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Abstract. A parametric stochastic model of the morphology of thin poly-

mer:fullerene films is developed. This model uses a number of tools from stochastic

geometry and spatial statistics. The fullerene-rich phase is represented by random

closed sets and the polymer-rich phase is given by their complement. The model has

three stages. First, a point pattern is used to model the locations of fullerene-rich

domains. Second, domains are formed at these points. Third, the domains are re-

arranged to ensure a realistic configuration. The model is fitted to polymer:fullerene

films produced using seven different spin coating velocities and validated using a vari-

ety of morphological characteristics. The model is then used to simulate morphologies

corresponding to spin velocities for which no empirical data exists. The viability of

this approach is demonstrated using cross-validation.
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1. Introduction

Organic electronic devices have a number of attractive properties. They are cheap to

produce and are also very flexible, which means they have a large number of potential

applications; see, e.g., [1–4]. As a result, they have been the subject of considerable

research. One of the barriers to developing a full understanding of organic electronic

devices is that they can have highly irregular morphologies, which play a large role

in determining their functional properties, such as charge generation and transport

properties; see, e.g., [5] and [6]. Thus, in order to better understand and improve

the performance of organic electronic devices, it is clearly desirable to carry out detailed

empirical investigations of the relationship between processing parameters and the key

morphological characteristics of the organic layer, which in turn relates to the device

performance. It is also desirable to predict morphology and device performance from

processing parameters directly. This is very difficult, however, as it is expensive and

time consuming to obtain detailed data about material microstructures experimentally.

Stochastic modeling is a solution to the problem of generating sufficient data about

material microstructures. It has been successfully used to investigate relationships

between microstructure characteristics and functionality in a large number of settings;

see, e.g., [7–9]. The idea is to develop a parametric stochastic model that describes key

features of the microstructure of interest and that can be easily fitted to microstructure

data obtained experimentally. The stochastic model can then be used to generate

additional realizations of these microstructures. It is often possible to derive relatively

simple empirical relationships between model parameters and processing parameters.

Then, the parameters of the stochastic model can be systematically varied to produce

realizations of material microstructures produced under different production settings.

This allows microstructures to be generated even when the corresponding material

has not (yet) been physically produced. It is then possible to search for optimal

constellations of production parameters, a procedure called virtual materials design.

In this paper, we develop a stochastic model for the simulation of the morphologies

of thin polymer:fullerene films, which are composed of fullerene-rich domains in a

polymer-rich matrix. The films are produced using spin coating and the spin coating

velocity has a significant influence on the microstructure. We fit the stochastic model to

image data from real samples produced under seven different scenarios, corresponding

to seven different choices of spin coating velocities. The stochastic model uses a point

process to model the midpoints of fullerene-rich domains. The domains themselves are

represented by unions of circles with random radii.

Having developed and verified the model, we then derive empirical relationships

between model parameters and spin velocity, which is a key production parameter.

Using these relationships, we demonstrate that our model can be used to create virtual

thin-film morphologies. That is, morphologies corresponding to spin velocities for which

we have no empirical data. We verify the effectiveness of this approach using cross-

validation.
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The paper is organized as follows. We describe the material and the empirical

data sets in Section 2. We then develop the stochastic model in Section 3 and carry

out validation of the model in Section 4. Finally we describe the process by which we

generate virtual materials, and verify the output using cross-validation, in Section 5.

2. Description of material, imaging technique and binarization

The polymer:fullerene devices considered in this paper are composed of thin-films of a

blend of two materials. The films are produced using spin coating. In this process, a

polymer is mixed with a fullerene derivative in a common solvent, applied on a substrate,

and spun at a certain rate during which the solvent evaporates. At a late stage of

drying, the initial homogenous mix of solvent, polymer, and fullerene splits via spinodal

demixing into two separate liquid phases. The first is a continuous, polymer-rich phase

and the second phase an almost pure solution of the fullerene derivative. The two phases

remain until the film has dried, resulting in droplet-shaped domains of the fullerene

derivative in a polymer-rich continuous matrix. The size of these fullerene-rich domains

is highly dependent on the spin coating velocity because the solvent evaporation rate

changes with spin speed. The size of the domains formed during spin coating originates

primarily from two effects. One is the characteristic length scale of spinodal demixing

and the second is the subsequent growth of the domains by diffusion of fullerene until

the film solidifies. For the material considered in this paper, cross-sectional transmission

electron microscopy (TEM) images show that the droplet-like fullerene-rich domains

extend through the whole film thickness, surrounded only by a thin polymer skin-layer,

see [10]. Therefore, the most important morphological characteristics are contained in

the 2-dimensional TEM images shown in Figure 1. This is why, in practice, each film

can be considered as a single layer of fullerene-rich domains, which we call ‘particles’ in

the following. For more information about polymer:fullerene blends, spin coating and

phase separation; see, e.g., [10] and [11].

