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Abstract

We present a novel method, called the transform likelihood ratio (TLR) method,
for estimation of rare event probabilities with heavy-tailed distributions. Via a
simple transformation (change of variables) technique the TLR method reduces
the original rare event probability estimation with heavy tail distributions to an
equivalent one with light tail distribution, such as the uniform or exponential
distribution. Once this transformation has been established we estimate the
rare event probability via importance sampling, using the classical exponen-
tial change of measure or the standard likelihood ratio change of measure. In
the latter case the importance sampling distribution is chosen from the same
parametric family as the transformed distribution. We estimate the optimal pa-
rameter vector of the importance sampling distribution using the cross-entropy
method. We prove the polynomial complexity of the TLR method for certain
heavy-tailed models and demonstrate numerically its high efficiency for vari-
ous heavy-tailed models previously thought to be intractable. We also show
that the TLR method can be viewed as a universal tool in the sense that not
only it provides a unified view for heavy-tailed simulation but also can be effi-
ciently used in simulation with light-tailed distributions. We present extensive
simulation results which support the efficiency of the TLR method.

Keywords. Cross-Entropy, Heavy Tail Distributions, Rare Events, Simulation,
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1 Introduction

The performance of modern systems, such as coherent reliability systems, inven-
tory systems, insurance risk, storage systems, computer networks and telecom-
munications networks, is often characterized by probabilities of rare events and
is frequently studied through simulation. However, estimation of rare event
probabilities with crude Monte Carlo techniques requires a prohibitively large
numbers of trials. Two methods, called splitting/RESTART and importance
sampling (IS), have been extensively investigated by the simulation community
in the last decade.

The basic idea of splitting proposed by Kahn and Harris [20] is to partition
the state-space of the system into a series of nested subsets and to consider
the rare event as the intersection of a nested sequence of events. When a
given subset is entered by a sample trajectory during the simulation, numerous
random re-trials are generated with the initial state for each re trial being the
state of the system at the entry point. Thus, by doing so, the system trajectory
is split into a number of new sub-trajectories, hence the name “splitting”. A
similar idea has been developed by Villen-Altamarino and Villen-Altamarino
[31, 32] into a refined simulation technique under the name RESTART which
has been extended by different authors [9, 10, 11, 12, 13, 16, 15, 17, 27, 28] to
the multiple threshold case.

The main idea of IS [30, 14] is to make the occurrence of rare events more
frequent by carrying out the simulation under a different probability distribu-
tion — the so-called change of measure (CM) — and to estimate the probability
of interest via a corresponding likelihood ratio (LR) estimator. The aim is to
select a CM that minimizes the variance of the LR estimator. It is well-known
that, in theory, there exists a CM that yields a zero-variance LR estimator.
However, in practice such an optimal CM cannot be computed since it depends
on the underlying quantity/quantities being estimated.

Prominent among the CMs is the exponential change of measure (ECM).
Here, instead of the original pdf f(z), the simulation is carried out under an
“exponentially twisted” pdf fy(z) = ce? f(z), where @ is called the twisting or
tilting parameter and c¢ is a normalizing constant. ECM often yields efficient and
sometimes “optimal” IS estimates, see for example Sadowsky [26] and Asmussen
and Rubinstein [5], but is usually feasible only for relative simple models, see
also [18, 21, 29].

An alternative approach to ECM is to use an IS pdf, say f(x;v), which
belongs to the same parametric family as the original distribution (also called
the nominal distribution), say f(x;w). We shall call such an approach the
standard likelihood ratio (SLR) approach. Similar to ECM, the SLR approach
typically does not lead to the optimal zero-variance estimator, but yields signif-
icant variance reduction, see for instance [24] and below. The advantage of such
an approach is that (a) it can be applied to rather general static and dynamic
models, and (b) the optimal reference parameter v* of the IS density f(z;v)
can be derived with standard optimization techniques.

We show in this paper that the SLR approach is readily applicable to both
light- and heavy-tailed distributions. Recall that a random variable X with



distribution function F' is said to have a light-tail distribution if
Ee*X < 0o, for some s > 0.

By Markov’s inequality, we have Ees* > EeSXI{X>m} > e*"P(X > x), so that
P(X >z)<e "¢, >0,

for some constant c¢. In other words, X has a “tail” F(z) = 1 — F(x) which
decays at an exponential rate or faster. Examples of the light-tailed distribu-
tions are the exponential, normal, geometric, Poisson and any distribution with
bounded support. Also the Weibull distribution with increasing failure rate,
that is F(z) = e™®" with a > 1, is a light-tail distribution.

When Ee*X = oo for all s > 0, X is said to have a heavy-tail distribu-
tion. Examples of heavy-tail distributions are the log-normal, Rayleigh and the
Weibull distribution with decreasing failure rate, that is F(z) = e ", a <
1. Also any regularly varying distribution, that is F(z) = L(z)/z®, with
L(tx)/L(z) — 1 as ¢ — oo for all ¢ > 0, is heavy-tail. A typical example
is the Pareto distribution, which has a tail F'(z) = (1 +cz)~% 2z > 0, (a,c > 0).
We write X ~ Pareto(a, ¢) to indicate that X has the above distribution.

A particularly important class of heavy-tailed distributions is that of the
sub-exponential distributions. A distribution with cdf F' on (0, 00) is said to be

sub-exponential if, with Xq, Xo, ..., X,, a random sample from F', we have
P(X;+.-.-4+ X
lim (Kt n>7):n, (1)
Y—00 P(Xl > ’y)

for all n. Examples are the Pareto and log-normal distributions and the Weibull
distribution with decreasing failure rate. See [8] for additional properties of this
class of distributions.

Because by definition the exponential moments do not exist for heavy-tailed
distributions, the exponential change of measure is intrinsically impossible for
heavy-tailed distributions when a positive twisting parameter is required. So
an alternative method must be used. Asmussen, Binswanger and Hgjgaard
in their landmark paper [3] consider various estimators for rare events of the
form {Sy > x}, where Sy is the random or deterministic sum of i.i.d. positive
random variables with sub-exponential pdf, f(z) say. Two asymptotic efficient
estimators are given. The first one, based on Asmussen and Binswanger [2] uses
conditional Monte Carlo [24] in combination with order statistics. The second
estimator uses importance sampling, where the IS density, A(z) say, consists of
two parts: for small values of x, g(z) is proportional to f(z) and for large values
of z, g(x) is much larger than f(z), decreasing slightly faster than 1/z. Juneja
and Shahabuddin [19] consider a similar problem as in [3] and their approach
is to estimate {Sy > z} via IS using a density h(z) which is obtained from the
original f(z) by “twisting” the hazard rate. Several variations of this idea are
considered. Note that all the above heavy tail methods have limited application
since they deal basically only with the estimation of probabilities of the above
events {Sy > z}.



