
An On-line Planner for POMDPs with Large Discrete Action Space:
A Quantile-Based Approach

Erli Wang1, Hanna Kurniawati2, Dirk P. Kroese1
{e.wang2, hannakur, kroese}@uq.edu.au

1 School of Mathematics and Physics 2 School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, QLD 4072, AUSTRALIA

Abstract
Making principled decisions in the presence of uncertainty
is often facilitated by Partially Observable Markov De-
cision Processes (POMDPs). Despite tremendous advances
in POMDP solvers, finding good policies with large action
spaces remains difficult. To alleviate this difficulty, this pa-
per presents an on-line approximate solver, called Quantile-
Based Action Selector (QBASE). It uses quantile-statistics to
adaptively evaluate a small subset of the action space without
sacrificing the quality of the generated decision strategies by
much. Experiments on four different robotics tasks with up
to 10,000 actions indicate that QBASE can generate substan-
tially better strategies than a state-of-the-art method.

Introduction
Finding the optimal solution of a POMDP problem (Sondik
1971) is computationally intractable (Papadimitriou and
Tsitsiklis 1987). Loosely speaking, four components lead to
the high computational complexity in solving POMDP prob-
lems: long planning horizons and large state, action, and ob-
servation spaces. The past decade has seen significant ad-
vances in approximate POMDP solvers, enabling us to com-
pute good decision strategies for POMDPs with large state
spaces (Kurniawati and Yadav 2013; Kurniawati, Hsu, and
Lee 2008; Luo et al. 2016; Pineau, Gordon, and Thrun 2003;
Porta et al. 2006; Shani, Brafman, and Shimony 2007;
Silver and Veness 2010; Smith and Simmons 2004; 2005;
Somani et al. 2013) and large observation spaces (Bai, Hsu,
and Lee 2014; Hoey and Poupart 2005), as well as up to a
hundred look-ahead planning steps (Kurniawati et al. 2011).

Despite these advances, determining good decision
strategies for problems with large action spaces remains dif-
ficult. A POMDP solver must compute, for each belief, an
action that maximizes the expected total return with respect
to the belief, even though evaluating this expectation itself
is computationally expensive. Most successful solvers resort
to enumerating all possible actions. When the action space
is large, such enumeration is no longer feasible.

QBASE extends the Cross-Entropy method (Rubinstein
and Kroese 2004) to partially enumerate the action space, so
as to avoid full enumeration of the action space at each be-
lief without sacrificing the quality of the resulting strategy

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

too much. A small subset of actions is constructed by ac-
tions in top %-quantile of the current estimate of the expected
total return and actions drawn by uniform sampling without
replacement. This allows more computational resources to
be allocated to obtain more refined estimates for actions that
are likely to perform well, as well as ensuring that all actions
will eventually be visited. It has shown significant improve-
ments compared to state-of-the-art method, POMCP (Silver
and Veness 2010), for problems with large action space.

Background and Related Work
A POMDP is described by a tuple 〈S,A,O, T, Z,R, b0, γ〉,
where S is the set of states, A is the set of actions, and O
is the set of observations. At each step, the agent is in some
hidden state s ∈ S, takes an action a ∈ A, and moves from
s to another state s′ ∈ S according to a transition density
T (s, a, s′) = f(s′ | s, a). The new state s′ is then partially
revealed via an observation o drawn from a conditional prob-
ability density Z(s′, a, o) = f(o | s′, a) that represents un-
certainty in sensing. After each step, the agent receives a
reward R(s, a), if it takes action a from state s. Due to the
uncertainty in the effect of action and in sensing, the agent
never knows its exact state. Instead, it maintains an estim-
ate of its current state in the form of a belief b, which is a
probability density on S.

The objective of a POMDP agent is to maximize its ex-
pected total reward —called value function—, by following
at each time step the best policy— a mapping from beliefs
to actions. Each policy induces a value function V , and the
best policy gives rise to a value function V that satisfies:

V (b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

f(o | b, a)V (τ(b, a, o))

]
︸ ︷︷ ︸

Q-value function: Q(b,a)

where f(o | b, a) represents the probability dens-
ity of perceiving observation o ∈ O after perform-
ing action a ∈ A from belief b, and is computed as∑
s′,s∈S f(o | s′, a)f(s′ | s, a)b(s). The notation τ(b, a, o)

represents the new belief of the agent, after it performs
action a and perceives observation o, and is computed as
τ(b, a, o)(s′) ∝

∑
s∈S Z(s

′, a, o) T (s, a, s′) b(s). When the
planning horizon is infinite, to ensure the problem is well

defined, rewards at subsequent time steps are discounted by
a factor 0 < γ < 1.