In this paper, the data sets we work with are images of thin films that consist of the

polymer diketopyrrolopyrrole-quinquethiophene copolymer (PDPP5T) and the fullerene

derivative [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) in a 1:2 weight ratio.

Chloroform is used as a solvent. We consider thin films produced under seven different

spin coating velocities, v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm,

v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm. In order to ensure that the data is

representative, six different images were taken from different locations in one sample for

each spin velocity. The resulting data sets are in the form of 2-dimensional gray scale

images. The resolution of these images is 1024 × 1024 pixels. Each pixel corresponds

to an area of approximately 11.75 nm2. The imaging was done using low-magnification

TEM on a Tecnai G2 Sphera TEM (FEI), which was operated at 200 kV. Figure 1 shows

one image for each spin velocity.

In order to model the fullerene-rich domains, we first identify their positions and

sizes. The image data is binarized using the Fiji software package [12]. A Gaussian
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Figure 1: Experimental data sets. The darker areas represent the PCBM-rich domains and the brighter areas represent
the polymer-rich matrix. Spin coating velocities from top left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm,
v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm. The depicted area is 3.51 × 3.51µm. The thin dark
lines that can be discerned in some of the images and that seem to connect the PCBM clusters originate from height
variations that occur at the bottom side of the film, possibly as a consequence of dewetting. The lines continue over the
PCBM domains and are not related to the droplet formation as they can also be seen in films of pure polymer.

blur filter with standard deviation 3 is applied two times; see [13] for more information.

Then, a global threshold for binarization is found using a modification of the isodata

algorithm, where an iterative procedure is used to obtain the optimal threshold; see,

e.g., [14]. The binarized data sets are displayed in Figure 2. The particles are then

extracted via cluster detection using the Hoshen-Kopelman algorithm; see [15]. The

location of each particle is given by its center of gravity and the size of each particle

is measured by the number of pixels in the corresponding cluster. Figure 3 shows the

centers of gravity of the particles shown in Figures 1 and 2.

3. Stochastic modeling approach

Our model of the polymer:fullerene films is two-dimensional, as we assume that the

particles exist in a single layer. Because the model is only composed of two phases,

it is sufficient to model one of the phases. We model the fullerene-rich domains in a

bounded window, W ⊂ R2, with the complement representing the polymer-rich matrix.

We represent the fullerene-rich domains as either single circles or unions of two equally

sized circles. Each circle is described by a midpoint and a radius. Thus, the final output

of our model is of the form {(Si, Ri)} ∪ {(S(1)
j , R

′
j) ∪ (S

(2)
j , R

′
j)}, where the {Sj}, {S(1)

j }
and {S(2)

j } are the circle midpoints and the {Ri} and {R′
j} are the circle radii.

Our model has three stages. We first model the particle locations using a planar

random point process; see Section 3.1. Having modeled the particle locations, we then

assign a preliminary size to each particle. The particle sizes depend on the distances

between neighboring particle midpoints. Based on the particle sizes and locations, we
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Figure 2: The binarized images corresponding to the images in Figure 1. White represents the fullerene-rich domains
and black represents the polymer-rich matrix. Spin coating velocities from top left to bottom right: v1 = 500rpm,
v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm. The depicted area is
3.51× 3.51µm.

Figure 3: The centers of gravity of the particles shown in Figures 1 and 2. Spin coating velocities from top left to bottom
right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm. The
depicted area is 3.51× 3.51µm.

assign shapes to each particle. This may require changing the sizes of some particles.

The procedure for generating the particle sizes and shapes is described in Section 3.2.

Our procedure results in a configuration of particles that may overlap slightly. As we do

not wish to allow overlapping particles, we then run an algorithm to iteratively change

the configuration until no overlaps occur. This is described in Section 3.3.
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3.1. Modeling the particle locations

Figure 3 shows the particle locations in seven of the experimental data sets, each

corresponding to a different spin velocity. Note that there is a minimum distance

between the points. This is because the particles cannot overlap. However, the distances

between points vary considerably, as the particle sizes are not constant. The range of

distances between particles also changes with the spin velocity. Note that the points are

quite regular (that is, they are spread fairly evenly through space).

3.1.1. Hardcore point process with random radii

We use a hardcore point process with random radii to model the particle centers.

