Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

GREEDY SERVERS ON A TORUS

Karl W. Stacey Dirk P. Kroese
School of Mathematics and Physics School of Mathematics and Physics
The University of Queensland The University of Queensland
Brisbane QLD 4072, Australia Brisbane QLD 4072, Australia
k.stacey@ugq.edu.au kroese@maths.ug.edu.au

Abstract

Queuing systems in which customers arrive at a continuum of locationsy tiidn at a finite number of
locations, have been found to provide good models for certain telecomrtioniead reliability systems as
well as dynamic stochastic vehicle routing problems. In this paper the contirsuiln® unit square, where
the opposite edges have been glued together to form a flat “torus”. iBeit@rrive according to a Poisson
process with arrival raté. and are removed by servers. We investigate properties of the systezn und
various server strategies. We find that tfreedy strategywhere a server simply heads for its closest point,
results in a stable system and we analyse the equilibrium distribution. Thaygsaategy is inefficient,

in part because multiple greedy servers coalesce. We investigate thetezkgiene until this occurs and
identify improvements to the greedy strategy.

1 Introduction

Much of the analysis o€ontinuous server systerfiscuses on the situation where customers arrive on a
circle and are served by servers moving around the circle; see,dor@&, Fuhrmann and Cooper (1985),
Coffman and Gilbert (1986), Kroese and Schmidt (1992), Eliazar3Jg08ltman and Foss (2004) and
Leskeh and Unger (2010). Some exceptions are Altman and Levy (1994)jBasgsnd van Ryzin (1991)
and Bertsimas and van Ryzin (1993), who investigate systems where custmiée on a compact convex
n-dimensional space and are served by servers traveling throughdhe. sor a review of continuous
gueueing systems with greedy servers, see Rojas-Nandayapaafds&oese (2011). Bertsimas and van
Ryzin propose a generic mathematical model for dynamic stochastic vehitieg@roblems, in which the
aim is to minimise the average time that a customer spends in the system. They itwestd@ompare

a number of server strategies. This paper builds on this work, extendingainumber of directions.
Firstly, we use a toroidal topology (in 2 dimensions) rather than the Euclitigahogy. This permits us to
simulate in an effectively boundaryless space, providing a naturalsatenf the circle (one dimensional
torus). Secondly, we consider extensions of the greedy strategyrééfto by Bertsimas and van Ryzin
as the nearest neighbour poligyboth for single and multiple servers. Bertsimas and van Ryzin found
the greedy strategy to be the best of the strategies which they investigaiedly,Twe provide empirical
relationships between the customer arrival rate and the time until multiple gseedsrs converge as well
as the customer arrival rate and the long-run mean number of customée torus. In addition to the

Stacey and Kroese

application areas mentioned above, the model can be applied to biologitahsyshere the (potentially
large number of) customers could represent, for example, individuatispla an outbreak of an introduced
species of vegetation. The boundarylessness of the torus might bepapfe in such a situation.

For the case of a server on the circle, if the server moves continuoughgidicection around the circle,
removing customers instantly upon reaching them, the time that an arbitraryneustaists before being
removed is bounded b%l wherer is the radius of the circle andis the speed of the server. In a space
with dimension greater than one, there is no analogous methodical manneicim avkerver can move
through the space and in doing so, reach each customer in the spacadetddime. Servers will need to
actively travel towards customers. The absence of a methodical mammérjch a server can sweep up
all customers in bounded time, suggests the following questions. Does thsra server strategy such
that the system is stable? If so, how does stability depend on the custoival rate \? And what is the
minimum average number of customers in the system that can be achievedynaal strategy? Altman
and Levy (1994) consider fairness criteria such as First-Come-Farse8 (and variants of this, such as
First-Come-First-Served restricted to customers within a certain radius eéthier’'s current position). In
this paper, the goal of the servers is simply to minimise the mean time that an arbusaoyner spends on
the torus. For a stable system, this is equivalent to minimising the long-runtedpaember of customers
on the torus. Another interesting question relating to a stable system is: Whatquilibrium distribution
of the number of customers in the system and how does this depend onithérate A?

