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Abstract

Although importance sampling is an established and effective sampling
and estimation technique, it becomes unstable and unreliable for high-
dimensional problems. The main reason is that the likelihood ratio in
the importance sampling estimator degenerates when the dimension of the
problem becomes large. Various remedies to this problem have been sug-
gested, including heuristics such as resampling. Even so, the consensus
is that for large-dimensional problems, likelihood ratios (and hence im-
portance sampling) should be avoided. In this paper we introduce a new
adaptive simulation approach that does away with likelihood ratios, while
retaining the multi-level approach of the cross-entropy method. Like the
latter, the method can be used for rare-event probability estimation, op-
timization, and counting. Moreover, the method allows one to sample ex-
actly from the target distribution rather than asymptotically as in Markov
chain Monte Carlo. Numerical examples demonstrate the effectiveness of
the method for a variety of applications.

Keywords: likelihood ratio degeneracy, kernel density estimation, importance
sampling, exact sampling, rare-event probability estimation, combinatorial count-
ing

1 Introduction

Estimation and optimization problems in applied probability and statistics often
concern sampling from specified target distributions. Standard sampling meth-
ods include the inverse-transform method, the acceptance-rejection method, and
the alias method, as well as many other ad hoc methods; see, for example, [5].
Some of these methods are exact, that is, the generated random variables are
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distributed exactly according to the target distribution. In most cases, however,
exact sampling is either infeasible or very costly. In such cases one often re-
sorts to approximate sampling. A popular example is Markov chain Monte Carlo
(MCMC), with its many variants; see, for example, [14].

Despite this abundance of sampling techniques, a significant amount of in-
ternational research is currently being directed towards finding better random
variable generation methods. There are several reasons for this, which are dis-
cussed next.

First, one of the main drawbacks of MCMC is that the underlying Markov
chain needs to be run until it is close to stationarity — the so-called burn-in
period. There are two problems here: (a) the Markov chain theoretically never
reaches stationarity (unless some coupling argument is used), so that exact sam-
pling is never achieved; and (b) the choice of the burn-in period is highly subjec-
tive, and can often be justified mathematically only in situations where a more
direct exact sampling approach is also feasible. Although exact MCMC methods
are currently being investigated (see, for example, [9]), these methods are still no
real match for standard MCMC techniques in terms of applicability and speed.

Second, for problems where the target distribution involves rare events, stan-
dard generation techniques cannot be easily applied, as they require a large
amount of simulation effort. There are a number of ways to deal with rare
events. A well-known approach is to use importance sampling, where an “easy”
sampling distribution is chosen that is close to the actual target. To get unbiased
estimates, however, each sample needs to be weighted by the likelihood ratio of
the sampling and target distribution. One difficulty with importance sampling
is that a good choice for the sampling distribution may not be easily obtained.
Fortunately, recent advances in adaptive importance sampling techniques have
made this technique much more feasible; a typical example is the cross-entropy
(CE) method [11, 16, 21], and its offshoots [17, 18, 20]. A more fundamental and
serious difficulty with importance sampling is that the corresponding likelihood
ratio degenerates when the dimension of the problem becomes large. Although
various patches to this problem have been suggested (including resampling [7]),
the general idea is that for large-dimensional problems, likelihood ratios (and
hence importance sampling) should be avoided. A different approach in rare-
event simulation is to view the rare event as a sequence of nested events. The
advantage is that the estimation and generation can now be conducted in vari-
ous stages, and that the product rule of probability can be invoked to calculate
rare-event probabilities. One of the earliest examples is the splitting technique of
Kahn and Harris [10], which was the precursor of the RESTART method [23] for
rare-event simulation. Ross [15] and Holmes & Diaconis [6] use the nested level
idea to solve discrete counting problems in statistical mechanics and computer
science. Olafsson [13] describes a nested partitions approach for random search.
We employ the nested level idea as well, but in a way that ensures exact sam-
pling from the minimum variance importance sampling pdf corresponding to the
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rare-event problem at hand.
Third, MCMC methods often take advantage of the fact that the target only

needs to be known up to a normalization constant. This is essential in Bayesian
statistics, where the normalization constant is often difficult to compute or esti-
mate. However, in many estimation problems it is essential that the normaliza-
tion constant can be computed or estimated.

Finally, new random variable methods are needed to deal with the plenitude of
new Monte Carlo applications in rare-event simulation, counting in #P complete
problems, and continuous and discrete optimization; see, for example, [22].

The purpose of this paper is to introduce a new sampling method that ad-
dresses the shortcomings of traditional methods, while retaining various of their
fundamental features. In particular, our method combines the adaptiveness and
level-crossing idea of CE with an MCMC-like generation algorithm. However,
the important differences with classical MCMC are that (1) the samples are gen-
erated exactly and (2) the normalization constant can be estimated (or is known)
directly. In addition, the nesting of events and the use of the product rule — as in
the splitting technique — will be crucial in the efficient estimation of rare-event
probabilities. Moreover, our method avoids using likelihood ratios, making it
suitable for large-dimensional problems. The method is based on recent insights
into kernel density estimation [1, 3], the bootstrap method [8], and the multi-level
approach of the CE method [21]. The method works well for both continuous
and discrete estimation problems, and can also be used for perfect sampling from
the Ising model [2].

The rest of the paper is organized as follows. In Section 2 we first provide a
brief background on rare-event simulation, and then gently introduce the ideas
of the proposed method via three illustrative examples: a rare-event probability
estimation example of large dimension, a permutation counting example, and a
knapsack combinatorial optimization example. We provide explicit algorithms for
each of the examples, making them easy to implement and test. In Section 3 we
present a general version of the main method which broadens its applicability to
many other rare-event simulation and optimization problems. Section 4 presents a
number of applications of the method, including the traveling salesman problem,
the quadratic assignment problem, and the estimation of light- and heavy-tailed
rare-event probabilities. Finally we draw some conclusions based on the numerical
results and give directions for future work.

2 Estimation and Optimization via Monte Carlo

Simulation

The purpose of this section is to provide a number of concrete examples in estima-
tion, optimization, and counting, to quickly explain the workings of the proposed
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method. We first briefly discuss the general sampling framework in the context
of rare-event probability estimation.

Many estimation and optimization problems involve the estimation of proba-
bilities of the form

ℓ(γ) = P (S(X) > γ) , (1)

where X is a random object (vector, path, etc.) that takes values in some set
X and is distributed according to a pdf f , S is a real-valued function on X ,
and γ ∈ R is a threshold level. We assume that sampling from f is easy. We
are particularly interested in the case where ℓ is very small. Such rare-event
probabilities are difficult to estimate via crude Monte Carlo (CMC), because in
the corresponding CMC estimator,

ℓ̂CMC =
1

N

N∑

i=1

I{S(Xi) > γ}, X1, . . . ,XN ∼iid f(x) , (2)

most or all of the indicators I{S(Xi) > γ} are 0, unless a very large sample size
N is used. Moreover, the relative error (RE) of the CMC estimator, defined as

√
Var(ℓ̂)

Eℓ̂
=

√
1 − ℓ

Nℓ
, (3)

grows as 1/
√

Nℓ as ℓ → 0. This shows that estimating small probabilities using
CMC is computationally involved.

A standard solution to this problem is to use the importance sampling esti-
mator:

ℓ̂IS =
1

N

N∑

i=1

W (Xi)I{S(Xi) > γ}, X1, . . . ,XN ∼iid g(x), (4)

where W (Xi) = f(Xi)/g(Xi) is the likelihood ratio. The importance sampling
pdf g is chosen so as to make the event {S(X) > γ} less rare, while maintaining
a small RE for the estimator. It is well known that ℓ can be efficiently estimated
via importance sampling, provided that the sampling distribution is close to the
pdf

g∗(x | γ) =
f(x)I{S(x) > γ}

ℓ(γ)
. (5)

This pdf is the minimum-variance importance sampling density for the estimation
of ℓ; see, for example, [22]. An obvious difficulty is that g∗ itself depends on the
unknown constant ℓ, and therefore can not be used directly as an importance
sampling pdf.

Often the importance sampling pdf g is chosen in the same parametric family
{f(x;v), v ∈ V } as the nominal pdf f(x) = f(x;u), where V is an appropriate
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parameter space. Then, the problem of selecting a good g reduces to the problem
of selecting a good parameter v. Two well-known methods for choosing such
an optimal reference parameter v are the CE method [21, 22] and the variance
minimization (VM) method [12]. In the latter, the optimal v is determined or
estimated from the solution to the variance minimization program

min
v∈V

Varv(ℓ̂IS) . (6)

In the CE method the parameter v is determined or estimated from the solution
to the program

max
v∈V

EuI{S(X) > γ} ln f(X;v) . (7)

This program is motivated by information-theoretic arguments presented in [21].
Although both the VM and the CE programs work well and perform similarly

for a large variety of estimation problems, serious problems arise when the dimen-
sionality of the problem becomes too large. In particular, when the dimension of
X is large, the likelihood ratio terms in (4) suffer from the well-known likelihood
ratio degeneration problem [22]. Various remedies have been suggested in the
literature. For example, the screening method (see [19] and Section 8.2.2 of [22])
is a modification of the original CE and VM methods that reduces the number
of dimensions of the likelihood ratio term W . Below we compare the proposed
method with the CE and VM methods and the screening counterparts of the
CE and VM methods. We should point out, however, that the CE method uses
likelihood ratios only in estimation problems. For optimization problems, where
no likelihood ratios are used, the CE method does not suffer from the degeneracy
problem described above.

As mentioned before, the proposed method does not use importance sampling,
but uses an adaptive level-set approach. As in the CE and VM methods, the
minimum variance pdf (5) plays a crucial role in our method. Indeed, the method
aims to generate exact samples from (5).

We illustrate the above framework and the workings of the method via three
examples, dealing with rare-event probability estimation, counting, and optimiza-
tion, respectively.

2.1 Rare-Event Probability Estimation Example

Consider the weighted graph in Figure 1. The system consists of m × n ordi-
nary bridge graphs arranged in a grid. A source and terminal vertex are added,
as well as zero-weight edges connecting the bridges, indicated by dashed lines.
Denote the random lengths of the (solid-line) edges within the (i, j)-th bridge by
Xij1, . . . , Xij5, in the order indicated in the figure.
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Figure 1: The m × n bridge system is an array of ordinary bridge systems.

