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The Multilevel Splitting Algorithm for Graph
Coloring with Application to the Potts Model

Radislav Vaisman, Matthew Roughan, Dirk P. Kroese

Abstract—Calculating the partition function of the zero-
temperature antiferromagnetic model is an important problem
in statistical physics. However, an exact calculation is hard, since
it is strongly connected to a fundamental combinatorial problem
of counting proper vertex colorings in undirected graphs, for
which an efficient algorithm is not know to exist. Thus, one
has to rely on approximation techniques. In this paper we
formulate the problem of the partition function approximation
in terms of rare-event probability estimation and investigate
the performance of an evolutionary particle-based algorithm,
called Multilevel Splitting, for handling this setting. The proposed
method enjoys a provable probabilistic performance guarantee
and our numerical study indicates that this algorithm is capable
of delivering accurate results using a relatively modest amount
of computational resources.

Index Terms—Evolutionary Estimation, Partition Function,
Graph Coloring, Multilevel Splitting, Rare Events

I. INTRODUCTION

CALCULATING the zero-temperature antiferromagnetic
partition function is a fundamental problem in statistical

physics, arising in the well-known general Potts model [1],
which studies the behavior of ferromagnets and other phenom-
ena of solid-state physics, and has been extensively explored
in statistical physics [2], [3], theoretical computer science and
mathematics [4], [5], signal processing [6], [7], modelling of
financial markets [8], biology [9], and social networks [10],
[11].

To study the Potts model partition function [3], one should
realize that it corresponds to a difficult combinatorial counting
problem, namely calculating the Tutte polynomial [12]. In this
paper we study the Potts model under the zero-temperature
regime, for which the partition function is given by the Tutte
polynomial related formula called the chromatic polynomial
which counts the number of proper graph colorings as a
function of the number of colors [13]. In Section II, we show
that knowing the chromatic polynomial, is equivalent to the
calculation of the zero-temperature partition function.

The chromatic polynomial and the corresponding coloring
problem belong to the well-known list of Karp’s 21 NP-
complete problems [14]. The proper graph coloring counting
problem lies in the #P complexity class introduced by Valiant
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[15]. An exact polynomial time solution of a #P problem will
imply P = NP [16], so the best we can reasonably hope
for, is to find a good approximation technique. One of such
techniques, called fully polynomial randomized approxima-
tion scheme (FPRAS), has been developed for approximate
counting of some #P problems [17], [18], [19], but there
are also many negative results [16], [20]. In particular, the
inapproximability of the chromatic polynomial for a general
case was established in [21] and [22].

There exists two basic approaches to tackle #P counting
problems: Markov Chain Monte Carlo (MCMC) and Sequen-
tial Importance Sampling (SIS). These approximate counting
algorithms exploit the fact that counting is equivalent to
uniform sampling over a suitably restricted set [23]. The main
idea when using the MCMC method, is to construct an ergodic
Markov chain with limiting distribution which is equal to the
desired uniform distribution. The MCMC methods plays a
central role in counting approximations, [24], [25], [26], [27],
but SIS algorithms have their own merits [17], [28], [29], [30],
[31].

In view of the above discussion, we propose to apply
an adaptive approach called Multilevel Splitting (MS) [25].
This powerful concept was first used by Kahn and Harris
[32] for rare-event probability estimation. Their revolutionary
idea can be summarized as follows. Given a state space,
partition it in such a way that the problem becomes one
of estimating conditional probabilities that are not rare, thus
taking essentially an evolutionary approach, where a particle-
based population (sample), is going through a mutation process
to increase its fitness and move to a rare regions of the state
space. Botev and Kroese [25] generalize MS to approximate a
wide range of rare-event, optimization and counting problems.
For an extensive survey of the MS algorithm methodology and
counting examples, we refer to [30, Chapter 4] and [33].

The MS particle-based method is often applied to rare-
event probability estimation, which makes it an appropriate
candidate for estimating the number of proper graph colorings,
as these are rare in the set of all colourings. Consequentially,
it is natural to apply MS to estimating the zero-temperature
Potts partition function. This paper develops the required
adaptation of the MS algorithm for the coloring problem
and shows that, similar to [34], it has provable probabilistic
performance guarantees. We also develop a freely available
research software package called ChromSplit to support our
findings. To the best of our knowledge, there is currently
no other single-threaded method that is capable of handling
graphs of few hundreds of vertices and edges within reasonable
time. Moreover, our method can be easily parallelized.
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In addition, we show that the proposed counting procedure,
combined with simple binary search, can be easily adjusted
to solve the important combinatorial optimization problem of
finding a graph chromatic number. The MS method, allows us
to perform an analysis of chromatic number statistics in small-
world networks [35], [36], [37], [38]. In particular, we present
numerical evidence that two well-known classes of graph
models, Gilbert-Erdős-Rényi (GER) [39], [40] and Watts-
Strogatz (WS) [35], exhibit very similar scaling behavior of
the chromatic number with respect to the average node degree,
particularly for sparse graphs. We show that in this case, and
regardless of the random model parameters, the change in
structure between the different graphs has no significant effect
on the chromatic number!

The rest of the paper is organized as follows. In Section II
we formulate the zero-temperature antiferromagnetic partition-
function approximation problem and explain its connection to
vertex coloring and the corresponding rare-event probability
estimation problem. In Section III we give a brief introduction
to the MS algorithm, show how it can be applied to graph
coloring problems – both counting and optimization – and
describe a set of probabilistic performance guarantees. We
report our numerical findings in a detailed experimental study
in Section IV, and present new results for the chromatic
numbers of random graphs in Section V. Finally, in Section
VI we summarize our findings and discuss possible directions
for future research.

II. PROBLEM FORMULATION

A. Proper vertex coloring

We start with the description of the (proper) vertex-coloring
problem.

Definition 2.1 (Vertex coloring): Given a finite undirected
graph G = (V,E) with vertex set V and edge set E, a proper
vertex coloring of the graph’s vertices with colors {1, . . . , q}
q ∈ N, (also called a q-coloring), is such that no two vertices
that share an edge, have the same color.

In this paper we will be interested in the vertex-coloring
counting problem. Namely, consider the number of different
q-colorings of a given graph G as a function of q and denote
this number by chr(G, q). It is well-known that the following
is true [13].