Finding the best action to perform from a belief is a
stochastic optimization problem. Furthermore, since com-
puting a good estimate of the Q-value function is costly,
optimization methods that rely on gradients would be ex-
pensive to compute. Methods to alleviate this difficulty for
continuous action MDP —the fully observable version of
POMDP— have been proposed (Mansley, Weinstein, and
Littman 2011). While for POMDP, GPS-ABT (Seiler, Kur-
niawati, and Singh 2015) alleviates the problem via Gen-
eralized Pattern Search. However, its convergence relies on
a continuity property of the gradient of the value function,
which is unlikely to be satisfied for general POMDP prob-
lems.

In this paper, we will relax the continuity requirement via
a quantile-based approach. In particular, we are motivated
by recent advances in solving Multi-Armed Bandit (MAB)
problems (Chaudhuri and Kalyanakrishnan 2017; Wang,
Kurniawati, and Kroese 2017) that indicates a quantile-
based sampling approach can significantly outperform es-
tablished methods when the number of arms is large.

Quantile-Based Action Selector (QBASE)
A. Overview and Belief Tree A brief summary of
QBASE is presented in Algorithm 1. Given a POMDP
model or a corresponding black-box simulator P , we run
QBASE with parameters 〈%,Ns,K, β〉 (described in the
next subsection). At each step it aims to compute the best
action to perform from the current belief b for a fixed time
limit, executes this action, and updates its belief to b′ =
τ(b, a, o), where a ∈ A is the computed best action and
o ∈ O is the observation the agent perceives right after per-
forming a from b. The process then repeats from the new
belief b′, until a termination condition is met.

To find the best action to perform from a belief, QBASE
constructs a belief tree, denoted as T . A belief tree is a tree
where the nodes are sampled beliefs. For compactness, we
denote the nodes of T and the beliefs they represent in the
same way. An edge labeled (a, o) from a belief b to a belief
b′ in T means there is an action a ∈ A and an observation
o ∈ O such that b′ = τ(b, a, o). To construct the belief tree
T , QBASE follows a strategy similar to POMCP (Silver and
Veness 2010).

QBASE represents each sampled belief as a set of
particles (states) and estimates the value of each sampled
belief via Monte Carlo backup. The best action is then the
action that induces the best estimated value. QBASE estim-
ates the Q-value Q(b, a) as

b.Q̂(a) =
1∣∣H(b,a)

∣∣ ∑
h∈H(b,a)

V (h, l). (1)

Here, H(b,a) ⊆ H is the set of histories that correspond to
paths in T that starts from the root node, pass through node
b and then follow action a. Also, l = l(b) denotes the depth
level of node b in T . The function V (h, l) is the value of
a history h starting from the lth element, and is computed
as
(∑|h|

i=l γ
i−lR(hi.s, hi.a)

)
+Eh, where γ is the discount

Algorithm 1: QBASE
1 Function QBASE(b0, P , 〈%,Ns,K, β〉):
2 Initialize T with b0 as the root node; INITINODE(b0)
3 while running do
4 while there is still time for planning do
5 GROWTREE (T , P , 〈%,Ns,K, β〉)
6 Perform action a, such a = argmaxa∈A b.P(a)
7 o = get observation
8 b = τ(b, a, o) // update belief

9 Function INITINODE(b):
10 for a ∈ P.A do b.N(a) = 0 ; b.P(a) = 1

|P.A|
11 b.As =sample Ns actions uniformly at random from A

12 for a ∈ b.As do b.Ps(a) =
b.P(a)∑

a∈b.As
b.P(a)

13 Function GROWTREE(T , P , 〈%,Ns,K, β〉):
14 Set d = 0, h = ∅, b = root of T , Irollout = false
15 s ∼ b
16 while γd > ε and Irollout == false do
17 a = SAMPLEACT(b, 〈%,Ns,K, β〉)
18 (s′, o, r) = SIMULATOR(P, s, a)
19 Append 〈s, a, o, r〉 to h
20 Associate 〈s, a, o, r〉 with b
21 b.particles = b.particles ∪ {s}
22 b.Av = b.Av ∪ {a}
23 s = s′ ; d++ ; b.N(a)++ ; b.N++ ; b′ = τ(b, a, o)
24 if b′ is not in T then
25 add b′ as a child of b and set Irollout = true

26 b = b′

27 if γd > ε then
28 Eh = 0

29 else
30 INITINODE(b) ; b.particles = {s}
31 Eh =ROLLOUT-POLICY(s)

32 Append 〈s,−,−, Eh〉 to h
33 Associate 〈s,−,−, Eh〉 with b
34 UPDATEVALUES(T ,h,Eh)

35 Function SAMPLEACT (b, 〈%,Ns,K, β〉):
36 if b.N > 0 and (b.N mod K) == 0 then
37 E = the top b% · |A|c elements of sorted b.Q̂
38 b.As = E
39 while |b.As| < Ns do
40 a ∼ U(A\E); Set b.As = b.As

