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The cross-entropy and minimum cross-entropy methods are well-known Monte Carlo simulation
techniques for rare-event probability estimation and optimization. In this paper, we investigate how
these methods can be extended to provide a general non-parametric cross-entropy framework based
on �-divergence distance measures. We show how the �2 distance, in particular, yields a viable
alternative to the Kullback–Leibler distance. The theory is illustrated with various examples from
density estimation, rare-event simulation and continuous multi-extremal optimization.
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1. Introduction

In the standard cross-entropy (CE) method [1], the im-
portance sampling density (also called proposal or instru-
mental density) is restricted to some parametric family.
The optimal instrumental density is the solution to a para-
metric CE minimization program and in special cases (in
particular with multi-dimensional Bernoulli and Gaussian
distributions) can be found explicitly, providing fast up-
dating rules. Rubinstein [2] developed a non-parametric
alternative referred to as minimum CE (MCE) which, like
the standard CE method, aims to minimize the Kullback–
Leibler (KL) CE distance. Instead of minimizing the dis-
tance within a parametric model, the MCE method mini-
mizes the CE distance over all possible densities satisfying
certain generalized moment-matching constraints. Thus,
in contrast to the standard CE method, a functional op-
timization program is solved. The MCE method suggests
the possibility of searching for an instrumental density in a
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non-parametric way, i.e. without the imposition of a fixed
parametric model for the importance sampling pdf.

In both the CE and MCE methods the principal mea-
sure of interest is the KL CE. Kapur and Kesavan [3] argue
that one could also use the more general Havrda–Charvát
one-parameter family [4] as the distance measure between
densities. Unfortunately, the solutions to the correspond-
ing functional optimization program are not necessarily
positive functions (probability densities), as is the case
with the KL CE. Recently, however, it was shown [5] that
if the equality constraints in the functional optimization
program are replaced by inequality constraints, valid so-
lutions (probability densities) to quite general functional
CE minimization programs can be found. A particularly
useful CE distance is the �2 distance which has several
advantages, including an intuitive ‘least-squares’ distance
interpretation and easy sampling from the resulting model.

In this paper we explore how the non-parametric
framework can be used for rare-event estimation and op-
timization, paying particular attention to the �2 distance.
For both rare-event simulation and optimization, the cru-
cial point is to choose the instrumental density as close as
possible to the target density (e.g. the minimum-variance
Importance Sampling density). Our aim is to develop non-
parametric methods for obtaining good instrumental den-
sities that (1) are flexible enough to approximate the target
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pdf well, and (2) are easy enough to sample from. In par-
ticular, we will focus on kernel mixture densities, which
arise naturally from CE minimization using the �2 dis-
tance, and have a close connection with density estima-
tion� see e.g. [6] and [7].

The rest of the paper is organized as follows. In Sec-
tion 2 we present some background to the CE method. In
Section 3 we provide the generalized CE (GCE) frame-
work, and show how both CE and MCE are special cases.
Moreover, we present a �2 GCE program as a convenient
alternative to the conventional KL program. In Section 4
we indicate how the GCE method can be applied to den-
sity estimation, rare estimation and optimization. This is
illustrated by numerical experiments in Section 5. Finally,
in Section 6 we formulate our conclusions and give direc-
tions for future research.

2. The CE Method

The CE method is a well-known Monte Carlo technique
for rare-event estimation and optimization [1]. In the esti-
mation setting, the CE method provides an adaptive way
of approximating the optimal importance sampling dis-
tribution for quite general problems. By formulating an
optimization problem as an estimation problem, the CE
method becomes a general and powerful stochastic search
algorithm. The method is based on a simple iterative pro-
cedure where each iteration contains two phases: (a) gen-
erate a random data sample (trajectories, vectors, etc.) ac-
cording to a specified mechanism� (b) update the parame-
ters of the random mechanism on the basis of the data,
in order to produce a ‘better’ sample in the next iteration.
This last step involves minimizing the KL CE distance be-
tween the optimal importance sampling density and the
instrumental density.

Specifically, consider the estimation of

� � �u�S�X� � � � � �u I�S�X��� �� (1)

for some fixed level � . Here S�X� �n � � is the sample
performance and X is a random vector on the probability
space �������, where the sample space � � �

n , � is
the 	�algebra of Borel subsets of �n and � is a proba-
bility measure on � . In addition, X has pdf f ��	 u�, be-
longing to some parametric family � f ��	 v�� v 
 ��. We
assume that �S�X� � � � is a rare event, i.e. the probabil-
ity � is very small, e.g. 
 10�5 (how small � needs to be
for a rare event depends on the problem under consider-
ation� in this sense the concept of a rare event is similar
to the concept of ill-conditioning of a matrix as measured
by the matrix condition number). We can estimate � using
the Importance Sampling (IS) estimator

�� � 1

N

N�
k�1

I�S�Xk ��� � W �Xk 	 u� v�� (2)

where X1� � � � �XN is a random sample from f �x	 v�, and
W �Xk 	 u� v� � f �Xk 	 u�� f �Xk 	 v� is the likelihood ratio.

The challenging problem is how to select a vector v that
gives the most accurate estimate of � for a fixed simulation
effort. The ideal (zero variance) IS density is given by

�x� � f �x	 u� I�S�x��� �
�

�

The idea behind the CE method is to choose v such that
the KL CE distance between  and f ��	 v� is minimized.
That is, minimize

�� � f ��	 v�� � � ln
�X�

f �X	 v�
� (3)

This implies that the optimal reference parameter v� is
given by

v� � argmax
v
�

�u I�S�X��� � ln f �X	 v�� (4)

which can, in principle, be estimated using

argmax
v
�

1

N

N�
k�1

I�S�Xk ��� � ln f �Xk 	 v�� (5)

with X1� � � � �XN i id f ��	 u�. However, this is void of
meaning if �S�X� � � � is a rare event under f ��	 u�, since
it is likely that all indicators in the sum above are zero. To
circumvent this problem a multi-level approach is used,
where a sequence of reference parameters �vt � t � 0� and
a sequence of levels �� t � t � 1� are generated, while iter-
ating in both � t and vt .

In particular, starting from v0 � �v0 � u, one proceeds
as follows.

1. Adaptive updating of � t . For a fixed vt�1, let � t be
the �1���-quantile of S�X� under vt�1. Here � is a
user-specified parameter supplied to the algorithm
in advance. To estimate � t , draw a random sample
X1� � � � �XN from f ��	 �vt�1� and evaluate the sam-
ple �1� ��-quantile �� t .

2. Adaptive updating of vt . For fixed � t and vt�1,
derive vt as

vt � argmax
v
�

�vt�1 I�S�X��� t �W �X	 u� vt�1�

� ln f �X	 v�� (6)

The stochastic counterpart of equation (6) is as fol-
lows: for fixed �� t and �vt�1, derive �vt as the solution

�vt � argmax
v
�

1

N

�
Xk
�t

W �Xk 	 u� �vt�1�

� ln f �Xk 	 v�� (7)

where �t is the set of elite samples on the t th itera-
tion, that is, the samples Xk for which S�Xk� � �� t .
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The procedure is set to terminate only when, at some
iteration T , a level �� T is reached which is at least � , at
which point the original value of � can be used without
too few samples having non-zero indicators. We then re-
set �� T to � , reset the corresponding elite set, and deliver
the final reference parameter �v� � �v�T , using equation (7)
as before. This �v� is then used in equation (2) to estimate
�. Assuming that the probability � does not vanish in a
neighborhood of �v� (which is the case, for example, if
the distribution of S�X� has infinite tail), then it can be
shown [8] that �v� converges in probability to the output
of program (5). The asymptotic consistency of �v� as an
estimator of v� under some technical conditions and the
convergence of the algorithm above are also discussed in
Homem-de-Mello and Rubinstein [8].

The following toy example explains the essence of the
CE method and will be used later to motivate the MCE
method. All of these methods and ideas will be unified
in a single framework which we call the generalized CE
(GCE) framework.