We find empirically that the greedy strategy results in a stable system forriathlanates \, where
the number of customers in equilibrium is right-skewed with a mean that is diadra\. We find
empirically that the mean time until two greedy servers coalesce, after initiallg begximally separated,
is asyptotically linear im.

The rest of the paper is organized as follows. Section 2 describes thé, mifels some rules of thumb
for effective server strategies, and provides a method for simulating/tters. In Section 3 we introduce
a method to simulate the greedy strategy. We then discuss the time until gregdys salesce, the
stability of the system under a greedy strategy, and the equilibrium distributibe aumber of customers
on the torus. Some improved server strategies are discussed in Sectiectidn$S provides a numerical
comparison of these strategies.

2 The Mode€

Let E = [0, 1]? be the unit square and I&be a torus generated frof by identifying the point0,y) as
being the same as the poifit y) for all y € [0, 1] and the pointz, 0) as being the same as the paint 1)
for all x € [0, 1]. Customers, henceforth referred topsnts arrive according to a Poisson process with
rate A per unit of time. Once a point arrives, it is assigned a random positioneotothis. The positions
of points are independent and have a uniform distributioriforOn T live n servers At any point in
time, each of the servers is doing one of two things, either (i) waiting at itecuposition or (i) moving
at a constant speed in a straight line. In particular, the paths of thersemeepiecewise linear. When a
server reaches the position of a point, the point is removed instantly. Witgsiof generality, we let the
speed of the servers be 1 and consider what happens Wwisevaried. The zero service time justifies this
approach, since with instantaneous service it is the ratio of the poinalaraite (\) to server speed which
is the relevant variable. The actual movement of the servers deperitisioetrategy. A possible strategy
is the greedystrategy, where each server moves towards the nearest point in dtslirgég This can be
reasoned to be suboptimal. If two servers travel towards the same painyibmeach the point first and
the other will have wasted travel time, during which it could have been movingrtts another point.
The concept of servers being “closest” to points requires that a mettiiceotorus is specified. On a
torus, if the server moves off the top, he appears at the bottom and if hesnoffvthe left, he appears at
the right and vice versa. We define a metric by

dr (x,y) = min{|x -y, [[x =y + (LO)[, [x =y £ (0, D, [x =y £ (L, D[, [x —y + (=1, D[},

where||-|| is the Euclidean norm, and = (z1, 22),y = (y1,42) € T.

Stacey and Kroese

Figure 1 illustrates the concept. What we do is tile the torus’ square to makgeadquare 08 x 3
torus squares. We now have nixgpoints and nings points. We consider the Euclidean distances from the
x point in the centre square to all nigepoints and take the minimum of these distances as our distance
betweenx andy. From now on, any reference to a distance or a metric will refer to this metrih®
torus.

e » P
\ / .
* \ * / * -
-
\ / -
/ -
, -
\ / -
-
/ pd
>
2 -0
s R
N2 o-
. g
<
NN
/ NN
N ~
N ~
/ N ~ o
/ \ RS
[))
* * *

Figure 1: Tiling to find the shortest distance between two points on a torgsstahs correspond to a single
server and the dots correspond to a single point, to which the serverdinbedhe solid line indicates
the shortest route.

The calculation of the torus metric can be simplified by noting that the squareofi¢he torus is
offering a snapshot, via éiewing window of an underlying lattice ifR?. Regardless of how we translate
this viewing window, each point will be visible exactly once. If we translateiesving window such
that the server is at the positigf.5, 0.5), then the shortest path from the server to any point lies entirely
within the viewing window. Now rather than computing nine distances and fintdi@ghortest, we only
need to compute one.

e » s
\ / .
* , * / * -
-
\ / -
\ / e
\ / e
...... \....../.--. 7z
s
/ A
T
o\ v, e -
P
* S *
/NS
/ N
N ~
..... e NS ~ o
/ N \\\
] »)
* * *

Figure 2: Simplifying the torus metric calculation. The viewing window is movethftbe original square
with the solid border to the square with the dotted border. Note the shortisstrpen the server to the
point lies entirely within the square with the dotted border.