The effectiveness of the SLR method to rare event simulation depends
strongly on (a) the selection of a proper class of IS distributions {f(-;v)} and
(b) an efficient method for determining the optimal reference parameter v*.

We address (b), in this paper by using the cross-entropy (CE) method to es-
timate the optimal reference parameter in any SLR procedure. The CE method
was proposed in [22] an adaptive IS algorithm for rare events simulation, in
which the reference parameter v* is estimated by minimizing the sample vari-
ance of the SLR estimator. The proposed algorithm is called the variance min-
imization (VM) algorithm. In [23] this IS algorithm was further modified to
minimize, instead of the sample variance, the sample Kullback-Leibler distance,
or cross-entropy (CE) distance, between the theoretical zero-variance change of
measure and the importance sampling distribution. The estimation method
thus obtained is called the simulated cross-entropy or just the cross-entropy
(CE) method.

We address (a), by presenting a novel method, called the transform like-
lihood ratio (TLR) method, for constructing efficient IS estimators that are
applicable for both light- and heavy-tail distributions. The idea is to transform
the random variables and to apply a change of measure to the distribution of
the transformed random variables. This simple “change of variable” technique
allows us to transform an original rare event probability with heavy tail distri-
butions to an equivalent (auxiliary) one with an arbitrary tail distribution, such
as the uniform or exponential distribution, and then we apply a change of mea-
sure to the new (auxiliary) distribution. We typically transform to light-tailed
distributions, and then apply the ECM or the SLR method to obtain a conve-
nient class of IS distributions. Recall that in the latter case, the IS distribution
belongs to the same parametric family as the original auxiliary one. As men-
tioned before we shall use the CE method to estimate the optimal parameter
vector of the (parametric) IS distribution.

The goal of this paper is to show that the SLR and TLR methods broaden
substantially the application scope of rare event simulation, and to demon-
strate their high efficiency numerically for various heavy-tailed models previ-
ously thought to be intractable. We also show that the TLR method can be
viewed as an universal tool in the sense that it can be efficiently used in light-
tailed simulation as well. In a forthcoming paper [4] the focus will be more on
the complezity of the estimators. In particular we will prove the polynomial
complexity of the TLR method for various sums of heavy-tailed random vari-
ables and explore in more detail the asymptotic optimality of various queueing
models, when using the SLR or TLR method. In the appendix of the present
paper we give a direct proof of polynomial complexity of the TLR method for
the sum of n = 2 heavy tail Weibull random variables, and we conjecture that
similar results hold for general n.

The theoretical framework in which one typically examines rare-event prob-
ability estimation is based on complexity theory according to which the IS
estimators are classified either as polynomial-time or as ezponential-time. It
is shown in [5, 24] that for an (unbiased) IS estimator, ¢(z) of £(z), to be
polynomial-time as a function of some z, it suffices that its squared coefficient



of variation (SCV),

~

or its relative error, k(z), be bounded in x by some polynomial function, p(z).
For such polynomial-time estimators, the required sample size to achieve a
fixed relative error does not grow too fast as the event becomes rarer. Because
polynomial complexity is not always easy to achieve or to prove, the weaker
notion of asymptotic optimality is often used, meaning

. InE(?)?
lim — 2 —
00 In/?(x)

(3)

For a detailed discussion on complexity, see [5].

The remainder of this paper is organized as follows. In Section 2 we describe
the main ideas behind the SLR method. Here we also present a general adap-
tive CE procedure for estimating the optimal reference parameters for the SLR
method. It can be readily implemented if the underlying distributions have
finite support or if they belong to a natural exponential family, since in those
cases there are analytical solutions to those optimization problems. In Section 3
we present the TLR method and its application to heavy-tail distributions. We
provide several enlightening examples on the standard SLR method and its
TLR modification and demonstrate analytically how the latter can outperform
the former. In Section 4 we illustrate that seemingly different implementations
of SLR and TLR may in fact be completely equivalent. Section 5 deals with
the estimation of tail probabilities for the waiting time in a GI/G/1 queue with
heavy-tailed service time and/or inter-arrival time distributions. In Section 6
we demonstrate numerically the efficiency of the TLR method for fast estima-
tion of rare events for various simulation models involving light and heavy tail
distributions. In the Appendix we derive the asymptotic form of the minimal
variance parameter for the TLR estimator for sum of two i.i.d. Weibull random
variables with heavy tails, and prove polynomial complexity.

2 The SLR Method via Importance Sampling and
Cross Entropy

In this section we discuss the main ideas behind the CE algorithm for rare event
simulation following closely [7].

Let S be a real function taking values in some space X, and let X be a ran-
dom element in X’ with pdf f(-;«) in some parametric family F = {f(-;v), v €
V}, with respect to a certain base measure pu. Typically, X' is some subset of
R" and X is a random vector (Xi,...,X,). Suppose we are interested in the
probability that S(X) is greater than or equal to some real number y — which
we will refer to as level — under f(-;u). This probability can be expressed as

=Py (S(X) >7) =By Itgx)>y} = /I{S(m)ny} f(@;v) plde) ,
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If this probability is very small, we call {S(X) > v} a rare event.
The naive way to estimate Z is to use crude Monte-Carlo (CMC) simulation:
Draw a random sample X q,... , Xy from f(-;u); then

1 N
~ 2 lisxoz)
=1

is an unbiased estimator of /. However this poses serious problems when
{S(X) > ~} is a rare event since a large simulation effort is required in or-
der to estimate ¢ accurately.

An alternative approach is based on importance sampling: take a random
sample X1,..., Xy from an importance sampling (IS) density g on X, and
estimate £ using the following unbiased estimator

N

~ 1

U= 5 2 Tisx)sn W(Xi) (4
i=1

where W(X) = f(X;u)/g(X) is the likelihood ratio (LR). The estimator in
(4) is called the likelihood ratio estimator.

It is well known [24] that the optimal way to estimate £ is to use the change
of measure with density

Namely, by using this change of measure we have in (4)

7 [(Xi;u) _y
{S(Xi)>~} 7*(X5) -5

for all 4. Since / is a constant, the estimator (4) has zero variance, and we need
to produce only N = 1 sample.