Example 1 (Exponential Distribution) Suppose we
wish to estimate via simulation the probability � �
�u�X � � �, with X exponentially distributed with mean
u�we write X  Exp�u�1�. Suppose further that � is large
in comparison to u, so that � � e�� �u is a rare-event prob-
ability. The updating formula for ��t in equation (7) follows
from the solution � to

�

��

�
Xk
�t

Wk ln
�
��1e�Xk��

�

� �
�

Xk
�t

Wk
1

�
�
�

Xk
�t

Wk
Xk

�2
� 0�

where Wk � e�Xk �u
�1���1���u, yielding

��t �
�

Xk
�t
Wk Xk�

Xk
�t
Wk

� (8)

In other words, ��t is simply the sample mean of the elite
samples, weighted by the likelihood ratios �Wk�.

Similarly, the deterministic updating formula equa-
tion (6) gives

�t � �u I�X�� t � X

�u I�X�� t �
� �u

�
X � X � � t

� � � t � u�

where � t � ��t�1 ln� is the �1 � ��-quantile of the
Exp���1

t�1� distribution. The CE optimal parameter is �� �
� � u. The Relative Error (RE) of ��, that is, RE ��
�

	
� ��� ��2



��, under any � � u�2 is [1, pg. 77]:

RE � 1�
N

�
�2e� ��

u�2� � u�
� 1�

Substituting � � �� � � �u shows that the relative er-
ror grows in proportion to

�
� . More specifically, for fixed

u, RE  �
� e�N2u as � � �. Thus the estimator (2)

under the CE reference parameter �� is polynomial. This
is in contrast to the crude Monte Carlo (CMC) estimator
(� � u) which is exponential, i.e. RE  exp�� �2u��

�
N

as � ��. For comparison, the Minimum Variance (VM)
parameter [1, pg. 77] is �� � �� � u ��� 2 � u2��2 
� � u�2� � � �, which gives asymptotically the same
relative error as the CE case. �

Although in the example above both CE and VM yield
substantial variance reduction compared with CMC, the
relative errors still increase with � in both cases. To con-
trast, the zero-variance IS pdf is a shifted exponential
pdf, given by �x� � I�x�� � u�1 e��x�� � u�1

. This sug-
gests looking for g in a larger class of distributions. For
instance, in Example 1 one could consider the class of
shifted exponentials.

Example 2 (Cauchy Density, Example 1 Continued)
Suppose we choose as instrumental density in Exam-
ple 1 such as the Cauchy density, that is, g�x 	 h� �� �
�h��

�
h2 � �x � ��2��1

. We wish to find the parameters
h and � that give minimal variance for the corresponding
IS estimator ��. By standard arguments [1] this means min-
imizing

�
�X�

g�X 	 h� ��
(9)

with respect to the parameters h and �. Here the target

�x� � I�x�� � f �x 	 u��� � I�x�� �e�x�u

is again the optimal IS pdf. Now expression (9) is propor-
tional to  �

�

1

h
e�2x�u

�
h2 � �x � ��2� dx

� ue�2� �u

4h

�
2h2 � �� � ��2 � �u � � � ��2� �

which has extrema at ��� h� � �� � u�2��u�2�. We
take the solution with h � 0, leaving ���� �h� � �� �
u�2� u�2� as the parameter pair that minimizes the vari-
ance of ��. The corresponding minimum is

�

2�x 	 u�

g�x 	����h�dx

�
 �

�

��u��2e�2x�u 2

u

�
u2

4
�
�

x �
�
� � u

2

��2
�

dx

� 1

�2
N��g

	 ��2


� 

2
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and the relative error of the minimum variance Cauchy
estimator is given by

RE � Std�g� ���
�

�
�
�2 �

2 � �2��N

�
�
�
 � 2

2N
�

Thus, we have a relative error which does not depend on
� , so that an estimator with bounded relative error is ob-
tained. �

3. The GCE Framework

The GCE framework [5, 9] is a natural generalization and
unification of the ideas behind the MCE and CE meth-
ods [1, 2] and the maximum entropy principle [10]. Sim-
ilar to the MCE method, the idea is to choose the instru-
mental pdf as close to some prior pdf as possible, while
at the same time satisfying certain (generalized) moments
constraints. These constraints enforce a moment-matching
condition between the model (instrumental pdf) and the
target (optimal importance sampling) pdf.

To explain the GCE framework, recall that the idea be-
hind the CE method is to choose the instrumental density
g such that the KL CE distance between the optimal (min-
imum variance) importance sampling density  and g is
minimal. If we search for the optimal g over all densi-
ties, then g is the solution of the functional optimization
program ming � � � g�. The solution to this functional
optimization program is g �  , which is not useful be-
cause  is unknown. In the CE method this problem is
resolved by restricting the space of densities within which
we search for g to be a parametric family of densities,
say � f ��	 v�� v 
 ��. Instead of solving a functional opti-
mization problem, one therefore solves the parametric op-
timization problem minv� � � f ��	 v��. In many cases
the parametric family � f ��	 v�� v 
 �� can be quite a rigid
and inflexible model for the target  .

Some important questions therefore arise. Is it pos-
sible to obtain an instrumental pdf in a non-parametric
way, that is, not directly linked to a class of parameter-
ized densities? Is it possible to modify the functional op-
timization problem ming � � � g� to obtain a useful in-
strumental which is close to but not immediately identi-
cal to ? Moreover, is the KL CE distance the best dis-
tance criterion for obtaining a good instrumental pdf? Is
it possible to use more general distance measures, such
as the Csiszár family of distances, to obtain useful instru-
mental densities? These questions motivate the following
non-parametric procedure of getting close to the target  ,
where ‘closeness’ is measured by a generalized CE dis-
tance.

GCE Program

1. Given an a priori probability density p on the set
� � �n,

2. minimize the Csiszár �-divergence (measure of
CE):

��g � p� �

�

p�x� �
�

g�x�
p�x�

�
dx (10)

over all probability densities g, where � is any con-
tinuous twice-differentiable function, with ��1� �
0 and ����x� � 0, x � 0,

3. subject to the generalized moment-matching con-
straints (equalities or inequalities):

�g Ki �X� �

�

g�x�Ki �x�dx�� � i �

i � 0� � � � �m� (11)

where �Ki : �n � ��mi�1 is a set of linearly inde-
pendent smooth functions called kernels, and � i �
�Ki �X�� i � 1� � � � �m (in practice � i is estimated
via a Monte Carlo estimate �� i discussed later). For
notational simplicity we set K0 � 1� �0 � 1 and
insist that the zeroth constraint (the constraint cor-
responding to i � 0) always be a strict equality con-
straint so that the function g integrates to unity.

To solve the above optimization problem we employ
the Karush–Kuhn–Tucker (KKT) theory [11] of con-
strained optimization which is a generalization of the
usual Lagrangian theory of constrained optimization. Tra-
ditional KKT theory applies to finite-dimensional vector
spaces but it has been shown [12, 13, 14] that it can also be
extended to infinite-dimensional functional spaces. Using
the KKT theory and ignoring the non-negativity constraint
on g, we have the following proposition [5, 9, 14].

Proposition 1 The solution to the GCE program is given
by:

g�x� � p�x�� �
�

m�
i�0

�i Ki�x�

�
� � � � ���1� (12)

where the ��i �mi�0 are Lagrange multipliers which solve
the convex optimization program:

max
�����0

m�
i�0

�i� i � �p�

�
m�

i�0

�i Ki �X�

�
(13)

subject to: ��� � 0� (14)

where ��� � [�1� � � � � �m]T .

