposed method on a number of benchmark problems from the CEC’09 suite and compare
it with state-of-the-art algorithms. Finally, in Section 5, we further analyze the results of the
numerical experiments and discuss the parameter selection of the proposed methods.

2 Preliminaries

In this section, we review the basic facts about Pareto optimality and the splitting method.

2.1 Pareto optimality

An MOO problem is an optimization problem that involves multiple conflicting objective func-
tions that are to be optimized simultaneously. Without loss of generality, we assume minimization
throughout this paper. As in [6], a general MOO problem can be formulated as

minf(x) := (f1(x), f2(x), ..., fr(x)) (1)

st. xe 2,
where f;,7 = 1,..., K are the objective functions and K > 2 is the number of objectives. The
vector X = (21,...,2p) is a D-dimensional decision vector and 2" is the feasible set of decision

vectors that satisfy certain equality or inequality constraints. The minimization of function vector
f(x) means that the K objective functions f1,..., fx need to be minimized simultaneously.

Splitting for Multi-objective Optimization 3

Having several objective functions as in Eq. (1), the aim of the optimization problem is not
to find a single optimal solution, but the Pareto optimal set and Pareto front, which are defined
based on the notion of (Pareto) dominance.

Definition 2.1 (Pareto Dominance): A vector y = (y1,...,yx) is said to dominate another
vector y' = (yi,...,y}), denoted by y <y’, if and only if y is partially less than y’; that is, for
all i € {1,...,k},y; <y, and there exists at least one ¢ € {1,...,k} such that y; < y.

Definition 2.2 (Pareto Optimality): A solution x is said to be Pareto optimal with respect
to 2 if and only if there is no x’ € 2" such that y’ = f(x’) dominates y = f(x).

In other words, x is Pareto optimal if there exists no feasible decision vector x’ that would
decrease the value of some objective functions without causing a simultaneous increase in the
value of at least one other objective function.

Definition 2.3 (Pareto Optimal Set and Pareto Front): For a given MOO problem, the
Pareto optimal set is defined as

P*:={x € 2 : there does not exist a x’ € X such that f(x') < f(x)},
and the corresponding Pareto Front is defined as

PF ={y=1£f(x) : xe P}

- Decision Space " Objective Space
Pareto optimal points o ©
o] O
o ° Feasiblg points o Feasible outcomes

Pareto front

Pareto optimal set Pareto points
x1 Y1

Fig. 1 Pareto optimal set and Pareto Front

In Figure 1, the thick curve in the decision space is the Pareto optimal set, and the corre-
sponding curve in the objective space is the Pareto front. The solid points in the decision space
are elements of the Pareto optimal set and their objective vectors lie on the Pareto front in the
objective space. Hollow points are some feasible points in the decision space, which are associated
with some feasible outcomes in the objective space.

In general, the Pareto front of a MOO problem can be convex or non-convex and continuous
or discontinuous. Moreover, similar to single-objective optimization, there can be many local
(suboptimal) Pareto fronts.

The complexity of large search spaces and the intricacy of Pareto optimality make it often
difficult or impossible to find an analytical expression for the Pareto front. However, it is possible

4 Qibin Duan, Dirk P. Kroese

to approximate the true Pareto front by sampling points on or close to the true Pareto front
using a randomized algorithm. Such algorithms generally need to yield points that satisfy two
requirements: they need to converge to the Pareto front and have a good diversity across the
Pareto front. A good MOO solver thus should find a set of points that satisfies these two features.

2.2 Splitting methods

The problem of minimizing a complicated continuous or discrete real-valued function f(x), x €
Z is closely related to the efficient estimation of rare-event probabilities of the form P(f(X) < v),
where X is a random element of 27, distributed according to a given probability distribution,
e.g., the uniform pdf on £". This often involves efficient sampling from the v level set {x € 2" :
f(x) < v}. By gradually decreasing -, the level set becomes smaller and smaller until it only
contains elements that lie close to the minimizer of f. For 7 close to the minimum ~*, the event
{f(X) < v*} will be very rare. To find a minimizer x* we could sample a random vector X
conditional on the rare event {f(X) < v*}. This is the philosophy of using rare-event simulation
for optimization.

When «* is known, the estimation can be done using the Generalized Splitting (GS) method
[4] by sampling iteratively from intermediate (increasingly rare) events {f(X) < 7:}, for levels
O=YZ2NZ...2V-1 277 =7""

However, in an optimization setting +* is not known and therefore the sequence {;} needs
to be determined adaptively, which can be one via the Adaptive Multilevel splitting (ADAM)
algorithm, as in [12,2,3]. Having an initial sample set of vectors (often called particles) Xy =
{x e Z : f(x) < v}, the ADAM algorithm executes the following two steps at each iteration
t=0,1,...

(a) Calculate the function value f(x) for each x € X, and sort these from smallest to largest.
Let ;41 be the [Nyo]-th smallest function value, where N is the size of A} and p is a fixed
rarity parameter. Define the elite set 11 = {x € Xy : f(X) < Ye41}-

(b) Split (diversify, enrich) the elite population in £ via some random sampling mechanism, to
create the next population X;y;. Increase t by one and go to Step (a) unless some stopping
condition is met.