The positions of the points at timeare described by a counting meas@tenhereC;(A) indicates the
total number of points (at tim# in the setd € #(T) and#(T) comprises the borel sets generated by the
torus metric oril. The position of the servers at timas described by a vectcﬁt = (S¢1,.,S¢m). Thus
the continuous server system can be described by the random aﬂjeét, t > 0) which takes values in
& x T, where¥ is the set of all counting measures @n

The servers’ goal is to minimise the mean time that an arbitrary customer speritde torus. For
a stable system, the total number of points on the torus converges in distrjkthtms C; (T) % O for
some random variabl€', interpreted as the steady-state number of waiting points. The servalgsgo

Stacey and Kroese

minimiseE C. Note that it is not obvious that the system is stable, although we find expe&hyethat
it is.

In attempting to minimiséE C, servers can follow a large variety of strategies, some of which require
a large amount of information on the positions of the points and the movements ofttér servers. We
assume the servers are omniscient; that is, they have complete knowlettgesystem. The strategies
that we consider in this paper require, however, only partial knowleddee system.

Even with asingle serverthe optimal strategy is not clear. Does the problem reduce to solving a
traveling salesman problem every time a new point arrives, or should ther gellow a “self-avoiding”
path, where its movement is biased away from regions where it has albeatytowards regions where
the point density is greatest? Intuitively, taking account of differencébampoint density over the torus
becomes less important, the fewer the number of points on the torus.

With multiple serversthe optimal strategy is still less clear, since each server’s actions #feebest
actions of the other servers. A good starting point is to specify that tiversebeys some sensible rule
such as the following.

1. No server should move towards a point that another server will r@ath

2. Servers should collectively serve points in a “sensible” order. ttiqodar, if there arem points
currently on the torus and is the remaining time until théh point is removed, the servers should
move so as to minimisg_", ;. This is a variant on the traveling saleman problem. It will mean
moving to denser areas first, so as to serve more points per unit time.

3. Since new points arrive uniformly distributed on the torus, the serbendd ideally be maximally
spread out such that the expected distance of a new point from thetcteseer is minimised.

The third rule of thumb is not always compatible with the second; that is, to minimestotal of the
waiting points’ service times. For example, if there is a cluster of points in oz #ne time the closest
server takes to reach and serve them all may be more than the time it takas dovaly servers to reach
the cluster and start serving some of them. If the far away servers helppthts will be removed faster
but then the servers will be bunched up and the expected distance of poig from the closest server
will not be minimised. Hence future points will take longer to remove. The optitnategy will involve
a balance between serving the current points as quickly as possiblecapihds the servers well spread
out. Note that this is only an issue when there are multiple servers. For a samgler, any point on the
torus is as good as any other when minimising the expected distance to a poistytbato arrive.

For a single server, an important point to make is that the actual position skther on the torus is
irrelevant to the analysis. We can always translate the viewing windowtkactlhe server is 0.5, 0.5).

It is the position of the pointselative to the server that is important. Such a viewpoint has proved to be
very beneficial for the analysis of continuous server systems on a,air€l&Kroese and Schmidt (1992).

For multiple servers, the positions of the servers relative to each othenpoetant. Multiple servers
will want to spread themselves out, such that the expected distance of poirawrom the closest server
is minimised. For the single server, any server location is as good as amyirothems of minimising the
expected distance to a new point.

To simulate the servers in action, we need to keep track of point arrivalelagas servers arriving at
points. The following algorithm can be used for any server strategy bpgihg the allocation algorithm
at Steps 1, 4 and 5.

Algorithm 2.1 (Server Simulation) Lets; representthe position of thith server and lep ; represent
the position of thejth point. Start with a single point. Generate its positipn uniformly onT. Let the
total number of points to have arrived B¢ = 1 and the total time elapsed b# = 0. Leta; be the index
of the point to which serveris allocated. Let; be the distance of servérfrom its allocated pointp,,,
and letd; be the direction that server must travel in to reaclp,,. Letr; be the time remaining until
eventi occurs, let¢; be the location of this event and letbe the type of the event, either ‘server arrival
at a point’ or ‘server arrival at space’ or ‘point arrival’.