The inequality constraint ���� 0 holds component-wise,
i.e. �i � 0 �i , and is enforced only when the moment-
matching constraints equation (11) are inequality con-
straints. If the moment constraints are equalities, then the
constraint (14) is omitted. Since the zeroth constraint is
always a strict equality, �0 is not included in (14).
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Remark 1 (Csiszár’s measure) Csiszár’s measure [15]
of directed divergence, defined by the functional in equa-
tion (10), can be interpreted as a distance measure be-
tween the pdfs g and p over the probability space
�������. The definition of Csiszár’s measure ensures
that it has the following properties:

1. ��g � p� � 0, following Jensen’s inequality:

�p�
�

g�X�
p�X�

�
� �

�
�p

g�X�
p�X�

�
�

2. ��g � p� � 0 if and only if g � p� and

3. ��g � p� is a convex function of g and p.

Notice, however, that � differs from the usual metric
functions over a metric space in the following properties.

1. In general, ��g � p� �� ��p � g� , i.e. � is
not symmetric, hence the label directed divergence
applied to it.

2. In general, ��g � p� � ��p � s� �� ��g � s�
for any probability density s, i.e. the measure does
not satisfy the triangle inequality which is charac-
teristic of all Euclidean measures of distance, for
example.

If we set ��x� � �x� � x� � ���� � 1�� � � �� 0� 1,
then the resulting CE distance:

���g � p� � 1

��� � 1�

�
g��x�p1���x�dx� 1

�
is indexed by the parameter �. Specific choices of � give
rise to the most notable CE measures [15]. For example,

�2�g � p� � 1

2

 �
g�x�� p�x�

�2
p�x�

dx

yields the �2 distance measure and lim��1���g � p�
yields the KL CE distance. In subsequent sections, we will
make extensive use of the �2 distance measure. Our usage
of the �2 measure is in part motivated by the following
relations with respect to other measures [16, pg. 224]:

2�2�g � p� � lim
��1

���g � p�

� ln �1� 2�2�g � p�� �

Hence �2 dominates the KL CE distance. In addition, it
is also easy to show that �2 dominates the L1 metric dis-
tance:

2�2�g � p� �
�

�g�x�� p�x�� dx
�2

�

Thus, if we minimize �2 with respect to g, then we
also minimize an upper bound on two very fundamental
distance measures: the KL CE and the L1 metric distance.
The importance of the L1 metric is derived from the fact
that it is the only L p metric that is invariant to monotone
transformations of x [16, Introduction].

Remark 2 (Non-negativity of g) Note that, since we
have ignored the non-negativity constraint on g in the
proposition, equation (12) is typically not a non-negative
function. For some choices of �, however, the non-
negativity constraint g�x��0 need not be imposed explic-
itly. In particular, if ��x� � x ln�x��x�1, corresponding
to minimization of the KL distance, then � ��x� � exp�x�
and the condition g�x� � 0 is automatically satisfied. In
this case the proposition above yields the unique optimal
solution. For a general �, however, the non-negativity con-
straint has to be enforced explicitly. We explain one prac-
tical way of achieving non-negativity for g later. For an
interesting theoretical treatment of the non-negativity con-
straint see Ben-Tal and Teboulle [14].

Remark 3 In the GCE approach one always takes the
uniform density on � to be the most uninformative prior.
As in the Bayesian methodology, the prior could be an
improper density, i.e. one for which the integral is not
finite. For example, the most uninformative prior on �n

is p�x� � 1� �x 
 �n. The prior p can be assumed to
be an improper uniform density over the set � as long as
the integration in equation (13) with weight p can be car-
ried out. Note, however, that in the Bayesian approach the
most uninformative priors are the so-called Jeffrey’s priors
[17].

Apart from the problem of choosing the distance mea-
sure�, we also need to decide which features of the target
density need to be modeled, i.e. which moment-matching
constraints need to be enforced. We consider a number
of features and argue that the most convenient ‘closeness’
measures are the KL and �2 distances.

3.1 The MCE method [2]

The MCE method is obtained as a special case of the GCE
framework by choosing ��x� � x ln x � x � 1 (so that
� ��x� � exp�x�), corresponding to the minimization of
the KL CE distance, and by taking equality constraints in
equation (11). It follows from equation (12) that

g�x� � p�x� exp

�
m�

i�0

�i Ki �x�

�
(15)

where the Lagrange multipliers are determined from the
unconstrained maximization of the convex programming
problem equation (13). This convex optimization problem
can be solved by equating the corresponding gradient to
zero, which leads to the following set of nonlinear equa-
tions:

�p exp

�
m�

i�0

�i Ki �X�

�
Ki �X� � � i �

i � 0� � � � �m� (16)
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The solution gives the unique optimal g�x� for the MCE
method. Note that �0 and the equation for i � 0 corre-
spond to the normalization constraint

�
� g�x�dx � 1.

The expectations on the left-hand side of equation (16)
typically have to be estimated via an empirical average to
give the stochastic counterpart of equation (16):

1

N

N�
j�1

exp

�
m�

k�0

�k Kk
�
X j
��

Ki
�
X j
� � �� i �

�
X j
�N

j�1 ~iid p� i � 0� � � � �m�

where �� i � i � 1 is, for example, the IS estimate�N
j�1

�X j �

p�X j �
Ki�X j ��N

j�1
�X j �

p�X j �

of �Ki �X�. Simulation from equation (15) is in general
feasible only via an Accept-Reject or a Markov Chain
Monte Carlo algorithm. As mentioned in Remark 2, the
non-negativity of g �x� is ensured by its exponential func-
tional form.

Remark 4 Note that the above MCE updating formulae
can be obtained by choosing the following parametric pdf
as the instrumental density:

g�x	 ���� � p�x� exp
��m

i�1 �i Ki �x�
�

�p exp
��m

i�1 �i Ki �X�
� (17)

and then solving the parametric minimization program

min
���
� ln

p�X�
g�X	 ���� � (18)

without any constraints on the parameters ���. Thus equa-
tions (15) and (18) give identical results and correspond to
choosing a model pdf from the general exponential family
[18]. The minimization program (18) and the instrumen-
tal (17) are reminiscent of the CE minimization programs
discussed previously. An important difference, however,
is that here we can much more easily incorporate prior in-
formation via p.

Example 3 (Exponential Distribution, Example 1 Con-
tinued) We now consider the MCE approach to Exam-
ple 1, using K1�x� � x (K0 � 1) and an improper
prior p�x� � 1 on [0���. Equation (15) then becomes
the exponential density g�x� � e�0��1x . Matching the
zeroth equation in (16) normalizes g to give g�x� �
I�x�0����1�e�1x and solving the i � 1 equation yields:

��1

 �

0
e�1x � dx � �1 � � X�

Thus the optimal value of the Lagrange multiplier in
this case is

��1 �
�1

� X
� �1

� � u
�

which gives the same optimal density as in Example 1
(only the parameterization is different). It seems that by
using a single moment constraint in equation (16) we have
not gone beyond what the CE method can already do. In
the MCE method, however, one can more easily incorpo-
rate prior information via p with the objective of getting
closer to the target  . In particular, for this example we
can take p�x� � I�x�� �, that is, 1 on [� ��� and 0 other-
wise, indicating complete lack of prior information other
than that the instrumental should be 0 for x 
 � (because
we know that the minimal variance pdf  , regardless of its
functional form, is 0 for x 
 � ).