The splitting step can be implemented in different ways, e.g., by running a Markov chain
from each of the elite elements. Often the sampling mechanism is such that each element is split
into a fixed number of samples (fixed splitting factor). In other situations it is useful to keep the
total sample size (the number of elements of X;) constant, say N. This is called splitting with
a Fized Effort. One way to “evenly” split N° elite samples into IV new samples is by defining

random splitting factors si,...,Sye ... as follows:
N .
siz{NeJ+Bi, 1=1,...,N°¢ (2)
where By, ..., Bye are identically distributed Bernoulli random variables whose sum is NmodN°.
Figure 2 illustrates how the adaptive splitting method is performed on a typical single-
objective optimization problem in 2-D space. Here, the initial sample set is Xy = {X1,...,X5}.

Suppose we set o = 0.4, that is, 2 samples are selected to form the elite set. In the first iteration,
X and X5 are selected and the function value of X; becomes the first level parameter, ;. From
both of the elite points we run a Markov chain, whose length is determined by Eq. (2), so that
the two elite points are split into a total of five points. From this second generation of five points
the best two points are selected as the new elite points, and the worst function value of these is

Splitting for Multi-objective Optimization 5

takes as the second level parameter, ~. If the procedure is replicated over and over again, the
points will move toward the optimal level set.

2

X3

Fig. 2 Illustration of the ADAM algorithm in 2-D space with a fixed effort.

3 Splitting for Multi-objective Optimization

In this section, we will discuss how to adapt the splitting framework to solve MOO problems.

3.1 Splitting with multiple objectives

For MOO problems, there is not a unique criterion to determine the intermediate levels sequence
and the corresponding level sets. Also, a good solver needs the simulated points to cover the
true Pareto front in a uniform way. This contrasts with single-objective optimization where the
simulated points are required to converge to a single solution only.

Nevertheless, the structure of the MOS algorithm is similar to that of the ADAM algorithm.
Starting from an initial sample set Ay, the MOS algorithm has the following two phases at each
iteration:

(a) Calculate the function values f(x) for each x € &; and select the [N;p] “best” samples as
elite set &1, where N, is the size of A} and p is a fixed rarity parameter.

(b) Split the elite population in & via some random sampling mechanism, to create the next
population Xy y;. Increase t by one and go to Step (a) unless some stopping condition is met.

In single-objective optimization, the elite set is formed by the top-ranking samples, measured
by their function value. In a MOO scenario, the fitness of the samples in a population (and hence
their relative rankings) is measured differently. A common approach, see, e.g., [9], is to express
the fitness of a sample x in terms of (1) the number of samples that it dominates and (2) its

diversity, given by
-1

Z max{gdlsgt(x’y),O} ,

y :dist(x,y)<e

6 Qibin Duan, Dirk P. Kroese

where dist(x,y) is a normalized distance and € > 0 is fixed. A low diversity of x indicates that
all neighboring points lie close to x. The overall ranking could, for example, be determined by
scaling the number of dominated samples by their diversity, favoring both high dominance and
high diversity.

We introduce a new method for the elite set selection that does not involve this type of
scaling. All that is needed is to measure the normalized distance dist(x,y) between each pair
(x,y) of samples in the population. How exactly the elite samples are determined in Step (a)
will be detailed in Section 3.2.

The splitting step (b) is implemented using a similar randomized sampling scheme as in [8].
In particular, to split the elite set, a random-order Gibbs sampler is used to sample from a
multivariate normal distribution for each elite point. The covariance matrix of the sampling dis-
tribution is diagonal with entries that depend on the other elite points. This sampling procedure
has shown to work well in a single-objective setting. However, for multi-objective optimization
we are not interested in finding a single optimal point, but the entire Pareto optimal set. If the
the starting point in the splitting step (b) is already close to the Pareto optimal set and also has
a reasonable diversity, the diagonal entries of the covariance matrix may be much larger than
the distance to the Pareto optimal set. To improve the performance of the splitting algorithm
for the multi-objective case, we will combine it with a local search technique. The details of the
exact sampling strategy are given in Section 3.3.

To further illustrate the workings of the MOS algorithm, consider Figure 3.1, which depicts a
problem with two variables and two objective functions. For simplicity of illustration, the fitness
of a point is only determined by its current dominance-based rank. Non-dominated points in
each generation are selected as elite points. The splitting step is simply implemented by running
a random walk sampler on a continuous state space. However, a new state is only accepted when
it is not dominated by the initial state.

Decision Space Objective Space
T2 Y2
f
f5
X3
f3
X2
°
Pareto optimal set Pareto front
L1 Y1

Fig. 3 Splitting in the decision space and objective space. Initial points are marked with the symbol o. The
symbol e and © are splitting points. Solid lines indicate the first generation of splitting. Dashed lines indicate the
second generation. The ©® points are the non-dominated points found in each generation.

