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Summary.
The efficient evaluation of high-dimensional integrals is of importance in both theoretical and
practical fields of science, such as Bayesian inference, statistical physics, and machine learn-
ing. However, due to the curse of dimensionality, deterministic numerical methods are inef-
ficient in high-dimensional settings. Consequentially, for many practical problems one must
resort to Monte Carlo estimation. In this paper, we introduce a novel Sequential Monte Carlo
technique called Stratified Splitting which enjoys a number of desirable properties not found
in existing methods. Specifically, the method provides unbiased estimates and can handle
various integrand types including indicator functions, which are used in rare-event probability
estimation problems. Moreover, this algorithm achieves a rigorous efficiency guarantee in
terms of the required sample size. The results of our numerical experiments suggest that
the Stratified Splitting method is capable of delivering accurate results for a wide variety of
integration problems.

Keywords: Monte Carlo integration; Multilevel splitting; Markov chain Monte Carlo;
Algorithmic efficiency; Sequential Monte Carlo; Resample-move; Nested sampling;
Power posteriors

1. Introduction

We consider the evaluation of expectations and integrals of the form

Ef [ϕ(X)] =
∑

X

ϕ(x)f(x) or Ef [ϕ(X)] =

∫

X
ϕ(x)f(x) dx,

where X ∼ f is a random variable taking values in a set X ⊆ Rd, f is a probability density
function (pdf) with respect to the Lebesgue or counting measure, and ϕ : X → R is a
real-valued function.
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The evaluation of such high-dimensional integrals is of critical importance in many sci-
entific areas, including statistical inference (Gelman et al., 2003; Lee, 2004), rare-event es-
timation (Asmussen and Glynn, 2007), machine learning (Russell and Norvig, 2009; Koller
and Friedman, 2009), and cryptography (McGrayne, 2011). An important application
is the calculation of the normalizing constant of a probability distribution, such as the
marginal likelihood (model evidence) in Bayesian statistics (Hooper, 2013). However, of-
ten obtaining even a reasonably accurate estimate of Ef [ϕ(X)] can be hard (Robert and
Casella, 2004).

In this paper, we propose a novel Sequential Monte Carlo (SMC) approach for reliable
and fast estimation of high-dimensional integrals. Our method extends the Generalized
Splitting (GS) algorithm of Botev and Kroese (2012), to allow the estimation of quite
general integrals. In addition, our algorithm is specifically designed to perform efficient
sampling in regions of X where f takes small values and ϕ takes large values. In particular,
we present a way of implementing stratification for variance reduction in the absence of
knowing the strata probabilities. A major benefit of the proposed Stratified Splitting
algorithm (SSA) is that it provides an unbiased estimator of Ef [ϕ(X)], and that it can
be analyzed in a non-asymptotic setting. In particular, the SSA provides a bound on the
sample size required to achieve a predefined error.

Due to its importance, the high-dimensional integration problem has been considered
extensively in the past. Computation methods that use Fubini’s theorem (Friedman, 1980)
and quadrature rules or extrapolations (Forsythe et al., 1977), suffer from the curse of
dimensionality, with the number of required function evaluations growing exponentially
with the dimension. In order to address this problem, many methods have been proposed.
Examples include Bayesian quadrature, sparse grids, and various Monte Carlo, quasi-Monte
Carlo, and Markov Chain Monte Carlo (MCMC) algorithms (O’Hagan, 1991; Morokoff and
Caflisch, 1995; Newman and Barkema, 1999; Heiss and Winschel, 2008; Kroese et al., 2011).
Many of these procedures are based on the SMC approach (Gilks and Berzuini, 2001; Chen
et al., 2005; Del Moral et al., 2006; Friel and Pettitt, 2008; Andrieu et al., 2010), and
provide consistent estimators that possess asymptotic normality. However, one might be
interested in the actual number of required samples to achieve a predefined error bound.
Our method, which also belongs to the SMC framework, is capable of addressing this issue.

Among alternative methods, we distinguish the Nested Sampling (NS) algorithm of
Skilling (2006), the Annealed Importance Sampling (AIS) method of Neal (2001), and
the Power posterior approach of Friel and Pettitt (2008), for their practical performance
and high popularity (Murray et al., 2005; Feroz and Skilling, 2013; Andrieu et al., 2010).
As always, due to the varied approaches of different methods and nuances of different
problems, no individual method can be deemed universally better. For example, despite
good practical performance and convergence in probability to the true integral value, the
NS algorithm is not unbiased and in fact, to ensure its consistency, both sample size and
ratio of sampling iterations to sample population size should be infinite for certain classes
of integrands (Evans, 2007). Moreover, consistency of estimates obtained with Nested
Sampling when Markov Chain Monte Carlo (MCMC) is used for sampling remains an
open problem (Chopin and Robert, 2010).



Stratified Splitting Algorithm 3

Similar to other well-known SMC methods, the SSA falls into a multi-level estimation
framework, which will be detailed in Section 2. As with classical stratified sampling (see,
e.g., Rubinstein and Kroese (2017), Chapter 5), the SSA defines a partition of the state
space into strata, and uses the law of total probability to deliver an estimator of the value
of the integral. To do so, one needs to obtain a sample population from each strata and
know the exact probability of each such strata. Under the classical stratified sampling
framework, it is assumed that the former is easy to achieve and the latter is known in
advance. However, such favorable scenarios are rarely seen in practice. In particular,
obtaining samples from within a stratum and estimating the associated probability that
a sample will be within this stratum is hard in general (Jerrum et al., 1986). To resolve
this issue, the SSA incorporates a multi-level splitting mechanism (Kahn and Harris, 1951;
Botev and Kroese, 2012; Rubinstein et al., 2013) and uses an appropriate MCMC method
to sample from conditional densities associated with a particular stratum.

The rest of the paper is organized as follows. In Section 2 we introduce the SSA, explain
its correspondence to a generic multi-level sampling framework, and prove that the SSA
delivers an unbiased estimator of the expectation of interest. In Section 3, we provide a
rigorous analysis of the approximation error of the proposed method. In Section 4, we
introduce a difficult estimation problem called the weighted component model, for which
the SSA provides the best possible efficiency result one can hope to achieve. Namely, we
show that the SSA can obtain an arbitrary level of precision by using a sample size (and
computation time) that is polynomial in the corresponding problem size. In Section 5, we
report our numerical findings on various test cases that typify classes of problems for which
the SSA is of practical interest. Finally, in Section 6 we summarize the results and discuss
possible directions for future research.

2. Stratified splitting algorithm

2.1. Generic multilevel splitting framework
We begin by considering a very generic multilevel splitting framework, similar to (Gilks
and Berzuini, 2001). Let X ∼ f be a random variable taking values in a set X , and
consider a decreasing sequence of sets X = X0 ⊇ · · · ⊇ Xn = ∅. Define Zt = Xt−1 \Xt,
for t = 1, . . . , n, and note that Xt−1 =

⋃n
i=t Zi , and that {Zt} yields a partition of X ;

that is

X =

n⋃

t=1

Zt, Zt1 ∩Zt2 = ∅ for 1 ≤ t1 < t2 ≤ n. (1)

Then, we can define a sequence of conditional pdfs

ft(x) = f(x | x ∈Xt−1) =
f(x)1{x ∈Xt−1}
Pf (X ∈Xt−1)

for t = 1, . . . , n, (2)

where 1 denotes the indicator function. Also, define

gt(x) = f (x | x ∈ Zt) =
f(x)1{x ∈ Zt}
Pf (X ∈ Zt)

for t = 1, . . . , n. (3)
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Our main objective is to sample from the pdfs ft and gt in (2) and (3), respectively. To
do so, we first formulate a generic multilevel splitting framework, given in Algorithm 1.

