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Abstract. Consider a tandem system of machines separated by infinitely large
buffers. The machines process a continuous flow of products, possibly at different
speeds. The life and repair times of the machines are assumed to be exponential.
We claim that the overflow probability of each buffer has an exponential decay, and
provide an algorithm to determine the exact decay rates in terms of the speeds and
the failure and repair rates of the machines. These decay rates provide useful quali-
tative insight into the behaviour of the flow line. In the derivation of the algorithm
we use the theory of Large Deviations.
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1. Introduction

A flow line (also called transfer line or production line) is a tandem
system of machines separated by storage areas — which we will call
buffers — through which a stream of items flows from one machine
to the next. Flow lines are frequently encountered in manufacturing
systems and other industrial processes, as well as in computer and com-
munication applications. A typical flow line is depicted in Figure 1. For
a comprehensive survey on flow lines we refer to (Dallery and Gershwin,
1992).

M1 @ M2 @ M3

Figure 1. A flow line with three machines and two buffers (3-stage flow line).
Using the terminology of (Dallery and Gershwin, 1992), we consider

a continuous flow line — in which we view the stream of products as a

fluid flow — consisting of n machines and n — 1 intermediate buffers,

each buffer having infinite capacity. The life and repair times of the
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machines are assumed to be independent of each other and exponen-
tially distributed. Finally, the machines may have different processing
speeds.

Important performance measures for this model are the stationary
distribution of the content of a buffer, and the probability of a buffer
overflow during a specified time interval. In this paper we focus on the
overflow probability of a buffer, which we define as the probability that
the buffer content exceeds a given threshold before returning to 0.

An exact analysis of flow lines is often not possible. Analytical
results, mostly on stationary distributions, exist only for the most
elementary systems. The 2-machine 1-buffer case (2-stage flow line) has
been examined in (Zimmern, 1956), where the stationary distribution of
the buffer content was found. For the 3-machine 2-buffer flow line with
identical machines and (finite) buffers the joint stationary distribution
of the buffers was found in (Coillard and Proth, 1984). Although in (De
Koster and Wijngaard, 1986) more general 3-machine 2-buffer flow lines
were considered, exact results were found only for a number of special
cases which could be directly related to 2-stage flow lines. The fact
that 3-stage flow lines are essentially more difficult to solve than 2-
stage flow lines was demonstrated in (Kroese and Scheinhardt, 2001),
where, amongst other fluid systems, a fluid tandem queue with on-
off input is analyzed. This is basically a 3-stage flow line with one
unreliable machine at the front of the line and two subsequent reliable
machines. The joint stationary distribution of the content of the two
buffers is found and expressed in terms of integrals of modified Bessel
functions. See also (Kella and Whitt, 1999) for a discussion on linear
fluid networks.

Flow lines with more than two machines are usually analyzed via
simulation and approximation methods. Approximations are often based
on the principle of decomposition or aggregation. The idea is to decom-
pose the flow line into a set of 2-stage subsystems which locally have
the same behaviour as the original line. We refer again to (Dallery and
Gershwin, 1992) for details.

Although the decomposition algorithms have proved to be very use-
ful, we cannot expect them to yield accurate approximations of small
overflow or steady-state probabilities. However, we claim that the over-
flow probability of a buffer has an ezponential decay, i.e. the probability
of reaching a high level L during a busy period, decreases exponentially
with L. The purpose of this paper is to show how the corresponding
decay rates for a general n-stage flow line can be determined. The exact
knowledge of these decay rates provides useful qualitative insight into
the behaviour of the flow line. As a by-product, we obtain information
on the manner in which backlog builds up in a buffer.
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We emphasize the methodology and the relative simplicity of the
results. Related studies may be found in (De Veciana et al., 1993) and
(Chang et al., 1994). In the latter article, an algorithm was proposed to
efficiently simulate small buffer overflow probabilities in certain acyclic
ATM queueing networks, using the Importance Sampling method. Al-
though the “intree” network topology of (Chang et al., 1994) is more
general than our series topology, the network components in (Chang et
al., 1994) are completely reliable, whereas our flow line system allows
for unreliable machines. Moreover, in (Chang et al., 1994) the concept
of “effective bandwidth” has been used, which seems less natural in the
context of flow lines. In fact, the method developed in the present paper
seems simpler and is more in line with (De Veciana et al., 1993). For
accessible accounts on Large Deviations, we refer to (Bucklew, 1990)
and (Shwartz and Weiss, 1995).