1) chr(G, q) is a polynomial of q.
2) The degree of chr(G, q) is equal to the number of

vertices in G.
3) χ(G) = min{q : chr(G, q) > 0} is called the chromatic

number and it stands for the smallest positive integer that
is not a root of the chromatic polynomial. This number
is equal to the minimal number of colors required to
properly color a given graph.

4) Using a deletion-contraction recursive algorithm, the
chromatic polynomial can be computed in O

(
ϕ|V |+|E|

)

time, where ϕ = (1 +
√

5)/2.
5) It is known now that there is no FPRAS for computing

chr(G, q) for any q > 2, unless NP = RP holds [22],
(where RP stands for randomized polynomial time).

There exist some graph topologies with known chromatic
polynomial. For example, Fig.1 shows the polynomial of a
small complete graph; but in general the polynomial is hard
to calculate.
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Fig. 1: The complete graph K3 = ({1, 2, 3}, {(1, 2), (2, 3),
(3, 1)}). By inspection, it is easy to verify that the chromatic
polynomial of K3 is equal to chr(K3, q) = q(q−1)(q−2). For
example, the number of proper colorings using three colors is
equal to 6, i.e., chr(K3, 3) = 6. In this case, the chromatic
number of this graph is 3. That is, one will not be able to
construct a proper coloring with one or two colors.

We next consider the zero-temperature Potts model partition
function and establish its correspondence to the proper vertex
coloring problem.

B. Zero-Temperature Potts model

In this paper we consider the Fortuin-Kasteleyn representa-
tion of the Potts Model [41]. In this setting, a finite undirected
graph G = (V,E) with the vertex set V and edge set E, rep-
resents physical particles and their interactions, respectively.
In particular, the q-state Potts model is defined as follows. Let
q ∈ N be a natural number and define σ = {σv}v∈V to be
a set of spins, where σv ∈ {1, . . . , q}. Define {Je}e∈E to
be a set of coupling constants such that for each e = (u, v),
Je determines the interaction strength between u and v. The
Hamiltonian (energy function) is defined by

H (σ) = −
∑

e=(u,v)∈E
Je δ(σu, σv),

where δ is the Kronecker delta, which equals one whenever
σu = σv and zero otherwise. The corresponding partition
function is

ZG(q) =
∑

σ
e−

1
kTH(σ)

=
∑

σ
e%

∑
e=(u,v)∈E Jeδ(σu,σv) =

∑

σ

∏

e=(u,v)∈E
e%Jeδ(σu,σv)

=
∑

σ

∏

e=(u,v)∈E

[
1 +

(
e%Je − 1

)
δ(σu, σv)

]

=
∑

σ

∏

e=(u,v)∈E

(
1 + ϑeδ(σu, σv)

)
,

where k and T stand for Boltzmann’s constant and the
temperature, respectively, % = 1/kT, and ϑe = e%Je − 1.

Definition 2.2: In the Potts model a coupling {Je}e∈E is
• ferromagnetic if Je ≥ 0 for all e ∈ E; and
• antiferromagnetic if Je ≤ 0 for all e ∈ E.

The zero-temperature antiferromagnetic Potts model is defined
in the limit %→ 0 to have Je = −∞ for all e ∈ E, and ϑe =
e%Je − 1 = −1 for all e ∈ E. In the zero-temperature regime
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we therefore have ϑ(u,v)δ(σu, σv) = −1{σu=σv}. From the
above equation, the expression

ZG(q) =
∑

σ

∏

e=(u,v)∈E
(1 + ϑeδ(σu, σv))

=
∑

σ

∏

(u,v)∈E
1{σu 6=σv},

is thus the partition function in question. Moreover, we now
see that ZG(q) is the number of proper graph colorings with q
colors, since the inner product is equal to 1 only if the adjacent
vertices have different spins (colors), and the outer summation
passes through all possible graph colorings.

We proceed by reducing these graph counting problems
to the problem of estimating the probability of randomly
selecting a proper coloring.

C. The probabilistic set-up

For any G = (V,E) there are q|V | colorings. Suppose that
q is greater than or equal to G’s chromatic number. Then,
some of these colorings are proper. Consider now the uniform
distribution on the set of all color assignments {1, . . . , q}|V |
and let X = {X1, . . . , X|V |} be a uniform random assignment
from {1, . . . , q}|V |. Let ` be the probability that a random
assignment is a proper coloring. Then, ZG(q) = q|V |`. That
is, the estimation of ZG(q) and ` is interchangeable.

Exact calculation of ` is as hard as calculating ZG(q), but
one could consider estimation of `. The Crude Monte Carlo
(CMC) procedure for the estimation of ` is straightforward
and is summarized in Algorithm 1.

Algorithm 1 The CMC Algorithm for estimating `

Input: A graph G = (V,E), q ∈ N, and a sample size N ∈ N.
Output: Unbiased estimator of `.

1: for t = 1 to N do
2: Random coloring generation: For each v ∈ V , assign

a color from the {1, . . . , q} set, uniformly at random.
Denote this coloring by Xt =

{
X

(t)
1 , . . . , X

(t)
|V |

}
.

3: Verify proper coloring: If Xt is a proper coloring of
G, that is, if

∏

(u,v)∈E
1{

X
(t)
u 6=X(t)

v

} = 1,

set Yt = 1; otherwise, set Yt = 0.
4: end for
5: return:

ˆ̀
CMC =

1

N

N∑

t=1

Yt. (1)

D. Rare-event Monte Carlo

Unfortunately, Algorithm 1 will generally fail because of
the rare-event setting. To see this, consider a relatively small
complete graph K30 with 30 vertices. Suppose that we wish to
color it with q = 30 colors. We can now calculate the exact `

value, since the first graph vertex can be colored with 30 col-
ors, the second with 29 colors and so on. That is, there are 30!
proper colorings. Having in mind that there are 3030 available
colorings, we arrive at ` = 30!/3030 ≈ 1.29× 10−12. This
probability is so small that during Algorithm 1 execution, the
random variable Yt = 0 almost certainly for all t, returning
ˆ̀
CMC = 0, even for a large sample size like N = 109.