But, of course, £ in (5) is unknown, and sampling from the optimal im-
portance sampling density ¢g* is therefore problematic. Instead, consider the
situation where the choice of IS densities ¢ is restricted to the same parametric
family F; so g differs from the original density f(-;u) by a single parameter
(vector) v, which we will call the reference parameter. We will write the likeli-
hood ratio in (4), with g(z) = f(x;v), as

f(X5u)

W(X;u,v):m. (6)

In this case the LR estimator £ in (4) becomes

N

~ 1

U= 5> Tisexizn W(Xiu,0), (7)
=1

where X1,..., Xy is a random sample from f(-;v). We will call (7) the SLR
estimator, in contrast to the (non-parametric) LR estimator (4). To find an



optimal v in the SLR estimator 7 one typically considers [24] the following
variance minimization program

rrgn Vary g x)>y W(X5u,v) . (8)

Since under f(-;v) the expectation £ = EyI{gx)>,)} W(X;u,v) is constant,
the optimal solution of (8) coincides with that of

min V(v) = min Ey I{5(x)>+} W?(X;u,v) . (9)

The above optimization problem can still be difficult to solve, since the density
with respect to which the expectation is computed depends on the decision
variable v. To overcome this obstacle, we rewrite (9) as

nﬁ)in V(v) = rrgnEwI{S(X)27} W(X;u,v) W(X;u,w) . (10)

Note that (10) is obtained from (9) by multiplying and dividing the integrand by
f(x; w) where w is an arbitrary reference parameter. Note also that in (9) and
(10) the expectation is taken with respect to the densities f(-;v) and f(-;w),
respectively. Moreover, W (X;u,w) = f(X;u)/f(X;w), and X ~ f(z;w).
Note finally that for the particular case w = u we obtain from (10)

min V(v) = min Ey I1gx)>} W(X;u,v) . (11)
v v -

We shall call each of the equivalent problems (8) — (11), the variance minimiza-
tion (VM) problem ; and we call the parameter vector ,v, that minimizes the
programs (8) — (11) the optimal VM reference parameter vector.

An alternative way to find a good reference parameter vector for 7is based on
Kullback-Leibler cross-entropy method. According to the cross-entropy method
one can choose the tilting parameter vector v such that the “distance” between
g* above and the density f(-;v) is minimal. The Kullback-Leibler distance
between g and h is defined as:

D(g, h) = E, ln% — / 9(@) Ing(@) p(dz) - / g(@) nh(z) p(de) . (12)

So, minimizing the Kullback-Leibler distance between ¢g* in (5) and f(-;v)
is equivalent to choosing v such that — [ ¢*(z) In f(z;v) u(de) is minimized,
or equivalently, that [ ¢*(z)In f(x;v) p(de) is maximized. Formally we write

max D(v) = max/g*(a:) In f(z;v) p(de) . (13)
v v
Substituting g* from (5) into (13) we obtain the following optimization program

I{ (z)> }f(m’u) :
/ S >7€ In f(2;v) p(dz) (14)

= m’li)‘),XE_,, I{S(X)Z’Y} 1Ilf(X;’U) .

max D(v) = max
v v



Using again importance sampling, with a change of measure f(-;w), we can
rewrite (14) as

max D(v) = max By I{gx)>, W(X;u,w) In f(X;v), (15)
v v -
for any tilting parameter w. The optimal solution of (15) can be written as

v* = argmax Ey I{g(x)> W(X;u,w)In f(X;v). (16)

We may estimate v* by solving the following stochastic program (also called
stochastic counterpart of (15))

N
~ 1
max D(v) = max ;I{S(xi)zﬂ W(Xu,w) Inf(X;0),  (17)
1=
where X1,..., Xy is a random sample from f(-;w). The solution of (17)

may be readily obtained by solving (with respect to v) the following system of
equations:

N

1

N ZI{S(Xi)Z'y} W(Xi;u,w) Vin f(X;;v) =0, (18)
=1

where the gradient is with respect to v. This, of course, provided that the
expectation and differentiation operators can be interchanged (see [25]) and
the function D in (17) is convex and differentiable with respect to v. We note
that for any fixed a the function

v Vinf(x;v) (19)

is the so-called score function. The random variable Vln f(X;v) with X ~
f(-;v) is called the efficient score.

The advantage of this approach is that the solution of (18) can often be
calculated analytically. In particular, this happens if the distributions of the
random variables has a discrete distribution or belong to a natural ezponential
family (NEF). For further details see [7]. It is shown in [7] that asymptotically
in 7 the optimal tilting parameter vectors obtained from VM and CE programs
either coincide or differ very little. So, if not stated otherwise we shall use
henceforth the CE program only.

Note that the CE program (17) is useful only in the case where the prob-
ability of the “target event” {S(X) > v} is not too small, say £ > 10~ °. In
such cases, the above program might be useful in terms of determining iter-
atively a potentially more accurate estimator. In rare-event context, however
(say, £ < 107°), the program (17) is useless, since owing to the rarity of the
events {S(X;) > v}, the random variables Itg(x,)>y}, ? = 1,..., N and the
associated derivatives of lA)(v), as given in the right-hand side of (18), vanish
with high probability for reasonable sizes of N.



To overcome this difficulty, we describe now a multi-level algorithm. The
idea is to introduce a sequence of reference parameters {v;, ¢ > 0} and a se-
quence of levels {7, ¢t > 1}, and iterate in both ; and v; (see Algorithm 2.1
below).

We initialize by choosing a not very small p, say p = 102 and by defining
vg = u. Next, we let 1 (71 < 7) be such that, under the original density
f(z;w), the probability /1 = Ey I{g(x)>,} is at least p. We then let v1 be the
optimal CE reference parameter for estimating ¢;, and repeat the last two steps
iteratively with the goal of estimating the pair {/,v*}. In other words, each
iteration of the algorithm consists of two main phases.

In the first phase 7, is updated, in the second v, is updated. Specifically,
starting with vg = u we obtain the subsequent ; and v; as follows:

1. Adaptive updating of 7;. For a fixed vy_1, let 4 be a (1 — p)-quantile
of S(X) under v;_1. That is, 7, satisfies

Py, (S(X) 2 71)

Py, (S(X) <)

P, (20)
1 - P, (21)

A\VARLY

where X ~ f(-;v4-1).

A simple estimator 4, of v; can be obtained by drawing a random sample
X1q,..., Xy from f(:;v4_1), calculating the performances S(X;) for all
i, ordering them from smallest to biggest: Sy < ... < .5y) and finally,
evaluating the (1 — p) sample quantile as

e = S(ra1-pN1)- (22)
Note that S(;) is called the j-th order-statistic of the sequence S(X1),
..., S(X n). Note also that 7; is chosen such that the event {S(X) > ¥, }
is not too rare (it has a probability of around p), and therefore updat-
ing the reference parameter via a procedure such as (22) is not void of
meaning.

2. Adaptive updating of v;. For fixed v; and v;_i, derive v; from the
solution of the following CE program

mf)ixD(v) = mng,,t_II{S(X)Z%}W(m;u,vt,l) In f(X;v). (23)

The stochastic counterpart of (23) is as follows: for fixed 4; and v;_1,
derive v; from the solution of following program

~

N
1 ~
max D(v) = max — ;_1 Lisx >0 W (Xisu,0e1) In f(XG50) - (24)

v

Thus, at the first iteration, starting with vy = u, to get a good estimate for
U1, the target event is artificially made less rare by (temporarily) using a level
~1 which is chosen smaller than . The value for v; obtained in this way will
(hopefully) make the event {S(X) > 7} less rare in the next iteration, so in the



next iteration a value 4, can be used which is closer to 7 itself. The algorithm
terminates when at some iteration ¢ = T" a level is reached which is at least y
and thus the original value of v can be used without getting too few samples.
As mentioned before, the optimal solutions of (23) and (24) can often be
obtained analytically, in particular when f(x;v) belongs to a NEF.
The above rationale results in the following algorithm (see [7]):

Algorithm 2.1 (Main CE Algorithm for Rare Event Simulation)
1. Define vy = u. Set t =1 (iteration = level counter).