⋃
{a}

41 m = mina∈b.Av b.Q̂(a)

42 M = maxa∈b.Av b.Q̂(a)

43 for a ∈ b.Av do W(a) = αb(a)
b.Q̂(a)−m

M−m

44 for a ∈ b.Av do b.P(a) = |b.Av|
|A|

W(a)∑
a∈b.Av

W(a)

45 for a ∈ b.As do b.Ps(a) =
b.P(a)∑

a∈b.As
b.P(a)

46 a ∼ b.Ps

factor and R is the reward function. Eh is an estimate of the
value of the last state in h, and is computed as the total dis-
counted reward of a random walk for a pre-defined number
of steps from this last state.

B. Sampling Actions Key to QBASE is the way it samples
actions when generating histories to construct the belief tree
T . Given a belief node to expand, QBASE maintains a prob-
ability distribution function over the action spaceA and uses
this distribution to sample actions, so as to avoid full enu-
meration of the action space at the beginning.

The question is, given a belief b, what distribution should
QBASE use to sample the action space A? Ideally, we want
to assign high probability mass to good actions and zero
mass to bad actions. Of course, which actions are good and
which are bad are a priori unknown, as otherwise the prob-
lem would have been solved. Therefore, QBASE aims to ad-
aptively construct a distribution proportional to the Q-value
function, interleaving improvement of the estimation of Q-
values of sampled actions with adaptation of the distribution
in a Cross-Entropy method fashion.

QBASE adapts the distribution in two stages. First, it
identifies a subset of the action space, denoted as b.As (line
37–40 of SAMPLEACT in Algorithm 1), where it expects
to find good actions. At any given time, QBASE focuses on
evaluating actions in this subset only. This set has a pre-
defined size (denoted as Ns) and consists of two compon-
ents: The top %-quantile of A and Ns − %|A| exploration
components, sampled uniformly without repetition from A
without the exploitation components. The latter component
ensures that all actions will eventually be evaluated.

In the second stage, QBASE assigns probability mass
function (pmf) to actions in the subset b.As (line 41–45
of SAMPLEACT). To ensure that the subset b.As is evalu-
ated sufficiently, the subset and its associated pmf will only
be updated in batch mode, after b.As has been evaluated
for a fixed budget (parameter K of QBASE). Furthermore,
QBASE aims to keep the trend in the pmf of actions in b.As
to be similar to probability over A, as this probability re-
flects QBASE’s approximation on the relative differences in
Q-values of the different actions.

To this end, after each batch, QBASE updates the prob-
ability over A based on recent estimates of Q-value, via a
slight modification of the proportional Cross-Entropy (pCE)
update (Goschin, Weinstein, and Littman 2013):

b.P(a) ∝ αb(a)
b.Q̂(a)−m
M −m

. (2)

The smoothing parameter αb(a) quantifies how
much QBASE will trust the new estimate. This
increases with the number of visits according to
αb(a) = b.N(a)/(b.N(a) + β), where b.N(a) is the
number of visits for the pair (b, a) and β is a constant
parameter. The quantities m and M refer to the minimum
and maximum of the estimated Q-values up to this batch.

The probability over b.As, b.Ps(a) for a ∈ b.As is then
set to be proportional to the corresponding b.P(a) (line 45 of
SAMPLEACT). Furthermore, given belief b, QBASE selects
actions to evaluate by sampling b.As using the probability
function b.Ps(a).

C. Properties of QBASE An implicit assumption of
QBASE is that good solutions are abundant. Abundance of
solutions is a main reason why sampling-based algorithms

work well in practice (Motwani and Raghavan 2010). Such
an assumption is also common in motion planning (Choset
2005). This requirement is more general than the continuity
property (i.e., nearby actions will lead to similar results).

Now, the question is whether QBASE can yield the op-
timal policy. QBASE asymptotically converges to near op-
timal solution. The probability b.P(a) converges to the
scaled estimated Q-value of each action (Goschin, Wein-
stein, and Littman 2013), since αb(a) asymptotically con-
verges to 1 for any node b in T and each action a from
b. This means, executing the action with the highest prob-
ability is asymptotically equivalent to executing the action
with the highest estimated Q-value. The error of estimated
Q-value at root is bounded for finite horizon problems; this
result can then be extended to the infinite-horizon case, sim-
ilar to (Kearns, Mansour, and Ng 2002).