From equation (17) and program (18), the form of the
MCE instrumental density is

g�x� � I�x�� �e�1x�
I�x�� �e�1x dx

� I�x�� ����1�e
�1�x�� �� (19)

where �1 
 0 is obtained from minimizing
� ln

�
p�X��g�X�

�
, that is,

�1 � argmax
�
0

 �

�

�x� ln g�x�dx

� argmax
�
0

[ln����� u�] � �u�1�

In other words, g�x� � I�x�� �u�1e��x�� �u�1
, which hap-

pens to be the zero-variance IS density. �

3.2 The CE method

We now demonstrate that the CE method is a special case
of the GCE framework when in the CE method we con-
sider instrumentals from an exponential family [18], that
is, densities of the form

g�x	 ���� � exp
��m

k�1 �k Kk�x�
��

exp
��m

k�1 �k Kk�x�
�

dx
�

where �Ki �mi�1 and ��i �mi�1 are called the natural statistics
and natural parameters. In this case the parametric mini-
mization program

min
���
� f ln��X��g�X	 �����

is equivalent to the maximization program

max
���
� ln g�X	 �����

Since g is in the exponential family, the maximization
problem is concave. Setting the gradient equal to zero and

790 SIMULATION Volume 83, Number 11



GENERALIZED CROSS-ENTROPY METHODS WITH APPLICATIONS TO RARE-EVENT SIMULATION AND OPTIMIZATION

assuming that there exists a Lebesgue integrable function
h such that ���� ���i

ln g�x	 ����
���� 
 h�x��

for all x and all ��� with g continuously differentiable with
respect to���, then by the Lebesgue dominated convergence
theorem the expectation (integration) and differential op-
erator can be interchanged, i.e. we have

�� ln g�X	 ���� � 0�

Thus we can write, for i � 1� � � � �m:�
exp
��m

k�1 �k Kk�x�
�

Ki �x�dx�
exp
��m

k�1 �k Kk�x�
�

dx
� �Ki �X� � (20)

It can easily be verified that exactly the same equations
can be obtained from the GCE program if we use: (1)
��x� � x ln�x� � x � 1� (2) equality constraints in
equation (11)� and (3) proper or improper uniform prior
p�x� � 1 on � . The updating equations between the GCE
program and the CE method do not agree under any other
conditions. We emphasize again that the single greatest
advantage of the CE method is that for many exponen-
tial models equations (20) can be solved analytically to
give simple and fast CE updating rules for the parameters
��i �mi�1 of the instrumental pdf.

Example 4 Consider the univariate case with the con-
straint K1�x� � x and � � [0���� then equation (20)
gives the exponential model g�x� � ��1e�1x with La-
grange multiplier (or CE parameter)�1��1 � � X . Sim-
ilarly, if K1�x� � x , K2�x� � x2 and � � �, then
g�x� � e�1x��2x2

which is simply a different parameter-
ization of a Gaussian g�x� � c exp[��x � ��2��2	 2�]
with optimal CE parameters given by � � � X and
	 2 � � X2 � �2. �

We now deviate from using the KL CE distance and
use a particular GCE measure [10] instead.

3.3 �2 GCE program

One can ask: apart from the KL distance measure, what
other measures within the Csiszár’s family yield ‘useful’
instrumentals? More specifically, we would like to choose
the function � in Csiszár’s family of measures such that:

� it may be possible to complete the integration in
equation (13) analytically�

� maximizing equation (13) (possibly with the con-
straints (14)) and hence finding the set of Lagrange
multipliers ��k�mk�0 is relatively easy (e.g. only a lin-

ear �� �1 � � � will make the Hessian matrix of
equation (13) constant and this will simplify the
maximization of equation (13))� and

� generating random variables from the model g in
equation (12) is relatively easy (e.g. if � � is lin-
ear then g is a discrete mixture and the composition
method for random variate generation applies).

We now show that it is possible to satisfy all these re-
quirements by choosing the most general quadratic func-
tion ��x� � a2�x2�1��a1�x�1�� a2 � 0� a1 
 �, which
still satisfies Csiszár’s requirement for a �-divergence. It
is easy to verify that the value of a1 is not relevant to
the primal optimization problem and any positive a2 will
yield an equivalent primal problem. For simplicity, we set
a1 � 0 and a2 � 1�2, thus obtaining ��x� � �x2�1��2, in
which case � ��x� � x and one obtains the �2 generalized
CE distance

��g � p� � 1

2


g2�x�

p�x�
dx � 1

2
�

For this GCE distance, the points above are satisfied if we

� choose some prior p�x� over the set � �
� let �Ki � be Gaussian kernel functions with band-

width 	 , i.e.

Ki �x� � K �x�Xi � 	 � � c exp

����x�Xi ��2
2	 2

�
�

i � 1� � � � �m�

with X1� � � � �Xm approx �  in (11) (c is a normal-
ization constant)� and

� select inequality constraints in (11).

Without the inequality constraints the non-negativity
constraint on the pdf g will be very difficult to impose
[14]. Next substitute these ingredients in Proposition 1. In
this case, equation (12) becomes the particle filter-type
density:

g�x� � p�x�
m�

j�0

� j K �x�X j � 	 �� (21)

where the Lagrange multipliers ���� �0 are obtained from
equations (13) and (14). Specifically, equations (13) and
(14) yield the convex Quadratic Programming Problem
(QPP):

min
�����0

1

2

�
�0����

T
�� 1 cT

c C

��
�0
���

�

� ��0����
T
� � 1

���

�
(22)

subject to: ��� � 0�
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Here C is the m �m matrix with entries:

Ci j � �p Ki �X�K j �X�� for i� j � 1� � � � �m�

c � [�p K1�X�� � � � ��p Km�X�]T and ����	� � [�1�	 ��
� � � � �m�	 �]T . Note that both the generalized moments
����	� and the matrix C�	 � are functions of the bandwidth
	 and the empirical data X1� � � � �Xm , because the kernels
�Ki �mi�1 depend on 	 and the data. In practice, ����	� is also
estimated via Monte Carlo simulation.

A few problems should now be apparent. Firstly,
Proposition 1 provides the optimal solution of the GCE
program ignoring the fact that g has to be a non-negative
function. Although we require (see equation (23)) the mix-
ture weights ��� in equation (21) to be non-negative, �0
is not constrained and could still be negative rendering
the model (21) an invalid mixture pdf. Secondly, there
seems to be no objective method of choosing an appro-
priate value for the bandwidth parameter 	 . It turns out,
however, that it is possible to choose the bandwidth para-
meter 	 such that at the optimal solution of the QPP we
have �0 � 0. Since �0 is not constrained, setting the gra-
dient of equation (22) with respect to �0 to zero gives the
relationship �0 � 1 � cT���. Thus, if cT��� � 1 at the opti-
mal solution of the QPP, then �0 � 0. This suggests that
we can find the value of 	 which gives cT��� � 1 via the
following implicit root-finding program:

�	 �������

�
���
�	 ����� cT����	� � 1�

����	� � argmin����0

�
1
2���

T C�	 ����� ���T
����	�

�
�� � (23)

This program finds the value for 	 , denoted 	 �, which
will force the solution ���� of the sum of equations (22) and
(23) to satisfy cT���� � 1, rendering �0 � 0. Note that
with 	 � 	 �, the solution of (22) and (23) is given by
[�0	 ���] � [0	 ����] where ���� is the output of equation (23).
Thus, to compute the optimal Lagrange multipliers and
bandwidth we solve the program (23), the output of which
also solves (22) and (23). This time, however, the solu-
tion of (22) and (23), given by equation (21), is a proper
mixture pdf with non-negative mixture weights ����.

Explicit calculation of the entries of matrix C is possi-
ble if, for example, we have � � �

n and p � 1, giving
Ci j �

�
�n Ki �x�K j �x� dx � K �Xi �X j �

�
2	�, where Ki

is a Gaussian pdf with bandwidth 	 anchored at the point
Xi . In this case c � [1� � � � � 1]T in equation (23).

To summarize, a valid solution of the GCE program
is the mixture pdf equation (21), with �0 � 0 and non-
negative mixture components ���� calculated from the pro-
gram (23) with c � 1, obtained by using ��x� � �x2 �
1��2 in ��g � p�, inequality moment constraint in
equation (11), p � 1 and Ki �x� � K �x �Xi � 	 � �
c exp

����x�Xi ��2��2	 2�
�
� i � 1� � � � �m.

Remark 5 (Estimating � i � �Ki �X�) Assume we use
the same set �X1� � � � �Xm� as both location parameters for
the Gaussians Ki �x� � K �x �Xi � 	 � and as a sample for
the estimation of each �Ki �X�. Note that �Ki �X� is
a function of Xi and hence is a random variable. Under
the assumption that X1� � � � �Xm iid  , each Xi is in-
dependent of all the other �X j � j ��i and a simple unbiased
estimator of � f Ki �X� is:

�� i � 1

m � 1

m�
j ��i

Ki �X j �� (24)

This is the cross-validatory, also known as leave-one-out
estimator and its consistency properties are established in
Bowman [19].