Algorithm 1: Generic multilevel splitting framework

input : X0, . . . ,Xn and {ft, gt}1≤t≤n.
output: Samples from ft and gt for 1 ≤ t ≤ n.
Create a multi-set X1 of samples from f1.
for t = 1 to n do

Set Zt ← Xt ∩Zt.
Set Yt ← Xt \ Zt.
if t < n then

Create a multi-set Xt+1 of samples (particles) from ft+1, (possibly) using elements of
the Yt set. This step is called the splitting or the rejuvenation step.

return multi-sets {Xt}1≤t≤n, and {Zt}1≤t≤n.

Note that the samples in {Xt}1≤t≤n and {Zt}1≤t≤n are distributed according to ft and
gt, respectively, and these samples can be used to handle several tasks. In particular, the
{Xt}1≤t≤n sets allow one to handle the general non-linear Bayesian filtering problem (Gilks
and Berzuini, 2001; Gordon et al., 1993; Del Moral et al., 2006). Moreover, by tracking
the cardinalities of the sets {Xt}1≤t≤n and {Zt}1≤t≤n, one is able to tackle hard rare-event
probability estimation problems, such as delivering estimates of Pf (X ∈ Zn) (Botev and
Kroese, 2012; Kroese et al., 2011; Rubinstein et al., 2013). Finally, it was recently shown
by Vaisman et al. (2016) that Algorithm 1 can be used as a powerful variance minimization
technique for any general SMC procedure. In light of the above, we propose taking further
advantage of the sets {Xt}1≤t≤n and {Zt}1≤t≤n, to obtain an estimation method suitable
for general integration problems.

2.2. The SSA set-up
Following the above multilevel splitting framework, it is convenient to construct the se-
quence of sets {Xt}0≤t≤n by using a performance function S : X → R, such that {Xt}0≤t≤n
can be written as super level-sets of S for chosen levels γ0, . . . , γn, where γ0 and γn are equal
to infx∈X S(x) and supx∈X S(x), respectively. In particular, Xt = {x ∈X : S(x) ≥ γt}
for t = 0, . . . , n. The partition {Zt}1≤t≤n, and the densities {ft}1≤t≤n and {gt}1≤t≤n, are
defined as before via (1), (2), and (3), respectively. Similarly, one can define a sequence of
sub level-sets of S; in this paper we use the latter for some cases and whenever appropriate.

Letting zt
def
= Ef [ϕ (X) | X ∈ Zt]Pf (X ∈ Zt) for t = 1, . . . , n, and combining (1) with

the law of total probability, we arrive at

z
def
= Ef [ϕ (X)] =

n∑

t=1

Ef [ϕ (X) | X ∈ Zt]Pf (X ∈ Zt) =

n∑

t=1

zt. (4)

The SSA proceeds with the construction of estimators Ẑt for zt for t = 1, . . . , n and,
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as soon as these are available, we can use (4) to deliver the SSA estimator for z, namely

Ẑ =
∑n

t=1 Ẑt.

For 1 ≤ t ≤ n, let ϕt
def
= Ef [ϕ (X) | X ∈ Zt], pt

def
= Pf (X ∈ Zt), and let Φ̂t and P̂t be

estimators of ϕt and pt, respectively. We define Ẑt = Φ̂t P̂t, and recall that, under the
multilevel splitting framework, we obtain the sets {Xt}1≤t≤n, and {Zt}1≤t≤n. These sets

are sufficient to obtain unbiased estimators {Φ̂t}1≤t≤n and {P̂t}1≤t≤n, in the following way.

(a) We define Φ̂t to be the (unbiased) Crude Monte Carlo (CMC) estimator of ϕt, that
is,

Φ̂t =
1

|Zt|
∑

Z∈Zt

ϕ(Z) for all t = 1, . . . , n.

(b) The estimator P̂t is defined similar to the one used in the Generalized Splitting
(GS) algorithm of Botev and Kroese (2012). In particular, the GS product esti-

mator is defined as follows. Define the level entrance probabilities r0
def
= 1, rt

def
=

Pf (X ∈Xt | X ∈Xt−1) for t = 1, . . . , n, and note that Pf (X ∈Xt) =
∏t
i=0 ri. Then,

for t = 1, . . . , n, it holds that

pt = Pf (X ∈ Zt) = Pf (X ∈Xt−1)− Pf (X ∈Xt)

=

t−1∏

i=0

ri −
t∏

i=0

ri = (1− rt)
t−1∏

i=0

ri.

This suggests the estimator P̂t = (1 − R̂t)
∏t−1
i=0 R̂i, for pt, where R̂0

def
= 1, and R̂t =

|Yt|
|Xt| = |Xt\Zt|

|Xt| , for all t = 1, . . . , n.

In practice, obtaining the {Xt}1≤t≤n and {Zt}1≤t≤n sets requires the implementation of
a sampling procedure from the conditional pdfs in (2) and (3). However, for many real-
life applications, designing such a procedure can be extremely challenging. Nevertheless,
we can use the Yt = Xt \ Zt set from iteration t, to sample Xt+1 from ft+1 for each
t = 1, . . . , n− 1, via MCMC. In particular, the particles from the Yt set can be “split”, in
order to construct the desired set Xt+1 for the next iteration, using a Markov transition
kernel κt+1 (· | ·) whose stationary pdf is ft+1, for each t = 1, . . . , n − 1. Algorithm 2
summarizes the general procedure for the SSA.

Remark 2.1 (The splitting step). The particular splitting step described in Algo-
rithm 2 is a popular choice (Botev and Kroese, 2012), especially for hard problems with
unknown convergence behavior of the corresponding Markov chain. However, one can also
apply different splitting strategies. For example, we can choose a single element from Yt,
and use it to obtain all samples in the Xt+1 set. Note that, in this case, Xt+1 contains de-
pendent samples. On the other hand, we might be interested to have independent samples
in the Xt+1 set. To do so, one will generally perform additional runs of the SSA, and take a
single element (from each SSA run) from Yt to produce a corresponding sample in the Xt+1

set. Such a strategy is clearly more expensive computationally. Under this setting, a single
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Algorithm 2: The SSA for estimating z = Ef [ϕ (X)]

input : A set X , a pdf f , the functions ϕ : X → R and S : X → R, a sequence of levels
γ0, . . . , γn, and the sample size N ∈ N.

output: Ẑ — an estimator of z = Ef [ϕ(X)].

Set R̂0 ← 1, X1 ← ∅, and f1 ← f .
for i = 1 to N do

draw X ∼ f1(x) and add X to X1.

for t = 1 to n do
Set Zt ← {X ∈ Xt : X ∈ Zt} and Yt ←Xt \ Zt.
Set Φ̂t ← 1

|Zt|
∑

X∈Zt
ϕ(X).

Set R̂t ← |Yt|
N , and P̂t ←

(
1− R̂t

)∏t−1
j=0 R̂j .

Set Ẑt ← Φ̂t P̂t.
if t < n then

/* Performing splitting to obtain Xt+1. */

Set Xt+1 ← ∅ and draw Ki ∼ Bernoulli(0.5), for i = 1, . . . , |Yt|, such that∑|Yt|
i=1 Ki = N mod |Yt|.

for Y ∈ Yt do

Set Mi ←
⌊
N
|Yt|

⌋
+Ki and Xi,0 ← Y.

for j = 1 to Mi do
Draw Xi,j ∼ κτt+1 (· | Xi,j−1) (where κτt+1(· | ·) is a τ -step transition kernel
using κt+1(· | ·)), and add Xi,j to Xt+1.

return Ẑ =
∑n
t=1 Ẑt.

SSA run will require a computational effort that is proportional to that of Algorithm 2,
squared. However, such an approach is beneficial for an analysis of the SSA’s convergence.
See also Remark A.1.

Theorem 2.1 (Unbiased estimator). Algorithm 2 outputs an unbiased estimator;

that is, it holds that E
[
Ẑ
]

= Ef [ϕ (X)] = z.