To be specific, x1,x2 and x3 are the initial points in the decision space, and f;,f; and f3
are the corresponding objective vectors in the objective space. From each initial point we run a
Markov chain of length 3, where a new state is accepted with probability 1 if it is not dominated
by its initial state. From the total of 9 splitting points we choose the non-dominated ones (3

Splitting for Multi-objective Optimization 7

© points) as the elite points. These elite points are the starting points of the next iteration,
where again we run Markov chains of length 3 in the same way. We obtain 9 splitting points
and 4 of them are non-dominated. In the second iteration, the size of the elite set becomes 4.
The corresponding evolution of the objective vectors can be observed in the objective space. As
mentioned before, it is possible to keep a fixed sample size by using splitting with a fixed effort.

In addition to the selection of the elites and the specification of the splitting (sampling) step,
it is also of importance to protect the diversity of simulated solutions. In the MOS algorithm, we
use an external archive of fixed size to store good solutions that are found during the execution
of the algorithm. This archive is maintained with a so-called e-dominance method and updated
whenever a good intermediate point is found. The details of the e-dominance method are given
in Section 3.3.

Having discussed the ingredients of the MOS algorithm, it is time to put forward its details,
which are given in Algorithm 1. Basically, after initialization Algorithm 1 has two iterative steps:

1. Evaluate the values of the objective functions for each sample, and choose the elite set via
Algorithm 2.

2. Split the elite set to create the next population using sampling methods given in Algorithm 3
and Algorithm 4, both of which update the archive using Algorithm 5.

Algorithm 1: Multi-objective Splitting (MOS)

Input: Sample size N, rarity parameter p, initial external archive A, local search range vectors
Vo = [v1;...;vn] and global search factor w, global search probability Py, acceptance probability
P.q4, upper bound u and lower bound 1 on the objective functions

Output: Final external archive A.

1 Generate Xy = [x1;...;xy] from the feasible domain 2. Set t = 0 and N® = [Np].
2 Evaluate the objective vectors F; = [fi;...;fn], where f; = f(x;) for each i =1,...,N.
3 while the stopping criterion is not met do
4 Construct the elite set as in Algorithm 2 and output the elite set £;11 and the corresponding
objective vectors ¢, ; and local search range vectors V¢, ;. Let £ be the objective vector
corresponding to x(%)
5 Compute the splitting factors syy1,; for each x(e Ety1 as in Eq.(2), where i =1,..., N°®.
6 fori=1: N° do
7 Let x = x(*) and f = f(9)
8 Select R uniformly from the set {1,..., N°}\ {i} and compute o(*) via Eq.(4).
9 for j=1: St41,i do
10 Let the local search range vector be v = v(9) € Vi, 1 and the indicator vector of improvement
be [I1,...,Ip] =10,...,0].
11 for try = 1 : maxTry do
12 Generate a random order r = [r1,...,7rp]
13 ford=1:D do
14 if Ir, # 0 then break the loop and update rg41
15 Generate a random number U ~ U(0, 1)
16 if U < Py then
17 ‘ [x,f, A, I,,] = GlobalSearch(x,f, o ryq, P.g,A) (Algorithm 3)
18 else
19 L [x,f, A, I,,,v] = LocalSearch(x, f,v,rq, Poq, A) (Algorithm 4)
20 if j > 2 then
21 Compute the distance dist (£, f(”) as in Eq.(3)
22 if dist (f,£()) < v then
23 Set x =14 (u — 1)diag(U), where U ~ U(0,1)?. Let f be the corresponding
L objective vector.
24 Add x to Xgq1, f to Feq1, and v to Vigq.
25 | Sett=t+1

8 Qibin Duan, Dirk P. Kroese

Algorithm 1 takes the following input. The sample size N and rarity parameter ¢ are control
parameters of the splitting step. The size of the elite set N© is determined by N°¢ = [Np]|. At
each iteration the sample set X; is stored as a N x D matrix [x3;...;xy]. The input vector
v; = [v;1,...,0;,p] is the initial local sampling range vector of x; for ¢ = 1,..., N, where v; ;
is the local sampling range of the j-th component of x;, j = 1,..., D. A global search factor w
is controlling the values of the standard deviation vectors of the global sampling distributions.
The vectors u = [uy,...,up| and 1 = [l1,...,Ip] contain, for each dimension, the upper and
lower bounds that any of the objective functions can take. Note that all vectors are row vectors.
The external archive A is used to store good solutions, including both the decision vectors and
the corresponding objective vectors, for example, A = [X1,¥1;X1,¥1;...]. It is initialized by an
empty collection.

In iteration ¢t = 0, the initial sample set X is randomly and uniformly generated from the
feasible domain % . After evaluation of the objective functions for each sample, the decision
variables x; and objective values f; are stored in the external archive A, for ¢ = 1,..., N. The
elite set is selected according to Algorithm 2, where bad points are discarded based on distance
and dominance rank, and the remaining ones are selected. In this implementation, we wish to
use the framework with fixed effort, so the quota of N new samples is evenly allocated amongst
the N€ elite samples.