The length of the shortest path through bridge (i, j) is

Yij = min{Xij1 + Xij4, Xij2 + Xij5, Xij1 + Xij3 + Xij5, Xij2 + Xij3 + Xij4} , (8)

and the shortest path from the source to the terminal is

S(X) = min{Y11 + · · · + Y1n, . . . , Ym1 + · · · + Ymn} , (9)

where X is the random vector of components {Xijk}. Suppose that the {Xijk}
are independent and that each component Xijk has a Weib(α, λijk) density; that
is, with pdf

fijk(x; α, λijk) = αλijk(λijkx)α−1e−(λijkx)α

, x > 0 .

The density of X is then f(x) =
∏

ijk fijk(xijk; α, λijk).
Suppose we are interested in estimating the probability, ℓ, that the shortest

path through the network exceeds some length γ. In other words, we wish to
estimate ℓ = P(S(X) > γ). For large γ the probability ℓ becomes very small.

In our proposed method, we directly sample from the sequence of minimum
variance importance sampling pdfs: {g∗

t } = {g∗(· | γt)}, where −∞ = γ−1 < γ0 <
γ1 < . . . < γT−1 < γT = γ is a sequence of levels. Note that g∗(· | γ−1) ≡ f(·).
We will show that, as a consequence of sampling from the sequence {g∗

t }, the
proposed method provides a natural estimate for ℓ. Note that we assume that
the sequence of levels is such that the conditional probabilities ct = P(S(X) >

γt |S(X) > γt−1), t = 0, . . . , T, γ−1 = −∞ are not small. In cases where it is
not obvious how to construct such a sequence, we will later present an adaptive
procedure that provides a suitable sequence of levels. Without going into further
detail, the method as applied to rare-event probability estimation is outlined
below.
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Algorithm 2.1 (Estimation of Rare-Event Probabilities) Given the se-
quence of levels γ0 < γ1 < · · · < γT = γ and the sample size N , execute the
following steps.

1. Set a counter t = 1. Generate

X
(0)
1 , . . . ,X

(0)
N ∼ f(x).

Let X̃ (0) = {X̃(0)
1 , . . . , X̃

(0)
N0
} be the subset of the population {X(0)

1 , . . . ,X
(0)
N }

for which S(X
(0)
i ) > γ0. Note that

X̃
(0)
1 , . . . , X̃

(0)
N0

∼ g∗(x | γ0)

and that an unbiased estimate for c0 = ℓ(γ0) is

ĉ0 = ℓ̂(γ0) =
1

N

N∑

i=1

I
{

S(X
(0)
i ) > γ0

}
=

N0

N
.

2. Sample uniformly with replacement N times from the population X̃ (t−1) to
obtain a new sample Y1, . . . ,YN . Note that Y1, . . . ,YN ∼ g∗(x | γt−1),
since the resampling does not change the underlying distribution.

3. For each Y = (Y1, . . . , Yr) (with r = 5mn) in {Y1, . . . ,YN}, generate

Ỹ = (Ỹ1, . . . , Ỹr) as follows:

(a) Draw Ỹ1 from the conditional pdf g∗(y1 | γt−1, Y2, . . . , Yr).

(b) Draw Ỹi from g∗(yi | γt−1, Ỹ1, . . . , Ỹi−1, Yi+1, . . . , Yr), i = 2, . . . , r−1.

(c) Draw Ỹr from g∗(yn | γt−1, Ỹ1, . . . , Ỹr−1).

Denote the population of Ỹs thus obtained by X
(t)
1 , . . . ,X

(t)
N . Note that

X
(t)
1 , . . . ,X

(t)
N ∼ g∗(x | γt−1), since conditional sampling does not change the

distribution of Y1, . . . ,YN .

4. Let X̃ (t) = {X̃(t)
1 , . . . , X̃

(t)
Nt
} be the subset of the population {X(t)

1 , . . . ,X
(t)
N }

for which S(X
(t)
i ) > γt. We thus have that

X̃
(t)
1 , . . . , X̃

(t)
Nt

∼ g∗(x | γt).

An unbiased estimate for the conditional probability

ct = Pf (S(X) > γt |S(X) > γt−1) = Pg∗t−1
(S(X) > γt)

is given by

ĉt =
1

N

N∑

i=1

I
{

S(X
(t)
i ) > γt

}
=

Nt

N
,

where X
(t)
1 , . . . ,X

(t)
N ∼ g∗(x | γt−1) ≡ g∗

t−1(x).
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5. If t = T go to Step 6; otherwise, set t = t + 1 and repeat from Step 2.

6. Deliver the estimator of the rare-event probability ℓ(γ):

ℓ̂(γ) = ℓ̂(γ0)
T∏

t=1

ĉt.

Remark 2.1 Step 2 of Algorithm 2.1 involves random resampling from the pop-
ulation Xt−1 in order to obtain a new bootstrapped population of size N . We call
this step the bootstrap step [8]. Step 3 involves sampling each component Xijk

from the minimum variance pdf g∗ in (5) conditional on the other components
— exactly as in the (systematic) Gibbs sampler [22]. We can therefore refer to
the conditional sampling in Step 3 as a Gibbs sampling step. The conditional pdf
can be written here explicitly as

g∗(xijk | γt−1,x−ijk) ∝ f(xijk; α, λijk) I

{
xijk > γt−1 − βijk −

∑

l 6=j

yil

}
,

where x−ijk denotes the vector x without the xijk-th component, yil is given in
(8), and

βij1 = min(xij4, xij3 + xij5)

βij2 = min(xij5, xij3 + xij4)

βij3 = min(xij1 + xij5, xij2 + xij4)

βij4 = min(xij1, xij2 + xij3)

βij5 = min(xij2, xij1 + xij3).

Note that all conditional pdfs are left-truncated Weibull pdfs, from which it is
easy to generate using the inverse-transform method.

As a particular example, we compared the proposed method with the CE,
VM, and screening variants listed in [21], for the case of a bridge network model
with m = 3 and n = 10. The dimensionality of this problem is quite high,
involving 150 variables. The model parameters are chosen as α = 1, u111 =
u112 = u211 = u212 = u311 = u312 = 1, and the rest of the {uijk} are set to 4.
We applied Algorithm 2.1 with N = 40,000, using the levels given in the third
column of Table 1. How these levels were derived will be explained shortly; see
Algorithm 2.2.

All other methods used a sample size N = 500,000 (see [19] for more details).
Since the methods required different number of iterations or a preliminary run,
to make a fairer comparison we allotted the same overall computational budget
to each method. The total number of samples used by each method was ap-
proximately 2,800,000. The results are presented in Table 2, where the estimates
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of ℓ and the corresponding RE is estimated from 10 independent runs of each
algorithm. It is thus important to emphasize that the RE is not estimated from
a single simulation run, but rather from a batch of independent runs.

Table 1: The sequence of levels and the corresponding conditional probabilities
for a typical run. The product of the conditional probabilities is here 5.88×10−8.

t γt ĉt

0 3.27 0.111
1 3.76 0.140
2 4.27 0.086
3 4.68 0.104
4 5.04 0.120
5 5.43 0.104
6 5.80 0.109
7 6 0.303

Table 2: Performance of the CE and VM methods and their screening counter-
parts together with the new approach over 10 independent trials on the 3 × 10
network model of dimension 150 with γ = 6. For all methods the total number of
samples used is approximately 2,800,000. For all mathods the RE was estimated
from the 10 independent trials.

Method CE VM CE-SCR VM-SCR new method

mean ℓ̂ 2 × 10−8 5.3 × 10−8 5.3 × 10−8 5.2 × 10−8 5.92 × 10−8

RE 1.06 0.28 0.33 0.15 0.021

mean iter. 6 6 7.4 8.9 7

It is clear from Table 2 that, for the given computational budget, the proposed
method performs the best in terms of RE.

We now explain the method of computation of the sequence of levels given in
Table 1. The sequence is determined adaptively in a way similar to the multilevel
approach of the CE method.

Algorithm 2.2 (Adaptive Selection of Levels)

1. Set a counter t = 1. Given the user-specified parameters Np (sample size for
preliminary calculation of levels) and ̺ ∈ (0, 1) (called rarity parameter),
initialize by generating

X
(0)
1 , . . . ,X

(0)
Np

∼ f(x).
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Let γ̂0 be the (1− ̺) sample quantile of S(X
(0)
1 ), . . . , S(X

(0)
Np

) and let X̃ (0) =

{X̃(0)
1 , . . . , X̃

(0)
N0
} be the subset of the population {X(0)

1 , . . . ,X
(0)
Np
} for which

S(X
(0)
i ) > γ̂0. Observe that γ̂0 is a random variable, which approximates

the true (1 − ̺) quantile of the distribution of S(X), where X ∼ f(x).

2. Same as in Algorithm 2.1, but note that here the sample is only approxi-
mately distributed from the target.

3. Same as in Algorithm 2.1, with the caveat that we do not claim to preserve
stationarity.

4. Set
γ̂t = min{γ, â},

where â is the (1 − ̺) sample quantile of S(X
(t)
1 ), . . . , S(X

(t)
Np

). Let X̃ (t) =

{X̃(t)
1 , . . . , X̃

(t)
Nt
} be the subset of the population {X(t)

1 , . . . ,X
(t)
Np
} for which

S(X
(t)
i ) > γ̂t.

5. If γ̂t = γ, set T = t and go to Step 6; otherwise, set t = t + 1 and repeat
from Step 2.

6. Deliver the estimated sequence of levels γ̂0, . . . , γ̂T−1, γ.

Remark 2.2 Since for the bridge network problem S(X) is a continuous func-
tion, the (1 − ̺) sample quantile is unique. Therefore, in Algorithm 2.2 we have

1

N

N∑

i=1

I
{

S(X
(t)
i ) > γ̂t

}
= ̺

for all t = 0, . . . , T − 1, whenever Np × ̺ is an integer. Observe that this is not
true for t = T , because γ̂T = γ is not necessarily the (1 − ̺) sample quantile of

S(X
(T )
1 ), . . . , S(X

(T )
Np

).