Proof. See Appendix A.

An immediate consequence of Theorem 2.1 is that the SSA introduces an advantage over
conventional SMC algorithms, which provide only consistent estimators.

We next proceed with a clarification for a few remaining practical issues regarding the
SSA.

Determining the SSA levels. It is often difficult to make an educated guess how to set
the values of the level thresholds. However, the SSA requires the values of {γt}1≤t≤n to be
known in advance, in order to ensure that the estimator is unbiased. To resolve this issue,
we perform a single pilot run of Algorithm 2 using a so-called rarity parameter 0 < ρ < 1.
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In particular, given samples from an Xt set, we take the ρ |Xt| performance quantile as the
value of the corresponding level γt, and form the next level set. Such a pilot run, helps to
establish a set of threshold values adapted to the specific problem. After the completion
of the pilot run we simply continue with a regular execution of Algorithm 2 using the level
threshold values observed in the pilot run.

Controlling the SSA error. A common practice when working with a Monte Carlo
algorithm that outputs an unbiased estimator, is to run it for R independent replications
to obtain Ẑ(1), . . . , Ẑ(R), and report the average value. Thus, for a final estimator, we take

Ẑ = R−1
R∑

j=1

Ẑ(j).

To measure the quality of the SSA output, we use the estimator’s relative error (RE),
which is defined by

RE =

√
Var

(
Ẑ
) /

E
[
Ẑ
]√

R.

As the variance and expectation of the estimator are not known explicitly, we report an
estimate of the relative error by estimating both terms from the result of the R runs.

In the following section, we establish efficiency results for our estimator by conducting
an analysis common in the field of randomized algorithms.

3. Efficiency of the SSA

In this section, we present an analysis of the SSA under a set of very general assumptions.
We start with a definition a randomized algorithm’s efficiency.

Definition 3.1 (Mitzenmacher and Upfal (2005)). A randomized algorithm gives

an (ε, δ)-approximation for the value z if the output Ẑ of the algorithm satisfies

P
(
z(1− ε) ≤ Ẑ ≤ z(1 + ε)

)
≥ 1− δ.

With the above definition in mind, we now aim to specify the sufficient conditions for the
SSA to provide an (ε, δ)-approximation to z. The proof closely follows a technique that is
used for the analysis of approximate counting algorithms. For an extensive overview, we
refer to (Mitzenmacher and Upfal, 2005, Chapter 10). A key component in our analysis

is to construct a Markov chain
{
X

(m)
t , m ≥ 0

}
with stationary pdf ft (defined in (2)), for

all 1 ≤ t ≤ n, and to consider the speed of convergence of the distribution of X
(m)
t as m

increases. Let µt be the probability distribution corresponding to ft, so

µt(A) =

∫

A
ft(u)λ(du),
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for all Borel sets A, where λ is some base measure, such as the Lebesgue or counting
measure. To proceed, we have

κτt (A | x) = P
(
X

(τ)
t ∈ A | X(0)

t = x
)
,

for the τ -step transition law of the Markov chain. Consider the total variation distance
between κτt (· | x) and µt, defined as:

‖κτt (· | x)− µt‖TV = sup
A
|κτt (A | x)− µt(A)|.

An essential ingredient of our analysis is the so-called mixing time (see Roberts et al.
(2004) and Levin et al. (2009) for an extensive overview), which is defined as τmix(ε,x) =
min {τ : ‖κτt (· | x)− µt‖TV ≤ ε}. Let µ̂t = κτt (· | x ) be the SSA sampling distribution at
steps 1 ≤ t ≤ n, where for simplicity, we suppress x in the notation of µ̂t.

Finally, similar to µt and µ̂t, let νt be the probability distribution corresponding to the
pdf gt (defined in (3)), and let ν̂t be the SSA sampling distribution, for all 1 ≤ t ≤ n.
Theorem 3.1 details the main efficiency result for the SSA.

Theorem 3.1 (Efficiency of the SSA). Let ϕ be a strictly positive real-valued func-
tion, at = minx∈Zt

{ϕ(x)}, bt = maxx∈Zt
{ϕ(x)}, and rt = min {rt, 1− rt} for 1 ≤ t ≤ n.

Then, the SSA gives an (ε, δ)-approximation to z = Ef [ϕ(X)], provided that for all 1 ≤
t ≤ n, the following holds.

(a) The samples in the Xt set are independent and are distributed according to µ̂t, such
that (for every x)

‖µ̂t − µt‖TV ≤
ε rt
32n

and |Xt| ≥
3072n2 ln(4n2/δ)

ε2r2t
.

(b) The samples in the Zt set are independent and are distributed according to ν̂t, such
that (for every x)

‖ν̂t − νt‖TV ≤
ε at

16(bt − at)
and |Zt| ≥

128(bt − at)2 ln(4n/δ)

ε2a2t
.

Proof. See Appendix A.

In some cases, the distributions of the states in Xt and Zt generated by Markov chain
defined by the kernel κτt , approach the target distributions µt and νt very fast. This occurs
for example when there exists a polynomial in n (denoted by P(n)), such that the mixing
time (Levin et al., 2009) is bounded by O(P(n)), (bt − at)

2/a2 = O(P(n)), and rt =
O(1/P(n)) for all 1 ≤ t ≤ n. In this case, the SSA becomes a fully polynomial randomized
approximation scheme (FPRAS) (Mitzenmacher and Upfal, 2005). In particular, the SSA
results in a desired (ε, δ)-approximation to z = Ef [ϕ(X)] with running time bounded by
a polynomial in n, ε−1, and ln(δ−1). Finally, it is important to note that an FPRAS
algorithm for such problems is essentially the best result one can hope to achieve (Jerrum
and Sinclair, 1996).

We next continue with a non-trivial example for which the SSA provides an FPRAS.
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4. FPRAS for the weighted component model

We consider a system of k components. Each component i generates a specific amount
of benefit, which is given by a positive real number wi, i = 1, . . . , k. In addition, each
component can be operational or not.

Let w = (w1, . . . , wk)
> be the column vector of component weights (benefits), and

x = (x1, . . . , xk)
> be a binary column vector, for which xi indicates the ith component’s

operational status for 1 ≤ i ≤ k. That is, if the component i is operational xi = 1, and
xi = 0 if it is not. Under this setting, we define the system performance as

S(w,x) =

k∑

i=1

wi xi = w>x.

We further assume that all elements are independent from each other, and that each element
is operational with probability 1/2 at any given time. For the above system definition, we
might be interested in the following questions.

(a) Conditional expectation estimation. Given a minimal threshold performance γ ≤∑k
i=1wi, what is the expected system performance? That is to say, we are interested

in the calculation of
E [S(w,X) | S(w,X) ≤ γ] , (5)

where X is a k-dimensional binary vector generated uniformly at random from the
{0, 1}k set. This setting appears (in a more general form), in a portfolio credit risk
analysis (Glasserman and Li, 2005), and will be discussed in Section 5.

(b) Tail probability estimation (Asmussen and Glynn, 2007). Given the minimal threshold
performance γ, what is the probability that the overall system performance is smaller
than γ? In other words, we are interested in calculating

P(S(X) ≤ γ) = E [1{S(X) ≤ γ}] . (6)

The above problems are both difficult, since a uniform generation of X ∈ {0, 1}k, such
that w>X ≤ γ, corresponds to the knapsack problem, which belongs to #P complexity
class (Valiant, 1979; Morris and Sinclair, 2004).

In this section, we show how one can construct an FPRAS for both problems under the
mild condition that the difference between the minimal and the maximal weight in the w
vector is not large. This section’s main result is summarized next.

Proposition 4.1. Given a weighted component model with k weights, w = (w1, . . . , wk)
and a threshold γ, let w = min{w}, w = max{w}. Then, provided that w = O (P(k))w,
there exists an FPRAS for the estimation of both (5) and (6).