Stacey and Kroese

1. Allocate the servers according to some allocation strategy.

2. Construct a list of upcoming events. This contains one event for eachr sgriving at its next
point (events 1 tm) and one event for the next arrival of a new point (event 1). For each
eventi = 1,...,n + 1, store: the time until it occursy; = ¢; for i = 1,...,n and 7,41 ~ Exp(});
the location,l; = s; + 7;d; modl1, i = 1,....,n and £, 1 ~ U[0,1)?; and the type of event.

3. Find the next event by sorting the list of upcoming events to find the evene w
T; = min;—; _n,+1 7;. Letk be the index of that event and set= ;. If the next event typey,,
is a server arrival, go to Step 4; otherwise, if the next event type is a poivial, go to Step 5.
Set7 =T +13,.

4. (SERVER ARRIVAL EVENT) Remove the point gb,. Update the server positions by setting
s; = s; + Td; modl, i = 1,...,n. Reallocate all servers according to the allocation strategy.
Recordd;, a; and§; for i = 1,...,n. Update the list of upcoming events as follows. Set d;
fori =1,...,nand 7,41 = 7,41 — T. Set the locations¢; = s; + 7'd; modl, i = 1,...;n. If
necessary (not necessary for the greedy strategy), reset the tygyemt, i.e.e; ='server arrival
at a point’ or ‘server arrival at space’. Go to Step 3.

5. (POINT ARRIVAL EVENT) Update the server positions by settisg= s; + 7'd; modl, i =
1,...,n. Generate aJ[0,1)? random vector and append it to the list of points. 8et= N + 1.
Reallocate all servers according to the allocation strategy. Reebrd; and§; fori = 1,..., n.
Update the list of upcoming events as follows. Set ¢§; for i = 1,...,n and 7,11 ~ Exp(\).
Set the locationst; = s; + T'd; modl, i = 1,...,n. If necessary (not necessary for the greedy
strategy), reset the type of event, i«g.='server arrival at a point’ or ‘server arrival at space’.
Go to Step 3.

We stop when we reach some maximum number of points or some time limit. Note thataome
strategies, such as the greedy strategy, it is only necessary to reatlooseeservers who were heading
for the point that was just reached in Step 4. The other servers’ dinsctidll remain unchanged until
they reach their point or a new point arrives.

3 The Greedy Strategy

Recall that under the greedy strateggch server is assigned to the point closest tovithen there are
no points on the torus, the servers stay in their current positions. Thetidlocstrategy for the greedy
servers can be summarised as follows.

Algorithm 3.1 (Allocation Strategy: Greedy Server) Lets;, pj, 6;, d;, anda; be as in Algo-
rithm 2.1. Letp be the number of points on the torus. Define an an “offset” ve@gk= (0.5,0.5) — s;.

1. If there are no points on the torup & 0), set the servers’ direction$; to (0,0) foralli =1,....,n
and stop; otherwise, proceed with the following steps.

2. For each server = 1,...,n, create a new set of points,

{pij,j=1,...p} ={p; + O; modl,j =1,...,p}.

Forj=1,..,p, let §; = |pi; — (0.5,0.5)| be the distance from serverto point ;.

4. Set); = min;_; ., 0;; be the distance of servéfrom its closest point. Let; be the corresponding
index of this point.

5. To each servet, assign a directiord; = (pi o, — (0.5,0.5))/d;.

w

Servers following the greedy strategy do not follow any of the sensildés rof thumb specified in
Section 2. The first rule (no server should move towards a point thah@neerver will reach first) is
clearly violated. Servers also do not serve points in a sensible ordesgtioad rule of thumb). However,
the most important drawback of the greedy strategy is that the sena@sscgend up on top of each other)
very quickly and, therefore, might as well be considered as a singlersgom the time of coalescence

Stacey and Kroese

onwards. Consider the series of plots in Figure 3, where the senergamresented as pacmen chasing
the points which are represented as cherries. The thick dashed limesewipthe directions in which the
pacmen are moving and the dotted lines represent the paths along whichatleegnbved so far.

IR
o

Figure 3: Coalescence of greedy servers.