The idea of the procedure described above is to select the first level γ̂0 such
that the event {S(X) > γ̂0}, where X ∼ f , is no longer a rare event and we
could easily obtain samples approximately distributed from g∗(· | γ̂0). The next
level γ̂1 is chosen such that {S(X) > γ̂1}, where X ∼ g∗(· | γ̂0), is no longer a
rare event and we could use the samples from g∗(· | γ̂0) to help generate samples
approximately distributed from g∗(· | γ̂1). The sample from g∗(· | γ̂1) is in its
turn used to help generate a sample from g∗(· | γ̂2) and so on. This recursive
procedure is continued until we have generated approximate samples from the
target g∗

T (·) = g∗(· | γ). The final step provides a sequence {γ̂t}T
t=0 such that the

conditional probabilities {ct}T−1
t=0 in Algorithm 2.1 are approximately ̺.
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Using Algorithm 2.2 with Np = 400 and ̺ = 0.1, we obtained the sequence of
levels in Table 1. Note that the computational cost of selecting a suitable sequence
of levels is negligible. Observe that all the methods in Table 2 require preliminary
runs before an estimate is delivered. For example, the CE and VM methods
require a preliminary step in which the optimal parameter v in (4) is estimated.
For the VM algorithm this estimation step involves calls to a costly non-linear
minimization subroutine. In addition, the VM and CE screening counterparts
require an additional step in which the dimension reduction of the likelihood
ratio W is determined.

An advantage of the proposed method is that it requires few user-specified
parameters. These are the sample sizes N , Np and the rarity parameter ̺ in the
computation of a suitable sequence of levels. Our numerical experience shows that
the parameter ̺ requires little or no tuning for different rare-event probability
estimation problems.

In summary, we employ a two-stage procedure in cases where a suitable se-
quence of levels is not obvious, where the first (preliminary) stage gives a suit-
able sequence of levels {γt}T−1

t=0 as in Algorithm 2.2, and the second (main) stage
provides a dependent but exact sample from the pdf g∗(· | γ) and a consistent
estimate of the rare-event probability as in Algorithm 2.1.

2.2 Counting Example

Let X be the set of all permutations x = (x1, . . . , xn) of the integers 1, . . . , n.
Consider the problem of estimating the number of permutations in X for which∑n

j=1 jxj > γ. In other words, we are interested in estimating the size |X ∗(γ)|
of the set

X
∗(γ) =

{
x ∈ X :

n∑

j=1

jxj > γ

}
. (10)

For example, we have that |X ∗(
∑n

j=1 j2)| = 1. Observe also that X ∗(0) ≡
X . To solve the above estimation problem, consider instead estimating the
probability

ℓ(γ) = P

(
n∑

j=1

jXj > γ

)
,

where X = (X1, . . . , Xn) is uniformly distributed over X . This is exactly the
setting of (1) with S(x) =

∑n
j=1 jxj. We now have

ℓ(γ) =
|X ∗(γ)|
|X | =

|X ∗(γ)|
n!

,

which is a rare-event probability for n large and γ close to
∑n

j=1 j2. For example,

ℓ
(∑n

j=1 j2
)

= 1
n!

. Hence, to estimate the size of the set X ∗(γ), we need to
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estimate only the rare-event probability ℓ(γ). We employ the proposed method
to estimate ℓ(γ), by sampling exactly from the zero-variance pdf

g∗(x | γ) ∝ I{S(x) > γ} , x ∈ X , (11)

via a sequence of importance sampling pdfs {g∗
t (x)}, with g∗

t (x) = g∗
t (x | γt) ∝

I{S(x) > γt}. Note that the normalization constants for the {g∗
t (x)} and for

g∗(x | γ) are unknown. Our algorithm for this problem can be stated as follows.

Algorithm 2.3 (Algorithm for Counting) Given the sequence of levels γ0 <
γ1 < · · · < γT−1 < γ and the user-specified sample size N , execute the following
steps.

1. Set a counter t = 1. Generate N uniformly distributed permutations over
X . Denote the population of permutations by X

(0)
1 , . . . ,X

(0)
N . Let X̃ (0) =

{X̃(0)
1 , . . . , X̃

(0)
N0
}, N0 > 0 be the subset of the population {X(0)

1 , . . . ,X
(0)
N }

for which S(X
(0)
i ) > γ0. Note that

X̃
(0)
1 , . . . , X̃

(0)
N0

∼ g∗(x | γ0) ∝ I

{
n∑

j=1

jxj > γ0

}
, x ∈ X

and that an unbiased estimate for c0 = ℓ(γ0) is

ĉ0 = ℓ̂(γ0) =
1

N

N∑

i=1

I
{

S(X
(0)
i ) > γ0

}
=

N0

N
.

2. Sample uniformly with replacement N times from the population X̃ (t−1) to
obtain a new sample Y1, . . . ,YN . Note that Y1, . . . ,YN ∼ g∗(x | γt−1),
since random resampling does not change the underlying distribution.

3. For each Y = (Y1, . . . , Yn) in {Y1, . . . ,YN} repeat the following three steps
n times:

(a) Draw a pair of indices (I, J) such that I 6= J and both I and J are
uniformly distributed over the integers 1, . . . , n.

(b) Given (I, J) = (i, j), generate the pair (Ỹi, Ỹj) from the conditional
bivariate pdf

g∗(ỹi, ỹj | γt−1, {Yk}k 6=i,j), (ỹi, ỹj) ∈ {(yi, yj), (yj, yi)}.

(c) Set Yi = Ỹi and Yj = Ỹj, that is,

Y = (Y1, . . . , Ỹi, . . . , Ỹj, . . . , Yn).

12



Denote the resulting population of Ys by X
(t)
1 , . . . ,X

(t)
N . Again note that

X
(t)
1 , . . . ,X

(t)
N ∼ g∗(x | γt−1).

4. Same as in Algorithm 2.1.

5. Same as in Algorithm 2.1.

6. Same as in Algorithm 2.1.

Remark 2.3 In Step 3 we repeat the conditional sampling n times. Note that
the algorithm will theoretically yield exact samples from the minimum variance
pdf g∗

T even if we only update a single pair (Ỹi, Ỹj). The performance of such
a sampler might be poor due to undesirable correlation within the population.
We can formally introduce an additional tuning parameter, say b, that counts
the number of conditional sampling steps. We will refer to this parameter as the
burn-in parameter. Note, however, that b does not play the same role as the
burn-in period in standard MCMC sampling methods. The important difference
is that, unlike MCMC algorithms, which have to discard any burn-in samples,
the proposed algorithm can use the burn-in samples in the estimate of the con-
ditional probabilities {ct}. The reason, of course, is that our approach maintains
stationarity with respect to the target density and thus yields exact samples for
any value of b. The only rationale for using a large b is to reduce the correlation
within the population X̃ (t−1).

Remark 2.4 In Step 3 of Algorithm 2.3 we sample from the bivariate pdfs:

g∗(ỹi, ỹj | γt−1, {yk}k 6=i,j) ∝ I

{
iỹi + jỹj > γt−1 −

∑

k 6=i,j

kyk

}
, i 6= j ,

where (ỹi, ỹj) ∈ {(yi, yj), (yj, yi)} and i, j ∈ {1, . . . , n}. These are the condi-
tional densities of the the minimum variance importance sampling pdf g∗(x | γt−1).
There are

(
n
2

)
such bivariate conditional pdfs. Observe that the conditional sam-

pling is similar to a single scan in the random Gibbs sampler [22]. A systematic
Gibbs scan will sample from all the

(
n
2

)
bivariate conditionals in a fixed order.

In contrast, a random Gibbs scan will sample from a fixed number of conditional
(not necessarily all of them) pdfs in a random order. Sampling a pair (Ỹi, Ỹj)
from g∗(ỹi, ỹj | γt−1, {yk}k 6=i,j) with j > i is accomplished as follows. Draw a
Bernoulli variable with success probability 1/2, say B ∼ Ber(1/2). If B = 1 and

S([y1, . . . , ỹj, . . . , ỹi, . . . , yn]) > γt−1, set Ỹi = ỹj and Ỹj = ỹi, otherwise set Ỹi = ỹi

and Ỹj = ỹj.

Remark 2.5 The additive structure of the objective function S(x) allows for
its efficient evaluation. More specifically, suppose we are given a permutation x
and know S(x). Suppose further that a single run through (a), (b) and (c) in
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Step 3 of the algorithm exchanges the i-th and j-th element of the permutation
x to obtain x̃. Then, to compute the score at the new value x̃, set S(x̃) =
S(x) − (i − j)xi − (j − i)xj.

As an example, consider the case where n = 32 and γ =
∑n

j=1 j2, with

N = 104 and the sequence of levels given in Table 3. We obtained ℓ̂ = 3.64×10−36

with an estimated RE of 5% (here ℓ = 1
32!

≈ 3.8 × 10−36) using ten independent

runs of Algorithm 2.3. This gives the estimate |̂X ∗| ≈ .96, whereas the exact
value for |X ∗| is 1. The computational cost of Algorithm 2.3 is equivalent to the
generation of 20 × 105 permutations.

Table 3: The sequence of levels and the corresponding conditional probabilities
for a typical run. The product of the conditional probabilities is here 3.64×10−36.

t γt ĉt

0 9828 0.01033
1 10413.5 0.00948
2 10743 0.01206
3 10964 0.01111
4 11107.5 0.01116
5 11209 0.00976
6 11281 0.00812
7 11330 0.00899
8 11364 0.00932
9 11387 0.01198

t γt ĉt

10 11403 0.01377
11 11414 0.01779
12 11422 0.01799
13 11428 0.01631
14 11432 0.02528
15 11435 0.02236
16 11437 0.0336
17 11438 0.11123
18 11439 0.06579
19 11440 0.03128

The sequence of levels in Table 3 was estimated via the following procedure
with Np = 104 and ̺ = 0.01.

Algorithm 2.4 (Approximate Selection of Levels)

1. Set a counter t = 1. Given the sample size Np and the rarity parameter
̺ ∈ (0, 1), initialize by generating Np uniformly distributed permutations
over X .

Denote the population of permutations by X
(0)
1 , . . . ,X

(0)
N . Let γ̂0 be the (1−̺)

sample quantile of S(X
(0)
1 ), . . . , S(X

(0)
Np

) and let X̃ (0) = {X̃(0)
1 , . . . , X̃

(0)
N0
} be

the subset of the population {X(0)
1 , . . . ,X

(0)
Np
} for which S(X

(0)
i ) > γ̂0.

2. Sample uniformly with replacement Np times from the population X̃ (t−1) to
obtain a new sample Y1, . . . ,YNp.
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3. Same as in Algorithm 2.3, but note that here the resulting sample is only
approximately distributed from g∗(x | γ̂t−1).