For running the Markov chains, we use a Gibbs-like sampler, where each component of an
elite sample is updated in a random order. For each component, there are two strategies to search
better for updates: global sampling in Algorithm 3 and local sampling in Algorithm 4. The global
sampling will be used with probability P, and the local sampling with 1—F,, where P, can simply
be set to 0.5. For the global procedure, samples are drawn from a normal distribution specified
by a standard deviation vector that depends on a randomly selected elite point, while for the
local sampling procedure, the sampling range will be fixed, controlled by a local sampling range
vector. The details will be elaborated in Section 3.3. Once good updates have been obtained,
the intermediate (candidate) points will be checked to see if they could be put into the external
archive. This is implemented in Algorithm 5. Finally, if in the Markov chain sampling the second
splitting point is very close to the starting point, then the second point will be replaced with a
random point so as to protect the diversity of the sample.

3.2 Construction of the elite set

The selection of the elite points is a very important ingredient in the MOS method. Its single-
objective counterpart, the SCO algorithm, simply discards the samples with the worst objective
function values and keeps the rest as the elite samples. However, for multi-objective optimization
it is difficult to define the fitness of each individual in a population of points that are not on
the Pareto front. In many multi-objective evolutionary algorithms (MOEA), scaling techniques
are used to sort the individuals in the objective space before selection, based on the number of
samples that are dominated by a solution, or the number of samples that the solution dominates.
The computational order of these method is usually O(N?), where N is number of individuals.
As for diversity preservation, there are various techniques available for MOEAs, including fit-
ness sharing/niching, crowding/clustering, and relaxed dominance. The dominance ranking and
diversity maintenance techniques usually work together to provide a diversity of points that are
approximately uniformly distributed over the real Pareto front.

In the MOS algorithm we did not implement a dominance-based ranking criterion to select
the elite samples, as we found that some points with a bad ranking at the beginning could still

Splitting for Multi-objective Optimization 9

split into points that reached the Pareto optimal set, while initially good ranking points could
prove to be of little value later on. Instead, we introduce a new method of elite set selection.
Specifically, suppose we are given N samples x1,...,xy and their corresponding objective
function vectors fi,...,fx, where f; = [fi1,..., fix], for i = 1,...,N. We then evaluate the
normalized Euclidean distance between each pair of solutions in the objective space as follows:

K . 9
M (i,) = dist(f, £;) := Z(fkfm> "

fmax,k - fmin,k’

k=1
where fmax,k = mMaX;=1,...,.N fi,k and fmin,k = Inini:l,...,N fi,k, 1=]-7 .- ~7N - 17.7 =i+ 17 B aN
and k =1,..., K. All other entries are set to 0, so that matrix M is upper-triangular.

From matrix M we first find the pair of solutions x; and x; whose corresponding objective
vectors f; and f; have a distance smaller than any of the other pairs. We then compare the
dominance relation between them. If one is dominated by another, then we discard the dominated
one. If they do not dominate each other, then we randomly discard one. Next, we take the pair
with the second shortest distance and repeat the procedure, and keep doing so until certain
proportion of solutions are discarded. Finally, we set threshold ~; as the distance between the
last compared pair. Note that +; is therefore a completely different level threshold than in the
single-objective SCO algorithm. It is primarily used to measure the crowdedness of consecutive
points in the splitting step. The details are described in Algorithm 2.

Algorithm 2: Construction of the elite set &4

Input: The tth population X and the corresponding set of objective vectors Fi
Output: The elite set £¢41, the corresponding set of objective vectors]—'te+1, the local sampling ranges
V¢, 1, and the distance threshold ~v¢41

1 Compute the distance matrix M as in Eq.(3)
2 Set the initial row index as I, = {1,..., N — 1}, and the column index as I = {i+1,..., N} for each i € L.
3 fork=1:|N(1—p)] do
4 Find the subscript (i,7) = argmin(; jyer, 1, M (4, j) and set ve41 = M (4, 5)
5 Compare the dominance between x; and x;
6 if f; <f; orf; <f; then
7 ‘ Discard the dominated one
8 else
9 L Randomly choose one
10 Let r denoted the index of the discarded point
11 | Ir =L \{r} and I. = L.\ {r}
12 Let I = I, UI; be the index of elements in X; to be selected in elite set & 1. Identify]-'fjL1 and Vf+1.

By using Algorithm 2 to form the elite sets, we maintain a high diversity of objective values
in the objective space.

3.3 Sampling strategies

This section describes how an elite point x(*) is randomly “split” into multiple points. Following
[8], the idea is to split the initial point by updating only one of its components each time, using
a multivariate normal distribution with mean vector p* = x(") and diagonal covariance matrix

10 Qibin Duan, Dirk P. Kroese

diag((a(?)2), where the vector of standard deviations o(*) is defined as follows:

|=’E1- T
. . R |1.(i) 7x(R)‘
o) = w|x® —xB)] .= | "2 2 i=1,...,N¢, (4)
|:17£f) :U%R)\

where w is a scale factor, and x is a uniformly selected elite point other than x(*). As shown in
numerical experiments, the SCO algorithm in [8] for single-objective optimization converges to a
global optimum very efficiently and accurately, as a result of good balance between exploration
and exploitation. Note that the sampling distribution for each elite point is randomly determined
by the other elite points, such that it can guarantee that the mixture sampling distributions of
all elite points cover the whole level set. If the corresponding standard deviation is relatively
small, the algorithm samples locally, whereas a large standard deviation increases the chance of
sampling globally. As the level set is shrinking, the standard deviations will decrease as well.
This makes it easy to find the optimum in a region that contains the global optimum.