2. Generate a sample X 1,... , X N from the density f(-;v,-1) and compute
the sample (1 — p)-quantile 7, according to (22), provided 7, is less than
v. Otherwise set 7, = 7.

3. Use the same sample X1,... , X n to solve the stochastic program (24).
Denote the solution by vy.

4. If ¢ < vy, set t =t + 1 and reiterate from step 2. Else proceed with step
5.

5. Estimate the rare-event probability ¢ using the SLR estimate

N

~ 1 R

b=+ Y Isxsy WX u,or), (25)
=1

where T denotes the final number of iterations (= number of levels used).

Remark 2.1 In typical applications the sample size N in step 2 can be chosen
much smaller than the final sample size in step 5. When we need to distin-
guish between the two sample sizes, in particular when reporting numerical
experiments, we will use the notation N and N; for step 2 and 5, respectively.

Remark 2.2 To obtain a more accurate estimate of v* it is sometimes useful,
especially when the sample size is relatively small, to repeat steps 2—4 for a
number of additional iterations after level v has been reached.

We shall call Algorithm 2.1 the CE algorithm with the standard likelihood
ratio (SLR). The convergence of Algorithm 2.1 is given in [7].

Example 2.1 ((Natural) Exponential Family) Let X be a random vector
with density f(-;m), where n = (n1,... ,m»)" is an m-dimensional parameter
column vector. X is said to belong to an m-parameter exponential family
if there exist real-valued functions ¢;(z) and h(z) > 0 and a (normalizing)
function ¢(n) > 0, such that

f(@;n) = c(n) "™ h(z) (26)

10



where t(x) = (t1(y),... ,tm(y)) and n - t(x) denotes the inner product. The
corresponding score function (19) is given by

Ve(n)

Vin f(z;n) = )

+t(z),

so that the solution to the CE program (23) (with € instead of u, and 7 instead
of v) follows from

Ent11{5(x>>%}W(X;u,nt_1){ +t(x>} —o, (27)

where the likelihood ratio is given by

c(0 .
W(X;6,m) = %e“’ HX)

Equation (27) can often be solved analytically. It is interesting to note that
second moment of each term I(X)W(X) = I;gx)>3W(X;8,n) of the SLR
estimator (7) can be expressed (see for example (5.3.33) of [24]) as

Now let us turn to an important special one-dimensional case. Specifically,
let X be a random variable from an exponential family (26) with ¢(z) = z. X
is said to belong to a natural exponential family (NEF) that is parameterized
by the mean if the density of X belongs a class {f(z;v)} with

F(z;0) = ™1 =S p(g)

where v is the mean (expectation) corresponding to f(-;v). Note that if h(x)
is a pdf, then ( is the corresponding cumulant function:

¢(s) = In / e*h(z),

and f(-;v) is obtained from A by an exponential change of measure with twisting
parameter n(v). Let X ~ f(x;u) for some nominal reference parameter u. Then
[7], the maximizer v* of (23) is given by

oo = Budisoon X B W(Xsu,w) Iisex)>gy X

_ _ , 29
By Itsx)>yy - Bulisx)>y WX u,w) 29

11



for any reference parameter w.
The estimator v of v* in (29) can be obtained analytically from the solution
of the stochastic program (23), that is,

SN Iisxs W (X5 u,0) X;

(30)

V=

where X1,..., Xy is a random sample from the density f(-;w).

A similar explicit formula can be found for the case where X = (Xq,...,
X,,) is a vector of independent random variables such that each component X
belongs to a NEF parameterized by the mean. In particular, if u = (uq,... ,uy)
is the nominal reference parameter, then for each 7 = 1,... ,n the density of
X is given by

il ug) = o@n(uj)—C(n(u;)) hi(z).

It is not difficult to see that under independence assumption the problem (23)
becomes “separable”, that is, it reduces to n subproblems. Thus, the optimal

reference parameter vector v* = (vj,... ,v}) is given by
o = Bulisxen X Bwlisoen WX u,w) X; (31)
T Bl Ew Its(x)>m W (X5 u, w)

Moreover, we can estimate the jth component of v* as

5 S Lisx) 5y WX i3 u, w) X (32)
J )
Y Isx)s W (X u, w)

where X 1,... , Xy is a random sample from the density f(-;w), and Xj; is the
jth component of X;.

2.1 Examples

For better insight we present now two examples with both light and heavy
tails while using Algorithm 2.1 with the standard likelihood ratio. Although
the quantities of interest can be computed analytically, we present them to
illustrate the Algorithm 2.1. It is important to realize that in both examples
we obtain the optimal reference parameter for the SLR estimator via the cross-
entropy optimization, via explicit formulas such as (29). On the other hand, in
order to study the complexity properties of the SLR estimator we derive the
SCV of the estimator via formulas of type (28) for exponential families.

Example 2.2 Suppose we are interested in estimating ¢ = £(y) = P(S(X) >
7v), where

S(X) = min(X1, ..., Xn) (33)

12



and the random variables X1,... ,X,, are exponentially identically distributed
with mean u; thus each X; has density f(-;u) = v~ exp(—zu~!),z > 0. Obvi-
ously,
n
-1
t=T[P&Xi>q)=e""" . (34)
i=1

For large «y, the squared coefficient of variation (SCV) of the crude Monte Carlo
(CMC) estimator (see (2)) is
1 -1
2 ~ AU

k() e .
Hence the CMC estimator has ezponential complexity in «. It is easy to verify
from (28) that for i.i.d. and exponentially distributed random variables X;, we
have that

v? "
EuI{s(x)>nW (X5 u,0) = (7@42@ - u)> B Iisx)>yy - (39)
It follows that the variance of the estimator (25) is
~ 1
Var(f) = N {Bulfmin(xy,... x0)s W (X u,0) — £2}
1 v? " 9
- N { (W) B e Hmin(X1,0 X) >} — £ }
L N ey g
N [\ u(2v — u)
1

Consequently, the SCV of lis given by

w2er™ )\
R (.7) = % { (u(2v7— u)) a 1}

Since the exponential distribution belongs to a NEF which is parameterized
by the mean, we can apply formula (29) directly and obtain that the optimal
reference parameter is given by

vi=u+y.