Prior to stating the proof of Proposition 4.1, define

Xb =

{
x ∈ {0, 1}k :

k∑

i=1

wi xi ≤ b
}

for b ∈ R, (7)
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and let µb be the uniform distribution on the Xb set. Morris and Sinclair (2004) introduce
an MCMC algorithm that is capable of sampling from the Xb set almost uniformly at
random. In particular, this algorithm can sample X ∼ µ̂b, such that ‖µ̂b − µb‖TV ≤ ε.
Moreover, the authors show that their Markov chain mixes rapidly, and in particular, that
its mixing time is polynomial in k and is given by τmix(ε) = O

(
k9/2+ε

)
. Consequentially,

the sampling from µ̂b can be performed in O(P(k)) time for any ε > 0.
We next proceed with the proof of Proposition 4.1 which is divided into two parts.

The first for the conditional expectation estimation and the second for the tail probability
evaluation.

Proof (Proposition 4.1: FPRAS for (5)). With the powerful result of Morris and
Sinclair (2004) in hand, one can achieve a straightforward development of an FPRAS for the
conditional expectation estimation problem. The proof follows immediately from Lemma
A.3.

In particular all we need to do in order to achieve an (ε, δ) approximation to (5), is to
generate

m =
(w − w)2 ln(2/δ)

2(ε/4)2w2

samples from µ̂γ , such that

‖µ̂γ − µγ‖TV ≤
εw

4(w − w)
.

Recall that the mixing time is polynomial in k, and note that the number of samples m is
also polynomial in k, thus the proof is complete, since

m =
(w − w)2 ln(2/δ)

(ε/4)2w2
=︸︷︷︸

w=O(P(k))w

O(P(k))
ln(2/δ)

ε2
. 2

Of course, the development of an FPRAS for the above case did not use the SSA, as an
appropriate choice of transition kernel was sufficient for the result. The tail probability
estimation problem, however, is more involved, and can be solved via the use of the SSA.

Proof (Proposition 4.1: FPRAS for (6)). In order to put this problem into the
SSA setting and achieve an FPRAS, a careful definition of the corresponding level sets
is essential. In particular, the number of levels should be polynomial in k, and the level
entrance probabilities {rt}1≤t≤n, should not be too small. Fix

n =



(∑k
i=1wi

)
− γ

w

 ,

to be the number of levels, and set γt = γ + (n − t)w for t = 0, . . . , n. For general γ it
holds that

E [1{S(X) ≤ γ}] = E [1{S(X) ≤ γ + nw} | S(X) ≤ γ + nw]P (S(X) ≤ γ + nw)
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+ E

[
1{S(X) ≤ γ} | γ + nw < S(X) ≤

k∑

i=1

wi

]
P

(
γ + nw < S(X) ≤

k∑

i=1

wi

)

= E [1{S(X) ≤ γ} | S(X) ≤ γ + nw]︸ ︷︷ ︸
(∗)

2k − 1

2k
+

(
k∑

i=1

wi

)
1

2k
,

where the last equality follows from the fact that there is only one vector x = (1, 1, . . . , 1)

for which γ + nw < S(x) ≤ ∑k
i=1wi. That is, it is sufficient to develop an efficient

approximation to (∗) only, since the rest are constants.

We continue by defining the sets X = Xγ0 ⊇ · · · ⊇Xγn via (7), and by noting that for
this particular problem, our aim is to find P(X ∈ Xγn), so the SSA estimator simplifies
into (see Section 2.2 (b)),

Ẑ =

n∏

t=0

R̂t.

In order to show that the SSA provides an FPRAS, we will need to justify only condition
(a) of Theorem 3.1, which is sufficient in our case because we are dealing with an indicator
integrand. Recall that the formal requirement is

‖µ̂t − µt‖TV ≤ ε rt/32n, and |Xt| ≥ 3072n2 ln(4n2/δ)/ε2r2t ,

where µt is the uniform distribution on Xγt for t = 0, . . . , n, and each sample in Xt is
distributed according to µ̂t. Finally, the FPRAS result is established by noting that the
following holds.

(a) From Lemma A.6, we have that rt ≥ 1
k+1 for 1 ≤ t ≤ n.

(b) The sampling from µ̂t can be performed in polynomial (in k) time (Morris and Sinclair,
2004).

(c) The number of levels n (and thus the required sample size {|Xt|}1≤t≤n), is polynomial
in k since 

(∑k
i=1wi

)
− τ

w

 ≤ k w

w
=︸︷︷︸

w=O(P(k))w

O(P(k)). 2

Unfortunately, for many problems, an analytical result such as the one obtained in
this section is not always possible to achieve. The aim of the following numerical section
is to demonstrate that the SSA is capable of handling hard problems in the absence of
theoretical performance.
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5. Numerical experiments

5.1. Portfolio credit risk
We consider a portfolio credit risk setting (Glasserman and Li, 2005). Given a portfolio of
k assets, the portfolio loss L is the random variable

L =

k∑

i=1

li Xi, (8)

where li is the risk of asset i ∈ {1, . . . , k}, and Xi is an indicator random variable that
models the default of asset i. Under this setting (and similar to Section 4), one is generally
interested in the following.

(a) Conditional Value at Risk (CVaR). Given a threshold (value at risk) v, calculate the
conditional value at risk c = E[L | L ≥ v].

(b) Tail probability estimation. Given the value at risk, calculate the tail probability
P(L ≥ v) = E [1{L ≥ v}].

The SSA can be applied to both problems as follows. For tail probability estimation,
we simply set ϕ(x) = 1{∑k

i=1 li xi ≥ v}. For conditional expectation, we set ϕ(x) =∑k
i=1 li xi.
Note that the tail probability estimation (for which the integrand is the indicator func-

tion), is a special case of a general integration. Recall that the GS algorithm of Botev and
Kroese (2012) works on indicator integrands, and thus GS is a special case of the SSA.
Consequently, in this section we will investigate the more interesting (and more general)
scenario of estimating an expectation conditional on a rare event.

As our working example, we consider a credit risk in a Normal Copula model and, in
particular, a 21 factor model from Glasserman and Li (2005) with 1, 000 obligors.

The SSA setting is similar to the weighted component model from Section 4. We define
a k-dimensional binary vector x = (x1, . . . , xk), for which xi stands for the ith asset default
(xi = 1 for default, and 0 otherwise). We take the performance function S(x) to be the
loss function (8). Then, the level sets are defined naturally by Xt = {x : S(x) ≥ γt},
(see also Section 2.2). In our experiment, we set γ0 = 0 and γn = 1 +

∑k
i=1 li. In order

to determine the remaining levels γ1, . . . , γn−1, we execute a pilot run of Algorithm 2 with
N = 1, 000 and ρ = 0.1. As an MCMC sampler, we use a Hit-and-Run algorithm (Kroese
et al., 2011, Chapter 10, Algorithm 10.10), taking a new sample after 50 transitions.

It is important to note that despite the existence of several algorithms for estimating
c, the SSA has an interesting feature, that (to the best of our knowledge) is not present
in other methods. Namely, one is able to obtain an estimator for several CVaRs via a
single SSA run. To see this, consider the estimation of c1, . . . , cs for s ≥ 1. Suppose that
v1 ≤ · · · ≤ vs and note that it will be sufficient to add these values to the {γt} (as additional

levels), and retain s copies of P̂t and Ẑt. In particular, during the SSA execution, we will
need to closely follow the γ levels, and as soon as we encounter a certain vj for 1 ≤ j ≤ s,
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we will start to update the corresponding values of P̂
(j)
t and Ẑ

(j)
t , in order to allow the

corresponding estimation of cj = E[L | L ≥ vj ]. Despite that such a procedure introduces
a dependence between the obtained estimators, they still remain unbiased.