For multi-objective optimization, the above sampling strategy needs to be modified, because
the algorithm usually keeps the solutions with larger distances when constructing the elite set in
Algorithm 2. As a result, the standard deviations of sampling distributions are always relatively
large and a local search cannot be achieved adequately.

Therefore, in the MOS algorithm, we combine the above “global” Gibbs sampling strategy of
[8] with the “local” LS1 strategy in [20], where sampling is performed via a uniform distribution.
Algorithm 3 describes how the dth component of a current decision vector x = [x1,...,2zp] is
updated for the global strategy. The trial (proposal) vector X is initialized as X = x. Then, the
dth component of X is updated by setting

Ta=za+0VZ, Z~N(©,1), (5)

where O'((ii)

is the dth component of o(?) and ¢ is computed according to Eq.(4). With some
abuse of notation, let f = f(x) and f = f(X). If f < f, then X is accepted as an intermediate
point. If f and f do not dominate each other, then the X has a probability Peq (“ed” stands for

“equal dominance) to be accepted as the next point.

Algorithm 3: The dth component is sampled from a Gaussian distribution

1 function GlobalSearch(x,f,o,d, P.q, A)
2 Set x=x,f=f,and Iy =0
3 Update the dth component of X: set Tg = x4 + 047, where Z ~ N(0, 1)
4 if T4 <lq or Tq > ug then
5 ‘ Tqg=1q+ U (uqg —lg), where U ~ U(0,1)
[Evaluate the new objective vector f and check the dominance between x and X
7 if T < f then
8 Add [x, f] to A, and update A based on Algorithm 5
9 Setx=%,f="f and Iy =1
10 else if f and f do not dominate each other then
11 Add [x, f] to A, and update A based on Algorithm 5
12 Draw U ~ U(0,1)
13 if U < P.q then setx:i,f:?andldzl
14 return x,f, A I

Algorithm 4 is used to update the dth component of a decision vector x in a different, more
localized, manner. Instead of using a normal distribution as in Algorithm 3, here we use a

Splitting for Multi-objective Optimization 11

uniform distribution to sample updates. Vector v = [v1,...,vp] is to control the parameters of
the uniform distributions (one for each component), where each v4 can be negative or positive. If
vg > 0, the sampling distribution is U(x4, 24 + vgq); otherwise, it is U(z4 + vg4, 24). The candidate
solutions are accepted in the same way as in Algorithm 3; that is, better solutions in terms of
dominance are always accepted, and equally good solutions are accepted with probability Peq. If
the candidate solution is dominated by the current one, the sampling region will shrink a little
(by a factor of 0.8 in the algorithm, unless |vg| is very small, when it will be reinitialized with
vg = 0.4 X (ug —lg)) and go to its negative side.

Algorithm 4: The dth component is sampled from a Uniform distribution

1 function LocalSearch(x,f,v,d, P.q, A)
2 Set?{:x?:f,and]dzo
3 Update the dth component of Z: set Tg = x4 + vqU, U ~ U(0, 1)
4 if Ty <lg or Ty > uq then
5 ‘ Tg=lg+ (uqg—1q)U, U ~U(0,1)
6 Evaluate the new objective vector f and check the dominance between x and X
7 if f < f then
8 Add [i,;‘] into A, and update A based on Algorithm 5
9 Setx:i,f:?and[dzl
10 else if f(X) and f(x) do not dominate each other then
11 Add [i,?‘] into A, and update A based on Algorithm 5
12 Draw U ~ U(0,1)
13 ifU<Pedthensetx:§d,f:?and[dzl
14 else
15 Set vg = —0.8 X vq
16 | if Jug| < 1078 then set vg = 0.4 X (uq — lg)
17 return x,f, A, I, v

3.4 Archive update

The MOS algorithm is using a fixed-size external archive to store the good solutions, and we use
the e-dominance method to maintain the archive. The method has been introduced in [17]. Gen-
erally, in the e-dominance method, each dimension of the objective space is sliced into intervals
of size . When a new candidate comes into the external archive, the first thing to be done is to
identify to which box (K-dimensional hypercube) it belongs. If the box is empty and not domi-
nated by other non-empty boxes, then this candidate is put into the external archive. Dominance
between boxes is similar to dominance between vectors. For example, in two dimensions, the box
(2¢,2¢) dominates the boxes (2¢,3¢) and (3¢, 2¢). If the box of the new candidate is dominated
by some non-empty boxes, then reject it. If the box is not dominated by others and is non-empty,
and if the candidate is closer to the left corner, then accept it to replace the worst candidate of
that box; otherwise, reject it. The details are as in Algorithm 5. For more information about the
e-dominance method, we refer to [17,11].