This ensures that there is a minimal distance between neighboring points, but allows

this distance to fluctuate. Our construction uses a generalization of a Matérn type II

hardcore process in R2; see, e.g., [16]. We take a homogeneous Poisson process, {S̃j}, in

R2 with intensity λ > 0. We then delete points as follows. Each point in {S̃j} is marked

with two independent and identically distributed (iid) marks: a random non-negative

hardcore radius, H̃j, and an ‘arrival time’, Ũj, which is uniformly distributed on the

interval (0, 1). This results in a process P̃ = {(S̃j, H̃j, Ũj)}. A point, S̃j, is regarded as

too close to another point and, thus, deleted if

‖S̃j − S̃k‖ < max{H̃j, H̃k} and Ũj > Ũk for some (S̃k, H̃k, Ũk) ∈ P̃ ,

where ‖ · ‖ is the Euclidean norm in R2. If we consider the points remaining in

P̃ after thinning, and record only their locations and radii, we have a new process,

P = {(Si, Hi)}. We can think of this, equivalently, as a random collection of circles in

R2.

Because P is made by thinning a Poisson process, it is not regular enough for our

purposes. In particular, it is possible that large regions of space will not have any

points in them. We correct for this by iteratively adding points to a replicate of P as

follows. We consider a sequence of independent replicates of P , {P (n)}∞n=1, restricted to

a bounded simulation window W̃ ⊂ R2, that is considerably larger than W , the final

sampling window. The radii, {Hj}, of the {P (n)} are normally distributed with mean µH
and variance σ2

H . Because the distances between particles are non-negative and because

we want to avoid edge effects caused by very large particles outside W , the radii are

truncated to the interval (0, 2µH). We begin by placing all the points from P (1) in the

final point pattern. That is, we set P fin = P (1). We then add points from P (2) to P fin

in order to fill up the empty space. In order to preserve the hardcore properties of P fin,

we only add a point, (Sj, Hj) ∈ P (2), to P fin if

‖Sj − Si‖ > max{Hj, Hi} for all (Si, Hi) ∈ P fin. (1)

We proceed to add points from P (3) to P fin so long as they satisfy condition (1). We

continue in this manner, adding points from the {P (n)}, until 99.9% of the simulation
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window W̃ is covered by the circles defined by the locations and radii of the points in

P fin. Finally, we take the locations of the points in P fin, {Si}, as the particle loctions.

This process is illustrated in Figure 4.

(a) Left: The first point pattern is generated. Center: The second point pattern is generated and each point is checked
to make sure that it satisfies (1). The points to be added are shown in blue and those that will not are shown in red.
Right: The point pattern after the points are added.

(b) Left: This procedure is continued many times. Center: We stop adding points when 99.9% of the simulation window
is covered by circles. Right: The center points of the circles are kept as the particle locations.

Figure 4: An illustration of the iterative approach to generating the particle locations.

3.1.2. Fitting the particle location model

Our model for the particle locations has three parameters, µH , σ
2
H and λ. The

intensity λ of the Poisson process used to build the hardcore processes does not

noticeably influence the final output of the model, so we set it rather arbitrarily

to λ = 5/ν2(W ), where ν2 is the two-dimensional Lebesgue measure. In order to

estimate µH and σ2
H , which do play key roles, we consider the relationship between

these parameters and the nearest neighbor distances within the resulting point pattern.

More precisely, for each Si in {Si}, we define the nearest neighbor distance

Ni = min
j 6=i
‖Si − Sj‖.

There is clearly a close relationship between the nearest neighbor distances and the

values of µH and σ2
H used to generate the points. In particular, a large µH should result
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in a large expected value of Ni and a large value of σ2
H should result in a large variance

for Ni.

We observe nearest neighbor distances in the empirical data rather than µH and

σ2
H . More precisely, after appropriate edge correction, we observe {ni}, a realization of

{Ni} in a subset of W . We wish to use information from {ni} to estimate µH and σ2
H .

It turns out that both µH and σ2
H are well estimated by affine combinations of n̄, the

empirical mean of the {ni} and s2
n, the empirical variance of the {ni}. That is,

(µH , σ
2
H)ᵀ ≈ A · (n̄, s2

n)ᵀ + (b1, b2)ᵀ,

where A ∈ R2×2. As we do not know the values of µH and σ2
H for the empirical data,

we instead use synthetic data to estimate A. That is, we simulate 100 realizations

of our model (and, thus, 100 realizations of {Ni}), for every combination of µH ∈
{40, 50, . . . , 100} and σ2

H ∈ {60, 70, . . . , 210}. For each of these realizations we calculate

n̄ and s2
n. Figure 5, left, shows a linearly interpolated plot of the µH values corresponding

to the observed values of n̄ and s2
n. Figure 5, right, shows a linearly interpolated plot of

the σ2
H values corresponding to the observed values of n̄ and s2

n. Clearly, both µH and

σ2
H are well represented by a linear model depending on n̄ and s2

n. We estimate A and

(b1, b2)ᵀ using least squares, resulting in an equation of the form(
µ̂H
σ̂2
H

)
=

(
0.8001 0.0525

−0.6151 1.2531

)(
n̄

s2
n

)
+

(
5.9554

27.9910

)
.