The organization of the rest of the paper is as follows. In Section 2 we
introduce the model and define the relevant parameters. Section 3, the
main section of the paper, deals with the decay rates of (the overflow
probabilities of) the buffers. First, we address the issue why the over-
flow probabilities should have an exponential decay. We then proceed
to show how the corresponding decay rates can be determined via a
minimization program. In Section 4 we illustrate the theory with a
number of examples. Section 5 shows an alternative way, more algebraic
in nature, to derive the decay rates. We conclude with some directions
for future research.

2. The model

Consider a production line consisting of n machines in series and n — 1
intermediate buffers. All buffers have infinite capacity. Each machine
i € {1,... ,n} has a specific machine speed v;, which is the maximum
rate at which it can transfer products from its upstream buffer to its
downstream buffer. We view the flow of products as a fluid; in other
words, we are dealing with a continuous flow line. The lifetime of ma-
chine 7 has an exponential distribution with parameter ;. The repair of
machine ¢ starts immediately after failure, and requires an exponential
time with parameter p;. All life and repair times are assumed to be
independent of each other. The first machine has an unlimited supply,
and is therefore never “starved”. The machines and buffers are num-
bered sequentially. For example, buffer ¢ is situated between machines
iandi+ 1, forie {1,... ,n—1}.

The availability a; of machine ¢ is the average fraction of time that
the machine works (whether idle or not). By standard renewal theory,
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The Isolated Production Rate (IPR) of a machine is defined as the
product of the machine availability and speed. In other words, it is the
average rate at which a machine would operate if it were “stand-alone”
and had an unlimited supply of products.

The actual average amount of fluid that is processed by machine ¢,
per unit of time, is called the (machine) production rate, p; say. The
production rate of the entire flowline, p say, is defined as the average
amount of fluid that leaves the system per unit of time. Hence in our
case, p = p,. Moreover, it is not difficult to see that

pr = min a;v;, k=1,... n.
i=1,...,k

In particular, if the following stationarity condition holds,
avy < @V, 1t =2,...,n, (1)
none of the buffers will gradually build up to infinity and we have

p=pP1L=""=pPn=0a1l.

This is the principle of conservation of flow, which states that in this
case all machines have the same production rate (for a proof see the
Appendix of (Dallery and Gershwin, 1992)).

A quantity that will be of particular interest for the next section is
the average net input rate into buffer 1 when there is an infinite amount
of fluid in the buffer. We will denote this by r;. More precisely,

T = Pi — Qip1Vipl = ]:n;llnl ajVj — Qjt1 Vit1. (2)
(Recall that buffer 7 lies between machines 7 and 7 + 1.)

The content of the ith buffer at time ¢ is denoted by Z;(¢). Let M;(t)
be state of the ith machine; M;(t) = 1 if the ith machine works at time
t, and M;(t) = 0 else. Let Z(t) and M (t) denote the corresponding
random vectors.

Notation. Throughout this paper we use boldface letters for n- di-
mensional or (n — 1)-dimensional row-vectors.

Assumption. For the rest of the paper we assume that stationar-
ity condition (1) holds for the flow line defined by the parameters
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{Ai, i, vi }. However, other (auxiliary) flow lines will be considered for
which the corresponding condition does not hold.

3. Decay rates

In this section we investigate the overflow probability of a buffer in a
general flow line. Since all buffers have infinite capacity, the behaviour
of a buffer does not depend on the behaviour of its downstream buffers.
We will therefore concentrate on the last buffer in the flow line, i.e. on
buffer n — 1. Notice that the net input rate into the buffer depends on
the state X (t) := (M (t), Z1(t),... , Zn—2(t)) of the n machines and the
n — 2 other buffers. Indeed, we may view the last buffer as the reservoir
of a fluid queue which is driven by the Markov process® (X (t)).

We are interested in the probability 7, that the process (Z,_1(t)),
starting from 0, exceeds some threshold L before hitting 0. Of course
this probability depends on the “starting states” of the machines and
the other buffers at the beginning of the busy cycle of (Z,_1(t)). To
avoid trivialities, we only consider starting states for which the last
buffer initially fills up. We claim that

. logr
lim =~ = — 3
Lo T L By (3)

for some decay rate 5 > 0.

