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Abstract. Consider a network of unreliable links, each of which comes
with a certain price and reliability. Given a fixed budget, which links
should be bought in order to maximize the system’s reliability? We in-
troduce a Cross-Entropy approach to this problem, which can deal ef-
fectively with the noise and constraints in this difficult combinatorial
optimization problem. Numerical results demonstrate the effectiveness
of the proposed technique.

1 Introduction

One of the most basic and useful approaches to network reliability analysis is to
represent the network as an undirected graph with unreliable links. Often, the
reliability of the network is defined as the probability that certain nodes in the
graph are connected by functioning links.

This paper is concerned with network planning, where the objective is to
maximize the network’s reliability subject to a fixed budget. More precisely,
given a fixed amount of money, the question is which links should be purchased,
in order to maximize the reliability of the purchased network. Each link has a pre-
specified price and reliability. This Network Planning Problem (NPP) is difficult
to solve, not only because it is a constrained integer programming problem,
which complexity grows exponentially in the number of links, but also because
for large networks the value of the objective function – that is, the network
reliability – becomes difficult or impractical to evaluate [1, 2].

We show that the Cross-Entropy (CE) method provides an effective way to
solve the NPP. The CE method is a new method for discrete and continuous
optimization. It consists of two steps which are iterated:

1. generate random states in the search space according to some specified ran-
dom mechanism, and

2. update the parameters of this mechanism in order to obtain better scoring
states in the next iteration. This last step involves minimizing the distance
between two distributions, using the Kullback-Leibler or Cross-Entropy dis-
tance; hence the name.

A tutorial introduction can be found in [3], which is also available from the
CE homepage http://www.cemethod.org. A comprehensive treatment can be
found in [4].
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The rest of the paper is organized as follows. In Section 2 we formulate
the network planning in mathematical terms. In Section 3 we present the CE
approach to the problem. In Section 4 we consider a noisy version of the CE
method [5, 6], where the network reliability is estimated (rather than evaluated)
using graph evolution techniques [7–9]. We conclude with a numerical experiment
in Section 5 that illustrates the effectiveness of our approach.

2 Problem Description

Consider a network represented as an undirected graph G(V , E), with set V of
nodes (vertices), and set E of links (edges). Suppose the number of links is
|E| = m. Without loss of generality we may label the links 1, . . . , m. Let K ⊆ V
be a set of terminal nodes. With each of the links is associated a cost ce and
reliability pe. The objective is to buy those links that optimize the reliability of
the network – defined as the probability that the terminal nodes are connected
by functioning links – subject to a total budget Cmax. Let c = (c1, . . . , cm)
denote vector of link costs, and p = (p1, . . . , pm) the vector of link reliabilities.

We introduce the following notation. For each link e let xe be such that xe = 1
if link e is purchased, and 0 otherwise. We call the vector x = (x1, . . . , xm) the
purchase vector and x∗ the optimal purchase vector. Similarly, to identify the
operational links, we define for each link e the link state by ye = 1 if link e is
bought and is functioning, and 0 otherwise. The vector y = (y1, . . . , ym) is called
the state vector. For each purchase vector x let ϕx be the structure function of
the purchased system. This function assigns to each state vector y the state
of the system (working = terminal nodes are connected = 1, or failed = 0).
Next, consider the situation with random states, where each purchased link e
works with probability pe. Let Ye be random state of link e, and let Y be the
corresponding random state vector. Note that for each link e that is not bought,
the state Ye is per definition equal to 0. The reliability of the network determined
by x is given by

r(x) = E[ ϕx(Y )] =
∑

y

ϕx(y) Pr{Y = y} . (1)

We assume from now on that the links fail independently, that is, Y is a
vector of independent Bernoulli random variables, with success probability pe

for each purchased link e and 0 otherwise. Defining px = (x1p1, . . . , xmpm), we
write Y ∼ Ber(px). Our main purpose is to determine

max
x

r(x) , subject to
∑

e∈E
xece ≤ Cmax . (2)

Let r∗ := r(x∗) denote the optimal reliability of the network.

3 The CE Method

In order to apply the CE method to the optimization problem (2), we need
to specify (a) a random mechanism to generate random purchase vectors that
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satisfy the constraints, and (b) the updating rule for the parameters in that
random mechanism.

A simple and efficient method to generate the random purchase vectors is as
follows: First, generate a “uniform” random permutation π = (e1, e2, . . . , em) of
edges. Then, in the order of the permutation π, flip a coin with success probabil-
ity aei to decide whether to purchase link ei. If successful and if there is enough
money available to purchase link ei, set Xei = 1, that is, link ei is purchased;
otherwise set Xei = 0. The algorithm is summarized next.

Algorithm 1 (Generation Algorithm)

1. Generate a uniform random permutation π = (e1, . . . , em). Set k = 1.
2. Calculate C = cek

+
∑k−1

i=1 Xeicei .
3. If C ≤ Cmax, draw Xek

∼ Ber(aek
). Otherwise set Xek

= 0.
4. If k = m, then stop; otherwise set k = k + 1 and reiterate from step 2.