Results and Discussion
We compare QBASE with the state-of-the-art on-line
POMDP solver, POMCP (Silver and Veness 2010). For a
fair comparison, we ran POMCP using the authors’ code and
implemented QBASE in the POMCP code framework using
C++. All experiments were run as a single thread process on
an Intel Xeon E5-2620 v4 @ 2.10GHz with 128GB RAM.

To set the parameters for both methods and scenarios, we
perform 20 preliminary runs for each scenario and use the
parameters that generate the best results 1. To estimate the
quality of the policy generated, for each scenario, we ran
each method 1, 000 times with best performing parameters.

A. Scenarios We briefly describe the test scenarios.
Details are available in the Appendix of the expan-
ded version of the paper (downloadable from http:
//robotics.itee.uq.edu.au/˜hannakur/
dokuwiki/papers/icaps18_qbase.pdf).
RockSample(n, k) (Smith and Simmons 2004) is a well-
known benchmark for POMDP solvers. A robot must ex-
plore an environment of size n × n, populated by k rocks.
The goal of the robot is to sample as many good rocks as
possible as fast as possible.
Navigation(d, n): An agent must navigate to a goal location
in a d-dimensional grid world populated by obstacles, where
each dimension is discretized into n cells. The agent initial
position is not exactly known, but it must be at one of the
3d cells in the corner. The agent can move to adjacent cells,
within 3 cells away from its current position, resulting in
7d possible actions. Its motion is accurate 90% of the time.
The rest of the time, it reaches among the 7d − 1 remain-
ing cells with equal probability. The agent can only observe
the existence and position of walls surrounding its current
cell, forming 22d observations. The observation function is
perfect. However, since multiple states can generate the ex-
act same observation, this scenario is partially observable.
The agent receives a 1,000 reward for reaching the terminal
states and incurs a −1 penalty for every movement.
Hunting(n, u, v): Centralized control of multiple (u) robots,
to catch multiple (v) targets moving in a grid-world of size

1Details of the parameters are in the expanded version

Table 1: Simulation Results
Scenario t (s) Method Reward
Nav(2, 30), |A| = 49 1 POMCP 732 ± 5.0
|S| ≈ 102 , |Z| = 16 QBASE 742 ± 4.7
Nav(3, 30), |A| = 343 2 POMCP 561 ± 7.6
|S| ≈ 104 , |Z| = 64 QBASE 633 ± 8.6
Nav(4, 30), |A| = 2, 401 5 POMCP −8 ± 4.9
|S| ≈ 105 , |Z| = 256 QBASE 91 ± 10.9
RS(7, 8), |A| = 13 1 POMCP 18 ± 0.4
|S| = 12, 544, |Z| = 3 QBASE 19 ± 0.4
RS(20, 50), |A| = 55 2 POMCP 18 ± 0.6
|S| ≈ 1017 , |Z| = 3 QBASE 20 ± 0.7
RS(20, 100), |A| = 105 5 POMCP 14 ± 0.8
|S| ≈ 1032 , |Z| = 3 QBASE 15 ± 0.9
HS(11, 2, 2), |A| = 100 1 POMCP −72 ± 5.7
|S| ≈ 108 , |Z| = 4 QBASE −70 ± 4.3
HS(11, 3, 3), |A| = 1, 000 5 POMCP −179 ± 7.0
|S| ≈ 1012 , |Z| = 8 QBASE −94 ± 5.7
HN(11, 2, 2), |A| = 100 1 POMCP 42 ± 2.9
|S| ≈ 108 , |Z| = 4 QBASE 45 ± 3.7
HN(11, 3, 3), |A| = 1, 000 5 POMCP 26 ± 8.6
|S| ≈ 1012 , |Z| = 8 QBASE 96 ± 7.3
HN(11, 4, 4), |A| = 10, 000 10 POMCP −1, 573± 33.7
|S| ≈ 1016 , |Z| = 16 QBASE 68 ± 7.1

* Nav refers to Navigation; RS refers to RockSample; HN refers to Hunting-Normal;
HS refers to Hunting-Smart

n× n, populated by obstacles. At the beginning, the targets
position are unknown, and represented as uniform distribu-
tions over the free cells. At each step, each robot can stay
where it is, move to one of the 8 cells adjacent to its cur-
rent position, or catch a target. Their motion has no error.
Furthermore, at each step, each robot can perfectly detect
whether there is target(s) located in the same cell as itself or
in one cell to its North, South, East, or West directions. Note
that although its detection is perfect, a robot cannot distin-
guish which target is being detected nor the exact position
(out of the five cells) of the target. A small penalty −1 is
imposed on movement action for each robot. The ‘catch’ ac-
tion yields a +100 reward if the agent is in the same cell as
the target(s), otherwise the action incurs a penalty of −100.
The targets know exactly the positions of the robots, with
two behaviour variation to avoid being captured:

• Hunting-smart: When a robot and a target occupy the
same cell, the target can still get away, unless the robot
performs the action ‘catch’. This is the same as the tar-
get’s behavior in Tag (Pineau, Gordon, and Thrun 2003).