12 Qibin Duan, Dirk P. Kroese

Algorithm 5: Archive update using the e-dominance method

Input: An e-grid on the objective space, external archive A, a new solution x’ and its objective vector f’
Output: A

1 Identify the box b’ that contains f’
2 if The box b is empty then
3 Check the dominance between box b’ and other non-empty boxes
4 if box V' is dominated by other non-empty bozes then
5 | Reject b’ and eliminate box b from the grid
6 else
7 L Accept x’ and f’, and eliminate the dominated non-empty boxes and the members insides
8 else
9 Check the dominance between x’ and other solutions in box b’
10 if one solution is dominated by another in the box then
11 ‘ Reject the dominated one
12 else
13 L Keep the closest one to the left corner and remove other one

4 Numerical Experiments
4.1 Benchmarks and metrics

The CEC’09 benchmark has introduced a set of complex test problems with and without con-
straints for MOO competition. They are frequently used to assess the performance of MOO
algorithms. In this paper, we use the ten unconstrained problems from the CEC09 test suite to
evaluate the performance of the MOS algorithm. Among the ten problems, UF1-UF7 have two
objectives and UF8-UF10 have three objectives. All the problems have 30 decision variables. The
complete set of benchmark problems can be found in [24].

To assess the performance, we use the Inverted Generational Distance (IGD) value to measure
the average Euclidean distance between the true Pareto front and the results obtained by MOS
algorithm. Let 75?:* be a set of uniformly distributed points along the true Pareto front PF* in
the objective space (which is known for this competition), and let PF’ be the set of approximate
points produced by MOO solvers. The IGD is defined as

Zpeﬁ?‘* d(p, PF')

IGD(PF,PF)= -
|PF |

(6)

where d (p7 PF ’) is the Euclidean distance between the vector p and its nearest point in the set
PF.

The IGD metric has been used in the CEC’09 competition, so using IGD to measure perfor-
mance of MOS algorithm allows us to compare with other methods easily.

4.2 Experiments and comparison

The numerical experiments will be run for two settings. The first setting is the same as in the
CEC’09 competition, where the maximum number of function evaluations is 300,000. The perfor-
mance is compared with methods in [1,23,13,20,16,15]. The second setting is the same as that
used in [18]. That is, the maximum number of function evaluations for two and three-objective
problems are 50,000 and 150,000 respectively. Moreover, the MOS algorithm is compared with
state-of-the-art modifications of some famous methods, e.g., [7,22,14].

Splitting for Multi-objective Optimization 13

The experiments have been coded in MATLAB R2014b, and were conducted on a desktop
personal computer with Intel(R) Core(TM) i7-4970 CPU @3.60GHz. Each experiment was inde-
pendently repeated 30 times, and the average IGD value was reported. The control parameters
of the MOS algorithm were set as follows: sample size N = 100, rarity parameter o = 0.9, global
search factor w = 1, and local search range vectors V = [vy;...;vy], where v; = [v;1,...,0; D]
and v; ; =04 x (u; — ;) for i =1,...,N and j = 1,...,D. The u; and [; are the upper and
lower bounds of the j-th component.

The results for the compared methods were obtained from two key references [18,1], which
are summarized in Tables 1 and 2 respectively. The best performances are shaded with gray
and the top three performances are written in bold.

4.2.1 Experimental setting 1

In this setting, all methods have a maximum of 300,00 function evaluations. In Table 1, the
IGD results of the MOS algorithm are shown in the first column, averaged over 30 independent
runs. The other results in Table 1 were taken from [1]. The maximum number of non-dominated
points used to calculate IGD value is 100 for seven two-objective problems and 150 for three
three-objective problems. In the CEC’09 competition, the best 5 algorithms on a final ranking of
the unconstrained problems are MOEA /D [23], MTS [20], DMOEADD [16], Liuli [15] and GDE3
[13], all of which are included in our comparison. We also include MOABC [1] since it performs
well on the test functions and can beat other algorithms on some problems.

Table 1: Mean of the IGD values over 30 runs

Function MOS MOEA/D GDE3 MTS DMOEADD Liuli Alg MOABC
UF1 0.00574 0.00435 0.00534 0.00646 0.01038 0.00785 0.00618
UF2 0.00605 0.00679 0.01195 0.00615 0.00679 0.01230 0.00484
UF3 0.05096 0.00742 0.10639 0.05310 0.03337 0.01497 0.05120
UF4 0.04280 0.06385 0.02650 0.02356 0.04268 0.04350 0.05801
UF5 0.06904 0.18071 0.03928 0.01489 0.31454 0.16186 0.07775
UF6 0.03602 0.00587 0.25091 0.05917 0.06673 0.17555 0.06537
UF7 0.00889 0.00444 0.02522 0.04079 0.01032 0.00730 0.05573
UF8 0.05491 0.05840 0.24855 0.11251 0.06841 0.08235 0.06726
UF9 0.03371 0.07896 0.08248 0.11442 0.04896 0.09391 0.06150
UF10 0.12310 0.47415 0.43326 0.15306 0.32211 0.44691 0.19499