To see why this holds, assume without loss of generality that the
busy cycle of (Z,,_1(t)) starts at time 0. Let P, denote the probability
measure under which (X (¢)) starts at 2. By Ef we denote the event
that the content of the buffer reaches level L during the busy cycle. In
particular, y;, = P, (EL). Let Ty, denote the first hitting time of level L
when F7, occurs, or else put T7, = oo. It is plausible that the conditional
distribution pr(dz) := P,(X (1) € dz|EL) converges vaguely to a
limiting distribution p, as L — oo, where p is independent of x.

Now, let v be a level such that the “entrance distribution” p,, at any
level w > v is “close” to the limiting entrance distribution p. Moreover,
suppose that the probability of reaching level z = w+a, (a > 0), start-
ing from level w and from the limiting entrance distribution, depends
approximately only on ¢ and not on w, and is given by h(a), for some

! Note, however, that the driving process (X(t)) has a non-denumerable state

space; hence the well-established theory on fluid queues, see e.g. (Rogers, 1994),
cannot be directly applied.
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strictly positive function k. We then have?

Yz ~ Yo h(z —v) ~ 7y h(w — v) h(z — w),

which leads to 7, ~ exp(—/fL), as claimed.

Remark 1. For standard fluid queues, where the driving Markov pro-
cess has a finite state space, it is easy to check that the overflow
probabilities are of the form (3). The limiting entrance distribution
p for such processes can sometimes be determined explicitly and be
used in efficient simulation techniques, see for example (Garvels and
Kroese, 1999).

In the following proposition we describe a method to determine the
decay rate for an arbitrary buffer in a general flow line. We first need
some definitions.

Let A; and A, be strictly positive real numbers, and let I be a
subset of {2,...,n — 1}. For any such A1, A\, and I, and for any i €
{2,...,n—1}, let

Ai if iel,
s (4)
\/ﬁfAi U (i A+ A3) — i di else.
Moreover, let
P piXi
b; = I — e S l’n . 5
S a e e 5)

We may interpret b; as the availability of a machine with failure rate
)\ and repair rate p;\;/ Xi. Next, for any subset I define the function
g’ on the set

DI = {(S\I,S\n) >0 : (N)l vy > lNJnVn; l~)1 v < mi}laiui} (6)
e

o (. Ay) o= 2 piA = 20)*/ (i i + (AD)?)
o bivy —bpvy

; (7)

When D' is non-empty, by convexity arguments, each function ¢’ has
a global minimum ¢*/ on D', possibly on the boundary.

2 We will use the abbreviation g(z) ~ h(z) to indicate that g(z) = k(z) h(z), for
some function k such that limg . 2~ " log k(z) =
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PROPOSITION 1. The decay rate 8 of the stationary distribution of
the (n — 1)st buffer is given by

B =ming*, (8)

where the minimum is taken over all subsets I C {2,... ,n — 1} for
which the set D! is not empty.

Proof. For a heuristic proof we use the theory of Large Deviations
along the lines of (De Veciana et al., 1993).

Let L be the overflow threshold and let Ej, (as before) denote the
event that an overflow® of level L occurs in the (n — 1)st buffer, during
a busy cycle of this buffer. Let S := {0,1}" be the state space of
the Markov process (M (t)). The generator of (M(t)) is denoted by
Q = (qi5)-

We assume the following is true.

1. The most likely path to an overflow is a straight line. In other words,
overflows of the last buffer are due to a steady buildup of fluid.

2. In order to establish an overflow, (M (t)) has to behave like a
Markov process with a different generator Q = (gj;) during an
extended period of time.

For a justification of these assumptions we refer to (Anantharam, 1988),
(De Veciana et al., 1993) and (Kesidis and Walrand, 1993).

By (Kesidis and Walrand, 1993), the probability that (M(t)) be-
haves like a Markov process with generator () during an interval [0, 7]
(T large) is approximately

e~THQIQ)

where

Q Q) = Z Urs Z gi,jlo 2y Gij = Gij (9)

€S VES iy

is called the relative entropy of Q with respect to Q. Here T denotes

the stationary distribution of (M (t)) under Q. Let 7 denote the average
net input rate into the (n — 1)st buffer, when (M (£)) has generator Q
and when the content of the buffer is infinite, as defined in (2). In other
words, let

7= min  a;V; — Gpln,
i=1,...,n—

3 The term overflow should not be taken too literally here, since all buffers have
infinite capacity.
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where a; := /i;/(ji; + Ai) denotes the availability of machine i under Q.