4. Same as in Algorithm 2.2.

5. Same as in Algorithm 2.2.

6. Same as in Algorithm 2.2.

Remark 2.6 Unlike in the previous example, S(X) is not a continuous function

and therefore the (1 − ̺) sample quantile of S(X
(t)
1 ), . . . , S(X

(t)
Np

) may not be
unique. Hence, it is not necessarily true that

1

Np

Np∑

i=1

I
{

S(X
(t)
i ) > γ̂t

}
= ̺

for all t = 0, . . . , T − 1, even when Np × ̺ is an integer.

As a different example consider the case where n = 10 and γ = 375. We
ran Algorithm 2.3 ten independent times with N = 103 and the sequence of
levels given in Table 4. Each run required four iterations and thus the total
computational cost of Algorithm 2.3 is approximately equivalent to the generation
of 4 × 10 × 103 = 4 × 104 random permutations. The average over the ten trials

gave the estimate |̂X ∗| = 2757 with a RE of 5%. Using full enumeration, the
true value was found to be |X ∗| = 2903.

Table 4: The sequence of levels and the corresponding conditional probabilities for
a typical run. The sequence was determined using Algorithm 2.4 with Np = 103

and ̺ = 0.1. The product of the conditional probabilities here is 7.97 × 10−4.

t γt ĉt

0 339 0.0996
1 362 0.1161
2 373 0.1222
3 375 0.5643

2.3 Combinatorial Optimization Example

Combinatorial optimization has always been an important and challenging part
of optimization theory. A well-known instance of a difficult combinatorial opti-
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mization problem is the 0-1 knapsack problem, defined as:

max
x

n∑

j=1

pjxj, xi ∈ {0, 1},

subject to :
n∑

j=1

wijxj 6 ci, i = 1, . . . ,m.

(12)

Here {pi} and {wij} are positive weights and {ci} are positive cost parameters.
To make (12) easier to handle as an estimation problem, we note that (12) is
equivalent to max

x∈{0,1}n
S(x), where x = (x1, . . . , xn) is a binary vector and

S(x) = C(x) +
n∑

j=1

pjxj = α
m∑

i=1

min

{
ci −

n∑

j=1

wijxj, 0

}
+

n∑

j=1

pjxj,

with α = (1+
∑n

j=1 pj)
/

maxi,j{ci−wij}. Note that the constant α is such that if
x satisfies all the constraints in (12), then C(x) = 0 and S(x) =

∑n
j=1 pjxj > 0.

Alternatively, if x does not satisfy all of the constraints in (12), then C(x) 6

−(1+
∑n

j=1 pjxj) and S(x) 6 −1. To this optimization problem we can associate
the problem of estimating the rare-event probability

ℓ(γ) = P (S(X) > γ) , γ ∈
[
0,

n∑

j=1

pj

]
,

where X is a vector of independent Bernoulli random variables with success
probability 1/2. An important difference in the optimization setting is that
we are not interested per se in obtaining an unbiased estimate for the rare-
event probability. Rather we only wish to approximately sample from the pdf
g∗(x | γ) ∝ I{S(x) > γ} for as large a value of γ as the algorithm finds possi-
ble. Given this objective, we combine the preliminary stage, in which a suitable
sequence of levels is determined, with the main estimation stage into a single
algorithm.

Algorithm 2.5 (Knapsack Optimization)

1. Set a counter t = 1. Given the sample size N and the rarity parameter
̺ ∈ (0, 1), initialize by generating N uniform binary vectors of dimension n.

Denote the population of binary vectors by X
(0)
1 , . . . ,X

(0)
N . Let γ̂0 be the (1−

̺) sample quantile of S(X
(0)
1 ), . . . , S(X

(0)
N ) and let X̃ (0) = {X̃(0)

1 , . . . , X̃
(0)
N0
}

be the subset of the population {X(0)
1 , . . . ,X

(0)
N } for which S(X

(0)
i ) > γ̂0.

Then,
X̃

(0)
1 , . . . , X̃

(0)
N0

approx.∼ g∗(x | γ̂0) ∝ I {S(x) > γ̂0} .
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2. Sample uniformly with replacement N times from the population X̃ (t−1) to
obtain a new sample Y1, . . . ,YN .

3. For each Y = (Y1, . . . , Yn) in {Y1, . . . ,YN}, generate Ỹ = (Ỹ1, . . . , Ỹn) as
follows:

(a) Draw Ỹ1 from the conditional pdf g∗(y1 | γ̂t−1, Y2, . . . , Yn).

(b) Draw Ỹi from g∗(yi | γ̂t−1, Ỹ1, . . . , Ỹi−1, Yi+1, . . . , Yn), i = 2, . . . , n−1.

(c) Draw Ỹn from g∗(yn | γ̂t−1, Ỹ1, . . . , Ỹn−1).

Denote the resulting population of Ys by X
(t)
1 , . . . ,X

(t)
N .

4. Let γ̂t be the (1 − ̺) sample quantile of S(X
(t)
1 ), . . . , S(X

(t)
N ). Let X̃ (t) =

{X̃(t)
1 , . . . , X̃

(t)
Nt
} be the subset of the population {X(t)

1 , . . . ,X
(t)
N } for which

S(X
(t)
i ) > γ̂t. Again, we have

X̃
(t)
1 , . . . , X̃

(t)
Nt

approx.∼ g∗(x | γ̂t).

5. If there is no progress in increasing γ over a number of iterations, that is, if
γ̂t = γ̂t−1 = · · · = γ̂t−s for some user-specified positive integer s, set T = t
and go to Step 6; otherwise set t = t + 1 and repeat from Step 2.

6. Deliver the vector x∗ from the set

X
(T )
1 , . . . ,X

(T )
N

for which S(X
(T )
i ) is maximal as an estimate for the global maximizer of

(12).

Remark 2.7 The conditionals of the minimum variance importance sampling
pdf in Step 3 can be written as:

g∗(yi | γ̂t−1,y−i) ∝ I

{
C(y) + piyi > γ̂t−1 −

∑

j 6=i

pjyj

}
,

where y−i denotes the vector y with the i-th element removed. Sampling a ran-
dom variable Ỹi from such a conditional can be accomplished as follows. Draw
B ∼ Ber(1/2), if S([y1, . . . , yi−1, B, yi+1, . . . , yn]) > γ̂t−1, then set Ỹi = B, other-

wise set Ỹi = 1 − B.

As a particular example, consider the Sento1.dat knapsack problem given in

http : //people.brunel.ac.uk/ mastjjb/jeb/orlib/files/mknap2.txt
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The problem has 30 constraints and 60 variables. We selected ̺ = 0.01 and
N = 103, and the algorithm was stopped after no progress was observed (d = 1).
We ran the algorithm ten independent times. The algorithm always found the
optimal solution. A typical evolution of the algorithm is given in Table 5. The
total sample size used is 104 which is about 8.67×10−15 of the total effort needed
for the complete enumeration of the 260 possible binary vectors.

Table 5: Typical evolution of Algorithm 2.5. The maximum value for this problem
is 6704.

t γ̂t

1 -5708.55
2 1296.94
3 3498.60
4 4567.91
5 5503.22

t γ̂t

6 6051.74
7 6346.32
8 6674.92
9 6704
10 6704

3 Main Method

In this section we present a quite general version of the proposed algorithm,
which can be applied to a wide variety of rare-event probability estimation,
combinatorial optimization, and counting problems. Recall that to estimate
the rare-event probability (1), we would like to completely specify or at least
sample from the minimum variance importance sampling pdf (5). The main
idea of the method is to generate an exact sample from (5) and estimate its
normalizing constant ℓ(γ) simultaneously. To achieve this goal, we sample re-
cursively from the sequence of minimum variance importance sampling pdfs:
{g∗

t } ≡ {g∗(· | γt)}, where each of the pdfs is associated with a given level set
γt such that γ0 < γ1 < . . . < γT−1 < γT = γ. Initially, we aim to obtain an exact
sample from g∗

0, where the level γ0 is chosen in advance via a preliminary simula-
tion run such that exact sampling from g∗

0 is viable using the acceptance-rejection
method [22] with proposal f . Note that we can interpret the sample from g∗

0 as
an empirical approximation to g∗

0, from which a kernel density estimator [3] of g∗
0

can be constructed. We can then use the sample from g∗
0 (or rather the kernel

density approximation based on this sample) to help generate exact samples from
g∗
1 using the acceptance-rejection method with the kernel density approximation

as proposal. Once we have an exact sample from g∗
1, we use it to construct a

kernel density approximation to g∗
1, which in its turn will help generate an exact

sample from g∗
2 and so on. This recursive process is continued until we generate

from the final desired minimum variance importance sampling pdf g∗
T = g∗(· | γ).

As we have seen, in many cases it is straightforward to generate exact samples
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from g∗
t using a suitable Markov chain, provided that one already has samples

from g∗
t−1. In this kernel density approximation interpretation, we choose the

kernel of the density estimator to be a Markov transition kernel with stationary
distribution g∗

t−1. In more generality and detail the steps of the algorithm are
given below. We assume a suitable sequence of levels is given. Later on we will
present a procedure which can be used to construct such a sequence. Figure 2
shows a simple example illustrating the workings of the algorithm.

Algorithm 3.1 (Main Algorithm for Estimation)
Given the sample size N and a suitable sequence of levels {γt}T

t=0, execute the
following steps.

1. Initialization. Generate a sample X (0) = {X(0)
1 , . . . ,X

(0)
N } of size N (user

specified) from the nominal pdf f . Let X̃ (0) = {X̃(0)
1 , . . . , X̃

(0)
N0
}, N0 > 0 be

the largest subset of X (0) for which S(X
(0)
i ) > γ0. We have thus generated

a sample
X̃

(0)
1 , . . . , X̃

(0)
N0

∼ g∗(· | γ0)

using the acceptance-rejection method with proposal f . The normalizing
constant of g∗(· | γ0) is therefore straightforward to estimate:

ℓ̂(γ0) =
1

N

N∑

i=1

I{S(X
(0)
i ) > γ0} =

N0

N
.

2. Bootstrap sampling and Markov kernel smoothing. (To be iterated from

t = 1.) Given the exact sample X̃ (t−1) from g∗
t−1, construct the kernel den-

sity estimator:

πt−1(x | X̃ (t−1)) =
1

Nt

Nt∑

i=1

κ
(
x, X̃

(t−1)
i

)
. (13)

Here, κ is the transition density of a suitable Markov chain starting from
X̃

(t−1)
i and with stationary pdf g∗

t−1. The aim is to use πt−1 to help generate
exact samples from the next target pdf g∗

t . This is accomplished as follows.