Example 5 (Exponential Distribution, Examples 1 &
3 continued) Suppose once more that we wish to esti-
mate � � �u�X � � �, with X  Exp�u�1�, as in Ex-
amples 1 and 3. Further, suppose that we have a random
sample �1� �2� � � � � �N from p  Exp���. Finally, sup-
pose that we wish to build an approximation to the target
�x� � I�x�� �u�1e�u�1�x�� � using Gaussian kernels, of
the form

Kk�x� � K �x ��k� 	 � � �
�

2	��1e
� 1

2

�
x��k
	

�2

�

For the �2 GCE quadratic programming problem, we
calculate

ci � �p Ki �X�

�
�

1� er f

�
�	 2 � �i�

2	

��
�e

	2�2
2 ���i

2
�

� i � �Ki �X�

�
�

1� er f

�
�� � �i ��

2	
� 	�

2u

��
e
����i �

u � 	2

2u2

2u
�

and

Ci j �
�

1� er f

�
	 2� � ��i � � j �

2	

��

� �e
� 1

2

�
��i�� j �

2�	4�2�2	2��� j�� j �

2	2

�

2
�

As a concrete example, suppose u � 1, � � 10 and
��1 � �11 � �101��2 � 10�5249, corresponding to the
VM optimal parameter �� in Example 1. A typical out-
come of the GCE procedure is depicted in Figure 1, using
a sample of size m � 30 from p.
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Figure 1. Target �x� (dotted) and kernel mixture g�x� (solid)

Table 1. Non-zero weights and points of equation (21)

Weight 0.25 31.13 10.77 3.56 1.78 0.65 0.087 4 0.003 45 2.60�10�5

Point 9.36 10.57 11.60 12.48 12.96 14.95 17.16 20.74 26.14

Recall that the instrumental density is a mixture of the
form equation (21). The mixture has bandwidth 	 � 0�31,
with non-zero weights and points as listed in Table 1. �

4. Applications

Areas to which the GCE methodology can be applied
are density estimation (both continuous and discrete), rare
event probability estimation and optimization.

4.1 Density Estimation

Consider the one-dimensional density estimation problem
where we are given the sample �m � �X1� � � � � Xm� on �
and wish to visualize any patterns present in it, compress
it or draw inferences based on statistical analysis. One of
the most popular approaches to modeling the data�m with
few stringent assumptions is the kernel method [6, 20, 21].
The method assumes that the true, but unknown, underly-
ing density function  can be approximated by a pdf of
the form:

��x � 	��m� � 1

m	

m�
i�1

K

�
x � Xi

	

�
�

where 	 
 ����0� is the bandwidth parameter, which
controls the smoothness or ‘resolution’ of � , and K is
a positive, symmetric (around 0) and unimodal kernel.
For our purposes we choose to use the Gaussian kernel
K �x� � �1�

�
2� � exp��x2�2�. Everything in the ker-

nel estimator is fixed and known except the bandwidth 	 .
There are various methods [6] for tuning 	 so that the ap-
proximation of  is as good as possible. Currently, the pre-
vailing method for bandwidth selection is the Sheather–
Jones (SJ) method [22]. An alternative is to use the �2

GCE method.
We now summarize the GCE program for this problem,

as given in equation (21), the sum of equations (22) and
(23) and equation (23).

4.1.1 �2 GCE Program for Density Estimation

For i � 1� � � � �m choose

Ki �x� � K �x � Xi � 	 � � 1�
2	

exp

�
� �x � Xi �

2

2	 2

�
and
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1. solve the program

�	 �������

�
!
�	 ����� 1T����	� � 1�

����	 � � argmin���� 0
� 1

2���
T C�	 ����� ���T ���	��

"
� (25)

where the m �m matrix C has entries

Ci j �

�

Ki �x�K j �x�dx �
exp
�
�Xi�X j �

2

�4	2�

�
�

4	 2
�

���	� is the cross-validatory estimator in equa-
tion (24), and

2. present the weighted Gaussian mixture density

g�x� �
m�

j�1

��j K �x�X j � 	
�� (26)

as the optimal GCE density that models the data�m .

Note that we have obtained a standard kernel density es-
timator in equation (26) with weights. Hall and Turlach
[23] have studied the asymptotic properties of estimators
of the form equation (26).

4.2 Discrete Density Estimation

Assume that we are given the binary data �m �
�X1� � � � �Xm�, where �Xi � are n-dimensional binary vec-
tors. Let Xil denote the lth component of Xi . We model
the data using a kernel estimator with the discrete kernel
given by:

Ki �x� � K �x � Xi � 	 � �
n#

l�1

	 I�xl�Xil ��1� 	�1�I�xl�Xil �

� 	 d�x�Xi ��1� 	�n�d�x�Xi ��

where n� d�x� y� � n��n
l�1 I�xl�yl � measures the num-

ber of mismatches between the vectors x and y (i.e. the
Hamming distance). The kernel is therefore a multivariate
Bernoulli pmf. Note that:

lim
	�1

K �x � Xi � 	 � �
!

1� if x � Xi

0� if x �� Xi

� (27)

K
�
x � Xi �

1
2

� � 1

2n
� (28)

The end points of the interval
�
1�2� 1

�
represent two ex-

tremes of modeling the data: for 	 � 1, g is simply es-
timated from the corresponding relative frequencies� for
	 � 1�2, K is not unimodal and g is the uniform pmf
on � . We find the non-trivial value of 	 
 �1�2� 1� by
solving the following �2 GCE program.

4.2.1 �2 GCE Program for Discrete Density
Estimation

Choose the binary kernel Ki �x� � K �x �Xi � 	 � �
	 d�x�Xi ��1� 	�n�d�x�Xi � and

1. solve the program

�	 �������

�
!
�	 ����� 1T����	� � 1�

����	 � � argmin���� 0
� 1

2���
T C�	 ����� ���T ���	��

"
� (29)

with the matrix C given by

Ci j �
�
x
�

Ki �x�K j �x� � K �Xi � X j � ���

� � 	 2 � �1 � 	�2, i� j � 1� � � � �m� and ���	�
is again the cross-validatory estimator in equa-
tion (24), and

2. present the weighted Bernoulli mixture density

g�x� �
m�

j�1

��j K �x � X j � 	
�� (30)

as the optimal GCE probability mass function that
models the discrete data �m .

4.3 Rare-event Simulation and Optimization

We now explain how the parametric estimation procedure
for the instrumental via KL CE minimization at each step
of the CE method can be substituted with a non-parametric
estimation procedure such as the �2 GCE program, the
MCE method or the kernel method of Jones et al. [22].

Recall that for each level � t � t � 1� 2� � � � in the CE
method we estimate an optimal parameter v�t associated
with the parametric instrumental g�x� � f ��	 v�, i.e. the
functional form of the instrumental is kept fixed, and only
its parameter v is updated at each step t . In the MCE and
GCE framework, however, for each level � t we update the
instrumental g�x� non-parametrically. Thus for each level
� t , instead of a sequence of finite dimensional parameters
�vt � t � 1� 2� � � ��, we estimate a sequence of instrumen-
tals �gt�x�� t � 1� 2� � � �� which approximates the optimal
sequence of IS densities, � t�x� � I�S�x��� t � f �x	 u�� t �
1� 2� � � ��. For each t the CE program is reformulated in the
following way. Begin with a uniform instrumental g0�x�
over � or g0�x� � f �x	 u�.

1. Adaptive updating of � t . For a given gt�1�x�, let
� t be the �1 � ��-quantile of S�X� under gt�1�x�.
We can estimate � t by drawing a random sample
X1� � � � �XN from gt�1�x� and evaluating the sample
�1� ��-quantile �� t .
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2. Updating of gt�x�. For a given �� t and gt�1�x�, es-
timate a new instrumental gt�x� using either the �2

GCE program, the MCE program or the Sheather–
Jones kernel method [22].