• Hunting-normal: Once a robot and a target are in the same
cell, the target cannot escape.

B. Results Table 1 presents the average expected discoun-
ted total reward with 95% confidence interval of the 1, 000
simulation runs for each scenario and method. Overall,
QBASE outperforms POMCP in all test scenarios. Further-
more, in general, except for RockSample, the gap between
QBASE and POMCP increases, as the size of the problem
increases. In RockSample, the action spaces are relatively
small, that the extra computation of constructing a subset via
the quantile-based method that QBASE performs becomes

4 6 8 10 12 14 16
Time (second)

50

0

50

100

150

200

250

300

A
v
g
 t

o
ta

l
d
is

c
re

w
a
rd

Navigation(4,30)

POMCP

QBASE

0 2 4 6 8 10 12 14 16
Time (second)

8

10

12

14

16

18

20

22

24

A
v
g
 t

o
ta

l
d
is

c
re

w
a
rd

RockSample(20,100)

POMCP

QBASE

0 10 20 30 40 50 60
Time (second)

200
180
160
140
120
100

80
60
40
20

A
v
g
 t

o
ta

l
d
is

c
re

w
a
rd

Hunting-smart(11,3,3)

POMCP

QBASE

Figure 1: Performance with different planning time per step.

an unnecessary overhead.
Figure 1 shows how the planning time per step affects per-

formance in some of the scenarios. These trends are com-
mon in other scenarios too. The results indicate that, in gen-
eral, for a small planning time, both POMCP and QBASE
perform equally but, as we allow additional planning time,
QBASE can significantly improve on POMCP. The reason
is that, when the planning time is limited, both POMCP
and QBASE do not have enough time to compute good Q-
value estimates and can only build relatively shallow be-
lief trees, causing both to perform equally poorly. However,
when more time is allowed and deeper trees can be built,
POMCP still needs to sweep the entire action space every
time a node is added to the belief tree, which reduces the
time it can spend on evaluating good actions. In contrast,
QBASE evaluates only a small subset of the action space,
guided by quantile-statistics, and can identify faster which
actions are more promising and, as a result, can spend more
resources on evaluating these actions.

A slightly different behavior is shown in Hunting-
smart(11, 3, 3). In this scenario, with 5 seconds planning
time, QBASE outperforms POMCP, but POMCP catches up
at 20 seconds planning time, before being outperformed by
QBASE again as more planning time per step is allowed.
The reason is that this problem has a considerably large
action space, and therefore POMCP’s sweeping of the en-
tire action space already takes a significant portion of the
5 seconds planning time, causing POMCP to perform badly.
However, as more time is allowed, POMCP starts to improve
its base-line performance into a relatively good and easy
to find policy, and then plateaus at this policy. In contrast,
QBASE can quickly identify good actions and generate this
relatively good and easy to find policy fast, and then takes
significant additional time to improve this policy further.

Conclusion
This paper introduces QBASE, a novel on-line approxim-
ate POMDP solver for problems with large discrete action
spaces. It applies quantile statistics to adaptively construct
a much smaller subset of the action space, so that more
resources can be given to evaluate the Q-values of more
promising actions. Experimental results on a range of robot-
ics scenarios with action spaces up to 10,000 indicate that
QBASE outperforms a state-of-the-art method.

We hope this new advancement in solving problems with
large action spaces will further advance the practicality of
POMDPs and allow more widespread applications of this
robust approach to decision making.

Acknowledgments
We thank anonymous reviewers for their helpful comments.
This work was supported by the Australian Research Coun-
cil Centre of Excellence for Mathematical and Statistical
Frontiers (ACEMS) under grant number CE140100049.
Computational analyses were carried out in the Robotics
Design Lab at the University of Queensland (UQ). Erli
Wang would also like to acknowledge the support from UQ
through the UQ International Scholarships scheme.