To test the above setting, we perform the experiment with a view to estimate {cj}1≤j≤13
using the following values at risk:

{10000, 14000, 18000, 22000, 24000, 28000, 30000, (9)

34000, 38000, 40000, 44000, 48000, 50000}.

The execution of the SSA pilot run with the addition of the desired VaRs (levels) from
(9) (marked in bold), yields the following level values of (γ0, . . . , γ21):

(0, 788.3, 9616.7, 10000, 14000, 18000, 22000, 24000, 28000,

30000, 34000, 38000, 40000, 44000, 47557.6, 48000, 49347.8,

50000, 50320.6, 50477.4, 50500, ∞).

Table 1 summarizes the results obtained by executing 1 pilot and 5 regular independent
runs of the SSA. For each run, we use the parameter set that was specified for the pilot
run (N = 1, 000 and burn-in of 50). The overall execution time (for all these R = 1+5 = 6
independent runs) is 454 seconds. The SSA is very accurate. In particular, we obtain an
RE of less than 1% for each ĉ while employing a very modest effort.

v ĉ RE v ĉ RE
10000 1.68× 104 0.67 % 34000 3.80× 104 0.05 %
14000 2.09× 104 0.51 % 38000 4.11× 104 0.05 %
18000 2.46× 104 0.21 % 40000 4.26× 104 0.08 %
22000 2.82× 104 0.19 % 44000 4.56× 104 0.08 %
24000 2.99× 104 0.23 % 48000 4.86× 104 0.02 %
28000 3.32× 104 0.21 % 50000 5.01× 104 0.02 %
30000 3.48× 104 0.14 %

Table 1: The SSA results for the Normal copula credit risk model with 21 factors and
1, 000 obligors.

The obtained result is especially appealing, since the corresponding estimation problem
falls into rare-event setting (Glasserman, 2004). That is, a CMC estimator will not be
applicable in this case.

5.2. Linear regression – non-nested models
Table 2 summarizes a dataset from Willams (1959), where observations from 42 specimens
of radiata pine are considered. In particular, this data describes the maximum compression
strength yi, the density xi, and the resin-adjusted density zi.

Similar to (Friel and Pettitt, 2008; Han and Carlin, 2001; Chib, 1995; Bartolucci and
Scaccia, 2004), we compare the following two models

M1 : yi = α+ β(xi − x) + εi, εi ∼ N(0, σ2),

M2 : yi = γ + δ(zi − z) + ηi, ηi ∼ N(0, τ2).
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i yi xi zi i yi xi zi i yi xi zi
1 3040 29.2 25.4 15 2250 27.5 23.8 29 1670 22.1 21.3
2 2470 24.7 22.2 16 2650 25.6 25.3 30 3310 29.2 28.5
3 3610 32.3 32.2 17 4970 34.5 34.2 31 3450 30.1 29.2
4 3480 31.3 31.0 18 2620 26.2 25.7 32 3600 31.4 31.4
5 3810 31.5 30.9 19 2900 26.7 26.4 33 2850 26.7 25.9
6 2330 24.5 23.9 20.0 1670 21.1 20.0 34 1590 22.1 21.4
7 1800 19.9 19.2 21 2540 24.1 23.9 35 3770 30.3 29.8
8 3110 27.3 27.2 22 3840 30.7 30.7 36 3850 32.0 30.6
9 3670 32.3 29.0 23 3800 32.7 32.6 37 2480 23.2 22.6
10 2310 24.0 23.9 24 4600 32.6 32.5 38 3570 30.3 30.3
11 4360 33.8 33.2 25 1900 22.1 20.8 39 2620 29.9 23.8
12 1880 21.5 21.0 26 2530 25.3 23.1 40 1890 20.8 18.4
13 3670 32.2 29.0 27 2920 30.8 29.8 41 3030 33.2 29.4
14 1740 22.5 22.0 28 4990 38.9 38.1 42 3030 28.2 28.2

Table 2: The radiata pine data-set taken from Willams (1959). The explanatory variables
are the density xi, and the resin-adjusted density zi. The response variable yi stands for
the maximum compression strength parallel to the grain.

We wish to perform a Bayesian model comparison of M1 and M2 via the SSA. Similar
to the above references, we choose a prior

Norm

([
3000
185

]
,

[
106 0
0 104

])
,

for both (α, β)> and (γ, δ)>, and an inverse-gamma prior with hyperparameters α = 3 and
β = (2 · 3002)−1 for both εi and ηi. By performing numerical integration, it was found by
O’Hagan (1995), that the Bayes factor B21 under this setting is equal to

B21 =
P(D | M2)

P(D | M1)
=

∫
P
(
γ, δ, τ2 | M2

)
P(D | γ, δ, τ2,M2) dγ dδ dτ2∫

P (α, β, σ2 | M1)P(D | α, β, σ2,M1) dα dβ dσ2
= 4862.

Next, we run the SSA to obtain two estimators ẐM1
and ẐM2

for P(D | M1) and
P(D | M2). In this setting our initial density f is the prior and we set our performance
function S to be the likelihood function (alternatively, one could use the log-likelihood).
Consequentially, the SSA approximation of the Bayes factor B21 is given by the ratio
estimator B̂21 = ẐM2

/ẐM1
.

Our experimental setting for the SSA algorithm is as follows. We use a sample size
of N = 10, 000 for each level set. For sampling, we use the random walk sampler for
each ft, with σ2 = 1000. In order to benchmark the SSA performance in the sense of
the closeness to the real B21 value, both ẐM1

and ẐM2
were estimated (via R independent

replications) until the relative error for both is less than 0.5%. The levels used for M1 and
M2, respectively, are:

{0, 9.40× 10−146, 1.88× 10−134, 7.39× 10−133, 1.66× 10−132, ∞}
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and

{0, 1.20× 10−141, 2.77× 10−130, 4.26× 10−129, 7.83× 10−129, ∞}.

To reach the predefined 0.5% RE, the SSA stopped after 258 iterations. The average
estimates are 2.5123× 10−135 and 1.2213× 10−131 for ẐM1

and ẐM2
, respectively, B̂21 =

ẐM2
/ẐM1

≈ 4861. The associated 95% confidence interval (obtained via the Delta method)
for z2/z1 is (4798.8, 4923.8).
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Fig. 1: The leftmost plot shows the convergence of B̂21 as a function of the SSA iteration
number (R), to the true value — 4862. The rightmost plot shows the RE as a function of

R for both ẐM1
and ẐM2

.

In practice, however, we could stop the SSA execution much earlier. In particular, the
leftmost plot in Fig. 1 clearly indicates a convergence of B̂21 to a factor that is greater than
4000 after as few as 20 iterations. That is, by the well-known Jeffrey’s (Jeffrey, 1961) scale,

Model 2 can be safely declared as superior since B̂21 � 102, indicating decisive evidence
for the second model. It is worth noting that, under the above setting, our precision result
is comparable with the power-posterior results obtained by Friel and Pettitt (2008), which
outperform reversible jump MCMC for this problem.

We note that in the setting of estimating model evidence (and in Bayesian inference
as in the next section), the SSA bears some similarities to Nested Sampling. Namely,
the use of a population of particles, and the sampling from increasing thresholds of the
likelihood function. Indeed, our tests on various problems indicate that both methods
perform similarly in terms of estimator variance, however it is important to note that
unlike the SSA, Nested Sampling is not unbiased. In fact, as mentioned earlier, it is not
even known to be consistent when MCMC sampling is used.