To better understand this rare-event phenomenon, consider
the following general setting. Let X and X ∗ ⊆ X be sets and
suppose that the probability ` = |X ∗|/|X | is to be estimated.
In our context X and X ∗ stand for the set of all graph’s
colorings and the proper ones, respectively. Then, the CMC
estimator ˆ̀

CMC is given in (1). In particular, the {Yt} are
Independent Identically Distributed (IID) Bernoulli Random
Variables (RV). Hence, ˆ̀

CMC is an unbiased estimator of `,
with known variance

Var
(

ˆ̀
CMC

)
=
`(1− `)
N

. (2)

We next consider the accuracy and hence efficiency of the
rare-event estimator. In this paper we will use two measures
of accuracy: the relative experimental error (RER) [42], given
by RER =

∣∣∣ˆ̀CMC − `
∣∣∣ · `−1, and the relative error (RE). The

former measures error relative to the correct value, the latter
considers the standard deviation relative to their mean. Both
are useful: RER is preferred, but requires knowledge of the
true value, which is not generally available (see [43] and [44]
for details); on the other hand, the RE can be estimated and
provide a confidence interval. The RE of ˆ̀

CMC is

RE
(

ˆ̀
CMC

)
=

√
Var

(
ˆ̀
CMC

)

E
(

ˆ̀
CMC

) =︸︷︷︸
(2)

√
`(1− `)/N

`
.

In the rare-event setting `� 1 so

RE
(

ˆ̀
CMC

)
≈ 1/

√
N`, (3)

which imposes a serious challenge. To see this, consider the
rare-event probability ` ≈ 10−12, and suppose that we are
interested in a modest 10% RE. It is easy to verify from (3),
that the required number of experiments N is about 1014.

The probabilities that concern us here are as small as
10−157, so we have no hope of applying the naive CMC ap-
proach. We overcome this problem using the evolutionary MS
method for rare-event probability estimation and optimization,
which we describe in the following section.

III. MULTILEVEL SPLITTING

Here we adopt a quite general adaptive variance minimiza-
tion technique called the MS algorithm [25]. The latter is
essentially an evolutionary particle-based method for rare-
event probability estimation and optimization.

Careful examination of the CMC procedure, reveals that
the major problem is the rareness of samples from the set
X ∗. The main idea of MS is to design an adaptive sequential
sampling plan, with a view to decompose a “difficult” problem
(sampling from X ∗), into a number of “easy” ones associated
with a sequence of subsets in the sampling space X . A general
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MS framework is summarized in Fig. 2. The resulting MS
algorithm, provides an unbiased estimator of ` [25], and is
given in Algorithm 2.

Find a sequence of sets X = X0 ⊇ X1 ⊇ · · · ⊇ XT = X ∗.
Assume that the subsets Xt can be written as level sets of
some fitness function S : X → R for levels

∞ = γ0 ≥ γ1 ≥ · · · ≥ · · · ≥ γT = γ,

such that Xt = {x ∈ X : S(x) ≤ γt} for t = 0, . . . , T .

Note that the quantity of interest ` is given by the telescopic
product:

` =
|X ∗|
|X | =

T∏

t=1

|Xt|
|Xt−1|

=
T∏

t=1

P (S (X) ≤ γt | S (X) ≤ γt−1)

= P (S(X) ≤ γT ) .

For each t = 1, . . . , T , develop an efficient estimator ĉt for
the conditional probabilities

ct = P (S(X) ≤ γt | S(X) ≤ γt−1) .

To avoid rare-event problems at the intermediate levels (γt),
we assume that the sets Xt, t = 1, . . . , T , are specifically
designed such that the {ct} are not rare-event probabilities.

Deliver

̂̀=
T∏

t=1

ĉt,

as an estimator of `.

Fig. 2: General Multilevel Splitting framework.

Let us now put the coloring problem into the MS frame-
work. It is straightforward to define the X and the X ∗ sets
as the set of all colorings and the set of proper colorings,
respectively. Note that X ⊇ X ∗ and that it is easy to sample
uniformly from X by choosing one out of q available colors
for each vertex with equal probability 1/q. On the other hand,
defining the fitness function S : X → R and the corresponding
sets X0, · · · ,XT can be a delicate task. There are quite a
few possibilities, but in this paper we propose that given a
coloring x ∈ X , we define S(x) to be the number of adjacent
vertices that share the same color. Note that by definition (in
Fig. 2), it holds that X = {x ∈ X : S(x) ≤ ∞}, and
X ∗ = {x ∈ X : S(x) ≤ 0}.

We can estimate ct using N samples (particles) chosen uni-
formly at random from the Xt−1 set . Namely, the estimate ĉt
is equal to the number of these samples that fall into Xt divided
by N . We achieve this uniform sampling using MCMC, in
particular, a Gibbs Sampler [25], [30]. The resulting algorithm
is described in Algorithm 2.

If at any stage in Algorithm 2 we get Nt = 0, then the
algorithm stops and we return ˆ̀ = 0, so it is important to
choose the thresholds {γt} such that this occurs rarely.

Algorithm 2 The MS Algorithm for estimating `

Input: A graph G = (V,E), a sequence of levels γ1, . . . , γT ,
a performance function S : X → R, and a sample size
N ∈ N.

Output: Unbiased estimator of `.
1: Initialization: Generate N independent particles W0 =
{X1, . . . , XN} uniformly from X . Let W1 ⊆ W0 be the
subset of elements X in W0 for which S (X) ≤ γ1 holds,
(that is,W1 is an elite population of particles), and let N1

be the size of W1.
2: for t = 1 to T − 1 do
3: Draw Ki ∼ Bernoulli(0.5), for i = 1, . . . , Nt, such that∑Nt

i=1Ki = N mod Nt.
4: for i = 1 to Nt do
5: Set a splitting factor

Sti =

⌊
N

Nt

⌋
+Ki,

where bxc is the floor function.
6: Set Yi,0 = Xi.
7: for j = 1 to Sti do
8:

draw Yi,j ∼ κt (y | Yi,j−1) ,

where κt (y | Yi,j−1) is a Markov transition den-
sity whose stationary distribution is the uniform
distribution on Xt (we describe this momentarily).

9: end for
10: end for
11: Set the population

Vt = {Y1,1, . . . ,Y1,St1 , · · · ,YNt,1, . . . ,YNt,StNt
},

Note that Vt contains N elements.
12: Let Wt+1 ⊆ Vt be the subset of elements of Vt for

which S (X) ≤ γt+1, and let Nt+1 be the size of new
population Wt+1.