As shown in Table 1, MOEA /D produces the best results for four problems, i.e., UF1, UF3,
UF6 and UF7, while MOS outperform the other methods on three problems, i.e., UF8, UF9 and
UF10. The MTS algorithm performs best on UF4 and UF5, and MOABC gives the best results
for UF2. Note that the MOS algorithm was ranked in the top three for nine of ten problems.
By comparison, the MOEA /D, MOABC and MTS algorithms performed as one of the top three
algorithms for five of the ten problems. The GDE3, DMOEADD and Liuli algorithms performed
less well. Overall, in terms of IGD value, the MOS algorithm was competitive with, and sometimes
improved on, the popular MOEA /D and MTS algorithms.

Tt is interesting to see that for all the three-objectives problems (UF8, UF9 and UF10) MOS
obtained the best results. A possible reason could be that MOS uses a Gibbs-like sampler in
the search scheme, which is particularly suitable for these three problems. And the good balance
between exploration and exploitation in the sampling of the MOS algorithm makes it more
successful than, for example, MOABC, which also updates the samples in a component-by-
component manner.

14 Qibin Duan, Dirk P. Kroese

4.2.2 Experimental setting 2

In this setting, the maximum number of function evaluations is 50,000 for the two-objective
problems and 150,000 for the three-objective functions. Since [18] did not specify the maximum
size of non-dominated set that was used to calculate IGD values, we keep here the same number
of non-dominated points as in previous experiments. The results are summarized in Table 2.
The means and standard deviations of the IGD values of the MOS algorithm are based on 30
independent replications, while all other data are extracted from [18].

Table 2: Mean and standard deviation of the IGD values over 30 runs

MOS NSGAIl MOEA/D NSGA-II NSGA-II(S) MOEA/D MOEA/D
Function ACGDE ACGDE DE SBX DE SBX
mean(std) mean(std) mean(std) mean(std) mean(std) mean(std) mean(std)
UF1 0.0226 0.0528 0.0448 0.0603 0.1230 0.0475 0.1568
(0.0026) (0.0148) (0.0155) (0.0318) (0.0318) (0.0372) (0.0652)
UF2 0.0139 0.0205 0.0195 0.0429 0.0481 0.0426 0.0640
(0.0015) (0.0027) (0.0039) (0.0047) (0.0125) (0.0316) (0.0310)
UF3 0.1521 0.0947 0.1306 0.1515 0.2179 0.1513 0.3064
(0.0213) (0.0139) (0.0398) (0.0271) (0.0666) (0.0688) (0.0300)
UF4 0.0580 0.0410 0.0436 0.0723 0.0533 0.0866 0.0560
(0.0026) (0.0003) (0.0014) (0.0078) (0.0018) (0.0104) (0.0034)
UF5 0.4053 0.2870 0.4654 0.8494 0.3257 0.7643 0.4318
(0.0543) (0.0932) (0.0974) (0.1698) (0.0943) (0.1307) (0.0812)
UF6 0.2604 0.1576 0.2893 0.4181 0.2302 0.4386 0.4374
(0.0351) (0.0849) (0.1694) (0.0819) (0.0680) (0.2206) (0.1509)
UF7 0.0507 0.0262 0.0521 0.0437 0.2359 0.1018 0.3536
(0.0245) (0.0071) (0.0882) (0.0422) (0.1447) (0.1648) (0.1552)
UF8 0.0691 0.1383 0.1045 0.1520 0.2194 0.0911 0.148
(0.0063) (0.0420) (0.0112) (0.0300) (0.0098) (0.0124) (0.0358)
UF9 0.0424 0.1776 0.076 0.1938 0.1635 0.1065 0.134
(0.0056) (0.1091) (0.0401) (0.0646) (0.0491) (0.0452) (0.0624)
UF10 0.1900 0.6440 0.2481 2.4308 0.3236 0.5826 0.2937
(0.0188) (0.2715) (0.066) (0.1848) (0.0703) (0.0716) (0.1304)

As indicated in Table 2, both MOS and NSGA-IT with ACGDE performed best in five out
of ten problems. In eight cases MOS was ranked in the top three. In comparison, NSGA-II was
in the top three in six cases and MOEA/D with ACGDE in seven cases. The other algorithms
performed less well.

In this experimental setting, despite the fact that the performance of MOEA /D improved by
combining it with the ACGDE operator, the MOS algorithms surprisingly outperformed other
methods on problems UF1 and UF2. The conclusion is that MOS reaches a good solution sooner
(with fewer iterations). However, after analyzing the evolution of the level sets in the MOS
algorithm, we found that after certain iterations the improvement of the level sets became very
minor. That is, few of new non-dominated points were found by increasing the function evaluation
number. Therefore, after a certain number of function evaluations, MOEA /D will exceed MOS (if
given enough function evaluations). On the problems UF8, UF9 and UF10, the MOS algorithm
was still the best one among these methods.