The estimated equations give good fits to the data, with an adjusted r2 of 0.9989 for

the equation describing µH and an adjusted r2 of 0.9209 for the equation describing σ2
H ,

where r2 is the coefficient of determination, with values close to 1 indicating a good fit

of the regression model. Table 1 shows estimates of the parameters µH and σ2
H for the

different spin velocities.

Figure 5: Left: A linearly interpolated plot of the µH values corresponding to the observed values of n̄ and s2n. Right:
A linearly interpolated plot of the σ2

H values corresponding to the observed values of n̄ and s2n.
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Table 1: Estimated hardcore radius parameters µ̂H and σ̂2
H for the different spin velocities.

500rpm 750rpm 1000rpm 1500rpm 2000rpm 3000rpm 4000rpm

µ̂H 85.48 75.03 68.32 62.16 57.26 50.92 49.25

σ̂2
H 221.78 169.69 133.45 107.82 90.07 73.12 77.79

3.2. Modeling the size and shape of the particles

A distinctive feature of the data sets shown in Figures 1 and 2 is that all the particles

seem to be well represented either by a single circle or by the union of two circles. This

suggests that the particle shapes can be modeled by circles and unions of circles.

The locations of the particle centers also provide considerable information about the

size and shape of the particles. In particular, if two particle centers are close together,

then the sizes of the corresponding particles cannot be too large. In order to use this

information, we consider the Voronoi tessellation induced by the particle centers. Given

a point pattern {si} in Rd, a Voronoi tessellation divides the space into cells {Ci},
where the ith cell, Ci, corresponds to the ith point, si. The cells are defined such that

Ci contains all points that are closer to si than to any other point of the point pattern.

That is,

Ci = {x ∈ Rd, ‖x− si‖ ≤ ‖x− sj‖ for each j 6= i}.

For more information on Voronoi tessellations, see [17].

Figure 6: Voronoi tessellation on cutout of particle midpoints. Spin coating velocities from top left to bottom right:
v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm. The
depicted area is about 1.9× 1.9µm.

Figure 6 depicts cutouts of the Voronoi tessellations corresponding to the

experimental data shown in Figures 1, 2 and 3. Our approach to modeling particle size
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and shape is based on three key observations. First, the particles are largely contained

within their corresponding Voronoi cells. Second, those particles that extend beyond

their Voronoi cells are best described using unions of circles, rather than single circles.

Third, there is a strong relationship between the size of a Voronoi cell and the size of the

corresponding particle; see Figure 7. These observations lead to a two step procedure

for assigning sizes and shapes to the particles. In the first step, we treat all particles

as circles and assign them random radii that depend on inter-particle distances. In the

second step, we split some of the particles into unions of two equi-sized circles.

3.2.1. Assigning initial sizes to the particles

Based on the observations made above, we assign sizes to the particles that depend

on the areas of their corresponding Voronoi cells. We measure the size of the particles

in terms of their equivalent radii (where the equivalent radius of an object is the radius

of a circle with the same area). Figure 7 shows a plot of the equivalent radii of

the particles in the empirical data, {ri}, against the logarithms of the areas of their

corresponding Voronoi cells, {ai}. These plots suggest that the radii can be described

by linear regression models of the form

Ri = cR + βR log ai + εi, (2)

where the {εi} are assumed to be iid normal random variables with mean zero and

variance σ2
R. We estimate the values of βR, cR and σ2

R for the various spin coating

velocities using least-squares. The resulting estimates ĉR, β̂R and σ̂2
R are shown in Table

2.

Figure 7: The equivalent radii of the particles plotted against the logarithms of the areas of the corresponding Voronoi
cells, with lines of best fit shown. Spin coating velocities from top left to bottom right: v1 = 500rpm, v2 = 750rpm,
v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm.
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Table 2: Estimates of the intercept, cR, and slope, βR, together with the variance of the {εi}, σ2
R, for a simple linear

regression between logarithm of Voronoi cell size and particle size.