The usual CE procedure [4] proceeds by constructing a sequence of reference
vectors {at, t ≥ 0} (i.e., purchase probability vectors), such that {at, t ≥ 0}
converges to the degenerate (i.e., binary) probability vector a∗ = x∗. The se-
quence of reference vectors is obtained via a two-step procedure, involving an
auxiliary sequence of reliability levels {γt, t ≥ 0} that tend to the optimal reli-
ability γ∗ = r∗ at the same time as the at tend to a∗. At each iteration t, for
a given at−1, γt is the (1 − ρ)-quantile of performances (reliabilities). Typically
ρ is chosen between 0.01 and 0.1. An estimator γ̂t of γt is the corresponding
(1 − ρ)-sample quantile. That is, generate a random sample X1, . . . , XN using
the generation algorithm above; compute the performances r(X i), i = 1, . . . , N
and let γ̂t = r(�(1−ρ)N�), where r(1) ≤ . . . ≤ r(N) are the order statistics of the
performances. The reference vector is updated via CE minimization, which (see
[4]) reduces to the following: For a given fixed at−1 and γt, let the j-th compo-
nent of at be at,j = Eat−1 [Xj | r(X) ≥ γt]. An estimator ât of at is computed
via

ât,j =
∑N

i=1 I{r(Xi)≥γ̂t}Xij
∑N

i=1 I{r(Xi)≥γ̂t}
, j = 1, . . . , m, (3)

where we use the same random sample X1, . . . , XN and where Xij is the j-th
coordinate of Xi.

The main CE algorithm for optimizing (2) using the above generation algo-
rithm is thus summarized as follows.

Algorithm 2 (Main CE Algorithm)

1. Initialize â0. Set t=1 (iteration counter).
2. Generate a random sample X1, . . . , XN using Algorithm 1, with a = ât−1.

Compute the (1 − ρ)-sample quantile of performances γ̂t.
3. Use the same sample to update ât, using (3).
4. If some stopping criterion is met then stop; otherwise set t = t + 1 and

reiterate from step 2.
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4 Noisy Optimization

As mentioned in the introduction, for networks involving a large number of links
the exact evaluation of the network reliability is in general not feasible, and
simulation becomes a viable option. In this section we show how the CE method
can be easily modified to tackle noisy NPPs.

In order to adapt Algorithm 2, we again, at iteration t, generate a random
sample X1, . . . , XN according the Ber(ât−1) distribution. However, the corre-
sponding performances (network reliabilities) are now not computed exactly, but
estimated by means of Monte Carlo simulations. An efficient approach to net-
work reliability estimation is to use Network Evolution [7]. This works also well
for highly reliable networks. The idea is as follows: Consider a network with
structure function ϕ and reliability r as defined in (1). Assume for simplicity
that all the links are bought, that is x = (1, 1, . . . , 1). Now, observe a dynamic
version of the network G(V, E) which starts with all links failed and in which
all links are being independently repaired; each link e has an exponential repair
time with repair rate λ(e) = − log(1 − pe). The state of e at time t is denoted
by Ye(t) and, similar to before, the states of all the links is given by the vector
Y (t). Then, (Y (t)) is a Markov process with state space {0, 1}m. Let Π denote
the order in which the links become operational. Note that the probability of
link e being operational at time t = 1 is pe. It follows that the network reliability
at time t = 1 is the same as in (1). Hence, by conditioning on Π we have

r = E[ϕ(Y (1))] =
∑

π

Pr{Π = π}Pr{ϕ(Y (1)) = 1 |Π = π}, (4)

The crucial point is that from the theory of Markov processes it is possible to
calculate the probability G(π) = Pr{ϕ(Y (t)) = 0 |Π = π} in terms of convo-
lutions of exponential distribution functions. Hence, we can estimate r by first
drawing a random sample Π1, . . . , ΠN , each distributed according to Π , and
then estimating r as

r̂ =
1
K

K∑

i=1

G(Πi) . (5)

5 Numerical Experiment

To illustrate the effectiveness of the proposed CE approach, consider the 6-node
fully-connected graph with 3 terminal nodes given in Figure 1. The links costs
and reliabilities are given in Table 1. Note that the direct links between the
terminal nodes have infinite costs. We have deliberately excluded such links to
make the problem more difficult to solve. The total budget is set to Cmax = 3000.