13: Estimation: Set ĉt = Nt+1/N .
14: end for
15: return:

ˆ̀=

T∏

t=1

ĉt.

The Markov transition step of Algorithm 2 is crucial. We
must be able to generate a Markov chain described by tran-
sition density κt, but this can be expensive in the sense of
computational time. We use a Gibbs sampler for the coloring
problem, described in Algorithm 3, and show that it is efficient
in Proposition 3.1.

Proposition 3.1 (Computational complexity of Algorithm 3):
For the coloring problem, Algorithm 3 can be performed in
O (q |E|) time.
Proof: We first note that the conditional sampling steps of
Algorithm 3, (lines 2–6), governs the running time of each
cycle of the main for loop, and, one cycle is performed for
each v ∈ V . To complete the proof, it remains to show that
for each v ∈ V this step can be performed in O (q dv ) time,
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Algorithm 3 The Gibbs sampler for sampling uniformly from
the population Xt, given a starting point in that set.

Input: A graph G = (V,E), the number of available colors
q, an element X =

(
X1, . . . , X|V |

)
with Xi ∈ {1, . . . , q}

from the set Xt, and the corresponding threshold value γt.
Output: X̃ distributed approximately uniformly on the set Xt.

1: for i = 1 to |V | do
2: Set A = ∅.
3: for c = 1 to q do
4: if S

(
(X̃1, . . . , X̃i−1, c, . . . , X|V |)

)
≤ γt then

5: A = A ∪ {c}.
6: end if
7: end for
8: Choose X̃i uniformly at random from A; that is, an

element of A is chosen with probability 1/|A|.
9: end for

10: return X̃ =
(
X̃1, . . . , X̃|V |

)
.

where dv stands for the degree of v, since it holds that:
∑

v∈V
O (q dv) = O(q)

∑

v∈V
dv = O(q)2|E| = O (q |E|) .

Let us consider the actual sampling of X̃i from the uniform
conditional density

U
(
xi | X̃1, . . . , X̃i−1, Xi+1, . . . , X|V |

)
.

Given the assignment of colors (X̃1, . . . , X̃i−1, Xi+1, . . . ,
, . . . , X|V |), all we need to do, is to check which color can be
assigned to X̃i, such that the fitness function satisfies

S(X̃1, . . . , X̃i−1, X̃i, Xi+1, . . . , X|V |) ≤ γt,
and pick one of these colors uniformly at random. It turns out
that this operation can be performed in O (q dvi) time.

Consider the sampling step and suppose that

S
(
X̃1, . . . , X̃i−1, Xi, Xi+1, . . . , X|V |

)
= γ′t ≤ γt

holds. Now, only the variable Xi is subject to change, so
this change is localized to the vertex vi and its immediate
neighborhood of adjacent vertices. In particular, for any given
color from {1, . . . , q}, we can determine the new performance
value by checking vi’s neighbors and counting the ones that
are colored with the same color. Let Ng(vi, c) be a set of
vertices adjacent to vt such that each v ∈ Ng(vi, c) is colored
with color c. It is not very hard to verify now that for any
c ∈ {1, . . . , q} it holds that

S
((
X̃1, . . . , X̃i = c, . . . ,X|V |

))
= (4)

= γ′t − 2 |Ng(vi, Xi)|+ 2 |Ng(vi, c)| .
Noting that for any c ∈ {1, . . . , q} the computation of
Ng(vi, c) can be done in O (dvi) time, and having in mind that
we need to perform it for every color, we arrive at O (q dvi)
time complexity and complete the proof.

The efficient fitness calculation approach discussed above,
is demonstrated in Example 3.1.

Example 3.1 (Efficient calculation of S(·) in Algorithm 3):
Consider the simple graph in Fig. 3, and suppose that we have
two colors, white (w) and gray (g).

v3

v2

v4

v5v1

Fig. 3: A simple graph with performance γ = 8.

Note that the v3 vertex is g-colored and the rest of the
vertices are w-colored, so it is not hard to calculate the overall
performance S(c(v1), . . . , c(v5)) = S(w,w, g, w,w) = 8,
since each v1, v2, v3 and v4 have exactly two neighbors that
are colored with the same white color. Suppose now, that we
would like to change the v1 vertex color to gray and calculate
the new performance value γ′, which is required in line 4: of
Algorithm 3. Using (4), we arrive at

γ′ = γ − 2 |Ng(v1, w)|+ 2 |Ng(v1, g)|
= 8− 2 · 2 + 2 · 1 = 6,

since Ng(v1, w) = 2 and Ng(v1, g) = 1. Note that during the
performance value update, we only considered v1’s neighbors;
that is, we did not consider the vertex v5.

We next proceed with a clarification for a few remaining
technical issues regarding the MS Algorithm 2.

The MS algorithm parameters

Algorithm 2 enjoys a property of having a relatively small
number of parameters: the sample (population) size N and the
intermediate fitness levels γ1, . . . , γT . Choosing N is relatively
easy, as we show in Section IV. Namely, for the coloring
problem, our numerical study indicates that setting N = 10|E|
is sufficient. Choosing the levels {γt} is not as easy. We run the
MS algorithm multiple times to obtain statistics of the results,
so γ1, . . . , γT should be fixed in advance, in order to ensure
an estimator’s unbiasedness [25]. However, we also wish to
adapt the chosen thresholds to the particular problem.

A common method to resolve this problem is perform
a single pilot run of Algorithm 2 using a so-called rarity
parameter ρ. The rarity parameter specifies the percentage of
the population Vt elements that will progress toWt, and works
by taking the ρth order statistic of S(·) of the elements of Vt
to define γt. This proceeds until t = T such that γT ≥ γ.

The pilot run establishes a set of threshold values adapted to
the problem at hand, with approximately the same reduction
in the size of the sets Xt at each step (until the last). We then
use the pilot values of population’s fitness in subsequent runs.
See [25] for further details.
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Our numerical study showed that for this problem a value
of ρ = 20% resulted in a good tradeoff between the number
of outer loops T , (the main for loop of algorithm 2), and the
work required inside the loops.

Time complexity of the MS algorithm

The initialization of the MS Algorithm 2 can be performed
in O (N |V |q) time because we generate N samples each with
|V | elements, and for each of these we evaluate S(·).