Combining the results above, the most likely scenario leading to an
overflow is the following: (M (t)) behaves like a Markov process with
generator (), yielding a net input rate c into the last buffer, during an
interval of length L/c, at the end of which level L is reached. We have
asymptotically

YL ~ sup sup exp{—éH(QHQ)}Nexp —L inf w ,
>0 {3 |F=c} c {Q|7>0} r

which identifies 8 as

I ~
f=  mn HEID )
{Q|aivi > nvn,i=1,...,n—1} i:lmH}zfl GiVj — Gplp,

Thus, 8 may be obtained by solving a complicated minimization
program. Below, we show how to simplify this program.

First, we evaluate the entropy function, as given in (9). For the
stationary probability WQ(:I:) =P(M = x), we have

n

mo(@) = [[{(1 —a)(1 —2) + mai}, @ €.

=1

Consequently, the entropy function has the following form:
QHQ Z{¢z (1 —a;) + viai}, (11)
with
¢l N’Zlog<u>+ﬂl ﬁiai:]-a"'ana
and
Ai :
1/;Z—>\log<>\>+>\ )\Z,zzl,...,n.

Next, we consider the Lagrangian

L&\ i, K 52{@1—% +¢lal}+ZK ( —&i>,

=1 H’Z—,_)\Z

with w(a) := /(mlnZ 1,....n—1GiVj — GpVp). Note that minimizing L
over all (a, A, ft, K) such that w(a) > 0, solves (10).
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Suppose now that L is minimal at 6* = (a*, A", u*, K*) . Then
the requirements %ﬁi) = 0 and % =0,7=1,...,n lead to the
equations

x 1—ar
w(a®) (1 —a¥)lo (—’>+K* ' =

and

w(a®) a; log <)\—l> - K; M*;)\* =0,
i i i

from which it follows that
i AL =pidi, i=1,...,n. (12)

Consequently, we may replace fi; with A; p;/ Ai in (10) and (11). In par-
ticular, the right-hand side of (11) becomes Y 1 ; i (Ai — Ai)?/ (i N +

5\?), where the log-terms cancel. By replacing also a; with b; := u; \;/

(i N + ):12) in (10) and (11), we are left with the minimization of a
function g defined by

() = >oict i = X)?/ (i hi + X3)

min EZ v; — l~)n Un,
i=1,...,n—
on the set A := {5\20 C by > bpup, i=1,... ,n— 1}

Let us call the flow line for which g is minimal the dual flow line.
We denote the failure and repair rates of machine ¢ in the dual system
by Af and p} = pui\i/ A}, respectively; and we denote the corresponding
availability by b7, 7 = 1,... ,n. In particular, we cannot find any vector
A on A such that g(A) < g(A¥).

Suppose that machine k£ € {1,... ,n — 1} has the smallest Isolated
Production Rate b v} in the dual flow line. Hence, for any machine
i € {1,... ,n—1} either b7 v; > b v}, or b v; = b} 1;,. For the first case
we must have

AF =

)

Ah

because any other choice for A7 would give a higher value for (the
numerator of) g. For the second case we have by definition

s | Hidivi £2y oy
Az_\/uk)\kyk(ﬂkAk‘i‘)\k) i Ai-

Moreover, we may assume that machine 1 has the smallest IPR in
the dual flow line. For, suppose this is not the case. Then the arguments
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above show that there exists a k& # 1 such that b vy < bjv1 = ayv1.
Define the vector A’ to be equal to A* except for the kth entry, A},
which is replaced with ;. The numerator of g(A’) is obviously larger
than that of g(A*). Moreover, the denominator of g(A') is smaller than
that of g(A*), because bj v, < a1 11 < ay vy (the last inequality follows
from the stability assumption (1) ). Thus g(A*) is not minimal, which
is a contradiction.

This shows that

- N2
_ SO =0 (o + (M)
B = min min

IC{2,....,n=1} (Ay A )ED! bivy — b, v,

)

where by and b, are given in (5) and, X! in (4).