500rpm 750rpm 1000rpm 1500rpm 2000rpm 3000rpm 4000rpm

ĉR -319.31 -295.96 -206.523 -182.75 -151.02 -154.09 -111.43

β̂R 38.89 36.88 27.02 24.50 20.95 21.50 16.34

σ̂2
R 41.76 37.74 32.29 24.81 22.35 16.06 20.66

We simulate the particle sizes using (2). More precisely, given the simulated particle

locations, {si}, we construct the corresponding Voronoi tessellation, with cell areas given

by {ai}. We then simulate the radii of the particles as follows. We calculate the expected

radius of the ith particle by ERi = ĉR + β̂R log ai. We draw the particle’s radius, Ri,

from a normal distribution with mean ERi and variance σ2
R. Because the particle radii

must be non-negative and because we do not wish the area of a particle to be bigger

than the area of its corresponding Voronoi cell, we truncate the radii to the interval

(0,
√
ai/π). At the end of this process, we have a collection of circles {(Si, Ri)}.

3.2.2. Changing the particle shapes and modifying their sizes.

It is clear from Figures 1 and 2 that some particles are better represented by a

union of two circles, rather than a single circle. Thus, we need to replace some of

the circular particles we have generated with particles that consist of the union of two

circles. We first identify the collection of particles, {(Sj, Rj)} ⊂ {(Si, Ri)}, that we wish

to change. We take the {(Sj, Rj)} to be those circles which are not entirely contained

within their corresponding cells, as this coincides with what is seen in the empirical

data sets. Having identified the particles that we will replace, we proceed as follows.

We replace each (Sj, Rj) by a union of two circles (S
(1)
j , R

′
j)∪ (S

(2)
j , R

′
j), where S

(1)
j , S

(2)
j

and Sj are collinear and lie on a line parallel to the border of the Voronoi cell closest

to Sj; see Figure 8, left. We determine R
′
j to be 0.95 multiplied by the distance from

Figure 8: Schematic view of splitting algorithm. Left: Union of two circles is completely contained in the Voronoi cell.
Right: Union of two circles still exceeds the Voronoi cell.

Sj to its nearest edge. We place S
(1)
j and S

(2)
j equidistantly from Sj such that the area

of (S
(1)
j , R

′
j) ∪ (S

(2)
j , R

′
j) is the same as the area of (Sj, Rj). Note that our approach
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allows particles to extend beyond their Voronoi cells; see Figure 8, right. It may be the

case that the area of (S
(1)
j , R

′
j) ∪ (S

(2)
j , R

′
j) is strictly less than the area of (Sj, Rj) for

all choices of S
(1)
j and S

(2)
j . In this case, we draw Rj again as in Section 3.2.1.

3.3. Rearranging the particles

We now have a system comprising of a set of single circles {(Si, Ri)} and a set of unions

of circles {(S(1)
j , R

′
j), (S

(2)
j , R

′
j)}. However, it is possible that these objects may overlap

because, when circles are split into two, the resulting object may exceed its Voronoi cell

in the direction of splitting. In addition, particles can be either too close to each other

or too far apart. For these reasons we use a force-biased algorithm, described in [18], to

rearrange the particles until an acceptable configuration is found.

In order to quantify how close together and how far apart particles are allowed to be,

we consider the nearest neighbor distances between particles. For the ith particle this

quantity is given by Ñi = minj 6=i d(Pi, Pj), where d(·, ·) is the minimal Euclidean distance

between two particles. For each data set, we calculated Ñmin = mini Ñi, the minimum

nearest neighbor distances between particles, and Ñmax = maxi Ñi, the maximum nearest

neighbor distances between particles. The minimum distance, Ñmin, is almost constant

for all spin velocities, just varying between 2.0 and 3.0. Therefore, in the following,

we always use the value Ñmin = 2.5. In contrast, the maximum distance, Ñmax, varies

considerably. Table 3 shows the observed values of Ñmin and Ñmax for the different

scenarios.

Table 3: Minimum and maximum distances between particles for each scenario.

500rpm 750rpm 1000rpm 1500rpm 2000rpm 3000rpm 4000rpm

Ñmin 3.00 2.83 2.00 2.00 2.00 2.00 2.00

Ñmax 30.00 24.02 21.95 22.13 21.02 18.79 18.00

The force-biased algorithm begins by placing a larger circle around each circle in

the model. The radii of these outer circles are given by Rout
i = Ri+Di for the {(Si, Ri)}

and by Rout′
j = R

′
j + D

′
j for the {(S(1)

j , R
′
j), (S

(2)
j , R

′
j)}. To begin with, all the {Di}

and {D′
j} are set equal to Ñmax. This ensures that particles are not pushed further

than Ñmax away from one another. The end result of this is a system of outer circles

{(Si, Rout
i )}∪{(S(1)

j , Rout′
j ), (S

(2)
j , Rout′

j )}. At the same time, we assign a random shrinking

factor, Ci or C
′
j, to each particle. These shrinking factors are drawn uniformly from