The MCMC step is performed O(T ) times, with cost
given in Proposition 3.1 to be O (N |E|q). Hence, the overall
complexity is equal to

O
(
N |V |q

)
+O

(
TN |E|q

)
= O

(
Nq (|V |+ T |E|)

)
. (5)

Clearly, the complexity depends on the number of levels
T . There exists versions of the Splitting Algorithm 2 where
one can bound this value. For example, the splitting version
in [45] satisfies

T =

⌊
ln `

ln ρ

⌋
. (6)

However, this T value depends on the rare-event probability
`, so one should at least know `’s order of magnitude to get
a meaningful complexity bound.

The MS algorithm error

We saw that Algorithm 2 outputs an unbiased estimator
of the rare-event probability `. A common practice is to
repeat this algorithm for R independent replications, obtain
independent unbiased estimators ˆ̀

1, . . . , ˆ̀
R and report the

average:

ˆ̀= R−1
R∑

r=1

ˆ̀
r.

Under this setting, we can calculate the RER via

RER =
∣∣∣ˆ̀− `

∣∣∣ · `−1,

and estimate the relative error via

RE =

√√√√ 1
R−1

∑R
r=1

(
ˆ̀
r − ˆ̀

)2

ˆ̀2
.

As mentioned earlier, the RER is rarely available, since
our task is to calculate `. However, this measure is useful
for benchmarking the performance of the MS algorithm on
instances for which we know the analytical value. See the
first example in Section IV.

Finding a graph chromatic number via the MS algorithm

The adaptation of the MS Algorithm 2 to a method for
determining a graph chromatic number is straightforward.
Recall that the MS algorithm counts the number of q-colorings
in a graph. Let ∆(G) be the maximal degree of the graph
G = (V,E), and recall that G can be colored with at least one
and with at most ∆(G) + 1 ≤ |V | colors via greedy coloring.
With this in mind, we propose to apply a binary search

procedure on q = 1, . . . , |V |. The above idea is summarized
in Algorithm 4.

Algorithm 4 Binary search algorithm for finding a graph’s
chromatic number
Input: A graph G = (V,E), a sequence of thresholds

γ1, . . . , γT , a fitness function S : X → R, and population
size N ∈ N.

Output: Chromatic number approximation of the G = (V,E)
graph.

1: Set low = 0 and high = |V |.
2: while low < high do
3: Set mid = dlow + highe/2.
4: Let ˆ̀

mid be the estimated number of proper mid-
colorings of G which is obtained using the MS Al-
gorithm 2.

5: if ˆ̀
mid > 0 then

6: high = mid.
7: else
8: low = mid.
9: end if

10: end while
11: return mid as an approximation of G’s chromatic number.

Algorithm 4 is relatively cheap in its running time. In
particular, recalling that q ≤ ∆(G) + 1 ≤ |V |, not-
ing that Algorithm 4 will execute the main MS method
(Algorithm 2), for O (log(|V |)) times, and combining
this with Equation (5), yields the time complexity of
O
(

log(|V |)N |V | (|V |+ T |E|)
)
.

We complete this section by providing provable probabilistic
performance lower bounds guarantees introduced in [34].

Probabilistic lower bounds

When running the MS algorithm independently for R
replications, we get an unbiased estimators for the rare-event
probability `. We can exploit this, to deliver lower bounds for
` using Theorem 3.1.

Theorem 3.1 (Probabilistic lower bounds): Given n samples
(Z1, . . . , ZR), drawn independently from a proposal distribu-
tion Q such that E (Zr) = µ for r = 1, . . . , R, and a constant
0 ≤ α < 1, the following probabilistic lower bounds exist.

1) Minimum scheme bound (MSB):

P
(

min
1≤r≤R

[
Zr
η

]
≤ µ

)
≥ α, where η =

(
1

1− α

) 1
R

.

2) Average scheme bound (ASB):

P

([
1
R

∑R
r=1 Zr

η

]
≤ µ

)
≥ α, where η =

1

1− α.

3) Maximum scheme bound (MASB):

P
(

max
1≤r≤R

[
Zr
η

]
≤ µ

)
≥ α, where η =

1

1− α 1
R

.



7

4) Permutation scheme bound (PSB):

P


 max

1≤r≤R





1

η

r∏

j=1

Zj




1/r

 ≤ µ


 ≥ α,

where η = 1/1− α.
5) Order Statistics bound (OSB):

P


 max

1≤r≤R





1

η

r∏

j=1

O(R−j+1)(
R
r

)




1/r

 ≤ µ


 ≥ α,

where η = 1/(1− α), and
(
O(1), . . . , O(R)

)
is an order

statistics over the sample set (Z1, . . . , ZR), such that for
1 ≤ r1 < r2 ≤ R, it holds that O(r1) ≤ O(r2).

Proof: See [34].
These bounds introduce a bonus feature to a user of the MS

algorithm. They are available after the first few independent
runs of Algorithm 2, and so one can estimate the order of
magnitude of ` after only a few iterations of MS, and from
this estimate how many runs will be needed in total to obtain
a suitable accuracy.

Remark 3.1 (Performance of Probabilistic Lower Bounds):
As it was noted in [34], these bounds sometimes decrease
when the number of samples grows, i.e., the bound tightness
decreases. Ideally, we would expect the bound quality to
improve with more data, so this behavior is undesirable.
However, on the positive side, the bounds are easy to obtain
and they are accurate enough to be useful (our numerical study
indicates that the bounds are generally within an order of
magnitude of the true result or better after only a few runs).

IV. BENCHMARKS

We explore the accuracy and efficiency of the MS method
on two classic classes of graphs.

We implemented the MS algorithm in a C++ package
called ChromSplit, which is freely available1, along with all
examples. Timing measures were instrumented directly into
the code.

We benchmark the algorithm on two classes of example
networks.

1) The first class are the book graphs, for which the
chromatic polynomial is known, and hence we can use
these to precisely assess accuracy of the MS algorithm.

2) The second class includes the two- and three-
dimensional grids, which are used to model a physical
atomic structure, and so provide a more realistic chal-
lenge on which to judge speed.

All the tests were executed on a Intel Core i7-3770 quad-
core 3.4Ghz processor with 8GB of RAM, running 64 bit Win-
dows 7. All tests were single-threaded, though parallelization
would be easy to add.