5.3. Bayesian inference
Suppose that a pdf h is known up to its normalization constant, that is h ∝ L · f . For
example, it is convenient to think of L · f as likelihood multiplied by prior, and of h as the
corresponding posterior distribution. Under this setting, we are interested in the estimation
of Eh[H(X)] for any H : X → R. Recall that the generic multilevel splitting framework
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and in particular the SSA, provide the set of samples {Zt}1≤t≤n. These samples can be
immediately used for an estimation of Eh[H(X)], via

∑R
r=1

[∑n
t=1 P̂t

1
|Zt|
∑

X∈Zt
H(X)L(X)

]

∑R
r=1

[∑n
t=1 P̂t

1
|Zt|
∑

X∈Zt
L(X)

] ,

since by the law of large numbers the above ratio converges (as R→∞) to

Ef
[∑n

t=1 P̂t
1
|Zt|
∑

X∈Zt
H(X)L(X)

]

Ef
[∑n

t=1 P̂t
1
|Zt|
∑

X∈Zt
L(X)

] =
Ef [H(X)L(X)]

Ef [L(X)]

=
zh
∫
H(x)L(x)f(x)zh

dx

zh
∫ L(x)f(x)

zh
dx

=

∫
H(x)h(x)dx∫
h(x)dx

= Eh[H(X)].

We next consider the SSA Bayesian inference applied on models M1 and M2 from Section
5.2. We first run the (random walk) Metropolis algorithm used by Han and Carlin (2001),
and estimate the posterior mean for each parameter. In particular, for both M1 and M2, we
start with an initial θ0 =

(
3000, 185, 3002

)
, and for t > 0, we sample θt from multivariate

normal with mean µ = θt−1 and covariance matrix

Σ =

(
5000 0 0
0 250 0
0 0 1

)
.
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Fig. 2: The leftmost and rightmost plots correspond to the convergence of the Metropolis
algorithm for the M1 and the M2 models, respectively. The results were obtained using
10, 000 MCMC samples after burn-in period of 90, 000.

The proposal θt is then accepted with probability min
{

1, p(θt)
p(θt−1)

}
, where p denotes

unnormalized posterior density function. Our experiment (see Fig. 2), indicates that the
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proposed Metropolis scheme has good mixing properties with respect to the slope and the
intercept parameters, when applied to both M1 and M2. However, the mixing of the σ2 and
the τ2 parameters does not look sufficient. Despite that we changed the Σ(3, 3) parameter
of the co-variance matrix to be 101, 102 and 103 instead of 1, the typical mixing results did
not change.

We next apply the SSA to the above inference problem. Using a single SSA run (with
N = 20, 000), we collected 100, 000 samples for each model. The obtained results are
summarized in Table 3.

M1 M2

Algorithm α β σ2 γ δ τ2

Metropolis 2993.2 184.2 1.246× 105 2992.5 182.9 1.025× 105

SSA 2992.3 184.2 1.136× 105 2991.9 183.2 7.840× 104

Table 3: Inference results for models M1 and M2 obtained via Metropolis and the SSA.
The required CPU for each model inference is about 16 seconds for each algorithm.

The Metropolis estimates of σ2 and τ2 are approximately equal to 1.246× 105 and
1.025× 105, respectively. In contrast, the SSA estimates of these quantities are 1.125× 105

and 7.797× 104, respectively (see Table 3). We conjecture that the SSA estimators of σ2

and τ2 are superior. In order to check, we implement a Gibbs sampler (90, 000 samples,
with a 10, 000 sample burn in) and obtain the following results, supporting our suspicions.

M1 M2

Algorithm α β σ2 γ δ τ2

Gibbs 2991.4 184.5 1.126× 105 2991.8 183.3 7.792× 104

Table 4: Inference results for models M1 and M2 obtained via Gibbs Sampling.

The superior performance of the SSA using a Random Walk sampler over the standard
Random Walk approach is most likely due to the SSA using a collection of Markov Chain
Samplers at each stage instead of a single chain, and that the SSA sampling takes place
on the prior as opposed to the posterior.

5.4. Self-avoiding walks
In this section, we consider random walks of length n on the two-dimensional lattice of
integers, starting from the origin. In particular, we are interested in estimating the following
quantities:

(a) cn: the number of SAWs of length n,

(b) ∆n: the expected distance of the final SAW coordinate to the origin.

To put these SAW problems into the SSA framework, define the set of directions, X =
{Left,Right,Up,Down}n, and let f be the uniform pdf on X . Let ξ(x) denote the final
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coordinate of the random walk represented by the directions vector x. We have cn =
Ef [1{X is SAW}] and ∆n = Ef

[
‖ξ(X)‖

∣∣1{X is SAW}
]
.

Next, we let Xt ⊆X be the set of all directions vectors that yield a valid self-avoiding
walk of length at least t, for 0 ≤ t ≤ n. In addition, we define Zt to be the set of all
directions vectors that yield a self-avoiding walk of length (exactly) t, for 1 ≤ t ≤ n.
The above gives the required partition of X . Moreover, the simulation from ft(x) =
f (x | x ∈Xt−1), reduces to the uniform selection of the SAW’s direction at time 1 ≤ t ≤ n.

Our experimental setting for SAWs of lengths n is as follows. We set the sample size
of the SSA to be Nt = 1000 for all t = 1, . . . , n. In this experiment, we are interested in
both the probability that X lies in Zn, and the expected distance of X ∈ Zn (uniformly
selected) to the origin. These give us the required estimators of cn and ∆n, respectively.
The leftmost plot of Fig. 3 summarizes a percent error (PE), which is defined by

PE = 100
ĉn − cn
cn

,

where ĉn stands for the SSA’s estimator of cn.
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Fig. 3: The PE (leftmost plot) and the number of independent runs divided by SAW’s
length (rightmost plot) of the SSA as a function of SAW length n for 3% and 1% RE.

In order to explore the convergence of the SSA estimates to the true quantity of interest,
the SSA was executed for a sufficient number of times to obtain 3% and 1% relative error
(RE) (Rubinstein and Kroese, 2017), respectively. The exact cn values for n = 1, . . . , 71
were taken from (Guttmann and Conway, 2001; Jensen, 2004)); naturally, when we allow
a smaller RE, that is, when we increase R, the estimator converges to the true value cn, as
can be observed in leftmost plot of Fig. 3. In addition, the rightmost plot of Fig. 3 shows
that regardless of the RE, the required number of independent SSA runs (R) divided by
SAW’s length (n), is growing linearly with n.
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Finally, we investigate the SSA convergence by considering the following asymptotic
property (Noonan, 1998):

µ = lim
n→∞

c
1

n
n ∈ [µ, µ] = [2.62002, 2.679192495].

Fig. 4 summarizes our results compared to the theoretical bound. In particular, we run the
SSA to achieve the 3% RE for 1 ≤ n ≤ 200. It can be clearly observed, that the estimator

ĉ
1/n
n converges toward the [µ, µ] interval as n grows.
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Fig. 4: The ĉ
1/n
n as a function of the SAW’s length n.

6. Discussion

In this paper we described a general sequential Monte Carlo procedure for multi-dimensional
integration, the SSA, and applied it to various problems from different research domains.
We showed that this method belongs to a very general class of SMC algorithms and devel-
oped its theoretical foundation. The proposed SSA is relatively easy to implement and our
numerical study indicates that the SSA yields good performance in practice. However, it is
important to note that generally speaking, the efficiency of the SSA and similar sequential
algorithms is heavily dependent on the mixing time of the corresponding Markov chains
that are used for sampling. A rigorous analysis of the mixing time for different problems
is thus of great interest. Opportunities for future research include coconducting a similar
analysis for other SMC algorithms, such as the resample-move method. Finally, based on
our numerical study, it will be interesting to apply the SSA to a further variety of problems
that do not admit to conditions of the efficiency Theorem 3.1.
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A. Technical arguments

Proof of Theorem 2.1. Recall that Z1, . . . ,Zn is a partition of the set X , so from the law
of total probability we have

Ef [ϕ (X)] =

n∑

t=1

Ef [ϕ (X) | X ∈ Zt]Pf (X ∈ Zt).