Generate a new population X (t) = {X(t)
1 , . . . ,X

(t)
N } such that

X
(t)
1 , . . . ,X

(t)
N ∼ πt−1. (14)

Let X̃ (t) = {X̃(t)
1 , . . . , X̃

(t)
Nt
} be the largest subset of X (t) for which S(X

(t)
i ) >

γt. Then, we have that
X̃

(t)
1 , . . . , X̃

(t)
Nt

∼ g∗
t

and that an unbiased estimate of the conditional probability

ct = P(S(X) > γt |S(X) > γt−1), t = 0, 1, . . . , T, γ−1 = −∞,

19



is given by

ĉt =
1

N

N∑

i=1

I{S(X
(t)
i ) > γt} =

Nt

N
. (15)

Therefore, by the product rule of probability theory, an estimate for the
normalizing constant of g∗

t is

ℓ̂(γt) =
t∏

k=0

ĉk. (16)

3. Stopping Condition. If γt = γT , go to Step 3; otherwise, set t = t + 1 and
repeat from Step 2.

4. Final Estimate. Deliver the consistent estimate:

ℓ̂(γ) =
T∏

t=0

ĉt (17)

of ℓ(γ) — the normalizing constant of g∗(· | γ). The validity of this estimate
follows from the product rule of probability theory, namely,

ℓ(γ) = P(S(X) > γ0)
T∏

t=1

P(S(X) > γt |S(X) > γt−1), X ∼ f

= EfI{S(X) > γ0}
T∏

t=1

Eg∗t−1
I{S(X) > γt}.

(18)

Remark 3.1 (Generation from kernel density estimator) Generating a sam-

ple from πt−1 in (14) is easy. Namely, we choose a point in X̃ (t−1) at random,

say X̃
(t−1)
I , and then sample from the Markov transition density κ( · , X̃(t−1)

I ). For
example, the kernel used for the problem described in Figure 2 is

κ((x, y), (x′, y′)) = g∗(x | γt−1, y
′)g∗(y | γt−1, x).

In other words, the kernel changes the initial state (x′, y′) to (x, y′) by sam-
pling from g∗(x | γt−1, y

′) and then (x, y′) is changed to (x, y) by sampling from
g∗(y | γt−1, x). This kernel was chosen due to the simplicity of the conditionals of
g∗(x, y | γ). There are, of course, other possible choices for the kernel. Observe
that since the transition density κ has stationary distribution g∗

t−1, we have

X
(t)
1 , . . . ,X

(t)
N ∼ g∗

t−1.

Thus it is important to realize that the only rationale for applying the Markov
kernel within our algorithm is not to achieve asymptotic stationarity toward the
pdf g∗

t−1 as in standard MCMC methods, but only to increase the diversity (that

is, reduce the correlation) within the population X̃ (t−1).
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Figure 2: Illustration of the workings of the proposed algorithm on the problem
of sampling from g∗(x, y | γ) = e−x−yI{x + y > γ}/ℓ(γ), x, y > 0 and estimating
ℓ(γ) with γ = 10. The sample size is N = 100 and the sequence of levels is
3.46, 6.42, 9.12 and 10. The top left figure (t = 0) shows the initial 100 points
from the nominal pdf f and a segment of the straight line x + y = γ0. The
points above this line segment (encircled) belong to the population X̃ (0), which
has pdf g∗(·; γ0). These points help to generate the population X (1) of 100 points
depicted on the next Figure (t = 1), still with pdf g∗

0. The encircled points
above the threshold γ1 have pdf g∗

1 and they help us to construct a kernel density
estimator and sample from g∗

2. Continuing this recursive process, we eventually
generate points above the threshold γ, as in the bottom right Figure (t = 3).
There all the points have pdf g∗

2. The points above γ = 10 (encircled) are drawn
exactly from the target pdf g∗(x, y | γ).
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Remark 3.2 (Consistency of ℓ̂) The {ĉi} are unbiased estimators of the con-
ditional probabilities {ci}. The estimators are, however, dependent and therefore
the final product estimator (17) is only asymptotically unbiased.

Remark 3.3 (Burn-in and correlation) It may be desirable that the popu-
lation from the kernel approximation πt−1 is iid, but in practice the Markov
structure of the kernel κ will make the samples in the population correlated.
This correlation could have averse effect on the performance of the sampler. In
such cases it may be beneficial to apply the transition kernel a number times,
say b, in order to reduce the correlation amongst the samples and to ensure that
the sampler is exploring the sample space properly. Thus the parameter b can be
interpreted as a burn-in parameter. Note, however, that the burn-in parameter
in Algorithm 3.1 is not related to achieving stationarity as in standard MCMC,
only reducing the correlation structure of the bootstrap sample.

The algorithm assumes that we have a suitable sequence of levels such that the
conditional probabilities

ct = P(S(X) > γt |S(X) > γt−1), t = 0, 2, . . . , T, X ∼ f(x),

are not too small. In many cases it will not be obvious how to construct such
a sequence a priori, but we can always use a pilot simulation run to estimate a
suitable sequence {γ̂t}T

t=0 at negligible computational cost. The idea is to sample
from the sequence of pdfs g∗(x | γ̂t), t = 1, . . . , T , where γ̂t is an estimate of the
true γt, which has been plugged into g∗(x | ·). Here γt is the (1− ̺) percentile of
the distribution of S(X) given that S(X) > γt−1, X ∼ f(x). This approach is
sometimes known as the plug-in approach [8].

Algorithm 3.2 (Estimation of Levels) Given the sample size Np for the
preliminary simulation run and the user-specified rarity parameter ̺, execute the
following steps.

1. Initialization. Set t = 1. Generate a sample X (0) = {X(0)
1 , . . . ,X

(0)
Np
} of size

Np from the nominal pdf f . Let γ̂0 be the (1 − ̺) sample quantile of the

population S(X
(0)
1 ), . . . , S(X

(0)
Np

). Again let X̃ (0) = {X̃(0)
1 , . . . , X̃

(0)
N0
}, N0 > 0

be the set of points in X (0) for which S(X
(0)
i ) > γ̂0.

2. Bootstrap sampling and kernel smoothing. Given the population X̃ (t−1),
construct the kernel density estimator πt−1 of g∗

t−1 given in (13), and gen-

erate a new population X (t) = {X(t)
1 , . . . ,X

(t)
Np
} such that

X
(t)
1 , . . . ,X

(t)
Np

∼ πt−1.

Let
γ̂t = min(â, γ), (19)
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where â is the (1 − ̺) sample quantile of S(X
(t)
1 ), . . . , S(X

(t)
Np

). In other
words, â is an estimate of the root of the equation

P(S(X) > a) = ̺, X ∼ πt−1.

Let X̃ (t) = {X̃(t)
1 , . . . , X̃

(t)
Nt
} be the set of points in X (t) for which S(X

(t)
i ) >

γt.

3. Estimate of sequence of levels. If γ̂t = γ, set T = t and deliver the se-
quence of levels

γ̂0, . . . , γ̂T−1, γ;

otherwise, set t = t + 1 repeat from Step 2.

Remark 3.4 (Optimization) After a minor modification, we can use Algo-
rithm 3.2 not only to estimate a sequence of levels, but also for optimization. For
continuous and discrete optimization problems we are not typically interested
in estimating ℓ, but in increasing γ as much as possible. Thus Step 3 above is
modified as follows.

3. Estimate of extremum. If γ̂t = γ̂t−1 = · · · = γ̂t−s for some user-specified
positive integer s, set T = t and deliver the vector x∗ from the set

X
(T )
1 , . . . ,X

(T )
N

for which S(X
(T )
i ) is maximal as an estimate for the global maximizer of S(x);

otherwise set t = t + 1 and repeat from Step 2.

Note that we will use Np to denote the sample size when the algorithm is used
for the construction of a suitable sequence of levels, otherwise we will use N .

For some optimization problems, it can be beneficial to keep track of the best
solution vector overall, across all the iterations of the algorithm.

Remark 3.5 Due to the way we determine the level sets {γ̂t}T−1
t=0 , we have

P(S(X) > γ̂t |S(X) > γ̂t−1) ≈ ̺, ∀t = 1, . . . , T − 1,

with exact equality only in continuous problems (assuming N × ̺ is an inte-
ger). Note, however, that the last conditional probability P(S(X) > γ |S(X) >

γ̂T−1), X ∼ f may be quite different from ̺.

Remark 3.6 If the target density is

g∗(x | γ) ∝ f(x)I{S(x) 6 γ},
that is, the inequality within the indicator function is reversed, then Algorithm
3.2 is modified as follows. Instead of taking the (1− ̺) sample quantile, we take
the ̺-th sample quantile of the population of scores in Step 1 and 2. All instances
of S(·) > · must be replaced with S(·) 6 · , and γ̂t = min(â, γ) in (19) is replaced
with γ̂t = max(â, γ).
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3.1 The Holmes-Diaconis-Ross Algorithm

As pointed out in the introduction, the idea of using the product rule of prob-
ability theory to estimate rare-event probabilities has been widely used by the
simulation community, in particular, Holmes and Diaconis [6], and Ross [15] use
it for discrete counting problems. The Holmes-Diaconis-Ross algorithm (HDR)
reads as follows. Suppose we are given a suitable sequence of levels {γt}T

t=−1

(with γ−1 = −∞) and a sample size b. For each t ∈ {0, . . . , T}, find a point
Y such that S(Y) > γt−1. Let Y1, . . . ,Yb be the output of b consecutive steps
of a suitable Gibbs or Metropolis-Hastings sampler, starting from Y and with
stationary pdf g∗(y | γt−1). Use ĉt = 1

b

∑b
i=1 I {S(Yi) > γt} as an approximation

to the conditional probability ct = Pf (S(Y) > γt |S(Y) > γt−1). Deliver the

final estimate ℓ̂(γT ) =
∏T

t=0 ĉt. More formally, the approach is summarized in the
following algorithm.

Algorithm 3.3 (HDR Algorithm for Rare-event Probability Estimation)
Given a sequence of levels {γt}T

t=0 (γ−1 = −∞) and the sample size b, for each
t ∈ {0, 1, . . . , T} execute the following steps.

1. Construct an arbitrary point Y(0) = (Y
(0)
1 , . . . , Y

(0)
n ) such that S(Y(0)) >

γt−1.

2. For m = 1, . . . , b, generate a discrete uniform random variable, I, on the
set {1, . . . , n}, and set Y(m) = (Y

(m−1)
1 , . . . , YI , . . . , Y

(m−1)
n ), where YI is

drawn from the conditional pdf

g∗(yI | γt−1,Y
(m−1)
−I ).