References
Bai, H.; Hsu, D.; and Lee, W. S. 2014. Integrated perception
and planning in the continuous space: A POMDP approach.
IJRR 33(9):1288–1302.
Chaudhuri, A. R., and Kalyanakrishnan, S. 2017. PAC iden-
tification of a bandit arm relative to a reward quantile. In
AAAI, 1777–1783.
Choset, H. M. 2005. Principles of robot motion: theory,
algorithms, and implementation. MIT press.
Goschin, S.; Weinstein, A.; and Littman, M. L. 2013. The
Cross-Entropy method optimizes for quantiles. In ICML (3),
1193–1201.
Hoey, J., and Poupart, P. 2005. Solving POMDPs with con-
tinuous or large discrete observation spaces. In IJCAI, 1332–
1338.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A
sparse sampling algorithm for near-optimal planning in large
Markov decision processes. Machine learning 49(2):193–
208.
Kurniawati, H., and Yadav, V. 2013. An Online POMDP
Solver for Uncertainty Planning in Dynamic Environment.
In ISRR.
Kurniawati, H.; Du, Y.; Hsu, D.; and Lee, W. 2011. Motion
planning under uncertainty for robotic tasks with long time
horizons. IJRR 30(3):308–323.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In RSS.
Luo, Y.; Bai, H.; Hsu, D.; and Lee, W. S. 2016. Importance
sampling for online planning under uncertainty. In WAFR.
Mansley, C. R.; Weinstein, A.; and Littman, M. L. 2011.
Sample-based planning for continuous action Markov de-
cision processes. In ICAPS.
Motwani, R., and Raghavan, P. 2010. Randomized al-
gorithms. Chapman & Hall/CRC.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov Decision Processes. Math. of Operation
Research 12(3):441–450.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
Value Iteration: An anytime algorithm for POMDPs. In IJ-
CAI.
Porta, J. M.; Vlassis, N.; Spaan, M. T.; and Poupart, P.
2006. Point-based value iteration for continuous POMDPs.
Journal of Machine Learning Research 7:2329–2367.

Rubinstein, R. Y., and Kroese, D. P. 2004. The Cross-
Entropy method: a unified approach to combinatorial op-
timization, Monte-Carlo simulation and machine learning.
Springer.
Seiler, K.; Kurniawati, H.; and Singh, S. 2015. An Online
and Approximate Solver for POMDPs with Continuous Ac-
tion Space. In ICRA.
Shani, G.; Brafman, R. I.; and Shimony, S. E. 2007. Forward
search value iteration for POMDPs. In IJCAI, 2619–2624.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In NIPS, 2164–2172.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI.
Smith, T., and Simmons, R. 2005. Point-based POMDP
algorithms: Improved analysis and implementation. In UAI.
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DES-
POT: Online POMDP planning with regularization. In NIPS,
1772–1780.
Sondik, E. J. 1971. The optimal control of partially observ-
able Markov processes. Ph.D. Dissertation, Stanford Uni-
versity.
Wang, E.; Kurniawati, H.; and Kroese, D. P. 2017. CEMAB:
A Cross-Entropy-based method for large-scale multi-armed
bandits. In Australasian Conference on Artificial Life and
Computational Intelligence, 353–365. Springer.

Appendix A. Parameter Settings
To set the parameters of QBASE and POMCP, we first
carry out a set of pilot runs for each solver to determ-
ine the best one. Specifically, in QBASE, the largest sub-
set Ns is determined by min(0.5 |A|, 100), % is selected
from {0.3, 0.5, 0.7}, K from {1, 2}, and β from {5, 10, 20}.
For POMCP, the exploration constant C is selected from
{0.1, 1, 10, 100, 1, 000, 10, 000}.

Other parameters of the algorithm are set independently
from problem domains. As the scale of the test problems is
large, we set the discount factor γ = 0.98 and the tolerance
of the approximate Q-value to ε = 0.01, in order to obtain
a relative long planning horizon. As a result, the effective
horizon is about D = log(ε)/ log(γ) ≈ 228. For a fair com-
parison, both solvers use the same rollout policy.

Appendix B. Details of Scenarios
B1. RockSample(n, k)
Figure 2(a) and (b) illustrate the scenarios for (20, 50) and
(20, 100). Rocksample (Smith and Simmons 2004) is a well-
known benchmark for POMDP solvers. A robot must ex-
plore an environment of size n × n, populated with k rocks
(marked as red squares). The position of the rocks are known
exactly, but whether a rock is good or bad is unknown. In
fact, at the beginning, each rock has a 0.5 chance of being
good or bad. The goal of the robot is to sample as many
good rocks as possible as fast as possible. The state space
is the Cartesian product of the robot’s position and the qual-
ity of the rocks, forming a state space of size n2 · 2k. The
robot can move to its North, South, East, and West cell,

(a) (b) (c) (d)

Figure 2: Illustration of some of the test scenarios: (a) RockSample(20, 50). (b) RockSample(20, 100). (c) Navigation(2, 30).
(d) Hunting(11, 3, 3).

sample a rock at its current location, or remotely check rock
i = 1, . . . , k to gain more information on whether it is good
or bad. Its motion is perfect and the robot’s position is fully
observed. Checking a rock means that the robot applies a
scanner to identify if the rock is good or bad. The reliability
of the signal received decreases exponentially with the dis-
tance between the robot and the rock. The robot receives a
reward of +10 if it samples a good rock or if it exits the en-
vironment (entering the grey region in the figure). Sampling
a bad rock incurs a penalty of −10.