{1/10, 2/10, . . . , 9/10}. The particles are then collectively rearranged. This is done

by first computing the ‘forces’ acting on each particle. These forces push the particle

away from other particles whose inner circles overlap the outer circle(s) of the particle

being considered. The forces are then added up to compute a net force acting on each

particle. The vector valued net force acting on the kth particle in {(Si, Ri)}, Fk, is given
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by Fk = F
(1)
k + F

(2)
k , where

F
(1)
k =

∑
i

Rout
k +Ri − ‖Sk − Si‖
‖Sk − Si‖

(Sk − Si)11
(
‖Sk − Si‖ < Rout

k +Ri

)
and

F
(2)
k =

∑
j

2∑
n=1

Rout
k +R

′
j − ‖Sk − S

(n)
j ‖

‖Sk − S(n)
j ‖

(Sk − S(n)
j )11

(
‖Sk − S(n)

j ‖ < Rout
k +R

′

j

)
,

with 11(·) being the indicator function. The forces acting on the {(S(1)
j , R

′
j)} and

{(S(2)
j , R

′
j)} are defined in the same manner. Then, for each j, the net forces acting on

{(S(1)
j , R

′
j)} and {(S(2)

j , R
′
j)} are added together to give F

′
j . As the modeling approach

leads to a good starting configuration for the force-biased algorithm, we do not want to

rearrange the particles too much. Thus, when a net force has a magnitude of greater

than 10 pixels (about 34nm), it is scaled to a magnitude of 10 pixels. Having computed

all the quantities, we then shift each particle by its corresponding net force. That is,

for all i, we set Si = Si + Fi and, for all j, we set S
(1)
j = S

(1)
j + F

′
j and S

(2)
j = S

(2)
j + F

′
j .

Once the particles have been rearranged, we check for overlaps of the outer circles with

other circles. If there are still any overlaps, we set each Di = CiDi as long as it is bigger

than Ñmin and each D
′
j = C

′
jD

′
j as long as it is bigger than Ñmin. We then recompute

the radii of the outer circles, recalculate the forces, and rearrange the particles again.

We continue in this manner until no overlaps remain.

4. Model validation

We carry out validation of our stochastic model by comparing its output with the

empirical data. We first compare the point patterns describing the particle centers

in our model with those in the empirical data. We then compare key characteristics

of the particles produced by our stochastic model with those observed in the empirical

data.

4.1. Validation of point pattern model

Figure 9 shows the particle centers in seven realizations of our stochastic model, each

corresponding to a different choice of spin velocity. The resulting point patterns appear

to share many features with those observed in the empirical data (as shown in Figure

3). Likewise, the intensities of the points produced by the stochastic model agree closely

with the intensities observed in the data sets, as can be seen in Table 4. In order to

compare the point patterns more closely, we consider three second-order characteristics:

the pair correlation function, the nearest neighbor distance distribution function, and

the spherical contact distance distribution function. Because our model is stationary

and isotropic (and the point patterns in the empirical data sets also appear to be) these

characteristics are functions of one parameter. For a detailed discussion of second-order
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characteristics of point processes see e.g. [16] and [19]. We estimate the characteristics

for the stochastic model by taking pointwise averages based on 50 realizations of the

model.

Figure 9: The centers of gravity of the particles generated by the stochastic model. Spin coating velocities from top
left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and
v7 = 4000rpm. The depicted area is 3.51× 3.51µm.

Table 4: The estimated intensities of the particle centers for the experimental (top) and simulated (bottom) data.

500rpm 750rpm 1000rpm 1500rpm 2000rpm 3000rpm 4000rpm

λE · 104 0.98 1.25 1.46 1.80 2.08 2.59 2.75

λS · 104 0.92 1.21 1.46 1.75 2.06 2.60 2.80

The pair correlation function, g : [0,∞) → [0,∞), is a measure of the distances

between pairs of points. It is normalized so that a homogeneous Poisson process has

g(r) = 1 for all r ∈ [0,∞). When g(r0) > 1 for some r0 ≥ 0, it indicates that pairs

of points with distance r0 from one another occur more frequently than in the Poisson

process and when g(r0) < 1 for some r0 ≥ 0, it indicates that pairs of points with

distance r0 from one another occur less frequently than in the Poisson process. The

estimated pair correlation functions for the stochastic model and empirical data sets

are shown in Figure 10. The pair correlation functions are approximately zero for r

values in the interval (0, 50), indicating that no points are closer than this distance to

one another. This is a direct consequence of the non-overlapping particles. There is also

a peak in each of the pair correlation functions, indicating that the spacing of points

is more regular than in a Poisson process. The stochastic model clearly captures these

features.