Here Y
(m−1)
−I is the same as Y(m−1), but with Y

(m−1)
I removed.

3. Calculate the ergodic estimate

ĉt =
1

b

b∑

m=1

I
{
S(Y(m)) > γt

}
.

Algorithm 3.3 delivers the collection of independent estimates {ĉt}T
t=0, so that a

natural estimate for the rare-event probability is ℓ̂(γT ) =
∏T

t=0 ĉt.
The HDR method differs from our approach in the following aspects.

1. Although the HDR methods requires the user to supply a sequence of levels
such that {ct} are not too small, it does not provide a practical method
for the automatic construction of such a sequence. The sequence is thus
chosen in an ad hoc way. In contrast, Algorithm 3.2 delivers a sequence of
levels for any value of the rarity-parameter ̺ ∈ (0, 1).
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2. In the HDR algorithm each conditional probability ct is estimated using
the output from a single Markov chain. In contrast, our method runs
a population of Markov chains, implicitly defined via the kernel density
estimator (13).

3. The HDR algorithm does not achieve exact stationarity with respect to
g∗(x | γt−1), because, for each t ∈ {0, . . . , T}, the Markov chain in Step 2 is
started from an arbitrary initial state, which is not necessarily in stationar-
ity with respect to g∗(x | γt−1). The HDR algorithm thus relies on a burn-in
period to achieve approximate stationarity with respect to the target pdf.
In other words, one obtains a sample approximately distributed according
to the target g∗(x | γt−1), and hence ĉt is not an unbiased estimate for ct.
Algorithm 3.1 avoids this problem by sampling from the minimum variance
pdfs {g∗(· | γt)}T

t=0 sequentially in the order g∗(· | γ0), g
∗(· | γ1), . . . , g

∗(· | γT ),
making it possible for the kernel density estimator (13) to reuse past sam-
ples that are already in stationarity with respect to the target. Note that in
Ross’s description [15] of the HDR method, sampling from the sequence of
minimum variance pdfs {g∗(· | γt)}T

t=0 may be carried out in any order. For
example, one could sample from g∗(· | γ8) prior to sampling from g∗(· | γ3).

Although the HDR algorithm does not generate samples in exact stationarity,
it has the advantage that the resulting conditional estimates {ĉt} are completely
independent of each other. Thus we emphasize that the idea of starting the
Markov chains in Step 2 from arbitrary initial points (so that sampling from the
target pdfs in a nested sequential order is not essential) has its own merit.

3.2 Approximate Relative Error Analysis

One can provide a rough approximation for the relative error of the estimator ℓ̂(γ)
of ℓ(γ) prior to performing any computer simulation. Recall that ct = P(S(X) >

γt |S(X) > γt−1), t = 0, . . . , T, γ−1 = −∞ are the conditional probabilities of

reaching the next level, which are estimated via ĉt = 1
N

∑N
i=1 I{S(X

(t)
i ) > γt}

in Algorithm 3.1. If the samples generated from each g∗
t were independent (this

could, for example, be ensured to a close approximation by choosing a large burn-
in parameter for the Markov kernel to reduce the dependence), we can write the
variance of the estimator as follows.

Var[ℓ̂(γ)] =
T∏

t=0

Eg∗t
[ĉ2

t ] − ℓ2(γ) =
T∏

t=0

(
Var[ĉt] + ĉ2

t

)
− ℓ2(γ).

Hence, if R(ℓ̂) denotes the relative error of the estimator ℓ̂, we can write:

R2(ℓ̂(γ)) =

T (̺,γ)−1∏

t=0

(
1 +

c−1
t − 1

N

)(
1 + R2(ℓ̂T )

)
− 1.
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Observe that T—the number of terms in the sequence of levels—is an increas-
ing function of γ and of ̺. Also, ct → ̺ as N → ∞. Thus, for a fixed ̺, we have
T → ∞ as γ → ∞. Suppose we wish to have a fixed small RE for any value of
γ. We are interested in how large N has to be and how it depends on γ. For
example, if N ≈ 100 T (̺; γ)/̺ as γ → ∞, then the relative error:

R2(ℓ̂) ≈ e(1−̺)/100 − 1, γ → ∞.

More specifically, if ̺ = 0.1, then ct ≈ 0.1 and limγ→∞ R2(ℓ̂) ≈ 0.0090. Thus we
find that, for a fixed ̺, the relative error is approximately constant if

N = O(T (γ)).

Therefore, the complexity of the algorithm is determined from the dependence
of T (γ) on γ. If, for example, T grows linearly in γ, then the complexity of
the algorithm is quadratic, because the total number of samples used in the
simulation effort is N × (T + 1). In general, for large N , R2(ℓ̂) as a function of
γ is approximated by:

R2(ℓ̂(γ)) ≈
ln

ℓ(γ)/ℓT
̺ −1∏

t=0

(
1 +

c−1
t − 1

N

)(
1 + R2(ℓ̂T )

)
− 1

≈
(

1 +
̺−1

t − 1

N

)ln
ℓ(γ)/ℓT
̺ (

1 + R2(ℓ̂T )
)
− 1.

This formula can be used to make rough predictions about the performance of
Algorithm 3.1 prior to the actual computer simulation.

4 Applications

In this section we present some applications of the proposed method.

4.1 Traveling Salesman Problem

The objective of the TSP is to find the shortest tour in a complete weighted
graph containing n nodes. The problem can be formulated as minimizing the
cost function

S(x) =
n−1∑

i=1

Cxi,xi+1
+ Cxn,x1 ,

where x = (x1, . . . , xn) is a permutation of (1, . . . , n), xi is the i−th node (or city)
to be visited in a tour represented by x, and Cij is a cost (or distance associated
with the edges of the graph) from node (or city) i to node j. We now discuss
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how we apply the proposed algorithm to find the optimal tour. The sequence of
distributions from which we wish to sample is

g∗(x | γt) ∝ I{S(x) 6 γt}, x ∈ X , t = 1, 2, . . . ,

where X is the set of all possible tours (i.e., the set of all possible permutations
of (1, . . . , n)), and {γt} is an increasing sequence of levels. To apply Algorithm
3.2, we need only specify the Markov transition pdf in Step 2. The rest of the
steps remain the same, taking Remark 3.6 into account. The Markov transition
density κ for the TSP is specified via the following conditional sampling step.
Given a tour x, which is an outcome from g∗(x; γt), the conditional sampling
consists of updating x to x̃ with probability I{S(x̃) 6 γt}, where x̃ has the tour
between the xi-th and xj-th cities (j 6= i) reversed. For example, if n = 10
and x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and i = 4, j = 9, then we accept the state
x̃ = (1, 2, 3, 9, 8, 7, 6, 5, 4, 10) with probability I{S(x̃) 6 γt}; otherwise we do not
update x. The conditional sampling is therefore similar to the 2-opt heuristic
commonly employed in conjunction with simulated annealing [22]. Note, however,
that the 2-opt move here is not a mere heuristic, because the transition density
κ has the desired stationary density.

For this and most other combinatorial optimization problems we apply the
transition kernel with b number of burn-in times as described in Remark 3.3. In
the course of the conditional sampling the score function is updated as follows
(j > i):

S(x̃) = S(x) − Cxi−1,xi
− Cxj ,xj+1

+ Cxi−1,xj
+ Cxi,xj+1

.

We now present a number of numerical experiments which demonstrate the
performance of the algorithm. Table 6 summarizes the results from a number of
benchmark problems from the TSP library:

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

The experiments were executed using Matlab 7 on a laptop PC with a 2GHz
Intel Centrino Duo CPU.
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Table 6: Case studies for the symmetric TSP. The experiments were repeated ten
times and the average minimum and maximum were recorded. The parameters
of the proposed algorithm are ̺ = 0.5, N = 102 and b = n × 50, where n is the
size of the problem. The CPU times are in seconds.

file γ∗ min mean max CPU T̄
burma14 3323 3323 3323 3323 3.5 45.8
ulysses16 6859 6859 6859 6859 4.7 53.2
ulysses22 7013 7013 7013 7013 9.9 79.7
bayg29 1610 1610 1610 1610 16 113
bays29 2020 2020 2020 2020 16 110.7

dantzig42 699 699 699 699 38 188.2
eil51 426 426 427.6 430 57 249.1

berlin52 7542 7542 7542 7542 60 232.5
st70 675 675 675.8 680 116 370.6
eil76 538 538 543.9 547 145 428.6
pr76 108159 108159 108216 108304 130 372.3

Observe that the algorithm finds the optimal solution in all cases out of ten
trials. In some cases, the algorithm found the optimal solution ten out of ten
times. The number of iterations necessary to solve a problem increases with the
size of the problem and is roughly equal to log̺(n!), which is bounded from above
by n log̺(n). Table 7 gives some medium-scale examples. Again note the good
performance of the algorithm in finding the optimal tour.

Table 7: Medium-scale case studies for the symmetric TSP. The experiments were
repeated ten times and the average, minimum, and maximum were recorded. The
parameters of the algorithm are ̺ = 0.5, N = 102 and b = n× 50, where n is the
size of the problem. The CPU times are in seconds.

file γ∗ min mean max CPU T̄
a280 2579 2581 2594.4 2633 5763 2026.7
ch130 6110 6110 6125.9 6172 1096 742.8
eil101 629 643 647.6 654 703 620.4
gr120 6942 6956 6969.2 6991 935 668.4
gr137 69853 69853 69911.8 70121 1235 781
kroA100 21282 21282 21311.2 21379 634 527.2
kroB100 22141 22141 22201 22330 634 526.7
kroC100 20749 20749 20774.4 20880 636 528.8
kroD100 21294 21294 21295.5 21309 630 529
kroE100 22068 22068 22123.1 22160 650 526.5
lin105 14379 14379 14385.6 14401 712 561.2
pr107 44303 44303 44305.3 44326 780 569.3
pr124 59030 59030 59048.4 59076 1018 691.5
pr136 96772 97102 97278.2 97477 1180 760
pr144 58537 58537 58640.9 59364 1406 827.6
pr152 73682 73682 73833 74035 1620 886.6
rat99 1211 1211 1213.2 1218 614 561.5
rd100 7910 7910 7910.8 7916 622 534.7
si175 21407 21013 21027.2 21051 2030 1066.3
st70 675 676 677.6 681 297 369.3

swiss42 1273 1273 1273 1273 103 180
u159 42080 42080 42383 42509 1688 934.4
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4.2 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is one of the most challenging prob-
lems in optimization theory. It has various applications, such as computer chip
design, optimal resource allocation, and scheduling. In the context of optimal
allocation, the objective is to find an assignment of a set of n facilities to a set
of n locations such that the total cost of the assignment is minimized. The QAP
can be formulated as the problem of minimizing the cost function

S(x) =
n∑

i=1

n∑

j=1

Fij Dxi,xj
,

where x = (x1, . . . , xn) is a permutation on (1, . . . , n), F is an n×n flow matrix,
that is, Fij represents the flow of materials from facility i to facility j and D is
an n × n distance matrix, such that Dij is the distance between location i and
location j. We assume that both F and D are symmetric matrices. We now
explain how we apply Algorithm 3.2 to the QAP. We again need only specify the
Markov transition density κ in Step 2, since the rest of the steps are obvious. The
transition density is specified by the following conditional sampling procedure.