For large v > u we have that v* ~ ~, and the SCV becomes

W) % e (2u) (36)
where N is the sample size. That is, for large -y, the SCV s2() of the CMC
and of the SLR estimators (with the CE optimal parameter v* ~ «y) increase in
v exponentially and polynomially, respectively. In other words, the CMC and
the SLR estimators can be viewed as ezponential and polynomial ones.
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Example 2.3 (Heavy tails) As mentioned earlier, unlike the ECM the SLR
estimate (25) is not limited to light-tail distributions but can also be applied to
heavy-tail distributions. To illustrate this, we generalize Example 2.2 for n = 1
to the Weibull case. Specifically, consider the estimation of £ = P(X > ) with
X ~ Weib(a,u 1), that is, X has density

flz3u) =aut (u? x)a_l e (“_lm)a, z>0. (37)

To estimate ¢ via the CE method we shall use the family of distributions
{Weib(a, v~!),v > 0}, where a is kept fixed. Note that for a = 1 we have
the exponential class of distributions.

Using the CE approach, we find the optimal CE reference parameter by
solving

v v

oo
max D(v) = max/ f(z;u)In f(z;v) dx,
g
or, equivalently, by solving
o0 d
/ flz;u)—In f(z;v)de =0. (38)
. dv

Substituting (37) into (38) yields the following simple expression for the optimal
CE reference parameter v*:

vF = (ua +,Ya)1/a ) (39)

This is true for any a > 0. Note that {Weib(a,v™"),v > 0} is an exponential
family of the form (26), with t(z) = 2%, n = —v~ %, ¢(n) = —nand h(z) = az® .
So we can obtain (39) also via (27) as the solution to

1
EoI{x3) {5 +X“} 0, (40)

with 6 = —u™®. R
Similar to Example 2.2 and (28) the variance of the SLR estimator ¢ for any
reference parameter v is found (after some algebra) to be

~

1
Var(f) = W{EUI{X27}W(X;U7U)_£2}

1 o(1/0)° .
- N{w/v)a[z—(u/v)a]g g}’

where we have used the fact that ¢ = e~ (7/w)* .AIf we substitute v above with v*
and divide by ¢2, we find that the SCV 2 of £ is given by

1 few ((555) 1+ ey
N 2(y/u)® + 1

14



It follows that for large v/u

EIOEA ()"
N 2 \u
In other words, the SLR estimator ? has polynomial complexity in vy, for any
a > 0, including the heavy-tail case 0 < a < 1. It is a common misunderstand-
ing that IS only works for light-tail distributions. In this example we saw that
polynomial complexity can be easily obtained by using the CE method. But
we can do even better! In Section 3 we will see how with the TLR method we

can in fact achieve an SLR estimator with bounded relative error, meaning that
the x2 is bounded by ¢/N for some constant ¢ which does not depend on 7.

Remark 2.1 Consider (24). Assume that the X;’s are independent and X; ~

Weib(ai,ugl), i =1,...,n. It is readily seen that for fixed a;, i = 1,...,n,
program (24) can be solved analytically, and the components of v = (v1,... ,7,)

in Weibull pdf can be updated as

N ~ a\ /e
D = (Zk:l I{S(X“W}W(X’“;“’”tl’j)X’“> . (41)

it Isxsan W (X k3 4, 0-1,5)

A different parameterization of the Weibull distribution gives an even sim-
pler formula. Namely, if we use the change of measure

X, ~ Weib(a,u_l/“) — Weib(a,v_l/“) , v>u,
thus,
flz;v) =av tatt e v T

Then the v-parameters are updated as

N ~
5. = 2=t L5 W (X u, B15) X
J T N ~ :
> k=1 Lis(x )7 W (X ks u, Up—1,5)

(42)

Remark 2.2 (Two-parameter update) For the Weibull distribution it is
not difficult to formulate a two-parameter updating procedure in which both
scale and shape parameter are updated. Specifically, consider the change of
measure
. —1/a; . —1/b;
X; ~ Weib(a;, u; ) — Weib(b;, v, ), vi>0,b>0.

The updating formula for the v; is given in (42), but an analytic updating of
the parameter vector b = (by,... ,by,) is not available from (23). However, the

gradient of ﬁ(b, v) with respect to b can be easily obtained from the gradient
Veln f(X;b,v). It is readily seen that the ith component of VjIn f(X;b,v)

15



for the random vector X with independent components X; ~ Weib(bi,i)\.*l/ bi),

(3
1=1,...,n equals
X0
by' +InX; — =+ In X;. (43)
v;
Consequently, the i-th component of b can be obtained from the numerical
solution of the following nonlinear equation

1 & X0
N ZIka(bi_l + In Xy; — - “In Xp;) = 0. (44)
k=1

)
Substituting v; from (42), into (44) we obtain

S Wi ln X o0y Wi X In Xy,
>t Wi S WXy

One might solve (45) using the bisection method, say.

b+

~0. (45)

Remark 2.3 (Hazard rate twisting) It is interesting to note that hazard
rate twisting [19] often amounts to SLR. In hazard rate twisting the change
of measure for some distribution with pdf f (with support in R;) and tail
distribution function F is such that the hazard rate (or failure rate) \(z) =
f(x)/F(z) is changed to (1 — @)A(z), for some 0 < @ < 1. The pdf of the

changed measure is now
falz) = A(z)(1 — 0) e~ (=A@,

where A(z) = [ AM(y)dy. In particular, for the Weib(a,u ') distribution we
have A\(z) = au™'(u~'z)® and A(z) = (u™'2)?, so that

folw) = (1 = O)au™ (u™ ")~ e (=000,

which corresponds to the SLR change of measure Weib(a,u ') — Weib(a,v 1),
with v=' = (1 — )'/%~"!. Similarly, for the Pareto(a,u") distribution, with
F(z) = (14 z/u) D, we have A(z) = au '(1 + v 'z)"! and A(z) =
aln(l +u~'z), so that

fﬂ(I) = (1 — 9)(1]“71(]_ + u*1$)7((1—0)a+1)’

so that hazard rate twisting with parameter 6 corresponds to the SLR change
of measure Pareto(a,u ') — Pareto(b,u ') with b = (1 — #)a. Note that in
the Weibull case the the scale parameter " is changed whereas in the second
case the shape parameter a is changed.

3 The TLR Method

In this section we present the transform likelihood ratio (TLR) method as a
simple, convenient and unifying way of constructing efficient IS estimators that
are applicable for both light- and heavy-tailed distributions.