The nearest neighbor distance distribution function, G : [0,∞) → [0, 1], is the

cumulative distribution function of the distance from a point chosen at random in
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Figure 10: Pair correlation function, g. Red: Experimental data. Black: Stochastic model. Spin coating velocities from
top left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and
v7 = 4000rpm.

the point pattern to its nearest neighbor. The estimated nearest neighbor distance

distribution functions are shown in Figure 11. These plots all show that the nearest

neighbor of a point tends to lie at a distance of between 50 and 100. This reflects the

hardcore nature of the particles. Again, the stochastic model describes this feature very

well.

Figure 11: Nearest neighbor distance distribution function, G. Red: Experimental data. Black: Stochastic model. Spin
coating velocities from top left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm,
v6 = 3000rpm and v7 = 4000rpm.

The spherical contact distance distribution function H : [0,∞) → [0, 1] is the

cumulative distribution function of the distance from an arbitrary point in R2 to the
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nearest point of the point pattern. The estimated spherical contact distance distribution

functions are shown in Figure 12. Note that the spherical contact distance distribution

functions corresponding to the stochastic model are almost identical to those of the

empirical data sets.

Figure 12: Spherical contact distance distribution function, H. Red: Experimental data. Black: Stochastic model. Spin
coating velocities from top left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm,
v6 = 3000rpm and v7 = 4000rpm.

4.2. Validation of final stochastic model

Figure 13 shows realizations of the stochastic model for each of the seven spin velocities.

These are very similar to the images in Figure 2. We compare the output of the stochastic

model with the empirical data by considering a number of important morphological

characteristics. As above, we estimate the characteristics for the stochastic model by

taking pointwise averages based on 50 realizations of the model.

We first consider the size distribution of the particles. Figure 14 shows the

estimated particle size densities for the empirical data and stochastic models. Note

that the stochastic model produces particles with similar sizes to those in the data

sets. The stochastic model leads to unimodal particle size distributions, whereas for

the experimental data we sometimes observe a further small peak or ‘shoulder’ for

small radii. The origin and consequence of those is not yet investigated in detail, see,

e.g., [11]. As we want to focus on the main structural properties of the considered

thin-film morphologies, we neglect these small second peaks in our modeling approach.

Analysis of further characteristics shows that this does not lead to different structural

properties.

The x-direction chord length distribution function Cx : [0,∞) → [0, 1] gives the

distribution of the lengths of the intersections of an arbitrary horizontal line with the

fullerene-rich domains. Because the stochastic model and data are both isotropic, it
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Figure 13: Realizations of the stochastic model. Spin coating velocities from top left to bottom right: v1 = 500rpm,
v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm. The depicted area is
3.51× 3.51µm.

Figure 14: Particle size distribution. Red: Experimental data. Black: Stochastic model. Spin coating velocities from
top left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and
v7 = 4000rpm.

is sufficient to only consider horizontal lines. For more information on chord length

distributions; see, e.g., [20]. The estimated chord length distribution functions are shown

in Figure 15. There is almost no difference between the distribution functions estimated

from the stochastic model and those estimated from the empirical data.

We also estimate the spherical contact distance distribution function, G : [0,∞)→
[0, 1], from the polymer-rich phase to the fullerene-rich phase. This gives the distribution

of the distance from an arbitrary point in the polymer-rich phase to the closest point in
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Figure 15: Chord length distribution, Cx. Red: Experimental data. Black: Stochastic model. Spin coating velocities
from top left to bottom right: v1 = 500rpm, v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm
and v7 = 4000rpm.

the fullerene-rich phase. For further information about this characteristic; see, e.g., [19].

The results can be found in Figure 16. A good coherence to the experimental data can

be found.

Figure 16: Spherical contact distance distributions, G, from the polymer-rich phase to the particle phase. Red:
experimental data; black: stochastic model. Spin coating velocities from top left to bottom right: v1 = 500rpm,
v2 = 750rpm, v3 = 1000rpm, v4 = 1500rpm, v5 = 2000rpm, v6 = 3000rpm and v7 = 4000rpm.
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5. Predictive simulations

Having developed a parametric stochastic model for polymer:fullerene films, we now

wish to use this model to generate virtual microstructures of films for spin velocities

that have not been physically considered (i.e., to carry out generation of ‘virtual’ thin-

film morphologies). For this purpose, we fit equations that describe the parameters of

our stochastic model in terms of spin velocity. Using these equations, we are able to

choose parameter constellations that correspond to spin velocities that were not used to

fit the model. This allows us to generate realizations of polymer:fullerene morphologies

for which no experimental data are available. We carry out cross-validation to show

that our approach generates highly realistic morphologies.