1. Given the permutation Y = (Y1, . . . , Yn), draw a pair of indices (I, J) such
that I 6= J and both I and J are uniformly distributed over the integers
1, . . . , n.

2. Given (I, J) = (i, j), generate the pair (Ỹi, Ỹj) from the conditional bivariate
pdf

g∗(ỹi, ỹj | γ̂t−1,Y−i,−j), (ỹi, ỹj) ∈ {(yi, yj), (yj, yi)},
where Y−i,−j is the same as Y, except that the i-th and j-th elements are
removed.

3. Set Yi = Ỹi and Yj = Ỹj.

Sampling from g∗(ỹi, ỹj | γ̂t−1,Y−i,−j) is accomplished as follows. Given the
state y, we update y to ỹ with probability I{S(ỹ) 6 γt−1}, where ỹ is identical
to y except that the i-th and j-th positions are exchanged. For example, if
y = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and i = 3, j = 7, then ỹ = (1, 2, 7, 4, 5, 6, 3, 8, 9, 10).
In the course of the conditional sampling, the score function is updated as follows:

S(ỹ) = S(y) + 2
∑

k 6=i,j

(fkj − fki)(Dyk,yi
− Dyk,yj

).

To achieve satisfactory performance we repeat the conditional sampling b =
n times. In other words, the the Markov kernel κ is applied with b burn-in
steps. We now present a number of numerical experiments which demonstrate
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the performance of the algorithm. Table 8 summarizes the results from a number
of benchmark problems from the TSP library:

http://www.seas.upenn.edu/qaplib/inst.html

Table 8: Case studies for the symmetric QAP. The experiments were repeated ten
times and the average, minimum, and maximum were recorded. The parameters
of the algorithm are ̺ = 0.5, N = 103 and b = n, where n is the size of the
problem.

file γ∗ min mean max CPU T̄

chr12a.dat 9552 9552 9552 9552 21 45.2
chr12b.dat 9742 9742 9742 9742 21 45.4
chr12c.dat 11156 11156 11159 11186 20 42.5
chr15a.dat 9896 9896 9942.8 10070 36 53
chr15b.dat 7990 7990 8100 8210 36 53.4
chr15c.dat 9504 9504 10039 10954 36 53.4
chr18a.dat 11098 11098 11102.4 11142 60 64
chr18b.dat 1534 1534 1534 1534 54 57.3
chr20a.dat 2192 2192 2344 2406 75 66.9
chr20b.dat 2298 2352 2457.8 2496 70 64.5
chr20c.dat 14142 14142 14476.8 14812 85 77.7
chr22a.dat 6156 6156 6208.6 6298 105 81.4
chr22b.dat 6194 6194 6290.4 6362 97 75.3
chr25a.dat 3796 3796 4095.6 4286 147 90.1

The algorithm, although quite slower, works for large scale asymmetric QAP
instances as well. For the instance Lipa90b.dat of size 90, we obtained the
optimal solution tour (S(x∗) = 12490441) ten out of ten times with algorithmic
parameters N = 102, ̺ = 0.5, b = 900. The average iterations for convergence
(using the same stopping criterion as above) was 505 and the average CPU time
was 10426 seconds.

4.3 Tail Probabilities for Sums of Independent Random
Variables

Consider the problem of estimating the tail probability

ℓ(γ) = P

(
n∑

i=1

Xi > γ

)
, (20)

where γ is large enough to make ℓ(γ) a rare-event probability and Xi ∼ f(Xi), i =
1, . . . , n independently. The sequence of minimum variance importance sampling
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pdfs for this problem is

g∗(x | γt) ∝ f(x)I{S(x) > γt}, t = 1, 2, . . .

where f(x) =
∏n

i=1 f(xi) and S(x) =
∑n

i=1 xi. We now need only specify the
Markov transition density κ in Step 2 of Algorithm 3.1. The rest of the steps
remain the same. The transition density is specified via the following conditional
sampling procedure.

Given X from the population X̃ (t−1), update to the state X̃ = (X̃1, . . . , X̃n)
as follows.

1. Draw X̃1 from the conditional pdf

g∗(x̃1 | γt−1, X2, . . . , Xn) ∝ f(x̃1) I

{
X̃1 > γt −

n∑

i=2

Xi

}
.

2. Draw X̃i, i = 2, . . . , n − 1 from

g∗(x̃i | γt−1, X̃1, . . . , X̃i−1, Xi+1, . . . , Xn) ∝ f(x̃i) I

{
X̃i > γt −

n∑

j 6=i

Xj

}
.

3. Draw X̃n from g∗(x̃n | γt−1, X̃1, . . . , X̃n−1).

As a numerical example, consider the case where n = 10, γ = 60, and f(xi)
is an exponential density with pdf e−xi , xi > 0. We ran Algorithm 3.1 ten
independent times with N = 104 and the sequence of levels depicted in Figure
3. From the ten trials we obtained the estimate ℓ̂(60) = 2.81 × 10−16 with
estimated RE of 3.4%. The sequence of levels was obtained from Algorithm 3.2
with ̺ = 0.1, Np = 104, using the same kernel. Note that plotting the progress
over the iterations, as in Figure 3, provides an empirical estimate of the rate
function for the large-deviation probability considered here. For this problem

the exact probability is known to be ℓ(γ) = e−γ
∑n−1

k=1
γk

k!
≈ e−γγn−1/(n − 1)!.

Therefore ℓ ≈ 2.8515×10−16 and our estimate has an exact relative error of 3.4%.
Figure 3 illustrates that the algorithm accurately samples from the minimum
variance importance sampling pdf. The line of best fit log10ℓ̂(γ) = −0.33γ + 4.4
indicates that the decay of log10(ℓ) as a function of γ is linear and hence the
method has O(γ2) complexity. Figure 4 shows the empirical joint distribution of
X1 and

∑
j 6=1 Xj at the penultimate step (T − 1). Observe that if

∑
j 6=1 Xj is

close or above γ = 60, then it is likely that X2 will be small and essentially be
simulated from the nominal pdf f(x2). This is what we would intuitively expect
to happen if we sample from the minimum variance IS pdf g∗(· | γT−1).
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Figure 3: Left: typical evolution of the algorithm. Right: the empirical distri-
bution of X1 on the final iteration. The solid line depicts the exact analytical
marginal pdf of X1 (scaled). The histogram and the analytical pdf agree quite
well, suggesting that the method indeed generates samples from g∗(· | γ).
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Figure 4: Empirical joint distribution of X2 and
∑

j 6=2 Xj at the penultimate step
(T − 1).
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4.4 Sum of Heavy-tailed Random Variables

Consider estimating the tail probability (20) in Section 4.3 when f(xi) is the
Weib(0.2, 1) pdf and n = 5. Running Algorithm 3.1 independently ten times
with N = 104, γ = 106, using Algorithm 3.2 with Np = 104 and ̺ = 0.1 to

determine the levels, we obtained ℓ̂ = 6.578 × 10−7 with an estimated relative
error of 0.065. The total simulation effort was 10×N×(T +2) = 8×105, including
the estimation of the sequence of levels. A nice result is that the complexity of
the algorithm can be sub-linear. Since T = O(ln(ℓ(γ))) and ℓ(γ) = O(e−γa

) for
large γ, for a fixed RE we have N = O(γa). Hence the complexity is O(γ2a), and
it is sub-linear for a < 0.5, that is, the heavier the tail, the smaller the T needed
to reach a fixed threshold γ and the smaller the sample size needed to achieve a
fixed RE.
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Figure 5: A histogram of the marginal distribution of X1, where X ∼ g∗(x | 106)
is simulated by Algorithm 3.1.

Figures 5 and 6 suggest that the algorithm is sampling accurately from the
minimum variance IS pdf. Note that most of the observations on Figure 5 are
simulated from the nominal pdf f(x1), with the rest simulated conditional on
being close to the rare-event threshold γ = 106. The joint distribution depicted
on Figure 6 suggests that when one of Xi is large, the rest are small. This means
that the rare-event set is reached by having a single large variable in the sum,
whilst all others are simulated under the nominal pdf. Again observe that an
advantage of the proposed method is that the intermediate iterations that are
needed to reach the desired threshold can be used to build an approximation
to the rate function of the large-deviations probability. An example of such a
construction is given in Figure 7, where we have applied Algorithm 3.1 for a
problem with γ = 1010 (again n = 5, N = 104 , a = 0.2 and the sequence of levels
was determined using Algorithm 3.2 with ̺ = 0.1 and Np = 104). The estimate
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was ℓ̂(γ) = 1.95 × 10−43. The line of best fit confirms the theoretical result
that ℓ(γ) = O(e−γa

). In this case we can deduce from the empirical data that
ℓ(γ) → e− ln(10)(0.43γa−0.65) ≈ 4.4668 e−0.99γa

. This is close to the large-deviations
analytical estimate of ne−γa

, but note that whilst the large deviation estimate
is valid asymptotically, the empirical estimate is a good approximation for finite
values of γ.
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Figure 6: The empirical joint distribution of X1, X2, X3 under g∗(x | 106).