16



Let X be a random vector. Suppose we wish to estimate

t=Elig(x)>y} -

The TLR method comprises two steps. The first is a simple change of variable
step. That is, we write X as a function of another random vector Z, for example

X =H(Z). (46)
If we define

S(Z) = S(H(Z)),
then

t=El5z)>) -

Suppose Z has density h(-; @) in some class of densities {i(-;7)}. Then we can
seek to estimate £ efficiently via IS using either the SLR method (staying in the
same parametric class) or ECM. The parameter updating can again be done
via the CE method. In particular, when using the SLR method we obtain in
analogy to (25) the estimator

N
Z 5(Z::0)>v} (Zl7 0.n), (47)
where WZ::0)
W(Z;0,n) = ——"""
(25501 = 5 Zsm)

and Z; ~ h(z;n). We shall call the SLR estimate (47) based on the transfor-
mation (46), the transform LR (TLR) estimate.

To find the optimal parameter vector n* of the TLR estimator (47) we can
solve in analogy to (23) the following CE program

max D(n) = 3% Fn,_ 157 1) W (Z30,m) WA(Zim)  (49)
and similarly for the stochastic counterpart of (48). For example, h(z; @) might
be any light tail NEF pdf, (and thus, the optimal reference parameter vector
n* could be obtained analytically from the stochastic version (counterpart) of
(48)), or h(z; @) might be a truncated version of the original pdf f(z), denoted
as f(@;c), where the truncation parameter ¢ could be controllable as well.

It is crucial to understand that in contrast to the SLR estimate (25), its TLR
counterpart (47) involves an additional stage, namely it uses the transformation
stage (46). As result, the TLR estimate (47) presents a three-stage procedure
rather then on a two-stage one (see (25)). Note that the three-stages of TLR
are associated with

1. Transformation from the original pdf f to an auxiliary one h.

17



2. Updating the parameter vector n (at each iteration of Algorithm 2.1)
using the stochastic counterpart of (48).

3. Estimating ¢ according to (47) with ) replaced by B, which presents the
solution obtained from Algorithm 2.1 at stage two.

the transformation stage (46) an exponential pdf is used.

Example 3.1 (Inverse Transform Likelihood Ratio)
Consider the single-dimensional case. According to the inverse transform (IT)
method a random variable X ~ F'(z) can be written as

X =F Y(2), (49)

where Z ~ U(0,1) and F~! is the inverse of the cdf F.

Let h(-;v) be another density on (0, 1) dominating the uniform density, and
parameterized by some reference parameter v. An example is the Beta(v, 1)-
distribution, with density

h(z;v) =v2""t, 2€(0,1),
with v > 0 or the Beta(1, v)-distribution, with density
h(zv)=v(1—2)""", 2€(0,1).

The TLR estimator is given by

N
~ . —~
r=N"1>" Lissn W (Zisv) (50)
i=1
where Z1,... ,Zy is a random sample from h(-;v) and
W(Ziv) = — (51)
T hZ)

is the LR. We call (50) the inverse transform - likelihood ratio (ITLR) estimator
[22].

Consider next the multivariate case where the components of X = (X, ...,
X,) are independent and X; ~ F(-;u;) for a fixed parameter vector u =
(w1,... ,up). In analogy with the univariate case we wish to estimate, for
some performance function S,

t=Eli5x)>0 = EI{§(Z)27} ’
where §(Z) = S(FY(Z1;w1), ... , F Y (Zniun)), Z = (Z1,... , Zy),and Z;, j =
1,...,n are i.i.d. and uniformly distributed on (0,1).

Let h(-;v) be another density on (0,1)" dominating the uniform density, and
parameterized by some reference parameter vector v. For example, we could

18



choose h such that the Z;’s are independent with a Beta(1,v;)-distribution, in
which case

n
V) = H Vi (1 - zi)yi_la z € (05 l)na (52)
i=1
with v = (v1,... ,vy). As in the univariate case we have the ITLR estimator
7 —1
l= Z Ligizsn W (Ziv) (53)
respectively, where Z1,... , Zy is a random sample from h(-;v) and
e 1
W(Z;v) = . 54

Note that Algorithm 2.1 remains the same for the ITLR approach, provided
the CE programs (23) and (24) are replaced by

mBXD( )—maxE,,t Ligzy590 W(Z;vi_1)Inh(Z;v), (55)

and

max D (v = max ZI{S W(Zi;D,1) Inh(Zs;v), (56)

v

respectively, where Z; ~ h(;0_1) .

In particular, for the case (52) where the Z;’s are independent and Z; ~
Beta(1,v4), i = 1,...,n (56) can be solved analytically, and it is not difficult
to see that the components of v = (v4,... ,1,) are updated as

Zf{s W(Zi; D 1)
/V\t,j = ) (57)

Z W(Z3;0:-1) In(1 — Z;j)

where Z;; is the j-th component of Z;.

The following example shows that (I)TLR can lead to a more efficient esti-
mator than the SLR method.

Example 3.2 (Example 2.2 continued) Suppose, as in Example 2.2, that
we are interested in estimating £ = P(S(X) > v), where

S(X) =min(X1,...,X,), Xi,...,X, ~ Exp(u™"). (58)
In this case we can write

Xi=—-uln(l—-2%;),i=1,...,n, (59)
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where Z; ~U(0,1), i =1,... ,n and Z,... ,Z, independent. We have

S(Z) = min(—uln(l — Z;)) = —uln(l — miin Zi) ,

)

so that

t=P(5(2) > v) =P(min Z; > 1 —1),

with p=e 747",

Let h(z;v) = [, vz !, v > 0 be the dominating density on U™(0,1) for
Z. Note that (by symmetry) we choose all component pdfs the same, this in
contrast to (52). To find the optimal v we need to solve the CE program (55),

which for this case reduces to

rggg{D(y) = r,flfa(]EI{g(Z)Zl—n} E(IHV +(v—-1) InZ;)
1=

Equating the gradient with respect to v to 0 gives

, nEl(gz2)>1 )

v =—
EL5(z)>1 o) I Zi

B " _ n
nnn—1 fqlq Inzdz In(l—n)(1-n)+n

It follows that for small n we have
/A S (60)

To find the asymptotic SCV x? we need to find fist the variance of the ITLR

estimator /. Let V(v) be the second moment of I3z W(Z;1,v). We have

>v}

E, (ﬁ I{Zi>1n}>2' (ﬁy

V(v)

From (61) and (60) we have for small n

n2-*

2_7277_1[1 - (1- n)Q_Q"I]} :

v~ {
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So that, for small 5

(62—1)n 2
V)~ ———L P
) e
For ¢ we have
n 1 "
t=1[Pzi>1-n) = /1dz =",
=1 -7
Finally,
V(v* 2 _1\"
N x k% = 2’2’)—1z<e4 )—1. (62)

Note that x2 in (62) does not depend on 7 and therefore neither on +.
Consequently, the corresponding estimators are of bounded relative error in 7.
Comparing (62) with N x k? = 7" (2u) ™" = (—Inn)"(e/2)" in (36), it readily
follows that the former (ITLR) is much faster than the latter (SLR), especially
when + is large.