3.1 Server Coalescence Times Under the Greedy Strategy

Our empirical observations are that for a higher point arrival katiee coalescence of the greedy servers
is slower. Intuitively this makes sense, since in order to coalesce, seawileneed to be heading towards
the same point and/or different points that are quite close together bunat stage they must be heading
toward the same point. The more points on the torus, the less likely that any tverssat different given
positions will be heading towards the same point. The coalescence of tedygservers was investigated
via Monte Carlo simulation. For the purposes of the simulation, coalescerscdefiaed to have occurred
when the two servers reached withif— of each other. We find that the number of point arrivals before
coalescence appears to be asymptoticgllgdratic in the point arrival rate\ and that the time before
coalescence appears to be asymptoticlitigar in the point arrival rate\. Figure 4 shows the mean
number of point arivals until coalescence for variougalues. A quadratic trendline is also displayed. The
corresponding?? for the fit was 0.9997. The data for Figure 4 was generated from 1§i@@@ation runs
until coalescence using= 1, ..., 15. The two servers were initially maximally separated.

70r

o data
guadratic trend
N, =0.15813)2 + 1.0644\ + 13.941

B a o2}
o o o
T T T

Mean number of arrivals N, before
w
(=]
T

the two servers are within 10~°

/»8’
_ e
20+ =
—O
o —
10 | ‘ ‘
0 : 10 |

Figure 4: Mean number of arrivals before coalescence of two greethers, starting with one point as
per Algorithm 2.1.

Stacey and Kroese

Figure 5 shows the mean time until coalescence for varioualues. A linear trendline was fitted,
excluding the first 20 observations. The corresponding coefficiedét@rmination for the fit was 0.9159.
The data for Figure 5 was generated from 1000 simulation runs until cesles usingh = 1, ..., 300.
The two servers were initially maximally separated.

50
0 A=1,..,20

® CL .

Sa40 - A=21,..,300 - S

q%)'; linear trend a L . .'._/.'./,;/J/ T

= te = 0.12578z + 2.4013 T

S 301 S :

) . o

= IR

= , S

= 201 R

) e

- B B e

g '”/.// o

=10 S

BH P e
0 L L L L L |
0 50 100 150 200 250 300

Figure 5: Mean time until coalescence of the two greedy servers, staitimgwe point as per Algorithm 2.1.

The aberrant behaviour in the earlier observations of Figure 5 coultuédo the servers waiting a
significant time with no points on the torus. This effect disappears as thé goival rate increases.

3.2 When Does the Greedy Strategy Lead to a Stable System?

Since it seems that for any finitg, the greedy servers do eventually coalesce to the same positions, a
stable system witln servers will in the long-run be equivalent to a stable system with a singlerser
Hence, without loss of generality, we can restrict ourselves to the dassingle greedy server. We find
empirically that at equilibrium the mean number of points on the torus is a quadrati¢see Figure 6).

> 16000+

N,

14000 © data
quadratic trend

12000 N, =0.385)\% — 2.63\

10000

8000

6000

4000

2000

0 1 L L L L L L L L
40 60 80 100 120 140 160 180 200
A

Equilibrium mean number of points

Figure 6: Equilibrium mean number of points for= 40, 80, 120, 160, 200. A quadratic trend line through
the origin is fitted.

Stacey and Kroese

This makes intuitive sense. The number of points on the torus will incredgissuch time that the mean
distance between each point and the closest next point is equal toiffrecatof the arrival rate. Since the
torus is a two-dimensional space, multiplyikdpy a factork causes the required number of points to change
by a factork?. Figure 6 displays the equilibrium mean number of pointsXer 40, 80, 120, 160, 200. We
also know the mean will be 0 fox = 0. Hence, a quadratic trend line through the origin is fitted and the
R? for the fit is 0.999993. For each the system was simulated in equilibrium fox 10° point arrivals.
The total time spent in each state (number of points) was recorded andutfieragqn mean number of
points was estimated from this information.

To gain an idea of the evolution of the mean number of points in the system, stiidinga single
point until the system reaches equilibrium, Figure 7 displays, for varigtise mean number of points on
the torus at the time of th&/th arrival (the middle lines). The two lines on either side of the middle line
are upper and lower 95% confidence bounds. The data for Figures gereerated from 1000 simulation
runs of 1000 point arrivals in each run, fdr= 1,2, ..., 10. Equilibrium was reached by 1000 point arrivals
for each of these\ values.