0 10 20 30 40 50 60 70 80 90 100
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

γa
t

lo
g

1
0
ℓ̂(

γ
t
)

 

 

y = - 0.43*x + 0.65

Figure 7: Results from Algorithm 3.1 on a problem with γ = 1010, n = 5,
N = 104, a = 0.2 and a sequence of levels determined using Algorithm 3.2.
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4.5 Rare-Event Simulation over Disjoint Sets

A rare-event probability estimation problem of recent interest (see, e.g., [4]) is
the estimation of probabilities of the form

ℓ(γ) = P

({
n∑

i=1

Xi > γ

}
⋃
{

n∑

i=1

Xi < −aγ

})
, a > 1, (21)

where Xi ∼ f(xi), i = 1, . . . , n independently, and γ is large enough to make ℓ
small. The minimum variance importance sampling pdf, from which the proposed
algorithm samples, is

g∗(x | γ) ∝ I

({
n∑

i=1

xi > γ

}
⋃
{

n∑

i=1

xi < −aγ

})
n∏

i=1

f(xi).

The conditional pdfs are then a mixture of left and right truncated univariate
pdfs (i = 1, . . . , n):

g∗(xi | γ,X−i) ∝ f(xi)

(
I

{
xi > γ −

∑

j 6=i

Xj

}
+ I

{
xi < −aγ −

∑

j 6=i

Xj

})
. (22)

We can easily sample from these conditionals using the inverse-transform method.
Note that this problem cannot immediately be written in the form (1). This is
why we present a detailed version of Algorithm 3.2. For definiteness we choose
each f(xi) to be a Gaussian pdf with mean 0 and standard deviation 1 so that
we can compute ℓ analytically and assess the quality of the estimate delivered by
the proposed method.

Algorithm 4.1 (Rare-event simulation over disjoint sets)

1. Set a counter t = 1. Given Np and ̺, initialize by generating

X
(0)
1 , . . . ,X

(0)
Np

∼ f(x).

Here f(x) ∝ e−
Pn

i=1 x2
i /2 . Let γ̂0 be the (1 − ̺/2) sample quantile of the

population

S(X
(0)
1 ), . . . , S(X

(0)
Np

),
−S(X

(0)
1 )

a
, . . . ,

−S(X
(0)
Np

)

a
.

In other words, γ̂0 is an estimate of the root of

P({S(X) > γ} ∪ {S(X) < −aγ}) = ̺, X ∼ f(x).

Let X̃ (0) = {X̃(0)
1 , . . . , X̃

(0)
N0
} be the subset of the population {X(0)

1 , . . . ,X
(0)
Np
}

for which S(X
(0)
i ) > γ̂0 or S(X

(0)
i ) 6 −aγ̂0.
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2. Sample uniformly with replacement Np times from the population X̃ (t−1) to
obtain a new sample Y1, . . . ,YNp.

3. For each Y = (Y1, . . . , Yn) in {Y1, . . . ,YNp}, generate Ỹ = (Ỹ1, . . . , Ỹn) as
follows:

(a) Draw Ỹ1 from the conditional pdf g∗(ỹ1 | γ̂t−1, Y2, . . . , Yn), where g∗ is
defined in (22).

(b) Draw Ỹi from g∗(ỹi | γ̂t−1, Ỹ1, . . . , Ỹi−1, Yi+1, . . . , Yn), i = 2, . . . , n−1.

(c) Draw Ỹn from g∗(ỹn | γ̂t−1, Ỹ1, . . . , Ỹn−1).

Denote the population of Ỹs thus obtained by X
(t)
1 , . . . ,X

(t)
Np

.

4. Set
γ̂t = min{γ, d̂},

where d̂ is the (1 − ̺/2) sample quantile of

S(X
(t)
1 ), . . . , S(X

(t)
Np

),−S(X
(t)
1 )

a
, . . . ,−

S(X
(t)
Np

)

a
.

Let X̃ (t) = {X̃(t)
1 , . . . , X̃

(t)
Nt
} be the subset of the population {X(t)

1 , . . . ,X
(t)
Np
}

for which S(X
(t)
i ) > γ̂t or S(X

(t)
i ) 6 −aγ̂t.

5. If γ̂t = γ, set T = t and deliver the sequence of levels

γ̂0, . . . , γ̂T−1, γ,

otherwise set t = t + 1 repeat from Step 2.

Algorithm 3.1 remains the same except that we let X̃ (t) = {X̃(t)
1 , . . . , X̃

(t)
Nt
} be

the subset of the population {X(t)
1 , . . . ,X

(t)
Np
} for which S(X

(t)
i ) > γt or S(X

(t)
i ) 6

−aγt, and not just S(X
(t)
i ) > γt.

As a numerical example, consider the case where n = 10, γ = 20, and a = 1.05.
First, we used Algorithm 4.1 with Np = 104 and ̺ = 0.1 and obtained a sequence
with 33 levels. Next, we applied Algorithm 3.1 with N = 104 ten independent
times and obtained the estimate of ℓ̂(γ) = 1.41× 10−10 with an estimated RE of
5.5%. The total simulation effort is thus roughly equivalent to the generation of
33×N×n×10+Np×n = 3, 31×106 random variables from univariate truncated
Gaussian density.

Figure 8 shows the paths of a random walk constructed from the sample
population at the final step of the algorithm. The empirical ratio of the number
of paths that are above γ to the number of paths that end below −aγ is 7.15.
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This empirical estimate is in close agreement with the exact ratio of the tail
probabilities:

Pf (S10 > γ)

Pf (S10 < aγ)
≈ 8.14.

Thus the splitting of computational resources in the estimation of the probabil-
ities over the two disjoint sets is close to optimal, that is, close to the minimum
variance allocation of resources.

The Figure 9 shows the empirical joint distribution of X1 and
∑

j 6=1 Xj to-
gether with the contours of the exact joint pdf which is proportional to

exp

{
−x2

2
− y2

2(n − 1)

}
× I({x + y > γ} ∪ {x + y < −aγ}).

There is close agreement between the distribution of the points and the contours
of the exact density, suggesting that we are sampling accurately from the zero
variance importance sampling pdf.
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Figure 8: The paths of the random walk Sn =
∑n

i=1 Xi, S0 = 0, n = 0, . . . , 10,
under the zero variance pdf g∗(x | γ).
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Figure 9: The empirical joint distribution of X1 and
∑

j 6=1 Xj together with the
contours of the exact joint pdf.

5 Conclusions and Future Work

We have presented an algorithm for rare-event simulation and multi-extremal
optimization. In contrast to standard importance sampling methods, the algo-
rithm does not attempt to approximate the optimal importance sampling pdf
(5) using a parametric model, but rather it aims to sample directly from the
minimum variance pdf. Using a kernel density estimator with a suitable Markov
transition kernel, we obtain samples from (5) in stationarity. Moreover, we ob-
tain a consistent estimator of the normalizing constant of (5). The success of
the algorithm depends on the convenient decomposition of the sample space into
nested sets and the construction of a suitable Markov kernel κ. We have suc-
cessfully applied the method to a variety of rare-event simulation, counting, and
combinatorial optimization problems. In some cases, most notably for contin-
uous high-dimensional rare-event probability estimation, we obtained superior
numerical results compared to standard importance sampling methods.

An important advantage of the method is that the rare-event estimate does not
suffer from the Likelihood Ratio degeneracy problems associated with standard
importance sampling techniques. Thus, the performance of the algorithm does
not deteriorate for rare-event simulation problems of large dimensions.
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We obtained a representation of the rare-event probability as a product of con-
ditional probabilities that are not too small, that is, we obtained a representation
of the rare-event probability on a logarithmic scale. This representation has an
important advantage when estimating very small probabilities, since the floating
point accuracy of standard computer arithmetic and catastrophic cancellation
errors limit the precision with which the LR terms in (4) can be evaluated.

The proposed algorithms require few parameters to be tuned, namely, the
sample sizes N , Np, the parameter b and and the rarity-parameter ̺.

All proposed algorithms are highly parallelizable in a way similar to evolving
a population of independent Markov chains.

The empirical performance of the proposed algorithm suggests that the pro-
posed methodology has polynomial complexity. We will explore the issue of
theoretical complexity in subsequent work. Finally, note that a disadvantage of
the proposed methodology is that the use of the Markov kernel introduces de-
pendence in the sample population, which makes an estimate of the RE from a
single simulation run very difficult. This dependence can be eliminated with a
large burn-in period, but this is precisely what we have been avoiding using the
exact sampling method proposed in this paper. The dependence of the estimator
ℓ̂ on the parameter b is thus not yet clear and will be the subject of subsequent
work.

As future work, we intend to exploit the exact sampling achieved with the
method to generate random instances from the pdf of the Ising model for cases
where standard MCMC samplers mix very slowly [2].

In addition, we will explore the benefits of estimating each conditional prob-
ability ci independently. For example, we could obtain independent estima-
tors of all the conditional probabilities {ci} in the following way. First, gen-
erate a population from f(x) and use it to obtain an estimate γ̂0 for γ0, where
Pf (S(X) > γ0 |S(X) > γ−1) = ̺. Next, simulate a new population from f(x)
and use it to obtain an estimate for c0 = Pf (S(X) > γ̂0 |S(X) > γ−1) and
to help generate an exact sample from g∗(· | γ̂0). Use the exact sample from
g∗(· | γ̂0) to obtain an estimate for γ1, such that Pf (S(X) > γ1 |S(X) > γ̂0) = ̺.
Next, given γ̂0 and γ̂1, simulate afresh from f and g∗(· | γ̂0) to obtain an esti-
mate for c1 = Pf (S(X) > γ̂1 |S(X) > γ̂0) and generate an exact sample from
g∗(· | γ̂1). Use the sample from g∗(· | γ̂1) to obtain an estimate for γ2, such that
Pf (S(X) > γ2 |S(X) > γ̂1) = ̺. Similarly, at step t, given {γ̂i}t−1

i=0, we simulate
from all {g∗(· | γ̂i)}t

i=0 afresh to obtain the estimates ĉt−1 and γ̂t. We terminate
the procedure once we reach the desired level γ. The conditional probabilities
{ĉi} are thus estimated independently and hence ℓ̂ =

∏T
t=0 ĉt will be unbiased

for finite sample sizes. The procedure has the added advantage that it combines
the estimation of the levels and the conditional probabilities within a single algo-
rithm. The obvious disadvantage is the increased computational cost. As future
work we will investigate if the possibility of estimating ℓ̂ without bias justifies
the extra computation cost.
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We will also explore and compare the performance of the HDR algorithm on
a range of estimation problems in order to determine how the dependence of the
estimators {ĉi} affects the relative error of ℓ̂(γT ).

In addition, preliminary results suggest that the method can be useful for
noisy combinatorial optimization problems, such as the noisy TSP problem [22],
and for continuous non-convex optimization problems with multiple extrema.
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