5 Conclusion

In this paper, we have put forward a novel multi-objective splitting (MOS) method. The perfor-
mance of MOS depends on several control parameters, which are very easy to tune. The local

Splitting for Multi-objective Optimization 15

search range vector could always be initialized with 40% of the feasible region for each dimen-
sion. The global search factor (w) can be set to 1 for multi-objective optimization problems. The
sample size and rarity parameter should be adjusted correspondingly; for example, if the rarity
parameter is small, then sample size should be relatively large. The grid size € for the external
archive is also of importance for controlling the diversity of the non-dominated solutions found.
Through a set of popular benchmark problems, MOS has been compared with some famous and
successful methods, and was shown to produce competitive and sometimes superior results.

Beside the numerical performance, more properties of MOS need to be studied in future work.
For example, given a sufficient number of function evaluations, what is the convergence behaviour
of the MOS algorithm? Also, the time and space complexities are interesting to analyze. A future
study aims to investigate more closely the probabilistic reasons why MOS performs so well under
certain conditions.

Acknowledgement

This work was supported by the Australian Research Council Centre of Excellence for Mathe-
matical and Statistical Frontiers, under grant number CE140100049. Qibin Duan would also like
to acknowledge the support from the University of Queensland through the UQ International
Scholarships scheme.

References

1. R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh. A multi-objective artificial bee colony algo-
rithm. Swarm and Evolutionary Computation, 2:39-52, 2012.

2. Z.1. Botev. The Generalized Splitting Method for Combinatorial Counting and Static Rare-Event Probability
Estimation. PhD thesis, The Unverisity of Queensland, 2009.

3. Z. 1. Botev and D. P. Kroese. An efficient algorithm for rare-event probability estimation, combinatorial
optimization, and counting. Methodology and Computing in Applied Probability, 10(4):471-505, 2008.

4. Z. 1. Botev and D. P. Kroese. Efficient monte carlo simulation via the generalized splitting method. Statistics
and Computing, 1(1-16), 2012.

5. C. A. C. Coello and M. S. Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1051-1056, 2002.

6. C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary algorithms for solving multi-objective
problems, volume 242. Springer, 2002.

7. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE transactions on evolutionary computation, 6(2):182-197, 2002.

8. Q. Duan and D. P. Kroese. Splitting for optimization. Computers & Operations Research, 73:119-131, 2016.

9. C. M. Fonseca and P. J. Fleming. Multiobjective genetic algorithms. In Genetic algorithms for control
systems engineering, IEE colloquium on, pages 6—1. IET, 1993.

10. J. D Knowles and D. W Corne. The Pareto archived evolution strategy: A new baseline algorithm for pareto
multiobjective optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1,
1999.

11. J. D Knowles and D. W. Corne. Approximating the nondominated front using the Pareto archived evolution
strategy. Fwvolutionary computation, 8(2):149-172, 2000.

12. D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John Wiley & Sons, New York,
2011.

13. S. Kukkonen and J. Lampinen. GDE3: The third evolution step of generalized differential evolution. In
Proceedings of the IEEE Congress on FEvolutionary Computation, volume 1, pages 443—450, 2005.

14. H. Li and Q. Zhang. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and
NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2):284-302, 2009.

15. H. Liu and X. Li. The multiobjective evolutionary algorithm based on determined weight and sub-regional
search. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1928-1934, 2009.

16. M. Liu, X. Zou, Y. Chen, and Z. Wu. Performance assessment of DMOEA-DD with CEC 2009 MOEA
competition test instances. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1,
pages 2913-2918, 2009.

16

Qibin Duan, Dirk P. Kroese

17.

18.

19.

20.

21.

22.

23.

24.

25.

S. Mishra, K. Deb, and M. Mohan. Evaluating the -domination based multi-objective evolutionary algorithm
for a quick computation of Pareto-optimal solutions. Fvolutionary Computation, 13(4):501-526, 2005.

X. Qiu, J. Xu, K. C. Tan, and H. A. Abbass. Adaptive cross-generation differential evolution operators for
multiobjective optimization. IEEE Transactions on Evolutionary Computation, 20(2):232-244, 2016.

R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John Wiley & Sons, third
edition, 2017.

L. Tseng and C. Chen. Multiple trajectory search for unconstrained/constrained multi-objective optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1951-1958, 2009.

A. Unveren and A. Acan. Multi-objective optimization with cross entropy method: Stochastic learning with
clustered Pareto fronts. In Proceedings of the IEEE Congress on Fvolutionary Computation, pages 3065-3071,
2007.

Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE
Transactions on evolutionary computation, 11(6):712-731, 2007.

Q. Zhang, W. Liu, and H. Li. The performance of a new version of MOEA /D on cec09 unconstrained MOP
test instances. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 203—208,
2009.

Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari. Multiobjective optimization test in-
stances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang
technological University, Singapore, special session on performance assessment of multi-objective optimiza-
tion algorithms, technical report, 264, 2008.

A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, and Q. Zhang. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation, 1(1):32-49, 2011.