The following proposition illustrates the usefulness of ITLR for estimating
small probabilities, for any distribution. In the results below the uni-variate
ITLR method is used with a Beta(r, 1) change of measure. It is important to
realize that this CM may not be appropriate for similar problems concerning
multi-variate random variables. Indeed the Beta(rv, 1) CM may give exponential
complexity, whereas a Beta(1,7) CM could give polynomial complexity.

Proposition 3.1 Let X be distributed as L(1—Z2), with Z ~ U(0, 1), for some
monotone increasing function L on (0,1). Then, estimating £ = P(X > v) via
ITLR using the {Beta(r, 1), v > 0} family of distributions gives an LR estimator
with bounded relative error.

Proof. The proof uses similar arguments to the ones used in Example 3.2.
First, we write £ = P(X > ) as £ = P(Z > 1 —n), with n = L~!(v). Hence, if
we estimate £ via the IS density

h(z;v) = vz’ 1, (63)
then the optimal CE parameter is given, analogously to (60), by

. 7
vV = ~ —
n+(1-n)ln(l-n) n

as 11 — 0. Moreover, the corresponding SCV satisfies

b

2
NXKZNe —1

— 1~ 0.597264 . (64)

Note that this is independent of 1 (and hence 7). Thus, the estimator is of
bounded relative error.
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Example 3.3 (Example 2.3 continued) Let X ~ Weib(a,u™!). That is, X
has cdf F' given by

Flz)=1-—e @2 2>0.
We wish to estimate £ = P(X > ~) =e © " for large . Using
L(z) =u (~Inz)e, ze(0,1),

we can write £ = P(Z > 1 —n), with Z ~ U(0,1) and n = e " ')". Hence,
by Proposition 3.1 we can efficiently estimate ¢ via ITLR using the Beta(v, 1)
density, yielding an SLR estimator with bounded relative error given in (64).
Note that this is true for any shape parameter a¢ > 0, including the heavy-tail
case 0 < a < 1.

4 Equivalence between SLR and TLR

As we have seen the TLR method can be viewed as a generalization of the
SLR method, involving an additional transformation step. In this section we
illustrate that seemingly different implementations of SLR and (I)TLR may in
fact be completely equivalent.
Let X1, Xo,...,X, be ii.d. Weib(a,u!) distributed and consider the esti-
mation of a general rare event probability
t=P(5(X) =)

for large v using importance sampling. We consider three methods.

(1) SLR with Weib(a,v!) twisting, fixed a

The first method is a straightforward change of the Weibull scale parameter, as
in Example 2.3. In particular, we consider the change of measure

X, ~ Weib(a,u ') — Weib(a,v '), v>u.

Note that the problem is of the form discussed in Remark 2.1; but by symmetry
we know that the components of the reference vector must be equal. This leads
to slightly different updating formulas, namely:

™ — n a l/a
lefvil Iis(x >0 W (X g u, Up—1)

(2) ITLR with Beta(l,v) twisting

In the second method we estimate ¢ via the ITLR method. First, write X; ~
Weib(a,u ') as

X; = u(~In(1 - Z)"/*,
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with the Z; i.i.d. U(0,1) = Beta(1,1). We now apply a change of measure on
the distribution of Z;:

Z; ~ Beta(1,1) — Beta(l,v) 0<v <1.

Define S(Z) = S(X). The CE updating formula is, similar to (57),

N
2 5z W (Zis 1, 9i1)
D =-— L : (66)
ZI{S'(zi)z }W(Z,,l,z/t 1 Zlnl— )
i=1

where Z;; is the j-th component of Z;.

It is interesting to compare the present ITLR method with the previous
Weibull change of measure. Since, Z; can be written as Z; =1 — (1 — Ui)l/”,
with U; ~ U(0,1), we have

1/a
Xi=u (— In ({1 — Ui}l/l’))
v (—In(1 — U.))l/a
Jija i )
so that under the change of measure Z; ~ Beta(1,1) — Beta(1l,v) we have

that X; ~ Weib(a,u 'v/%). Let us compare the behavior of the SLR and
ITLR estimators for v = ur~"/%. First of all, observe that

au L (umlX;)e e (uT X))
av—! (Ulei)aflef(v—lXi)a

::]:

W(X;u,v) =

i=1 X -
:EW =W(Z;1,v) .
This shows that
N
ZI{S A W(Xisu,v) = ZI{g(Zi)Zv}W(Z“ Lv).
i=1

In other words, the SLR estimator is identical to the ITLR estimator, provided
we take v = w1/, Note also that, in the same way, the CE updating formulas

and their deterministic counterparts are equivalent, in the sense that 7; =
u(Dy) Y and vy = u(vy) e

(3) TLR with Exp(\) twisting

Let us finally apply the TLR method with an “exponential change of measure”.
We now write X; ~ Weib(a,u 1) as

X; =uz/",
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with the Z; i.i.d. Exp(1), and apply the change of measure
Z;i ~ Exp(1) — Exp(A), 0<A<1.
With S(Z) = S(X) the CE updating formula is given by

N

ZI{S'(Zi)Z%}W(Zi;L)\tq)
5 i=1
At: N n ’ (67)
W(7Z.-1 X -1
ZI{g(Zi)Zﬁt}W(Ziala)\t—l)n ZZ”
i=1 o

where Z;; is the j-th component of Z;.
Since, Z; can be written as Z; = A ! In(1 — U;), with U; ~ U(0, 1), we have

X; =uX~ Y% In(1 - U;)Y/e

so that under this change of measure X; ~ Weib(a,u~"\'/%). Repeating the
arguments of the ITLR method above, we find that this approach is equivalent
to the two methods above, provided that we take A = v = (u/v)®.

Remark 4.1 (Sum of independent random variables) The special case
where S(X) = X; + --- + X,,, where the X; are i.i.d. with a sub-exponential
distribution was studied in both [3] and [19] via various methods, as explained
in the introduction. In particular for the heavy tail Weibull case [19] proved
(see their Theorem 3.2) that the change of measure

X; ~ Weib(a,1) — Weib(a, n'/*) (68)
provides a asymptotically optimal estimator, in the sense of (3), when we choose

n=cy (69)

no matter how c¢ is chosen. On the other hand [3] proposed an importance
sampling distribution independent of « which is consistent with the fact that
n — 0. In the appendix of this paper we prove for the case n = 2 the somewhat
stronger result that the estimator is in fact polynomial and that the variance
of the estimator is minimized for ¢ = 2; we conjecture that for general n the
variance minimal (VM) parameter is

M=ny .

