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Abstract Consider a queueing system in which arriving customers are placed on a
circle and wait for service. A traveling server moves at constant speed on the cir-
cle, stopping at the location of the customers until service completion. The server is
greedy: always moving in the direction of the nearest customer. Coffman and Gilbert
conjectured that this system is stable if the traffic intensity is smaller than 1; however,
a proof or counterexample remains unknown. In this review we present a picture of
the current state of this conjecture and suggest new related open problems.
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1 Introduction

Polling systems form a subclass of queueing models where multiple queues are served
in a fixed order. Applications are found in telecommunications and computer net-
works, reliability, manufacturing, and transportation. Basic polling models are typi-
cally formulated as systems with a finite number of queues attended in a cyclic order
by a single server. Usually, the “switchover” time to move from one queue to another
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is non-zero. Although much is known about the behavior of such discrete polling
systems (see, for example, Tagaki [24–26] for an overview), it has been recognized
that the analysis of continuous polling systems — obtained by letting the number of
queues go to infinity — is often much more transparent than that of their discrete
analogues [8,12]. A classical example is the continuous polling system proposed by
Fuhrmann and Cooper [12]. Here, the server travels at constant speed and direction
(say clockwise) around a circle of length 1 and stops at the location of the customers
for service. After completion of service the customer is removed from the circle and
the server resumes his journey. The arrival and service times are assumed to be of
M/G/· type, while the locations of arriving customers are chosen according to a uni-
form distribution over the circle, independent of everything else. The model was fur-
ther analyzed by Coffman and Gilbert [5,6] and Kroese and Schmidt [15–17], and its
workings are now well understood.

This fundamental continuous polling system has been generalized in many ways.
A natural modification is to consider a random server, whose movement is governed
by a stochastic process that is independent of the positions of the customers [1,17,
18]. Another simple modification of the standard continuous polling system is to
allow the server to reverse his direction and to let him travel (at constant speed)
always in the direction of the nearest customer [6,19]. This system is state dependent,
in the sense that the server needs to know the positions of the customers in order to
determine his movement. Such a model is called a greedy server system. Figure 1
gives an illustration.

(a) (b) (c)

Fig. 1 A greedy server system. The server (triangle) continuously monitors the position of the nearest
customer (encircled point) and travels towards it (a) and (b). When a new customer arrives that is closer to
the server, the server aims for this new customer, possibly changing his direction as in (c).

A natural question is under which conditions these systems are stable, in the sense
that certain associated random processes, such as the workload process Wt , converge
in distribution as t → ∞. Typically, these processes are regenerative, in which case
the system is stable if the expected length of the regenerative cycle (for example, the
busy period) is finite.

Stability for a discrete polling server has been extensively studied and there is a
vast literature covering it (see [4,25,26] and references therein). For its continuous
counterpart we can reason as follows: By relating the system to an M/G/1 queue with
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the same arrival rate and service time distribution (basically, ignoring the travel time),
it is clear that a necessary condition for stability is that the traffic intensity is smaller
than 1; that is,

ρ = λb < 1, (1)

where λ is the arrival rate and b is the expected service time.
It turns out that condition (1) is also sufficient for the stability of the continuous

polling server that always moves in one direction, irrespective of the server speed
[16]. Also the random server governed by Brownian motion [17,18] and the general
random server [1] are stable under (1). It is widely believed that (1) is also sufficient
for stability of the greedy server, but a proof remains to be found. This conjecture was
first formulated by Coffman and Gilbert in [6] and is further analyzed in [3]. Partial
stability results concerning a light-traffic regime are reported in [19]; other partial
results may be found in [2].

The main difference between greedy and non-greedy server systems is that the
motion of a greedy server is state dependent, i.e., it depends on the position of the
customers. This makes the analysis of such systems much more difficult. The purpose
of this paper is to provide an overview of the general class of continuous cyclic server
systems, of which the continuous polling and greedy server system are examples, and
to highlight a number of intriguing open problems for such systems, in particular with
respect to greedy servers.

2 Spatial and Greedy Server Systems

Continuous cyclic server systems are idealized queueing system in which customers
arrive in a continuous waiting space and are served by one or more servers that roam
this space. The description of such models comprises the following ingredients.