1http://www.smp.uq.edu.au/people/RadislavVaisman/#software

MS parameters

We ran a number of preliminary benchmarks (not reported
here) to determine reasonably robust parameter settings for
N and ρ. The following parameters were used for all results
described here.
• q is the number of colors (spins).
• For the MS pilot run, we take ρ = 20%.
• For the probabilistic lower bounds in Theorem 3.1, we

take α = 0.95, which is equivalent to choosing 95%
confidence.

• We set the sample size to be N = 10|E|, where |E| is
the number of edges in a graph under consideration.

A. Book graph

We start by considering the n-book graph Bn, which is
defined as the graph Cartesian product S(n+1) × P2, where
S(n+1) is a star graph and P2 is the path graph on two nodes
[46]. An example, B6, is given in Fig. 4.

Fig. 4: The 6-book graph, B6.

The Bn graph has 2n + 2 vertices and 3n + 1 edges.
Importantly, the exact chromatic polynomial is known to be
q (q − 1)

(
q2 − 3q + 3

)n
[46], thus we can measure our esti-

mator’s relative experimental error RER, and provide precise
benchmarks for the accuracy of the MS algorithm.

We perform benchmarks on B100 for q = 2, . . . , 10. As
noted earlier, we choose ρ = 20% and N = 3010, since B100
has 301 edges.

100 101 102

10−1

100

101

102

R

R
E
R

%

q = 2

q = 6

q = 10

Fig. 5: The RER of the MS algorithm on B100 as a function
of R – the number of independent MS replications.
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TABLE I: Performance summary of the MS algorithm on the B100 graph.

q ˆ̀ RER T R CPU (s) PSB MSB OSB ASB MASB

2 3.19× 10−61 2.40% 103 517 3.80× 103 2.67 × 10−61 1.37× 10−62 3.76× 10−63 1.59× 10−62 1.58× 10−64

3 1.23× 10−48 5.09% 91 166 1.24× 103 7.57 × 10−49 3.73× 10−49 2.87× 10−50 6.14× 10−50 9.62× 10−52

4 1.00× 10−36 6.62% 67 124 7.93× 102 5.88 × 10−37 3.24× 10−37 3.80× 10−38 5.01× 10−38 8.35× 10−40

5 3.20× 10−29 0.54% 54 132 8.07× 102 2.48 × 10−29 1.54× 10−29 1.51× 10−30 1.60× 10−30 2.77× 10−32

6 3.45× 10−24 5.98% 44 65 3.41× 102 2.99 × 10−24 1.83× 10−24 3.37× 10−25 1.72× 10−25 4.02× 10−27

7 1.12× 10−20 0.50% 38 85 4.23× 102 8.48 × 10−21 5.49× 10−21 1.04× 10−21 5.58× 10−22 1.26× 10−23

8 4.33× 10−18 7.51% 34 56 2.52× 102 3.53 × 10−18 2.80× 10−18 6.56× 10−19 2.17× 10−19 6.07× 10−21

9 5.09× 10−16 4.52% 30 60 2.63× 102 4.28 × 10−16 2.85× 10−16 8.78× 10−17 2.55× 10−17 6.49× 10−19

10 2.00× 10−14 3.52% 27 51 2.13× 102 1.69 × 10−14 1.13× 10−14 4.57× 10−15 1.00× 10−15 2.58× 10−17

Fig. 5 shows the RER as a function of R, the number of
independent MS replications, for q = 2, 6 and 10. The figure
shows that the RER drops below 10% within a reasonable
number of repetitions. One should remember that the proba-
bilities being measured here are very small (as small as 10−60),
so a 10% RER is quite reasonable.

The rightmost point on each curve in Fig. 5 corresponds to
the R value for which the estimated RE reaches 3%, and so we
can see that the RE is a reasonable (if somewhat conservative)
metric against which to estimate when the algorithm has
converged sufficiently. In further tests, where we do not know
the analytic form of the chromatic polynomial, we will use
this criteria — the R value at which the estimated RE drops
below 3% — to select the number of replications.

Fig. 5 also shows that the counting problem is harder (the
MS method converges more slowly) for smaller values of q.
This is not very surprising, since the corresponding decision
problem of determining if the graph is q-colored, is also hard
for smaller q values. This hardness follows from the fact
that for smaller q values, one need to satisfy more coloring
constraints.

100 101

10−26

10−25

10−24

exact value

R

L
ow

er
B
ou

n
d

PSB

MSB

OSB

ASB

MASB

Fig. 6: Lower bounds for the B100 graph for q = 6 as a
function of replications number R.

A similar set of results is shown in Fig. 6, this time
illustrating the lower-bounds as a function of the number
of replications R. For clarity we show only q = 6 (in our

experiments, we verified that the lower bounds behavior is
similar for all q = 2, . . . , 10). The figure shows that the best
lower bound is the PSB. This lower bound becomes close to
the exact value after only 10 replications of the MS algorithm,
indicating its utility for providing rough estimates of ` early
in the proceedings.

For a six coloring (q = 6) of the B100 graph, our algorithm
completes a single replication in about 5.3 seconds (see Table
I), so we can conclude that a tight lower bound can be obtained
in less than a minute.

Table I provides exact details of the data obtained for the
B100 graph. The best lower bound is marked in bold.

B. Two- and three-dimensional grids

The second class of models considered are the two- and
three-dimensional grids, which are illustrated in Fig. 7. The
order of a grid graph refers to the length of a side, so Fig. 7
shows the order-4 grid graphs.

(a) The 2D order-4 grid. (b) The 3D order-4 grid.

Fig. 7: Example grid graphs.

We consider 18 2D graph instances of orders n = 3 . . . ,
, . . . , 20, and 6 3D graph instances of orders n = 3, . . . , 8,
each for q = 2, 3, 4 and 5.

There are |E| = 2n(n−1) and 3n2(n−1) edges in 2D and
3D grids of order n, respectively. We choose N = 10|E| as
before and we choose the number of replications R such that
the 3% RE requirement is met.