The latter minimization program can be easily divided into 272
simpler minimization programs, leading to formulas (4), (7) and (8),
and finally to Proposition 1.

Remark 2. We may interpret the results in the proof of Proposition 1
in the following way. In the dual flow line — i.e. during an overflow
period of the last buffer — the first machine has the smallest IPR.
Any other machine in the flow line either has the same IPR as the first
machine or has its original failure and repair rate (as in the original
system). In the latter case, the IPR of the machine is larger than that
of the first machine. This case typically occurs when a machine has a
much higher availability than the first machine. In the case where all
dual rates differ from the original rates, the net input rates into buffers
1 through n — 2 are 0, while the average net input rate into the last
buffer is strictly positive. This “balancing property”, perhaps holds for
more general network topologies, making it easier to identify the decay
rates is such networks.

Remark 3. We now indicate how the above method could be general-
ized to general life and repair time distributions. Consider a arbitrary
machine, where the lifetimes X, X5,... have density f and the repair
times Y1, Y5, ... have density g. Assume that the repair and lifetimes are
independent of each other, and that the moment generating functions

Mx(s) :=Ee®i and My(s) := Ee®Yi

exist. Note that Xi,Y7, Xo,Ys,... is a so-called alternating renewal
Process.

Suppose that the life and repair times have different densities during
the interval [0,7]. Specifically, suppose that we have the exzponential
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change of measures

@) o ¢

z) = = .

)= My ) My (1)
Consider a path of the on-off (alternating renewal) process with jumps
at ti,t9,.... The likelihood of this path over [0,7] under the new

measure satisfies

oo f)glte —t) flts —ta)
1) §(t2 = 11) f(ts — t2)

~ e T (M (0) My (n) ™,

where NV is the total number of repairs before time 7'. Under the change
of measure

T T
N ~ = — = .
EX +EY  (log Mx)'(6) + (log My)'(n)

This suggests that the relative entropy of one on-off source (machine)
is

log Mx (0) + log My (n)
(log Mx ) (8) + (log My)'(n)"

Extending this to n independent machines gives an relative entropy

n (1) (4)
log M’ (0;) + log My~ (n;)
H:z<—ei—m+ & v )
pa (log MDY (6;) + (log MDY (1)

-0 —n+

where the M )(;) (M}(,l)) is the generating function of a lifetime (repair-
time) of the ith machine.

The optimization, as in (10) now needs to be performed over the 6;
and n;. Notice that for a given reliability a; of machine 7, 6; and 7; are
related by

(1 — &) (log MDY (6;) = a; (log MY (my).

Remark 4. It should be noted that the actual number of subsets I for
which D! # () may be far smaller than 2" 2. Also, if for a certain I, g*/
exists, then g*/ < ¢*/, for J C I, so that we do not have to evaluate
all possibilities. Observe that ¢? always has a solution.

Remark 5. If the last machine is perfect (A, = 0), the optimization
program (8) should be slightly changed. Specifically, the functions g’
in (8) are not defined by (7), but instead by

Mg i = A%/ (i i + (A)?)

bivi — vy

g'(\) =

b
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on the set DI .= {5\1 >0:b1v > Un; by < min;er a; v;}, where by
and )\; are defined in (5) and (4).

Remark 6. 1t is tempting to use the “optimal parameters” A],... , pr
to efficiently estimate overflow probabilities via the technique of Im-
portance Sampling, as in (Chang et al., 1994). This would be valid if
during the buildup of backlog in the last buffer the failure and repair
rates would be independent of the contents of the upstream buffers. It
turns out, however, see (Kroese and Nicola, 1998), that this is not the
case. The actual, so-called conjugate rates do depend on the sizes of
the upstream buffers. However, for large buffer contents, the machine
rates are approximately constant and close to the optimal parameters
above. It will now be clear why we chose the term dual flow line above
(despite the overuse of this adjective) instead of conjugate flow line. See
also Example 2.

Remark 7. In many fluid queueing models, the decay rate of a certain
buffer overflow probability often coincides with the decay rate of the
corresponding steady state distribution of the buffer. However, for the
present model this is presumably not the case, mainly because the
buffers have unlimited capacity. An analogy can be made with an
ordinary 2-node Jackson tandem queue, where the decay rate of the
overflow probability of the second buffer is not always equal to the
decay rate of the stationary distribution of the second buffer, which
is simply A/ug2, where X is the arrival rate of customers and g is the
service rate in the second queue.