1000

Mean number of points at the Nth arrival

Figure 7: Mean number of points on the torus at the time oftik arrival for A = 1,2, ..., 10.

What the plot of the mean number of points on the torus does not tell us is leomuthber of points
on the torus fluctuates in equilibrium.

3.3 What is the Equilibrium Distribution of the Number of Points waiting for service?

Figure 8 depicts the results of a simulation run with a single greedy servaraadival rate of\ = 200.
The number of points waiting for service on the torus appeared to reaefulibrium of around 14900
points after 100,000 point arrivals. It was run for a total burn-in geabl million point arrivals and from
that point onwards the total time spent at each number of points on the tauseaorded for a further
50 million arrivals. The empirical probability mass function that was generated the data is shown
normalised in Figure 8. A kernel density estimate is fitted.

Stacey and Kroese

0.451

0.35f

0.3

0.251

0.2

0.151

0.1

0.051-

Figure 8: A normalised version of the empirical probability mass function ofteady state number of
waiting points on the torug’ for a single greedy server and an arrival rate- 200.

Figure 9 provides an indication of the spatial distribution of points in equilibfioinan arrival rate of
200.

Figure 9: A snapshot in equilibrium of the positions of waiting points on thestiua single greedy server
and an arrival rate. = 200. The frame of reference has been shifted such that the server iS#L%).

Stacey and Kroese

An interesting observation from Figure 8 is that the distribution is positivedyvekl. Perhaps this is
due to the fact that, at low point levels when the drift is upwards, theshnate is constant at, regardless
of the server’s position on the torus, whereas at high point levels wredrtft is downwards, the rate
at which the server removes points is highly dependent on its position. Kdaher happens to be in
a relatively sparse area of the torus when the point levels are high, thdavigls will persist until the
server reaches a denser region. Under the greedy strategy, thewilreventually be drawn to the denser
regions but new points that land close to him and on the wrong sides captdiss progress.

4 Better Strategies

The greedy strategy has several important drawbacks related to its viotdtsensible rules of thumb for
server behaviour. The coalescence of greedy servers, in particuka significant problem but one that
can be easily solved, for example, by the strategy we term “simple sharing”.

4.1 Simple sharing

Simple sharing is a simple improvement on the greedy strategy which prevevtsssgom coalescing.
The allocation algorithm is as follows.

Algorithm 4.1 (Allocation Strategy: Simple Sharing)

1. Allocate each server individually to a point via the greedy strategy. If thezeno points on the
torus, the servers stay where they are.

2. Look for clashes where two or more servers are allocated to the same pbthere are none,
stop (the servers have been allocated); otherwise, go to Step 3.

3. For the servers which are not the closest to the point they have beera@thcadd the point to
which they would be heading to a 'taboo list of points’ for that server. Reatkthese servers
via the greedy strategy, over the set of points excluding those on thew tee If, for a server,
there are no points on the torus which are not on the taboo list, the serteysamere they are.
Go back to Step 2.

It does not make much sense to compare the performance of the simplegshtategy to the
performance of the greedy strategy since under the greedy stratelgyplenservers very quickly coalesce
to be one. Therefore, any comparison with multiple servers would seeair,usmid with a single server
the two strategies are equivalent. Perhaps it is best to accept the simpiey stieategy as strictly better
than the greedy one and to use this as a base to compare with more aduasieggies.

4.2 m-Step Ahead Sharing

In the simple sharing strategy, the servers only look one step ahead. Sayatie two servers and two
points. Server 1 is closest to point 1, but server 1 could also reach pogoing via point 1, faster than
server 2 could reach point 2. The simple sharing strategy would alloaater deto point 1 and server 2 to
point 2. The servers need to look 2 steps ahead hetestep ahead sharing” extends the simple sharing
strategy in this way. The algorithm can be programmed as follows.

Stacey and Kroese
Algorithm 4.2 (Allocation Strategy: m-Step Ahead Sharing)

1. If there are no points on the torus, the servers stay where they are tf8tadgorithm; otherwise,
for each serveti, create a list.#;; = {1,2,...,p} of points that they can visit on the first step
(Initially this includes all points). Allocate each server individually via the gsestrategy over
the set of points; ;. Leta;; be the index of the point, to which servieis allocated. For each
serveri, create a list%; 2 = {1,2,...,p} \ {a;1} of points that servei can visit subsequently.
Then forj =2, ...,m,

(a) If % ; is empty, stop and go to Step 2; otherwisedgt be the index of the point i#; ;
that is closest to poind; ;.