Fig. 8 shows the average experimental CPU and the number
of levels T as a function of the 2D and 3D grid order. The
lower plots show the number of levels, T , derived from the
pilot run, divided by the estimate (6), from which we note that
the experimental value of T is at most 61% higher than the
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(a) 2D grid
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(b) 3D grid

Fig. 8: The average CPU time (s) and the average number of levels T divided by analytical bounds (5) and (6). Note that
the relative value of T is at most 61% higher than 1, and converges towards around 1.3, indicating that the (6) provides a
reasonable estimate of the number of levels required. For the 2D graph, the scaled CPU time estimates appears consistent, and
in the 3D case they appear to converge towards a consistent value, again suggesting the performance estimate is a good guide.
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(a) 2D order-20 grid
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(b) 3D order-8 grid

Fig. 9: The estimated relative error of PMLB with respect to ˆ̀ as a function of R.

suggested rule of thumb in (6), and converges to being about
30% higher for larger networks.

Fig. 8 also shows, in the upper plots, the CPU times in
seconds, scaled by (5). We can see from these, that the
scaled times are roughly constant with n (for all n for the
2D case, and for n ≥ 6 for the 3D case). The unscaled
CPU times are shown in Tables II and III for the 20 × 20
and 8 × 8 × 8 grids, respectively. The tables also provide
summaries of the T and R values for the different q values,
along with the actual ` estimates. Note that the smallest of
these is ∼ 10−157. Estimating probabilities this small naively
is completely impractical.

Note also the small inversion in probabilities: i.e., in the 3D

order-8 grid, when we go from q = 2 to q = 3 the estimated
value decreases, when naively we should expect this number to
increase as it should be harder to find proper colorings with a
smaller number of colors (and indeed it is for all other cases).
The reasons for this inversion must lie in the 3D structure,
though the exact reason is unclear.

We next consider the probabilistic lower bounds. It is
important to note that the calculation effort one should invest
for the bounds calculation is relatively cheap as compared to
the overall CPU time, so a reasonable approach is to compute
all available bounds, and choose the maximum among them.
We define the probabilistic maximal lower bound (PMLB) to
be max {PSB,MSB,OSB,ASB,MASB}.
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TABLE II: Performance summary of the MS algorithm on the 20× 20 2D grid.

q ˆ̀ T R CPU PSB MSB OSB ASB MASB

2 7.45× 10−121 248 128 1.07× 104 1.58× 10−121 3.64 × 10−121 3.90× 10−123 3.72× 10−122 6.54× 10−124

3 5.97× 10−113 216 193 1.62× 104 1.14× 10−113 2.09 × 10−113 2.45× 10−115 2.99× 10−114 4.08× 10−116

4 7.78× 10−90 165 174 1.31× 104 2.00× 10−90 3.17 × 10−90 6.90× 10−92 3.89× 10−91 6.16× 10−93

5 6.11× 10−72 130 130 8.70× 103 2.49× 10−72 2.65 × 10−72 9.35× 10−74 3.05× 10−73 5.12× 10−75

TABLE III: Performance summary of the MS algorithm on the 8× 8× 8 3D grid.

q ˆ̀ T R CPU PSB MSB OSB ASB MASB

2 1.55× 10−154 280 90 1.93× 104 3.65× 10−155 8.03 × 10−155 1.04× 10−156 7.77× 10−156 1.76× 10−157

3 9.27× 10−158 309 75 2.07× 104 2.05× 10−158 5.09 × 10−158 6.52× 10−160 4.63× 10−159 1.06× 10−160

4 6.89× 10−142 270 125 3.46× 104 1.45× 10−142 3.03 × 10−142 3.83× 10−144 3.45× 10−143 6.43× 10−145

5 2.10× 10−121 226 121 3.23× 104 6.52× 10−122 1.08 × 10−121 1.13× 10−123 1.05× 10−122 1.85× 10−124

Fig. 9 presents the estimation of the RE of PMLB, with
respect to the final mean value obtained, as a function of R,
for q = 2, . . . , 5. Note the decrease in the PMLB accuracy as
the number of samples grows. See Remark 3.1. However, as
noted earlier, a good idea regarding the `’s order of magnitude
is obtained after only few iterations.

Tables II and III provide the detailed bounds for the 20×20
and 8× 8× 8 grids, respectively, with the best lower bound is
marked in bold. In general, for these graphs the MSB bound
introduced the best performancein contrast to the book model,
where PSB was the best.

Remark 4.1 (Exact Tutte and chromatic polynomial calcu-
lation): The chromatic polynomial can be obtained using the
Tutte polynomial [46], for which an exact solver exists [47].
Table IV summarizes the CPU times for the exact and the
approximate (MS), approaches applied to 2D grids (note that
the comparison is not quite apples for apples in that the exact
Tutte solver provides the complete polynomial, not the result
for a single q value, but we perform measurements here for
q = 2 which is usually the slowest case for the MS solver).

TABLE IV: CPU times (seconds) of the exact Tutte solver and
the MS algorithm on 2D grids. The exact solver outperforms
MS on small graphs, but its poor scaling means MS is quickly
superior, and moreover the exact solver is limited to at most
8× 8 grids. 3D grid results are described above.

Instance CPU (exact) CPU (MS)

3× 3 5.01× 10−4 1.23× 10−1

4× 4 2.18× 10−3 5.34× 10−1

5× 5 3.21× 10−2 2.96

6× 6 0.253 8.05

7× 7 2.46 19.3
8× 8 36.9 34.8
9× 9 — 74.5

For small models, the exact solver performed extremely
well. Indeed it was faster than solving using the MS algorithm.
However, it scaled badly. The MS algorithm is better by the
time we reach order 8, and the exact solver crashed after 4.5
hours on the order 9 grid, as compared to a 74 s run by the
MS approach. It is inconceivable that we could find the exact

solution for the order 20 grid considered above using the exact
solver.

The results are even more extreme for the 3D grids, where
the MS algorithm is already faster for the order-3 grid (0.11 as
compared to 4.71 seconds), and the exact solver crashed after
4 hours for even the order 4 grid. Thus the MS algorithm
makes possible computations that are completely impractical
by exact means.

V. THE CHROMATIC NUMBER OF RANDOM GRAPHS

We have demonstrated the accuracy and efficiency of the
MS method for calculating the partition function or `. Algo-
rithm 4 presents a further step: computation of the chromatic
number for a graph, i.e., the minimum number q, for which a
proper coloring exists.