4. Examples
In this section we illustrate the theory with a number of examples.

Ezample 1. Consider a flow line with three machines and two inter-
mediate buffers. The corresponding machine speeds, failure and repair
rates are given in the second, third and fourth column of Table I,
respectively. We wish to determine the decay rate of the second buffer.

In view of (8), we have to minimize the functions g1} and ¢? over
the sets D12} := {(z,y) € R? : 2 < z < y/2} and DY := {(z,y) € R :
0 < = < y+/2}, respectively. In the first case we have

72(—6 + 4y — 3y?) + (32 + 8y?) — 16(5 — 2y + 2y?)
2(z? — 2y?)

gt (z,y) =
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By straightforward algebra we find that ¢{2}(z,y) is minimal for z = 2
and y = 2 + /2, with minimum (7 + 4v/2) /(1 + v/2) ~ 5.24.
For the second case we have
2?(—5 + 2y — 2y?) + (24 + 6y?) — 48 + 16y — 18y?
2 — 2y? '

9’(w,y) =

The minimum (55+7/97)/24 ~ 5.164 is attained in ((31—/97)/12, (17+
v/97)/8). Since this is smaller than the previous minimum, we have
found the solution to the minimization program (8); and thus

95 + 797
24 ’
The original and dual rates are given in the table below. Notice that

in the dual flow line the first buffer is “balanced”, such that the average
net input rate into the buffer is 0:

B =

" %1 o s
B+ A ws + A3

Also, the average net input rate into the second buffer during an over-
flow period is

Jo M3, M AT53+ 12863VT
PN, s+ A 286847

~ 0.458219.

Table I. Original and dual parameters of the flow line of Example 1.

i vi Ai Hi Al Wi
31097 96

1 1 4 2 i 3=ver
1 1 2 31-+/97 48

24 31—/97
1 1 4 17497 32

8 17497

Example 2. Consider a 3-stage flow line with parameters given in
Table II. Notice that the last machine is perfect. In view of Remark 5
we have to minimize the functions ¢{2} and ¢? given by

2} - @ =5)?

and

75 — 202 + 422 — 24/30V =5 + 212
20 — 22 ’

9 (z) =
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over the sets

5/x 2
Dzt .— V10: —~ _3< 2
{z < "x+5/x 3}

and DY := {z < \/10}, respectively. However, D{%} is empty; and since
¢” attains its minimum at z* := 2.271275438 ..., we have

B =g’ (z*) ~ 2.576668739.
The reader may check that z* is a zero of the polynomial
—10000 + 23000 2 — 11825 22 — 6900 2> + 5750 z* — 920 2° + 16 2°.

Also, as in the previous example, the average net input rate into the
first buffer is 0 in the dual system.

Table II. Original and dual parameters of the flow line of Example 2.

i Vi Ai i i Bi
1 3 5 1 2.271275438 2.201406274
2 2 1 0.842012211 2.375262464

0 00 0 00

In (Kroese and Nicola, 1998) a more detailed study of this very
system is given. It turns out that the buildup of backlog in the second
buffer does not quite happen in the way that is suggested in Section 3.
During an overflow period, the machine rates (life and repair rates)
do not remain constant, but depend on the content of the first buffer.
Specifically, these so-called conjugate rates are of the form

gt (@) = 2172229;, £ >0, 1,4,k 1 €{0,1}.
The connection with the dual rates is the following. As  — oo the
conjugate rates converge to the corresponding dual rates. For example,
00,01() — p3, as € — oo. Thus pj could be interpreted as the limiting
repair rate of the second machine in the conjugate system. Similar
interpretations hold for A, Aj and puj.

Ezample 3. Consider the 3-stage system with parameters given in Ta-
ble ITI. Copying the procedure of Example 2, we first have to minimize
(z —3)°

9{2}(1}) = 6 — (II2
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on the set D2} = {1 < v/6}. This corresponds to the situation where
in the dual system the second machine retains its original repair and
failure rate. On D2}, ¢{2} is minimal at z* := 2. Since z* lies in
the interior of D{2}, we do not need to evaluate gw, and consequently,
B = g?}(2) = 1/2. The dual rates are given in Table TII.