By the linearity of expectation, and since Ẑ =
∑n

t=1 Ẑt, it will be sufficient to show that
for all t = 1, . . . , n, it holds that

E
[
Ẑt

]
= Ef [ϕ (X) | X ∈ Zt]Pf (X ∈ Zt) .

To see this, we need the following.

(a) Although that the samples in the Zt set for 1 ≤ t ≤ n are not independent due to
MCMC and splitting usage, they still have the same distribution; that is, for all t, it
holds that

E

[∑

X∈Zt

ϕ(X)
∣∣∣ |Zt|

]
= |Zt|Ef [ϕ (X) | X ∈ Zt] . (10)

(b) From the unbiasedness of multilevel splitting (Kroese et al., 2011; Botev and Kroese,
2012), it holds for all 1 ≤ t ≤ n that

E
[
P̂t

]
= E



(

1− R̂t
) t−1∏

j=0

R̂j


 = Pf (X ∈ Zt) . (11)

Combining (10) and (11) with a conditioning on the cardinalities of the Zt sets, we complete
the proof with:

E
[
Ẑt

]
= E

[
Φ̂t P̂t

]
= E

[
P̂t

1

|Zt|
∑

X∈Zt

ϕ(X)

]

= E

[
E

[
P̂t

1

|Zt|
∑

X∈Zt

ϕ(X)

∣∣∣∣∣ |Z0|, . . . , |Zt|
]]

= E

[
P̂t

1

|Zt|
E

[∑

X∈Zt

ϕ(X)

∣∣∣∣∣ |Z0|, . . . , |Zt|
]]
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=︸︷︷︸
(10)

E
[
P̂t

1

|Zt|
|Zt|Ef [ϕ (X) | X ∈ Zt]

]

= Ef [H (X) | X ∈ Zt] E
[
P̂t

]
=︸︷︷︸
(11)

Ef [H (X) | X ∈ Zt]Pf (X ∈ Zt) .

2

Proof of Theorem 3.1. The proof of this theorem consists of the following steps.

(a) In Lemma A.1, we prove that an existence of an
(
ε, δn

)
-approximation to {zt}1≤t≤n

implies an existence of an (ε, δ)-approximation to z =
∑n

t=1 zt.

(b) In Lemma A.2, we prove that an existence of an
(
ε
4 ,

δ
2n

)
-approximation to {ϕt}1≤t≤n

and {pt}1≤t≤n implies an
(
ε, δn

)
-approximation existence to {zt}1≤t≤n.

(c) In Lemmas A.3, A.4 and A.5, we provide the required
(
ε
4 ,

δ
2n

)
-approximations to ϕt

and pt for 1 ≤ t ≤ n.

Lemma A.1. Suppose that for all t = 1, . . . , n, an
(
ε, δn

)
-approximation to zt exists.

Then,

P
(
z(1− ε) ≤ Ẑ ≤ z(1 + ε)

)
≥ 1− δ.

Proof. From the assumption of the existence of the
(
ε, δn

)
-approximation to zt for each

1 ≤ t ≤ n, we have

P
(∣∣∣Ẑt − zt

∣∣∣ ≤ εzt
)
≥ 1− δ

n
, and P

(∣∣∣Ẑt − zt
∣∣∣ > εzt

)
<
δ

n
.

By using the Boole’s inequality (union bound), we arrive at

P
(
∃ t :

∣∣∣Ẑt − zt
∣∣∣ > εzt

)
≤

n∑

t=1

P
(∣∣∣Ẑt − zt

∣∣∣ > εzt

)
< n

δ

n
= δ,

that is, it holds for all t = 1, . . . , n, that

P
(
∀ t :

∣∣∣Ẑt − zt
∣∣∣ ≤ εzt

)
= 1− P

(
∃ t :

∣∣∣Ẑt − zt
∣∣∣ > εct

)
≥ 1− δ,

and hence,

P

(
(1− ε)

n∑

t=1

zt ≤
n∑

t=1

Ẑt ≤ (1 + ε)

n∑

t=1

zt

)
= P

(
Ẑ ∈≤ z(1± ε)

)
≥ 1− δ.

2
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Lemma A.2. Suppose that for all t = 1, . . . , n, there exists an
(
ε
4 ,

δ
2n

)
-approximation to

ϕt and pt. Then,

P
(
zt(1− ε) ≤ Ẑt ≤ zt(1 + ε)

)
≥ 1− δ

n
for all t = 1, . . . , n.

Proof. By assuming an existence of
(
ε
4 ,

δ
2n

)
-approximation to ϕt and pt, namely:

P

(∣∣∣∣∣
Φ̂t

ht
− 1

∣∣∣∣∣ ≤ ε/4
)
≥ 1− δ/2n, and P

(∣∣∣∣∣
P̂t
pt
− 1

∣∣∣∣∣ ≤ ε/4
)
≥ 1− δ/2n,

and combining it with the union bound, we arrive at

P


1− ε ≤︸︷︷︸

(∗)

(
1− ε/2

2

)2

≤ Φ̂tP̂t
ϕt pt

≤
(

1 +
ε/2

2

)2

≤︸︷︷︸
(∗)

1 + ε


 ≥ 1− δ/n,

where (∗) follows from the fact that for any 0 < |ε| < 1 and n ∈ N we have

1− ε ≤
(

1− ε/2

n

)n
and

(
1 +

ε/2

n

)n
≤ 1 + ε. (12)

To see that (12) holds, note that by using exponential inequalities from Bullen (1998), we

have that
(

1− ε/2
n

)n
≥ 1− ε

2 ≥ 1− ε. In addition, it holds that |eε−1| < 7ε/4, and hence:

(
1 +

ε/2

n

)n
≤ eε/2 ≤ 1 +

7(ε/2)

4
≤ 1 + ε. 2

To complete the proof of Theorem 3.1, we need to provide
(
ε
4 ,

δ
2n

)
-approximations to

both ϕt and pt. However, at this stage we have to take into account a specific splitting
strategy, since the SSA sample size bounds depend on the latter. Here we examine the
independent setting, for which the samples in each {Xt}1≤t≤n set are independent. That
is, we use multiple runs of the SSA at each stage (t = 1, . . . , n) of the algorithm execution.
See Remark 2.1 for further details.

Remark A.1 (Alternative splitting mechanisms). Our choice of applying the in-
dependent setting does not impose a serious limitation from theoretical time-complexity
point of view, and is more convenient for an analysis. In particular, when dealing with
the independent setting, we can apply a powerful concentration inequalities (Chernoff,
1952; Hoeffding, 1963). Alternatively, one could compromise the independence, and use
Hoeffding-type inequalities for dependent random variables, such as the ones proposed in
(Glynn and Ormoneit, 2002; Paulin, 2015).

The key to obtaining the desired approximation results is summarized in Lemma A.3.
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Lemma A.3. Let X ∼ π̂ be a strictly positive univariate random variable such that
a ≤ X ≤ b, and let X1, . . . , Xm be its independent realizations. Then, provided that

‖π̂ − π‖TV ≤
ε a

4(b− a)
, and m ≥ (b− a2) ln(2/δ)

2(ε/4)2a2
,

it holds that:

P

(
(1− ε)Eπ[X] ≤ 1

m

m∑

i=1

Xi ≤ (1 + ε)Eπ[X]

)
≥ 1− δ.

Proof. Recall that

‖π̂ − π‖TV =
1

b− a sup
ϕ :R→[a,b]

∣∣∣∣
∫
ϕ(x) π̂(dx)−

∫
ϕ(x)π(dx)

∣∣∣∣,

for any function ϕ : R→ [a, b], (Proposition 3 in Roberts et al. (2004)). Hence,

Eπ [X]− (b− a)
ε a

4(b− a)
≤ Eπ̂ [X] ≤ Eπ [X] + (b− a)

ε a

4(b− a)
.