For example, in the MCE method, gt�x� is obtained from
the program:

min
gt
��gt � gt�1�

�

�

gt�x� ln�gt�x��gt�1�x�� dx

subject to: �gt Ki�X�

� � t Ki �X�� i � 0� � � � �m�

Ideally, in the GCE framework, at iteration t we would
like to take pt � gt�1 �  t�1, as is done with MCE.
In the �2 GCE program, however, we choose pt �
1� �t in order to obtain simple closed-form entries
Ci j � �p Ki �X�K j �X� for the Hessian matrix in the QPP
(22)+(23). Thus, with �2 GCE, gt is the output of the pro-
gram:

min
gt
�1

2
� 1

2


�n

g2
t �x�
p�x�

dx

� min
gt


�n

g2
t �x� dx

subject to: �gt Ki �X�

� ��t�i � � t Ki �X�� i � 0� � � � �m � N �

where, just as with density estimation, �Ki �x��mi�1 is a
Gaussian kernel with mean at Xi and with common band-
width 	 �, given by the output of the root-finding program
(23). Note that we have as many constraints as number of
samples, i.e. m � N , and so the QPP involves N con-
straints. This is not a major problem if the QPP solver
exploits the convexity of the problem.

Remark 6 In practice, at each step t , each ��t�i needs to
be estimated. We suggest the following procedure. Given
a sample from gt�1, we estimate ��t�i via the IS estimator

���t�i �
m�

j�1� j ��i

 t�X j �

gt�1�X j �
Ki �X j �

$ m�
j�1� j ��i

 t�X j �

gt�1�X j �
�

X1� � � � �Xm i id gt�1�

Here the sums do not include the i th component, in keep-
ing with the cross-validatory approach explained in Re-
mark 5. An alternative, which is stochastically equivalent

to the IS estimator and which is easier to implement in a
practical simulation, is to employ the sample importance
resampling (SIR) method (e.g. [24]) to obtain a sample
X�1� � � � �X�m approx �  t and then use the estimator

���t�i � 1

m � 1

�
�j :X�j ��Xi �

Ki �X�j ��

Since the solution of the �2 GCE has the functional
form of a non-parametric kernel density estimator, it is
quite natural to consider constructing an instrumental via
a standard kernel density estimation method such as the
Sheather–Jones (SJ) method [24]. In particular, step 2 in
the above algorithm can be substituted with:

2. Updating of gt�x�. For a given �� t and
X1� � � � �XN iid gt�1�x�, compute the normalized
IS weights

��t�i �  t�Xi �

gt�1�Xi�
� f �Xi 	 u�I�S�Xi ��� t �

gt�1�Xi �
�

i � 1� � � � � N �

then apply SIR to X1� � � � �XN to obtain the new
sample X�1� � � � �X�N . Based on the elite sample
X�1� � � � �X�N construct the SJ non-parametric kernel
density estimator.

Determining which approach (GCE, MCE, CE, SJ,
etc.) is most appropriate in certain situations remains a
matter for further research. MCE allows us to use prior
information easily but yields model pdfs that are difficult
to sample from� �2 GCE does not provide a practical way
to incorporate prior information, but yields solutions that
are easy to sample from. In addition, solving the QPP can
be quite slow. Using SJ-type methods side-steps the need
to solve a QPP, but provides no objective method for esti-
mating the bandwidth in higher dimensions.

4.3.1 Optimization

The rare-event estimation procedure can be easily
modified to an optimization procedure. Suppose we wish
to maximize a function S�x� over x 
 � . The idea, exactly
as in the CE method, is to associate with this optimization
problem a rare-event estimation problem, namely the es-
timation of � f I�S�X��� �, where � is left unspecified and
f is some pdf on � . By using a multi-level approach,
and choosing the target pdf at each iteration t to be the
uniform distribution on the level set �S�x� � � t�1�, a se-
quence of levels �� t � and instrumentals �gt � is generated
such that the former increases towards the maximum � �
and the latter are steered towards the degenerate measure
at x� 
 argmax S�x�.
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Figure 2. Data modeling via the GCE and kernel methods

5. Numerical Experiments

We used MatLab software in all of the numerical ex-
periments. Although we solved the QPP using the Opti-
mization toolbox of MatLab, we recommend the use of
a quadratic programing solver which can exploit the con-
vexity of the QPP problem to achieve greater efficiency.

5.1 Density Estimation

Suppose we are given 100 data points from the Gaussian
mixture model   N�0� 1��2 � N�5� 4��2, in obvi-
ous notation. Given the data only, we wish to estimate
the underlying density. Figure 2 shows the result of a
typical density estimation experiment using the SJ [22]
and the GCE density estimation method. The long thin
bars above the data points represent the relative val-
ues of the Lagrange multipliers ��� (i.e. mixture weights
of equation (30)) associated with each point. Figure 3
shows the ratio of the exact integrated squared error (ISE)�
�gGCE�x� � �x��2dx�

�
�gSJ�x� � �x��2dx over 200

Monte Carlo experiments. The integration was performed
numerically over the range x 
 [�10� 15] using 4000 reg-
ularly spaced points. Figure 3 shows that the error of the
GCE estimator in estimating the pdf  from data is com-
parable to the error of the SJ kernel method.

From Figure 2 and other typical simulation experi-
ments we can conclude the following. The advantage of

the GCE approach is that out of the 100 points there
are only 5 ‘support vectors’ (i.e. only 5 of the 100
points have non-zero Lagrange multipliers associated with
them). Thus, as with the support vector models [25], the
model obtained via the GCE method is more sparse than
that obtained via the traditional SJ kernel density estima-
tor (which is an equally weighted Gaussian mixture with
100 components). Note, however, that the support vector
machine theory does not provide an optimal value for the
smoothing parameter 	 in equation (30). The main disad-
vantage of the GCE method is that the computational cost
of calculating the Lagrange multipliers via the associated
QPP increases dramatically with the number of points m
(complexity O�5 m3��. This makes the approach currently
impractical for large sample sizes. Another problem, sim-
ilar to a major problem with the support vector machine
methodology, is that the number of non-zero Lagrange
multipliers decreases as the dimension of the problem in-
creases, and so the number of ‘support vectors’ increases
with the increased dimensionality of the problem.

As a second example, we consider density estimation
for a log-normal density. Figure 4 shows 800 points gen-
erated from a log-normal density with location 0 and scale
1, as well as the SJ and GCE estimates.

It is interesting to note that out of the 800 points only
21 points have non-zero Lagrange multipliers. Thus the
GCE model for the 800 points is a Gaussian mixture with
only 21 components. In contrast, the SJ estimator is an
equally weighted mixture with 800 components. The spar-
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Figure 3. Behavior of the ratio of the GCE error to SJ error