– Waiting space. This describes the medium where the customers and servers are
located. In many studies the waiting space is a line segment or a closed curve (cir-
cle) [5,6,12,15–19,21,22]. However, graphs [1,7] and bounded convex regions
[2,3] have also been considered.

– Arrival and service times. This specifies when customers arrive and how long
their service takes. The standard assumption is that the interarrival times are in-
dependent and identically distributed (iid), and are independent of the iid service
times. The arrival and service characteristic can thus be summarized in Kendall’s
notation as G/G/k.

– Customer location. This describes where customers arrive in the waiting space.
Typically, the position is chosen at random and independent of everything else
according to a continuous distribution on the waiting space. Hence, the space-
time distribution of the arrival process is then modeled as a marked point process
(Poisson random measure in the M/G/· case). Continuous space-time arrival pro-
cesses (snowfall) have also been considered [8,9,14].

– Server discipline. The order in which the customers are served is largely deter-
mined by the motion regime of the server:



4

– A continuous polling or scanning server moves in a deterministic pattern over
the waiting medium [5–7,15–17].

– The movement of a random server is governed by a stochastic process, such as
a Brownian motion [1,17,18], independent of the positions of the customers.

– A greedy server moves in the direction of the closest customer.
• A non-dynamic greedy server chooses the closest customer and travels to

it ignoring all arriving customers.
• A semi-dynamic greedy server moves according to a predefined pattern.

After completing each service this pattern is redefined according to the
current positions of the server and customers.

• A dynamic greedy server always aims at the closest customer so it can
change its destination and even reverse its direction with the arrival of a
new customer [6,19].

There is also a significant amount of literature on discrete greedy server systems,
consisting of a finite number of service stations. Arriving customers choose one ser-
vice station at random and wait for service. The system is attended by a single server
who travels among stations. The server discipline is partly determined by the way the
server handles waiting customers in a single queue:

– Exhaustive: The server resumes his journey only after emptying the current sta-
tion [10,13].

– Gated: The server resumes his journey after serving all customers initially found
in the queue. Those arriving during service periods are set aside to be served in
the next round [2,3].

– Fixed/Random: The server resumes his journey after serving a fixed/random num-
ber of customers [11].

A related symmetric discrete greedy system with exhaustive server discipline has
been studied in [23] and its stability was proved. In [10] stability is proved for a
discrete system with general topology, exhaustive server discipline, and for a class of
policies that includes the greedy policy. Similar results are obtained in [11] for other
server policies.

3 Open Problems

Guided by the classification of models in Section 2, we formulate a number of open
problems for continuous cyclic server systems, starting with Coffman and Gilbert’s
24-year old conjecture. Two recurring themes are: stability of the system and charac-
terization of the random measure describing the steady-state customer positions.

Open Problem 1 (Stability for the Greedy Server System) Consider the following
greedy server system on a circle of circumference 1. Customers arrive and are served
in an M/G/1 way with arrival rate λ and expected service time b. The location of cus-
tomers is chosen uniformly over the circle. A single server travels at constant speed
α−1 toward the nearest customer and remains at the location of the customer during
service. After completion the customer is removed from the system and the server
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resumes his journey in the direction of the nearest customer. The discipline of this
greedy server is dynamic in the sense that the server can aim for a different customer
or reverse his direction with the arrival of a new customer. Let ρ = λb be the traffic
intensity of the system. Prove that ρ < 1 is sufficient for stability or give a counterex-
ample. Analyse this conjecture also for the cases of semi- and non-dynamic greedy
service mechanisms.

The key here is: assuming that the server starts at the bottom point of the circle
and a single customer is located at the very top of the circle, prove that the server has
a finite expected traveling time from the bottom to the top. A partial result is given
in [19] where stability of the greedy server is proven if the following light traffic
condition holds:

λ
(

b+
α
2

)
< 1. (2)

Notice that α is the time that the server needs to walk around the whole circle, so
α/2 serves as an upper bound of the traveling time between any two points on the
circle. Adding this to the service time of each customer a stable M/G/1 queue which
works slower than the greedy server can be obtained. Hence, for λ sufficiently small
the greedy server empties infinitely often.