Table III. Original and dual parameters of the flow line of Example 3.

i v; i i Al Hi

1 3 3 1 2 3/2
2 1/3 4 1/3 4

3 1 0 00 0 00

This time, in contrast to the two previous examples, the first buffer
in the dual system is not balanced.

5. An alternative method to find 8

For an ordinary fluid queue driven by a finite state Markov process,
the decay rate, « say, of the buffer can in general be found via two
methods. The first method involves an optimization program similar
in nature to the one described in the previous section. In the second
method —« is identified as the largest strictly negative eigenvalue of
the eigenvalue equation

Qv=aRv,

where @) is the Q-matrix of the driving process and R denotes the
diagonal matrix of net input rates. For more details, see for example
Chapter 3 of (Mandjes, 1996). The eigenvalue equation is closely related
to the Kolmogorov Forward Equations of the joint driving and the
buffer content process.

Without going into details, we indicate an alternative way to derive
the decay rates for some flow lines. A more detailed study of the idea, for
a 3-stage flow line, is given in (Kroese and Nicola, 1998). The method
goes as follows. For any binary vector ¢ = (z1,... ,2,) € S = {0,1}",
let @; denote the vector (z1,...,1 — z;,...,2,), and let fr be the
“density” defined by

8n_1 ]P)(M = $,Z1 < U, ... 7Zn*1 < unfl)
8u1 ---8un,1

f$(u17"' 7un*1) = )
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UL, ... yUp—1 > 0. The 2" densities fg satisfy the following set of partial
differential equations (these are in fact the time-stationary Kolmogorov
Forward Equations of the process (M(t), Z(t)), see e.g. (Zimmern,
1956)):

n—1 8f:13 B

> (wivi— Tit1litl) 5~ =

‘ Uy

=1
n—1

(1= @)X + zii) fao, = Y (@idi+ (1 - 2)ws) fa-
i=1

Taking ((n — 1)-dimensional) Laplace transforms, we obtain* the alge-
braic equation

n—1
Z(fﬁil/z’ — Ti1Vi41)8i fo — cx) = (13)
i=1
n—1
(1 =) + zip) fa, =) (zidi+ (1 —)w) fa,
i=1

for some constants cg,x € S. Hence, if we gather the fm’s and cg’s
into vectors f and c respectively, we obtain the matrix equation

A(Sl, s ,Sn_l) f'(sl, cee ,Sn_l) = 0(81, s ,Sn_l),
where A(sy,... ,s,_1) follows from (13).
The polynomial det A(sy,... ,s,—1) is of particular interest. In cer-

tain cases, in particular when 8 = ¢*?, —3 is an extreme point of a
closed subset of the set {(s1,...,sn—1) : det A(s1,...,8,-1) = 0}. We
will illustrate the idea with an example.

Ezxample 4. Consider the flow line of Example 1. Arranging the fg in
lexicographical order (000,001,010, ... ,111) into a vector f, we obtain
the following matrix equation:

Af(p,s) =c, (14)

* We denote the Laplace transform of a vector-valued function h by h.
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where
8 -1 -1 0 —4 0 0 0
—4 5—3 0 -1 0 —4 0 0
-2 0 7—p+s -1 0 0 -4 0
A= 0 -2 —4 4—p O 0 0 -4
-2 0 0 0 10+p -1 -1 0
0 -2 0 0 -4 T+p—-—s 0 -1
0 0 -2 0 -2 0 9+s —1
0 0 0 2 0 -2 -4 6

The determinant of A =: A(p, s) is

det A(p,s) =
+

+

—332640p — 108944 p® + 10140 p® + 1800 p* — 133056 s
171128 ps — 12036 p% s — 5376 p> s — 184 p™ s

96848 52 + 20160 p s + 8304 p* 52 + 68 p> 52

48 p* s? + 3744 s — 3720 p s> + 420 p? $3

96 p3 53 + 1152 s* — 304 p s* — 48 p? s*.

In Figure 2 a part of the set {(p,s) € R? : det A(p,s) = 0} is
depicted. Let us call the left-most s-coordinate of the closed curve
through (0,0) the cut-off point, s* say. The reader may check that s* is

exactly —f.