Figure 4. 800 points from the log-normal density with location 0 and scale 1
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Table 2. A well-known medical dataset used as a test dataset for binary discrimination with kernel models

data

obs. 1 2 3 4 5 6 7 8 9 10

1 1 1 1 0 1 0 1 0 0 1

2 1 1 1 1 1 0 0 1 0 0

3 1 1 0 1 1 1 0 0 1 0

4 1 1 0 1 1 0 0 1 1 0

5 1 1 1 1 0 0 1 0 0 1

6 1 1 0 0 1 0 0 0 0 1

7 1 1 1 0 0 1 0 1 0 0

8 1 1 0 1 0 1 0 0 1 0

9 1 1 1 1 1 0 1 1 0 0

10 1 0 0 0 0 0 0 0 0 0

11 1 1 1 1 0 1 0 1 0 0

12 1 1 0 0 0 0 1 1 1 0

13 1 1 1 1 1 1 1 0 0 1

14 1 1 1 1 1 0 1 1 0 1

15 0 0 1 1 0 0 1 1 0 0

16 1 1 0 1 0 0 0 0 1 0

17 0 1 1 0 0 1 0 1 0 1

18 1 0 1 1 1 0 0 1 0 0

19 1 0 1 1 1 0 1 0 0 0

20 1 1 1 1 0 0 1 0 0 1

data

obs. 1 2 3 4 5 6 7 8 9 10

21 0 0 0 0 1 0 0 0 0 0

22 1 1 1 1 1 1 1 0 0 0

23 1 1 1 0 1 0 0 0 0 1

24 1 1 0 1 0 0 1 1 1 0

25 1 1 1 1 0 0 0 1 0 0

26 0 0 0 1 0 0 1 0 0 0

27 1 1 0 1 1 0 0 1 1 1

28 1 1 1 1 0 0 0 0 0 1

29 1 0 1 0 1 0 0 0 1 0

30 1 1 0 1 0 1 0 0 0 1

31 0 1 1 1 0 0 0 0 0 1

32 1 1 1 1 1 1 1 0 0 1

33 0 0 1 1 1 0 1 0 1 0

34 1 1 1 1 0 1 1 0 0 1

35 1 0 1 0 1 0 0 1 0 0

36 1 1 1 1 0 0 0 1 0 0

37 1 1 1 1 1 0 0 0 0 0

38 1 1 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0 0

40 0 1 1 1 0 0 1 0 0 1

sity of the GCE estimator makes it computationally easier
to evaluate at each point and to visualize the pdf.

5.2 Discrete Density Estimation

Table 2 represents a well-known medical binary data set
described in Anderson et al. [26] and used throughout the
statistical literature to test non-parametric statistical mod-
els [27, 28, 29]. The data describe 40 patients suffering
from a certain disease. Each patient may or may not have
any of 10 possible symptoms. The presence of the symp-
toms is represented as binary row vectors of length 10. A
1 means that the symptom is present and a 0 represents
the lack of that symptom. The aim is then to build a model
for the data showing which combination of symptoms are
most likely to indicate the presence of the disease in pa-
tients.

For the data in Table 2, we obtained the Bernoulli mix-
ture model given in Table 3. Note that we can read off the
most weighty pattern in Table 1 from the mixture model
in Table 3. More specifically, observations 20, 32 and 36
are representatives of the most predominant binary pattern
in Table 2. Patients exhibiting these patterns of symptoms
would therefore most likely be considered stricken with
the disease. Also note that the GCE mixture pmf that mod-
els the data is sparse in the sense that the number of mix-
ture components is usually much smaller than the number
of observations. This is in sharp contrast to the traditional

discrete kernel density estimation techniques where the
model pmf is an equally weighted mixture with as many
components as the number of observations.

5.3 Estimation Examples

In this section we give examples of estimating quanti-
ties of the form � � � f H�X	 � �, for some function H
possibly dependent on a level parameter � . The estima-
tion is achieved by building a sequence of instrumentals
�gt � t � 1� 2� � � � � approximating the sequence of opti-
mal IS densities � t � �H�x	 � t�� f �x�� t � 1� 2� � � � �,
and subsequently estimating the quantity of interest using
the IS estimator with gT as the instrumental.

More specifically, for each of the estimation examples,
we start with a uniform sample over an appropriate rec-
tangular region. We proceed by iteratively resampling the
points with weights  t�gt�1, where gt�1 is the approxi-
mation for level � t�1. We then build a new IS density gt
as a Gaussian kernel mixture. Next, we sample from this
new density, and repeat the resampling-approximation-
sampling process, until the final level � has been hit. We
perform a further P iterations with the level fixed to be � ,
and then estimate � using the IS estimator with N1 � 105

samples from the final density g.
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Table 3. The mixture pmf with 	 � � 0�792 75. The table presents the mixture weight and location for each of the twenty kernels
constituting the mixture model for the medical dataset in Table 2

i th binary vector K �x �	 ��Xi � with Xi given by i th weight �i

20 1 1 1 1 0 0 1 0 0 1 0.22707

32 1 1 1 1 1 1 1 0 0 1 0.18974

36 1 1 1 1 0 0 0 1 0 0 0.18358

2 1 1 1 1 1 0 0 1 0 0 0.095159

8 1 1 0 1 0 1 0 0 1 0 0.05691

39 0 0 0 0 0 0 0 0 0 0 0.055622

10 1 0 0 0 0 0 0 0 0 0 0.039071

23 1 1 1 0 1 0 0 0 0 1 0.037531

4 1 1 0 1 1 0 0 1 1 0 0.025143

18 1 0 1 1 1 0 0 1 0 0 0.019046

12 1 1 0 0 0 0 1 1 1 0 0.012942

6 1 1 0 0 1 0 0 0 0 1 0.011055

31 0 1 1 1 0 0 0 0 0 1 0.010266

21 0 0 0 0 1 0 0 0 0 0 0.0093176

16 1 1 0 1 0 0 0 0 1 0 0.0072441

24 1 1 0 1 0 0 1 1 1 0 0.0066307

35 1 0 1 0 1 0 0 1 0 0 0.0057993

3 1 1 0 1 1 1 0 0 1 0 0.0053602

9 1 1 1 1 1 0 1 1 0 0 0.0024979

27 1 1 0 1 1 0 0 1 1 1 2.3899�10�5

5.3.1 Fused Gaussians

The following example is a well-known test case for
Monte Carlo algorithms. The problem is to estimate � �
� f X , where f is given by the following ‘fusion’ of two
Gaussian densities:

f �x� y� � c�1e
� 1

2

�
x2 y2�x2�y2�8�x�y�

�
� c�1 f0�x� y��

where c is assumed to be unknown (in fact, c �
20 216�335 877 352). Note that in this example we have
H�x� y	 � � � x , and so � is irrelevant.

Figure 5 depicts a contour plot of the optimal IS den-
sity. By direct numerical integration, one can obtain the
approximation � � � f X � 1�859 97.

Since we take the normalization constant c to be un-
known, it must be estimated. This is done with a random
sample of size N1 from g via

�c � 1

N1

N1�
i�1

f0�Xi � Yi �

g�Xi �Yi �
�

The quantity of interest is estimated using

�� � 1

N1

N1�
i�1

Xi f0�Xi �Yi �

�c g�Xi � Yi �
�

In order to illustrate the importance of good instrumen-
tal densities g, we run three experiments in which g is built
up non-parametrically using different numbers of samples
and iterations.

For case (1), we take N � 5000 samples per iteration
for P � 1 iteration� for case (2), we take N � 100 sam-
ples per iteration for P � 20 iterations� and for case (3),
we take N � 1000 samples per iteration for P � 2 itera-
tions.

For this example, we start with a uniform sample over
[�2� 7]2 and the target density on iteration t is  t�x� y� �
�x� f0�x� y�.

In Table 4, we give the minimum, maximum and aver-
age estimated relative errors over ten trials, as well as the
smallest, largest and average point estimates for each of
the three experimental setups.

We find that the trial that gave the smallest estimated
relative error was (1)� Figure 6 depicts the contour plot.
This plot shows reasonable similarity to the contour plot
of the true density, suggesting that we have built a reason-
able importance sampling density.

On the other hand, we find that the contour plot of the
most biased trial in (2) is visibly misshapen, as can be
readily seen from Figure 7. This leads to the poor aver-
age performance of this experiment. We can imagine that
this particular trial has a very biased g after the first re-
sampling step, and it has too few iterations for  to be
recovered.
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Figure 5. Contour plot of  � �x� f0�x� y�

Figure 6. Contour plot of g�x� y�
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Table 4. Fused Gaussians example

min re max re average re min est max est average est

1 0.00701 0.00802 0.00759 1.84503 1.89344 1.86620

2 0.00744 0.19385 0.05622 1.91516 3.31041 2.76723

3 0.00655 0.02544 0.01150 1.85009 1.95802 1.89823

Figure 7. Contour plot of g�x� y�

5.3.2 Estimating � f �X � Y � � �

The problem of interest is to estimate

� � � f �X � Y � � � �

where X and Y are independent random variables with
density

h�z� � I�z�0�be�bz�

and so f �x� y� � h�x�h�y�. In this example, H�x� y	 � �
� I�x�y�� � and we can calculate

� � � f �X � Y � �� � �1� b� �e�b� �

The target distribution  with parameters b � 1 and
� � 10 is depicted in Figure 8.