Note that for a typical purchase vector x the network reliability r(x) will
be high, since all links are quite reliable. Consequently, to obtain an accurate
estimate of the network reliability, or better, the network unreliability r̄(x) =
1−r(x), via conventional Monte Carlo methods, would require a large simulation
effort. The optimal purchase vector for this problem – which was computed by
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Fig. 1. Network with 3 terminal nodes, denoted by black vertices

Table 1. Link costs and reliabilities

i ci pi i ci pi i ci pi

1 382 0.990 6 380 0.998 11 397 0.990
2 392 0.991 7 390 0.997 12 380 0.991
3 ∞ 0.992 8 395 0.996 13 ∞ 0.993
4 ∞ 0.993 9 396 0.995 14 399 0.992
5 320 0.994 10 381 0.999 15 392 0.994

brute force – is equal to x∗ = (1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1) which yields a
minimum network unreliability of r∗ = 7.9762× 10−5.

We used the following parameters for our algorithm: the sample size in Step 2
of the CE algorithm N = 300; the sample size in (5) K = 100; the initial purchase
probability â0 = (0.5, . . . , 0.5); the rarity parameter ρ = 0.1. The algorithm stops
when max(min(ât, 1 − ât)) ≤ β = 0.02, that is, when all elements of ât are less
than β, away from either 0 or 1. Let T denote the final iteration counter. We
round âT to the nearest binary vector and take this as our solution â∗ to the
problem. As a final step we estimate the optimal system reliability via (5) using
a larger sample size of K = 1000.

Table 2 displays a typical evolution of the CE method. Here, t denotes the
iteration counter, γ̂t the 1−ρ quantile of the estimated unreliabilities, and ât the

Table 2. A typical evolution of the CE algorithm with N = 300, K = 100 ρ = 0.1,
and β = 0.02

t γ̂t ât

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
1 4.0e-03 0.66 0.69 0.15 0.15 0.62 0.48 0.59 0.64 0.38 0.62 0.52 0.38 0.15 0.41 0.62
2 2.6e-04 0.69 0.63 0.05 0.05 0.72 0.21 0.88 0.71 0.33 0.75 0.58 0.26 0.05 0.38 0.77
3 1.4e-04 0.67 0.75 0.01 0.01 0.78 0.11 0.89 0.89 0.12 0.76 0.57 0.22 0.01 0.44 0.77
4 1.0e-04 0.76 0.76 0.00 0.00 0.89 0.03 0.97 0.90 0.06 0.83 0.43 0.11 0.00 0.41 0.84
5 8.1e-05 0.79 0.88 0.00 0.00 0.97 0.01 0.99 0.97 0.02 0.90 0.15 0.03 0.00 0.33 0.95
6 6.7e-05 0.94 0.96 0.00 0.00 0.97 0.00 1.00 0.99 0.01 0.97 0.07 0.01 0.00 0.10 0.99
7 6.3e-05 0.98 0.99 0.00 0.00 0.99 0.00 1.00 1.00 0.00 0.99 0.02 0.00 0.00 0.03 1.00
8 5.8e-05 0.99 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.01 0.00 0.00 0.01 1.00
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purchase probability vector, at iteration t. The important thing to notice is that
ât quickly converges to the optimal degenerate vector a∗ = x∗. The estimated
network unreliability was found to be 8.496× 10−5 with relative error of 0.0682.
The simulation time was 154 seconds on a 3.0GHz computer using a Matlab
implementation.

In repeated experiments, the proposed CE algorithm performed effectively
and reliably in solving the noisy NPP, which constantly obtained the optimal
purchase vector. Moreover, the algorithm only required on average 9 iterations
with a CPU time of 180 seconds.

Acknowledgement

This research was supported by the Australian Research Council, grant number
DP0558957.

References

1. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press
(1987)

2. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal of Computing 12 (1982) 777–
787

3. de Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Annals of Operations Research 134 (2005) 19 – 67

4. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A unified approach
to Combinatorial Optimization, Monte Carlo Simulation and Machine Learning.
Springer Verlag, New York (2004)

5. Alon, G., Kroese, D.P., Raviv, T., Rubinstein, R.Y.: Application of the buffer
allocation problem in simulation-based environment. Annals of Operations Research
134 (2005) 137 – 151

6. Chepuri, K., Homem de Mello, T.: Solving the vehicle routing problem with stochas-
tic demands using the cross-entropy method. Annals of Operations Research 134
(2005) 153 – 181

7. Elperin, T., Gertsbakh, I.B., Lomonosov, M.: Estimation of network reliability using
graph evolution models. IEEE Transactions on Reliability 40 (1991) 572–581

8. Hui, K.P., Bean, N., Kraetzl, M., Kroese, D.P.: The tree cut and merge algorithm for
estimation of network reliability. Probability in the Engineering and Informational
Sciences 17 (2003) 24–45

9. Hui, K.P., Bean, N., Kraetzl, M., Kroese, D.P.: Network reliability estimation using
the tree cut and merge algorithm with importance sampling. Proceedings. Fourth
International Workshop on Design of Reliable Communication Networks (2003) 254–
262


	Designing an Optimal Network Using the Cross-Entropy Method
	1 Introduction
	2 Problem Description
	3 The CE Method
	4 Noisy Optimization
	5 Numerical Experiment
	References