5.1. Fitting the predictive model

In order to be able to generate virtual morphologies, we need to express the parameters of

our model as functions of spin velocity. We have estimates of each of the six parameters

of our model — µH , σ2
H , cR, βR, σ2

R and Ñmax — for seven different spin velocities.

Figure 17 shows the values of the parameters as functions of the spin velocity values

with curves of best fit. The curves are all of the form c0 exp(α0x) + c1 exp(α1x) and the

parameters c0, α0, c1 and α1 are fitted using non-linear least squares.

Figure 17: Plots of the parameters as functions of spin velocity with curves of best fit.

Note that the values of µH , σ2
H and Ñmax decrease with increasing spin velocities.
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This is because higher spin velocities result in a larger number of smaller more tightly

packed particles.

Figure 18: Predictive simulations for spin coating velocities ṽ1 = 625rpm, ṽ2 = 875rpm, ṽ3 = 1250rpm, ṽ4 = 1750rpm,
ṽ5 = 2500rpm and ṽ6 = 3500rpm. The depicted area is 3.51× 3.51µm.

Using these fitted curves we are able to find appropriate values of the parameters for

all spin velocities in the range from 500 to 4000 rpm. As an example, we use our model

to generate morphologies corresponding to the spin coating velocities ṽ1 = 625rpm,

ṽ2 = 875rpm, ṽ3 = 1250rpm, ṽ4 = 1750rpm, ṽ5 = 2500rpm and ṽ6 = 3500rpm. The

output of the stochastic model corresponding to these spin velocities can be seen in

Figure 18. Figure 19 shows the particle intensities and mean particle sizes for both

the experimental data sets and the predictive simulations. Note that the values for the

virtual microstructures seem consistent with the empirical values.

5.2. Validating the predictive model

We check the reliability of our predictive simulations using cross-validation. That is,

we remove part of the empirical data, then use our model to predict this data. The

results provide strong evidence that our method is able to reliably generate morphologies

for a large range of spin velocities. More precisely, we remove the data points

corresponding to the spin velocity v4 = 1500rpm and estimate the curves describing

the parameters as above. We then generate realizations of the stochastic model using

the predicted parameters corresponding to a spin velocity of 1500rpm. We do the same

for v6 = 3000rpm. Figures 20 and 21 contain plots of a number of key morphological

characteristics for the predictive simulations together with those for the empirical data

and output from the stochastic model using the parameters fitted to all of the data sets.

It is clear from these plots that the predictive simulations are able to accurately model

key features of the corresponding morphologies.
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Figure 19: Intensity and mean size of particles in relation to spin coating velocities. Blue: Experimental data. Red:
Predictive simulations.

Figure 20: Characteristics of experimental and simulated morphologies corresponding to a spin velocity of 1500rpm.
Red: Experimental data set. Black: Stochastic model with parameters fitted to the whole data set. Green: Stochastic
model fitted without the data for v4 = 1500rpm. From left to right: Pair correlation function, chord length distribution
in x-direction, spherical contact distance distribution from polymer to particle and size distribution of particles.

Figure 21: Characteristics of experimental and simulated morphologies corresponding to a spin velocity of 3000rpm.
Red: Experimental data set. Black: Stochastic model with parameters fitted to the whole data set. Green: Stochastic
model fitted without the data for v6 = 3000rpm. From left to right: Pair correlation function, chord length distribution in
x-direction, spherical contact distance distribution from polymer-rich phase to particles and size distribution of particles.

6. Conclusions

In this paper we have developed a parametric stochastic model for the morphology

of thin polymer:fullerene films. We have fitted the parameters of this model to seven
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different scenarios, corresponding to seven different spin coating velocities. We have

considered a number of key morphological characteristics and shown that our model

describes the data well. In addition, we have described an approach that allows us

to find model parameters corresponding to arbitrary spin velocities and to use these

parameters to generate virtual morphologies. We have demonstrated the viability of

this approach using cross-validation.

The 2D-approach for modeling the microstructure of organic semiconductor films

processed with different spin coating velocities presented in this contribution can already

be used as input for realistic solar cell device modeling. The stochastic model developed

in this contribution can be used to predict the radius of the PCBM-rich domains,

which is important input for device models, see, e.g., [21]. In combination with a

predictive model for the thickness of both the fullerene-rich domains and the polymer-

rich matrix this could lead to predictive modeling tools for organic solar cells. This is

why the stochastic 2D model developed in the present paper can be seen as a first step

towards a corresponding microstructure model in three dimensions. The virtual (but

realistic) microstructures generated by this 3D model can then be used to predict device

performance, for example by numerical evaluation of quenching and charge transport

properties of these virtual 3D microstructures, in dependence of the chosen spin velocity;

see, e.g., [22]. This will be subject of our future research.
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