(b) Set# ;11 =% ;\{ai;} and go to Step 1.(a).

Thus we define the path that seniervould follow if acting alone, to serve the next points.

2. Find the serveri; which reaches its first point first and the servemwhich reaches its first point
second. For all points i{a;, j,7 = 1,2,...,m} that serveri; will reach before servet; reaches
its first point, add these points to a lisf, of confirmed points for server. Letwv; be the size
of ¢; for each server, interpreted as the number of points already allocated to seiveBet
Fi;=Fij\ci foralli#i,j=1,2,...,m. This removes the points that have been confirmed
for serveri; from the list of points that the other servers can visit.

3. If v; > 1 for all i then go to Step 7; otherwise, go to Step 4.

4. For each servel with v; = 0, reallocate the server individually via the greedy strategy over the
set of points in%; ;. If .%; 1 is empty, set; =m anda;; = @.

5. Forserversi witha; ; # @, leta; ; be the index of the point, to which servés allocated. Create
alist %2 = .%;1 \ {a;1} of points that servet can visit subsequently. Then fpr= 2, ..., m,

(a) If .7 ; is empty, stop and go to Step 6; otherwisewgtto be the index of the point itF; ;
that is closest to poin; ;1.
(b) Set# ;11 =% ;\{a;} and go to Step 5.(a).

6. Find the serveri; which reaches first its first point of those points for which it has not been
confirmed and the serveés which reaches second its first point of those points for which it has not
been confirmed. For all points ifa;, ;,j = v; + 1,v; + 2, ..., n} that serveri; will reach before
serveris reaches its first point, add these points to thedistof confirmed points for serveg. Set
Fi;=Fij\ci foralli#i,j=1,2,...,m. This removes the points that have been confirmed
for serveri; from the list of points that the other servers can visit.

If U,ci ={1,2,...,p} thatis, if all points have been confirmed to a server, go to Step 7; oteerw
go to Step 3.

7. Seta; = a;; for all serverss; that is, allocate servei to pointa;. For serversi with a; = @,
set the server directiod; = (0,0) (the server stays where it is). For serversvith a; # &, set
d; to be the distance of servérfrom pointa; and set the server directiod; such that servei
reaches point; in the minimum distancg, (calculate thisd; in the same way as for the previous
algorithms). The servers have been allocated.

5 A Comparison Between the Strategies

As mentioned earlier, a comparison of the “simple sharing” anestep ahead sharing” strategies with the
greedy strategy would not make a great deal of sense, but they camipared to each other. Empirically
we find that the #n-step ahead sharing” strategy performs at least as well as the simpiegsbiaategy
but, somewhat surprisingly, not a great deal better. Table 1 proviéesoiimparison.

Stacey and Kroese

Table 1: Comparison of the equilibrium mean number of points waiting on the Bitusnder the simple
sharing andn-step ahead sharing strategies foe 1, ..., 10.

simple S-step simple S-step

sharing ahea_ld sharing ahea}d
sharing sharing

1 0.30 0.30 6 2.75 2.66
2 0.65 0.64 7 3.57 3.43
3 1.04 1.03 8 4.53 4.36
4 151 1.48 9 5.69 5.45
5 2.07 2.01 10 7.00 6.73

6 Conclusions and Further Research

When multiple servers each follow the greedy strategy, the servers cealeish the consequence that in
the long run multiple servers are no more effective than a single servefoWe empirically that the
number of arrivals until coalescence increases quadratically in the awinal rate \, and that the time
until coalescence increases linearly)Nrfor sufficiently largeA.

Since greedy servers coalesce, it is sufficient to consider a singdeygeerver in the long-run. For
a single greedy server, we found empirically that the number of points otothe reaches a stochastic
equilibrium with a mean that is quadratic in the arrival rateFor sufficiently large\, we found that the
equilibrium distribution of the number of points on the torus is positively skevd then investigated
and compared some simple modifications to the greedy strategy, which pieveuligple servers from
coalescing.