Open Problem 2 (Stationary Measure for the Greedy Server System) Suppose the
greedy server system in Problem 1 is stable. Let Q denote the stationary random
counting measure representing the positions of the waiting customers relative to the
position of the server, given that the server is not busy. What is the mean measure of
Q? Or, more generally, what is the distribution of Q?

For the polling server with constant service times the Laplace functional of Q is
known explicitly:

Ee−Q f = e−c f

(
1−ρ

1−ρ
∫ 1

0 e−h(y) dy

)α/b

, (3)

where c f = αλ
∫ 1

0 (1−x)(1−e− f (x))dx and h(y) = ρ
∫ y

0 (1−e− f (x))dx. In particular,
the mean measure is

EQ(dx) =
λα

1−ρ
(1− x)dx. (4)

For polling servers with general service times the mean measure is still of the form
(4), but the distribution of Q can only be specified implicitly in terms of a system
of functional equations [16]. The mean measure of Q is also known in the case of
the Brownian server [18]. Under heavy traffic conditions, that is ρ ≈ 1, the random
measure (1−ρ)Q for the polling server is approximately of the form |Q∗|2(1−x)dx,
where |Q∗| has a gamma distribution [15].

No such results are known for the case of the greedy server. However, [19] pro-
vides a second-order expansion of the mean measure Q:

EQ([0,x]) =
∫ x

0
mQ(u)+O(λ 3) as λ → 0,
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where

m(u) = λα(1+ρ)
(

1
2
−u

)
+λ 2α2

(
u2

2
− 2u3

3

)
+O(λ 3) if u ∈ [0,1/2],

and m(u) = m(1−u) for u ∈ [1/2,1].

Open Problem 3 (Performance Measures) Suppose again that the greedy server in
Problem 1 is stable. Find expressions for stationary performance measures of the
system, such as the stationary workload, the stationary mean sojourn, and the sta-
tionary waiting times of a random customer. Based on these stationary performance
measures, find conditions under which the greedy server is more efficient than the
polling server and vice versa.

Examples of such performance characteristics for the polling and other spatially
distributed service systems may be found in [18,19], where the expansion (4) of
the mean measure Q is used to provide approximations of several such performance
measures under light traffic conditions (λ → 0). These approximations are used to
verify that the greedy server works more efficient than the polling server in light
traffic conditions.

Open Problem 4 (Maximum Position of Greedy Server) Consider a greedy server on
an infinite line or a plane X . Initially, the space X is empty of customers, and the
server is located at the origin. Customers arrive according to a homogeneous Poisson
process on R+×X . What can be said about the maximum distance from the origin,
say Mt , that the server reaches in some time interval [0, t]? Does it tend to infinity
or is it bounded? If the former is true, what is the rate of increase? A clue is given
by Kurkova and Menshikov [20], who consider a discrete greedy Markov system and
show that the server turns its direction finitely often almost surely and its position
tends either to plus or minus infinity with equal probabilities. They also prove that
the ratio Mt/ log t converges almost surely to a random variable taking values C and
−C with equal probabilities, where C is some constant.

Open Problem 5 (Greedy Server on a General Space) Consider a greedy server sys-
tem, where the arrival and service times are again of M/G/· form, with arrival rate λ
and mean service time b. The customers are now placed on a general space (e.g., an
n-dimensional surface or manifold) according to some continuous distribution, and a
single dynamic greedy server moves at constant speed over the space in the direction
of the nearest customer. Under what conditions is the system stable? How are the
customers (points) distributed in steady state, relative to the position of the server?

Open Problem 6 (Multiple Greedy Servers) This time, k servers travel in some space,
serving each customer they encounter. Clearly, a dynamic greedy discipline may by
inefficient here. For example, two or more servers can aim at the same customer at the
same time. In this case a non-dynamical greedy approach might be more appropriate.
A natural question in additional to performance and stability is: what is the most
efficient service/movement policy for the servers, e.g., to minimize the steady-state
expected number of customers in the system.
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A number of related open problems for discrete-systems with greedy server and
with fixed/random service policies are discussed in [11]. Two recent papers [21,22]
study related models with multiple servers, each of which chooses a customer that is
closer to the server than the others.
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