We test this algorithm by applying it (using parameters as
set above) to calculate chromatic numbers of two standard
random-graph models: the Gilbert-Erdős-Rényi (GER) [39],
[40] and Watts-Strogatz (WS) [35] random graphs. The GER
random-graph is the classic “random” network for which there
are known bounds on the chromatic number [48].

The WS model is included because this has the so-called
small-world property: for certain parameter values the average
distance between nodes is small, but clustering is still high.
Moreover, the GER is approximately embedded within the
class of WS models (for sparse graphs), as are the k-regular
graphs, and so the WS model shows a continuum of models
interpolating between the two extremes of regularity and
randomness. As far as we are aware, despite the importance of
small-world models, there are no existing results for chromatic
numbers on WS random graphs.

Note that the average node degree in G(n, p) network is
equal to (n− 1)p. We used bounds on the chromatic number
of any GER random graph, χ

(
G(n, p)

)
, given in (7), [48],

namely:

n

s0
≤ χ

(
G(n, p)

)
≤ n

s0

(
1 +

3 log log(n)

log(n)

)
, (7)

where s0 = dr(n) + 1e, b = 1/(1− p), and

r(n) = 2 logb(n)− 2 logb logb(n) + 2 logb

( e
2

)
.
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(a) The GER G(30, p) model (with 30 vertices)
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(b) The WS model with 30 vertices
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(c) The GER G(50, p) model (with 50 vertices)
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(d) The WS model with 50 vertices

Fig. 10: Chromatic number as a function of average node degree. The leftmost plot is for the G(n, p) GER model and the
rightmost plot is for the WS model.

The WS model used here starts by placing nodes regularly
on a circle, and each node connects to its k nearest neigh-
bors, where k is a model parameter that takes its values in
{1, . . . , n−1}. Then edges are rewired (one end is reconnected
to a new node chosen uniformly from the alternatives) at
random with probability β ∈ [0, 1]. The average node degree in
this network remains k, as the total number of edges remains
constant.

It is noteworthy that the WS model is a k-regular graph
for β = 0, and approximately equivalent to the GER random
graph for β = 1 (and for sparse graphs), thus the WS model
interpolates between these two extremes. And it does so in an
interesting manner in that for moderately small values of β
the graph has the small-world property.

We calculated the chromatic numbers for these random
graphs for n = 10, 20, 30, 40 and n = 50 with different
values of p, k and β. For every parameter set, we calculated
the chromatic number of 100 randomly generated instances,
and we report the average values.

Fig. 10 summarizes the results for n = 30 and n = 50 (the
n = 10, 20 and 40 results are omitted as they are very similar).
The graphs show average chromatic number with respect to

the average node degree, so that we can easily compare the
two differently parameterized graphs on equivalent axes. The
bounds in (7) are shown in Fig. 10 as LB and UB.

The GER results are quite expected, but noteworthy in that
the chromatic number increases only slowly with average node
degree, until the graph is quite highly connected, where the
chromatic numbers shoot up (it is known that the chromatic
number is bounded below by the size of the smallest clique,
and hence the number must eventually converge to the size of
the network as p→ 1). Also, the scaled shape of the curve is
almost independent of n.

More interesting are the WS results. The β = 0 results are
not stochastic, and hence follow a somewhat regular pattern.
However, as soon as β > 0, we see that for graphs with low
to medium values node degrees (less then or equal to 15 and
30 for WS graph with 30 and 50 vertices, respectively), the
value of β has an insignificant effect. That is, all of the graphs
from the almost k-regular, to the GER, have the same average
chromatic number!

For highly connected graphs the value of β starts to have
some effect on the chromatic numbers, with χ increasing as
β increases.
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(a) The average CPU time as a function of average node degree
of GER and WS graphs with 30 vertices.
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(b) The average CPU time as a function of average node degree
of GER and WS graphs with 50 vertices.

Fig. 11: Average computation times of Algorithm 4 for calculating χ as a function of the average node degree.

It is interesting to note that the lower and upper bounds of
the GER model hold for the WS graphs as well for graphs of
moderate degree, i.e., in the range where most applications of
WS lie.

In both cases, the size of the network n = |V | has little
effect on the relative shape of the curves.

Average computation times are shown in Fig.11 and Fig.12.
In Fig. 11, we report the CPU as a function of average node
degree for graph sizes |V | = 30 and |V | = 50 in sub-
figures (a) and (b), respectively (the n = 10, 20 and 40 results
are omitted as they are very similar). Fig. 12 summarizes
the average computation times as a function of the graph’s
number of vertices |V | ∈ {10, 20, 30, 40, 50}. Both GER and
WS models introduce a similar behavior in the sense of the
required CPU time. Both numerical findings indicate that the
computation time scales linearly with the number of edges in
the graph.
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Fig. 12: The average computation times of the Algorithm 4 for
calculating χ as a function of |V | — the number of graph’s
vertices.

VI. CONCLUSION

In this paper, we investigated two hard counting problems,
the graph coloring and the Potts model zero-temperature
partition function approximation. By introducing an equivalent
rare-event estimation problem, we were able to apply the
evolutionary MS approach. We showed that the MS algorithm
provides a provable probabilistic performance lower bound
guarantee which is easy to calculate on-line. Our numerical
results indicate that the proposed method is successful in

handling these hard rare-event estimation problems and the
proposed probabilistic lower bounds seem to be close to the
final estimator value.

In addition, we considered the chromatic number properties
in random ER and WS networks. Our findings imply that these
networks with low to medium average vertex degrees, share a
similar behavior in the sense of their typical chromatic number.
Based on the obtained results, we conjecture that this behavior
is probably due to the fact that clustering coefficients in small-
world networks do not change quickly in response to rewiring,
whereas the network diameter does. So clustering appears to
be much more important for determining chromatic numbers
than properties such as the network diameter.

As for the future work, it will be important to identify
specific graph topologies for which a rigorous performance
guarantees (in the sense of the RE) could be obtained. In
addition, it will be interesting to handle a general Potts model,
which implies an approximation of the Tutte polynomial.
Moreover, a comprehensive theoretical analysis of the small-
world phenomena is of a clear interest. Finally, since the MS
algorithm is easily parallelized, it will be of merit to develop a
software package that runs on multiple CPU/GPU, in order to
allow researchers dealing with statistical physics, to calculate
the zero-temperature Potts model partition function for larger
graphs.
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