Further research could examine how the equilibrium mean number of poitite doruskEC is related
to the number of servers under the simple sharing mnrstep ahead strategies. We would expect the
relationship to be linear for high arrival rates As a refinement on the:-step ahead strategy, we could
consider sending servers which are not allocated to points into “emptgs arethe torus such that the
expected distance of a new point to the closest server is minimised. We waaild likvestigate density-
dependent strategies such as the one mentioned in the second “sersiblethumb” in Section 2. This
could be extended to multiple servers and combined with the idea of sendithacated servers into empty
areas of the torus. We would like to obtain analytical results to match the empi®alts in this paper
as well as for the further research topics mentioned above.

7 Acknowledgements

Dirk Kroese would like to acknowledge the support of the Australian Rebé&2ouncil through the Discovery
Grant DP0985177.

REFERENCES

Altman, E., and S. Foss. 2004. “Polling on a Space with General ArrivélService Time Distribution”.
INRIA Centre Sophia Antipolis

Altman, E., and H. Levy. 1994. “Queueing in SpacAlvances in Applied Probabilit96:1095-1116.

Bertsimas, D. J., and G. van Ryzin. 1991. “A Stochastic and Dynamic VeRiolding Problem in the
Euclidean Plane”Operations ResearcB9:601-615.

Bertsimas, D. J., and G. van Ryzin. 1993. “Stochastic and Dynamic Vehimlgirig) in the Euclidean
Plane: The Multiple-Server, Capacitated Vehicle Cagiierations Researchl (No. 1): 60-76.
Coffman, E. G., and E. N. Gilbert. 1986. “A Continuous Polling System witinsEant Service Times”.

IEEE Transactions on Information Theo82 (No. 4).
Eliazar, 1. 2003. “The Snowblower ProblemQueueing Systen#b:357-380.

Stacey and Kroese

Fuhrmann, S. W., and R. B. Cooper. 1985. “Applications of the Decoitipo®rinciple in M/G/1 Vacation
Models to Two Continuum Cyclic ModelsAT&T Technology Journah4:1091-1098.

Kroese, D. P., and V. Schmidt. 1992. “A Continuous Polling System with &i8ervice Times"The
Annals of Applied Probabilit (No. 4): 906-927.

Leskeh, L., and F. Unger. 2010. “Stability of a Spatial Polling System with GreadypM Service”.
Annals of Operations Research

Rojas-Nandayapa, L., S. Foss, and D. Kroese. 2011. “Stability aridrP@nce of Greedy Server Systems:
A Review and Open ProblemsQueueing Systems: Theory and Applicatiod®! 10.1007/s11134-
011-9235-0.

AUTHOR BIOGRAPHIES

KARL STACEY is a Mathematics and Statistics Honours student in the School of Mathematics and
Physics at the University of Queensland. He received a Bachelortef(Mathematics) and a Bachelor

of Economics from the University of Queensland. He expects to completedrisurs in Mathematics

at the end of 2011. His research interests include Monte Carlo methodsciirig particle systems and
randomized optimization. His email addreskistacey@ug.edu.au

DIRK KROESE is an Australian Professorial Fellow in Statistics at the School of MathematidBlaysics
of the University of Queensland. He has held teaching and reseasdiopse at Princeton University, the
University of Twente, the University of Melbourne, and the UniversityAdelaide. His research interests
include Monte Carlo methods, adaptive importance sampling, randomized opitimjzand rare-event
simulation. He has over 70 peer-reviewed publications, including three maplog Simulation and the
Monte Carlo Method, 2nd Edition, 2007, John Wiley & Sons (with R.Y. Rubin}t&he Cross-Entropy
Method, 2004, Springer-Verlag, (with R.Y. Rubinstein), and the Haoktwd Monte Carlo Methods, 2011,
John Wiley & Son (with T. Taimre and Z.I. Botev). He is serving on the editdréalrds of Methodology
and Computing in Applied Probability and The Annals of Operations Resedfich email address is
kroese@maths.ug.edu.and his web page is at http://maths.uqg.edwlagese.