Combining this with the fact that X ≥ a, we arrive at

1− ε

4
≤ 1− ε a

4Eπ [X]
≤ Eπ̂ [X]

Eπ [X]
≤ 1 +

ε a

4Eπ [X]
≤ 1 +

ε

4
. (13)

Next, since

Eπ̂

[
1

m

m∑

i=1

Xi

]
= Eπ̂ [X] ,

we can apply the Hoeffding (1963) inequality, to obtain

P

(
1− ε

4
≤

1
m

∑m
i=1Xi

Eπ̂ [X]
≤ 1 +

ε

4

)
≥ 1− δ, (14)

for

m =
(b− a)2 ln(2/δ)

2(ε/4)2 (Eπ̂ [X])2
≥ (b− a)2 ln(2/δ)

2(ε/4)2a2
.

Finally, we complete the proof by combining (13) and (14), to obtain:

P

(
1 + ε ≤

(
1− ε/2

2

)2

≤ Eπ̂ [X]

Eπ [X]

1
m

∑m
i=1Xi

Eπ̂ [X]
≤
(

1 +
ε/2

2

)2

≤ 1 + ε

)

= P

(
(1− ε)Eπ[X] ≤ 1

m

m∑

i=1

Xi ≤ (1 + ε)Eπ[X]

)
≥ 1− δ. 2
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Remark A.2 (Lemma A.3 for binary random variables). For
a binary random variable X ∈ {0, 1}, with a known lower bound on its mean, Lemma
A.3 can be strengthened via the usage of Chernoff (1952) bound instead of the Hoeffding
(1963) inequality. In particular, the following holds.

Let X ∼ π̂(x) be a binary random variable and let X1, . . . , Xm be its independent
realizations. Then, provided that Eπ̂[X] ≥ E′π̂[X],

‖π̂ − π‖TV ≤
εE′π̂[X]

4
, and m ≥ 3 ln(2/δ)

(ε/4)2(E′π̂[X])2
,

it holds that:

P

(
(1− ε)Eπ[X] ≤ 1

m

m∑

i=1

Xi ≤ (1 + ε)Eπ[X]

)
≥ 1− δ.

The corresponding proof is almost identical to the one presented in Lemma A.3. The major
difference is the bound on the sample size in (14), which is achieved via the Chernoff bound
from (Mitzenmacher and Upfal, 2005, Theorem 10.1) instead of Hoeffding’s inequality.

Lemma A.4. Suppose that at = minx∈Zt
{ϕ(x)}, bt = maxx∈Zt

{ϕ(x)} for all t =
1, . . . , n. Then, provided that the samples in the Zt set are independent, and are distributed
according to ν̂t such that

‖ν̂t − νt‖TV ≤
ε at

16(bt − at)
, and |Zt| ≥

128(bt − at)2 ln(4n/δ)

ε2a2t
,

then Φ̂t = |Zt|−1
∑

X∈Zt
ϕ(X) is an

(
ε
4 ,

δ
2n

)
-approximation to ϕt.

Proof. The proof is an immediate consequence of Lemma A.3. In particular, note that

‖ν̂t − νt‖TV ≤
ε
4 at

4(bt − at)
=

ε at
16(bt − at)

,

and that

|Zt| ≥
(bt − at)2) ln(2/ δ

2n)

2( ε4/4)2a2
=

128(bt − at)2 ln(4n/δ)

ε2a2t
. 2

Lemma A.5. Suppose that the samples in the Xt set are independent, and are distributed
according to µ̂t, such that

‖µ̂t − µt‖TV ≤
ε rt
32n

, and |Xt| ≥
3072n2 ln(4n2/δ)

ε2r2t
,

where rt = min {rt, 1− rt} for 1 ≤ t ≤ n. Then, P̂t is an
(
ε
4 ,

δ
2n

)
-approximation to pt.
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Proof. Recall that P̂t =
(

1− R̂t
)∏t−1

j=0 R̂j for t = 1, . . . , n. Again, by combining the

union bound with (12), we conclude that the desired approximation to pt can be obtained
by deriving the

(
ε
8n ,

δ
2n2

)
-approximations for each rt and 1−rt. In this case, the probability

that for all t = 1, . . . , n, R̂t/rt satisfies 1− ε/8n ≤ R̂t/rt ≤ 1 + ε/8n is at least 1− δ/2n2.
The same holds for (1− R̂t)/(1− rt), and thus, we arrive at:

P

(
1− ε/4 ≤

(
1−

ε
4/2

n

)n
≤ P̂t
pt
≤
(

1 +
ε
4/2

n

)n
≤ 1 + ε/4

)
≥ 1− δ/2n.

The bounds for each R̂t and (1− R̂t) are easily achieved via Remark A.2. In particular,
it is not very hard to verify that in order to get an

(
ε
8n ,

δ
2n2

)
-approximation, it is sufficient

to take

‖µ̂t − µt‖TV ≤
ε
8n rt

4
=
ε rt
32n

,

and

|Xt| ≥
3 ln

(
2/ δ

2n2

)

( ε
8n/4)2

=
3072n2 ln(4n2/δ)

ε2r2t
. 2

Lemma A.6. Suppose without loss of generality that w = (w1, . . . , wk) satisfies w1 ≤
w2 ≤ · · · ≤ wk, that is w = w1. Then, for Xb and Xb−w1

sets defined via (7), it holds that:

r =
|Xb−w1

|
|Xb|

≥ 1

k + 1
.

Proof. For any b ∈ R and x = (x1, . . . , xk), define a partition of Xb via

X
(w1)
b = {x ∈Xb : x1 = 1}, and X

(−w1)
b = {x ∈Xb : x1 = 0}.

Then, the following holds.

(a) For any x ∈X
(w1)
b , replace x1 = 1 with x1 = 0, and note that the resulting vector is

in X
(−w1)
b−w1

set, since its performance is at most b − w1, that is
∣∣∣X (w1)

b

∣∣∣ ≤
∣∣∣X (−w1)

b−w1

∣∣∣.
Similarly, for any x ∈ X

(−w1)
b−w1

, setting x1 = 1 instead of x1 = 0, results in a vector

which belongs to the X
(w1)
b set. That is:

∣∣∣X (w1)
b

∣∣∣ =
∣∣∣X (−w1)

b−w1

∣∣∣ . (15)

(b) For any x ∈ X
(w1)
b , replace x1 = 1 with x1 = 0 and note that the resulting vector is

now in the X
(−w1)
b set, that is |X (w1)

b | ≤ |X (−w1)
b |. In addition, for any x ∈X

(−w1)
b ,

there are at most k − 1 possibilities to replace x’s non-zero entry with zero and
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set x1 = 1, such that the result will be in the X
(w1)
b set. That is,

∣∣∣X (−w1)
b

∣∣∣ ≤
(k − 1)

∣∣∣X (w1)
b

∣∣∣+ 1, (where +1 stands for the vector of zeros), and we arrive at

∣∣∣X (w1)
b

∣∣∣ ≤
∣∣∣X (−w1)

b

∣∣∣ ≤ (k − 1)
∣∣∣X (w1)

b

∣∣∣+ 1 ≤ k
∣∣∣X (w1)

b

∣∣∣ . (16)

Combining (15) and (16), we complete the proof by noting that

|Xb−w1
|

|Xb|
=

∣∣∣X (w1)
b−w1

∣∣∣+
∣∣∣X (−w1)

b−w1

∣∣∣
∣∣∣X (w1)

b

∣∣∣+
∣∣∣X (−w1)

b

∣∣∣
≥

∣∣∣X (−w1)
b−w1

∣∣∣
∣∣∣X (w1)

b

∣∣∣+
∣∣∣X (−w1)

b

∣∣∣

=︸︷︷︸
(15),(16)

∣∣∣X (w1)
b

∣∣∣
∣∣∣X (w1)

b

∣∣∣+ k
∣∣∣X (w1)

b

∣∣∣
=

1

k + 1
.

2
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