Figure 2. A subset of {(p,s) € R* : det A(p,s) = 0} forms a closed curve through
(0,0). The left-most s-coordinate of this curve is —f3.
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For a general 3-stage flow line with identical machine speeds v; =
1,2 =1,2,3, we have similarly

~ B - 1y ~
Af(p,s) == f(p,s)=c,  (15)
—pily B+ (p+X i — )y

where

p 4 p2 + ps -3 =2 0
B o= —p3 —s+p1 + p2 + A3 0 =2

’ —p2 0 —p+s+p+ A+ pus =3
0 —p2 —p3 —p+p1+ A2+ A3

It is possible to identify the cut-off point s* as a zero of a fifth-
degree polynomial, in which the coefficients are rational functions of
the parameters. The formula is rather lengthy (two pages of output)
and we therefore omit it. However, for the non-trivial case where the
availabilities of the first two machines are identical, a; = a9, we have
the simple expression

. (1 + p2) (A3 2 — A2 p3) (A1 4 X2 4 A3 4 pr + po + p13)
po (A1 4+ Ao+ A3)(p1 + po + ps)

Finally, a note on the algebra involved in finding s* for general 3-
stage flow lines (not necessarily with identical speeds). All we have to
do is to determine (p, s) satisfying the equations det A(p,s) = 0 and
3% det A(p,s) = 0. We can eliminate the variable p from the equations

by taking the resultant of the polynomials det A(p, s) and 3% det A(p, s),
with respect to p.

For example, in the model of Example 2 we have found numerically
B =~ 2.576668739; we wish to express § as a zero of a polynomial with
integer coefficients. We have

det A(p,s) = —27p —86p? —12p> — 545+ 85ps
+43p% s +6p°s — 5352 —2Tps® + p? s +25° —4psd + s
and

ddet A(p, s)
Ip

2 2 2 2 3

—36p° +85s5s+86ps+ 18p“s —27s" +2ps” —4s°.

= 27— 172p

The resultant of the two polynomials above with respect to p is the
polynomial

—18(—2 4 5)(—45 + 195 + s2)?
(732 — 22468 5 — 12793 52 + 2706 5> + 3163 5* + 712 55 + 48 55).
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This identifies —( as a zero of the polynomial

732 — 22468 z — 12793 2% + 2706 2> + 3163 z* + 712 2° + 48 z5.

6. Conclusions and directions for future research

We have demonstrated how the decay rates of the buffer overflow
probabilities in a general flow line can be determined via a minimiza-
tion program. These decay rates provide useful qualitative insight into
the behaviour of the flow line. The analysis reveals, as a by-product,
information on the manner in which an overflow occurs. Specifically,
we obtain the “dual” failure and repair rates of the machines. These
quantities can be interpreted as asymptotic failure and repair rates
during an overflow period of a buffer.

A possible direction for research is the efficient simulation of loss
probabilities through Importance Sampling (IS), as in (Chang et al.,
1994). The corresponding optimal change of measure turns out to be
more complicated than the one in (Chang et al., 1994), but can still
be determined in some cases. In particular, for a 3-stage flow line this
has been done in (Kroese and Nicola, 1998). Empirical results using IS
show several orders of magnitudes of variance reduction compared to
standard simulation when estimating small loss probabilities.

Other topics include generalizations of our methodology to general
networks, e.g. intree or fork-join networks. Also the failure and repair
mechanism might be generalized by considering Phase-Type or even
general distributions. It should be noted that the main reason why
the overflow probabilities have an exponential decay is that the life
and repair times have “thin-tailed” distributions. In the case of heavy-
tailed distributions, buffer overflow is more likely to result from an
exceptionally long repair or lifetime of a machine rather than from a
steady buildup in the buffer.

The relationship between the decay rate of the steady-state distribu-
tion of the content of a buffer and the decay rate of the corresponding
overflow probability should also be investigated.

As a starting point for a rigorous treatment we could view the
content process of a buffer in the flow line as a (reflected version of a)
Markov Additive Process (MAP). The main difficulty is that the driving
Markov process has a non-denumerable state space and a continuous
time parameter. Although large deviations for MAP’s in discrete time
have been considered in (Ney and Nummelin, 1987), it is not clear at
this stage whether the theory in the latter article provides a convenient
basis for a rigorous study of backlogs in flow lines.
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