More formally, using the definitions from (Smith and
Simmons 2004) we have the following.
• S = {

(
sagent, srock(1), . . . , srock(k)

)
}, where sagent ∈

{(1, 1), . . . , (n, n)} and srock(i) ∈ {Good,Bad}, i =
1, . . . , k.

• A = {North,West,South,East,Sample,Check1, . . . ,
Checkk} for the agent.

• O = {Good,Bad,Null}.
• T (sagent, a, s′agent) is deterministic, for a ∈ A.

• Z(s′agent, a, o) = Ber(η), where

η =
1

2
(1 + 2−d(s

′
agent,srock(a))/φ),

for a ∈ {Check1, . . . ,Checkk}. The function d(·, ·)
measures the distance (i.e., Euclidean distance) between
the state of the agent and the rock intended to scan and φ
is a constant parameter.

• R(sagent, a) is defined as
. R(sagent,Sample) = +10, if the rock is good
. R(sagent,Sample) = −10, if the rock is bad
. R(sagent, a) = −1, for a ∈{North,West,South,
East}
. R(sagent, a) = 0, for a ∈ {Check1, . . . ,Checkk}

We tested our method on rock sample (7, 8), (20, 50), and
(20, 100), increasing the action space from 13 to 105. The
positions of rocks in RockSample(7, 8) exactly follows code
implemented in POMCP. While for RockSample(20, 50)
and RockSample(20, 100), the placements of rocks are
sampled uniformly at random once, prior to experiments. An

example of the rock placement for these larger RockSample
scenarios is in Figure 2(a) and (b), respectively.

The placements of rocks for RockSample(20, 50) are set
at (16, 14), (5, 3), (10, 8), (8, 12), (6, 18), (16, 10), (19, 12),
(12, 13), (3, 18), (2, 3), (11, 8), (6, 6), (5, 13), (11, 17), (3,
9), (13, 16), (1, 6), (0, 10), (5, 7), (1, 17), (18, 13), (16, 16),
(7, 2), (3, 5), (8, 15), (8, 4), (14, 0), (8, 8), (19, 18), (18, 5),
(19, 11), (6, 7), (5, 0), (17, 10), (4, 16), (2, 5), (10, 0), (18,
4), (8, 13), (4, 6), (1, 13), (18, 0), (12, 14), (7, 7), (13, 0),
(15, 8), (6, 14), (13, 18), (4, 19), (19, 19).

The placements of rocks for RockSample(20, 100) are set
at (8, 14), (11, 16), (18, 2), (2, 9), (0, 4), (8, 15), (11, 6), (18,
16), (5, 3), (10, 17), (15, 18), (6, 3), (1, 1), (8, 10), (0, 0),
(13, 16), (2, 18), (3, 14), (10, 4), (12, 11), (7, 18), (12, 17),
(16, 12), (14, 15), (7, 16), (11, 11), (4, 0), (14, 5), (6, 8), (1,
8), (6, 17), (6, 1), (0, 6), (3, 3), (17, 4), (13, 14), (17, 5), (5,
4), (17, 2), (4, 4), (19, 16), (8, 7), (4, 13), (17, 18), (7, 8),
(10, 12), (14, 19), (16, 8), (7, 13), (1, 6), (4, 18), (15, 5), (18,
5), (11, 18), (18, 9), (11, 5), (19, 1), (15, 3), (3, 6), (10, 19),
(12, 15), (17, 13), (12, 16), (19, 8), (2, 14), (5, 9), (9, 16), (2,
8), (4, 17), (3, 0), (13, 19), (6, 5), (15, 0), (10, 3), (4, 9), (13,
17), (0, 5), (11, 15), (19, 3), (7, 14), (11, 4), (18, 1), (5, 17),
(16, 13), (3, 19), (17, 19), (5, 10), (16, 18), (16, 9), (3, 17),
(19, 0), (5, 2), (15, 14), (16, 7), (9, 7), (18, 12), (2, 0), (2, 7),
(17, 1), (0, 13).

B2. Navigation(d, n)
Figure 2(c) illustrates the navigation scenario (d = 2, n =
30). An agent must navigate to a goal location (marked
as red square) in a d-dimensional grid world populated by
obstacles (marked as black regions), where each dimension
is discretized into n cells. The agent initial position is not
exactly known (the true position is the green square), but it
must be at one of the 3d cells on the upper left (marked by
light blue squares). The agent can move to adjacent cells,
within 3 cells away from its current position, resulting in
7d possible actions. Its motion is accurate 90% of the time.
The rest of the probability mass is divided equally among
the 7d − 1 remaining cells. The agent can only observe the
existence and position of walls surrounding its current cell,
forming 22d observations. The observation function is per-
fect, though it is not sufficient to make the state to be fully

observable. The agent receives a +1, 000 reward for reach-
ing the terminal states and incurs a −1 penalty for every
movement.