Suppose that b � 5, � � 10. In this case, we can
calculate the true probability, which is � � 51 e�50 �
9�836 62 � 10�21. A typical contour plot of the final g
for this example is given in Figure 9.

In a similar vein to the previous estimation example,
we run three experiments in which g is is built up non-
parametrically using different numbers of samples and it-
erations.

For case (1), we take N � 1000, Ne � 500 and P �
20� for case (2), we take N � 300, Ne � 150 and P � 20�
and for case (3), we take N � 500, Ne � 300 and P � 10.
Note that, unlike the previous example, we do have chang-
ing levels � t so that  t�x� y� � I�x�y�� t � f �x� y�. For this
example, we start with a uniform sample over [�10� 30]2.
The results of these experiments are listed in Table 5.

As with the previous example, observe that taking too
few samples per iteration ultimately gives rise to poor
instrumental densities. Further, typical instrumental den-
sities, such as those depicted in Figure 9, place a non-
negligible amount of mass in the lower triangular re-
gion. This prevents the relative error of the estimate from
shrinking quickly as the sample size increases.
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Figure 8. Plot of  for a � b � 1 and � � 10

Figure 9. Contour plot of g�x� y�
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Table 5. � f �X � Y � � � estimation

min re max re average re min est max est average est

1 0.018421 0.023962 0.020797 9.60048 � 10�21 1.00973 � 10�20 9.83595 � 10�21

2 0.014821 0.231103 0.055028 8.17072 � 10�21 1.03726 � 10�20 9.68979 � 10�21

3 0.015449 0.028022 0.022819 9.63451 � 10�21 1.01999 � 10�20 9.93677 � 10�21

Figure 10. Contour plot of Rastrigin’s function

5.4 Optimization Examples

The procedure followed for the optimization examples is
almost the same as for the estimation examples. The only
differences are: we do not estimate � at the final step� the
target density on iteration t is  t �x� � I�S�x��� t �, where
� t � S�Ne� is the largest of the elite sample scores from it-
eration t�1� and we stop the algorithm once 100 iterations
have passed or �� t � � t�1�� � � � � �� t � � t�5� � 10�5.

Regarding the estimation examples, we run the algo-
rithms 10 times and collect summary statistics� for these
examples we collect statistics on the final function value
and the number of function evaluations required by the al-
gorithm. The statistics regarding the final function value
are, for each trial, the average over 10 samples from the
final pdf.

5.4.1 Rastrigin’s Function

In this case, the problem is to minimize Rastrigin’s func-
tion, depicted in Figure 10 and defined as

S�x� y� � 20� x2 � y2 � 10 cos�2x�� 10 cos�2 y��

which has known analytical solution S�0� 0� � 0 at
�x� y� � �0� 0�.

We present the results of three numerical experiments
that differ only in the settings of N and Ne. The settings
for (1) were N � 200, Ne � 50� for (2) we have N �
1000, Ne � 200� and for (3) we have N � 500, Ne � 100.
The initial region for this problem was [�7�68� 7�68]2.

Note from the results in Table 6 that two of the ten tri-
als in (1) gave poor results and that both runs exited by
using the maximum number of allowed iterations. How-
ever, with a sample size large enough, the procedure con-
sistently finds the global optimum.
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Figure 11. Contour plot of the trigonometric function with � � 7, � � 1, x� � 0�9 and y� � 0�9

Table 6. Rastrigin problem

min score max score average score min fevals max fevals average fevals

1 5.164 � 10�10 1.679 0.275 4600 20200 7860

2 1.375 � 10�9 6.914 � 10�9 3.310 � 10�9 19000 19000 19000

3 1.041 � 10�9 1.089 � 10�4 1.089 � 10�5 9500 12000 9800

5.4.2 Trigonometric Function

Let � � 7, � � 1, x� � 0�9 and y� � 0�9. The problem is
to minimize

S�x� y� � 1� 14
�

sin2
�
��x � x��2

�
� sin2

�
��y � y��2

��
� �

�
�x � x��2 � �y � y��2

�
�

depicted in Figure 11, with �1 � x� y � 1. The analyt-
ical solution is known to be S�x�� y�� � 1 at �x� y� �
�x�� y��.

We present the results of three numerical experiments
with the same parameter settings as in the previous opti-
mization example. The initial region for this problem was
[�1�5� 1�5]2, with any points falling outside [�1� 1]2 set
to have infinite score. The results are listed in Table 7.

Unlike the previous optimization example, the scores
given in Table 7 indicate that the final density is consis-

tently concentrated near the global minimum. Here, the ef-
fect of increasing the sample size is to improve an already
adequate final density, whereas in the previous example
the smallest sample size used gave inadequate results.

6. Conclusions

The GCE program provides a natural and general frame-
work for constructing good instrumental densities g, such
as those used in importance sampling, rare-event simula-
tion, stochastic search and probability density estimation.
The GCE procedure is specified by the prior density p
(which conveys the available information on the target ),
the function � defining the CE distance and the kernels
�Ki � whose expectations under g are matched with the
expectations under  . The instrumental g is derived from
fundamental KKT optimization principles. By choosing
p, � and �Ki � appropriately, both the classical parametric
CE method (with densities in an exponential family) and
the non-parametric MCE method can be recovered from
the GCE method. Two choices for the distance-defining
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Table 7. Trigonometric problem

min score max score average score min fevals max fevals average fevals

1 1 + 2.190 � 10�9 1 + 1.348 � 10�7 1 + 1.922 � 10�8 2800 3200 3080

2 1 + 2.341 � 10�9 1 + 1.330 � 10�8 1 + 6.006 � 10�9 13000 13000 13000

3 1 + 2.396 � 10�9 1 + 1.086 � 10�5 1 + 1.172 � 10�6 6500 7000 6550

function � stand out. One gives the KL distance, used
in both the CE and MCE method, and the other the �2

distance. The latter choice provides densities g that are
weighted kernel mixtures, whose weights are found by
solving a QPP. These are easy to sample from. If, in ad-
dition, the kernels are chosen to be Gaussian with a fixed
bandwidth, the optimal bandwidth can be found from a
simple root-finding problem.

The GCE method can be readily applied to density esti-
mation, and compares well with the state of the art (SJ) in
this area. The same holds for discrete (binary) density esti-
mation. Notable differences between GCE and SJ are: (1)
the SJ estimator relies on the availability of large samples
and essentially solves an asymptotic approximation ap-
proximately, whereas GCE solves the problem without us-
ing any asymptotic approximations, and (2) the GCE gives
a sparse mixture model (most weights are 0), whereas in
SJ all weights (as many as there are data points) are non-
zero.

Another application of the GCE method is IS estima-
tion. Here, the crucial issue is to choose the instrumental
g (the IS density) as close as possible to the target (the op-
timal IS pdf). As with the classical CE method, GCE can
be implemented as a multi-level approach, thus steering
the instrumental more gradually towards the target distri-
bution. The method is then readily modified as a proce-
dure to optimize general functions, as in the CE method.
The advantage of using non-parametric CE approaches, as
opposed to parametric approaches, is that the former are
more flexible and can approximate the target better. A dis-
advantage is that the non-parametric algorithms tend to be
significantly slower than their parametric counterparts. A
future challenge is to devise non-parametric densities that
are not only easy to simulate from (as in the �2 GCE ap-
proach) but are also fast to evaluate, especially in higher
dimensions. Another direction to be explored is the use of
non-Gaussian kernels, such as Cauchy kernels.
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