More formally, from the description above we have the
following definitions.

• Define a grid world as W = [1, n]d, where n is the size
and d is the dimension.W contains two parts:Wfree and
Wobstacle. The way to generate Wfree and Wobstacle fol-
lows four steps. For example in d = 2 navigation, we start
with an empty gird worldW . Then

1. add boundaries with thickness mb,
2. add obstacles with thickness mo in the middle by: i)

setting walls at x = {dn+1
2 e−mo+1, . . . , dn+1

2 e+1}
for any y; ii) setting walls at y = {dn+1

2 e − mo +

1, . . . , dn+1
2 e+ 1} for any x,

3. delete obstacles with thicknessmf to getWfree if a cell
(x, y) ∈ W is unwalkable, ∀x, y ∈ {dn+1

2 e − mf +

1, . . . , dn+1
2 e+

mf

2 + 1},
4. set the goal cell in a corner.
After setting the grid, we can obtain a grid world in-
cluding walkable cells and unwalkable ones as well. For
d > 2 problem, the way of constructing environment is
the same.

• S =Wfree, where mb = 3,mo = 2 and mf = 6.
• A = {(Adim1

, . . . , Adimd
)}, where each Adim = {−3,

−2,−1, 0, 1, 2, 3} respect to the distance current state in
this dimension.

• O = {(Oface1 , . . . , Oface2d)}, where each Oface =
{Wall,NoWall}.

• T (sagent, a, s′agent) has 90% accuracy of arriving at the
desired s′agent after executing action a, while arriving
(wrongly) at other states with equal probability.

• Z(s′agent, a, o) is deterministic.

• R(sagent, a) is defined as
. R(sagent, a) = +1, 000, if action a lead the agent
reach pre-defined goal,
. R(sagent, a) = −1, otherwise.

B3. Hunting(n, u, v)
Figure 2(d) illustrates the scenario for (11, 3, 3). Multiple
(u) robots (green squares with letters) controlled by a cent-
ralized head, try to catch multiple (v) targets moving in
a grid-world of size n × n populated by obstacles (black
regions). At the beginning, the targets’ positions are not
known, and represented as uniform distributions over the
free cells (colored pink). The true positions of the targets
(which are unknown) are marked by red squares, The state
space is the Cartesian product of the positions of the robots
and the targets, while the action and observation spaces are
the Cartesian products of all of the robots’ actions and ob-
servations. At each step, each robot can stay where it is,
move to one of the 8 cells adjacent to its current position,
or catch a target. Their motion has no error. Furthermore, at
each step, each robot can perfectly detect whether there is

target(s) located in the same cell as itself or in one cell to its
North, South, East, or West directions. Note that although
its detection is perfect, a robot cannot distinguish which tar-
get is being detected nor the exact position (out of the five
cells) of the target. A small penalty−1 is imposed on move-
ment action for each robot. The ‘catch’ action yields a +100
reward if the agent is in the same cell as the target(s), other-
wise the action incurs a penalty of −100. The targets know
exactly the positions of the robots and always move to the
direction farthest from the closest robot.

More formally, from the description above we have the
following definitions.

• W is shown in Figure 2(d). It contains the forbidden area
Wobstacle (marked in black) and walkable area Wfree =
W \Wobstacle.

• S = {
(
sagent1 , . . . , sagentu , starget1 , . . . , stargetv

)
},

where sagenti ∈ Wfree, i = 1, . . . , u and stargetj ∈ Wfree,
j = 1, . . . , v.

• A = {
(
Aagent1 , . . . , Aagentu

)
}, where each Aagenti =

{Stay, North, Northwest, West, Southwest, South,
Southeast, East, Northeast,Catch}, i = 1, . . . , u.

• O = {(Oagent1 , . . . , Oagentu)}, where each Oagent =
{Yes, No}.

• T (sagent, a, s′agent) is deterministic. T (starget, a, s′target)
in Hunting-smart follows the strategy in Tag (Pineau,
Gordon, and Thrun 2003). That is, whenever a robot and
a target occupy the same cell, the target can still get away,
unless the robot performs the action ‘catch’. While in
Hunting-normal, once a robot and a target are in the same
cell, the target cannot escape.

• Z(s′agent, a, o) has the deterministic effect of detecting
targets around the agent

• R(sagent, a) is defined as
. R(sagent,Catch) = +100, if the target is tagged cor-

rectly,
. R(sagent,Catch) = −100, if there is no target,
. R(sagent, a) = −1, otherwise.