In a forthcoming paper [4] it is proved that for large -y the optimal CE pa-
rameter, n* say, is indeed given by .7 above. More precisely, we show that
asymptotically

o

= Ti

*

Ui

(70)

Similar results are obtained for the Pareto distribution. Moreover, in that paper
we further explore the complexity properties of the SLR estimators applied to
various queueing models and provide numerical comparisons with other meth-
ods.
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5 Stationary waiting time of the GI/G/1 queue

Consider a stable GI/G/1 queue starting with customer n = 1 arriving at an
empty system. Let the inter-arrival time between customer n and n + 1 be
denoted by A, ~ f4 n =1,2,... and let the service time of customer n be
denoted by B, ~ fB. We assume that all the service and inter-arrival times
are independent. Let S, denote the actual waiting time of the nth customer;
hence, by definition S; = 0. The stochastic process {S,,n > 1} satisfies the
celebrated Lindley equation (see for example [1])

Sn+1 — (Sn + Xn)+,

with X,, = B, — A,, 1 = 1,2.... For a stable system the random variables
{Sn} converge in distribution to the steady-state waiting time, S say.

We are interested in estimating £ = P(S > +) via importance sampling. We
consider two methods.

The regenerative method

Using the regenerative method, see for example [24], we can write

— EZZ:l I{SnZ’Y}
Eo ’

0 (71)

where ¢ is the number of customers during the first busy period, that is
o=inf{n >1:85,=0}—-1.
Define 7 as
T=inf{n>1: S5, >~}

In other words, 7 is the first time that the process {S,} exceeds level v, if at
all.
Consider now the following switching change of measure [24].

AanA—>fA and BanB—>fB, forn=1,... ,min(7,0) .

In other words, the IS distribution changes dynamically within the cycles. In
particular, we initially use the IS densities f4 and f? for the inter-arrival and
service times until the process {S,} exceeds level , after which we switch back
to the original densities, see [24], chapter 9. By doing so the process {S,}
naturally returns to the regenerative state.
Under this change of measure the likelihood ratio of a sample A4,... , A,, By,
..., B, satisfies
A B
HM, n < min(7, o)
Wy = FAHAR) B (Br)

W, n > min(r,0) .

(72)

25



From [24], we can write
_EWo Y i Iisoyy _ BN Lsuon W
Eo Eo '

Note that the denominator of (73) can be easily estimated via CMC (no change
of measure here). The numerator of (73) (num) can be estimated as

14

(73)

N o;
1 -
num = g g Its, > Win (74)

i=1 n=1

where, S;, and W;, are the waiting time of the nth customer and the corre-
sponding likelihood ratio, for iteration 7.

Now consider the special case Ay, Ag,... ~ Weib(al,ufl) and By, Bo,... ~
Weib(ag,u; ). Using the TLR method, we may write

X, = uy (qu))l/(m o (Z(1)>1/a1 ,

n

with Z) ~ Exp(1), k= 1,2, n=1,2,..., so that

Spi1 = <Sn + 1y <Z£2)>1/a2 o <Z£1)>1/a1>+ | 75)

with S; = 0. Consider the following particular case of the switching change of
measure described above:

Z{) ~ Exp(1) — Exp(v;!) and Z?) ~ Exp(1) — Exp(vy '), n < min(r,0) .

Then (72) is given by
2 1y (k)
Whn_1 H Ve e (1=vp ) Zn , n < min(r,0)
k=1
W, n > min(r,0) .

W, = (76)

Since the ZT(Lk) are independent and have an exponential distribution we
can apply again the standard CE technique to determine/estimate the optimal
reference parameters v and v3 for the estimator (74) and achieve variance
reduction. In particular, if we define

H(Z) = ZI{SnZ'y} )
n=1

with Z = (Z{l), Zfz), . ,Z((Tl), Z(E—Z)), then, similar to Example 2.1, we have

E, H(Z)W, Y7 _, 7
B H(Z)W,r

vp = k=1,2,

for any reference vector v = (v1,v2). Note that in a multi-level CE procedure
the updating rule for the level ~; is not the “usual” quantile rule. Instead -
should be chosen such that during each regeneration cycle at least p percent of
the customers has a waiting time > ~.
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Random walk

It is well known (see for example page 173 of [24]) that the steady-state waiting
time for this queueing system has the same distribution as the supremum of
the random walk {Y,,, n =1,...}, where Y7 = 0 and

Yn+1:Yn+Xna n>1,

with X; = B; — A;, i =1,2..., and the A; and B; the same as before. Thus ¢
in (71) is the same as

¢=P(supY, > 7). (77)
n
Similar to (75) let us now (re-)define
1/a 1/a
Sp+1 = Sp + us (Zz(2)) P Ul (Zl(l)) ' , (78)

with ZZ-(k) ~ Exp(1l), k = 1,2 Then, with S = sup,, S, the estimation of (77)
(under the original pdfs {Weib(a;,u; ")} and {Weib(ag,u;"')}) is equivalent to
the estimation of

L=P(S >7).

Thus, alternatively to Itgyp v, >}, which employs Weibull random variables
we can simulate the random variable I'g,, ,>,) to estimate £, which employs
Exp(1) random variables Z(!) and Z(?). We can apply again the standard CE
technique to find the optimal IS reference parameter.

To proceed, define 7 as the first time {S,} exceeds level v or falls below
some low level —L, that is

r=inf{n >0 :S5,>~vor S, < —-L} . (79)

Consider, similar to before, the IS change of measure with Zi(k) ~ Exp(v,;l).
Typically, we seek for an IS change of measure under which the queue has a
positive drift. In that case S, > v with high probability. For —L small enough
we may write to a very close approximation

L=P(S: > 7).

It will be clear how we estimate the probability above: we run N samples of
S1,...,5; and evaluate the estimator

where

2 T

I R (5
Wr = H H Vt-1,k € SRR

k=1n=1
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Applying the CE Algorithm 2.1 it is readily seen that the deterministic updating
rules for vy = (vy1,v.2) are

— E"f—II{STZ’Yt}WT ZZLZI Zék)

EvtflI{Srz’Yt}WT T

Utk

with vg, =1, k = 1,2. This leads to the simulated updating rules

N ; j
~ D=1 I{Siri >3} Wi, >n=1 Z;(Jf

Utk = N
>im1 Iisir, >3y Wir i

?

where the simulation is run under v;_1. Note that the updating rules for method
1 and 2 are very similar. Indeed, it is reasonable to expect that the optimal CE
parameters for the two methods should coincide for large ; numerical results
indicate that this is indeed the case. Finally we remark that some care should
be taken with the choice of the low level —L. Typically, under the CE optimal
parameter the system becomes unstable and hence — L can be safely set to —oo,
but for the first iteration the system is still stable and hence —L has to be
chosen not too small in order to save CPU time.

Remark 5.1 It is important to set L in any simulation involving (79) large
enough in order to obtain a valid estimator for the steady state waiting time
probabilities. The choice of L is somewhat arbitrary. An alternative approach
is to take L = 0 and let ¢ correspond to the probability that the waiting time
process exceeds level v during a busy period. This is called the transient setting
in [24], section 9.3.2. In our numerical results we will consider examples of both
cases.

6 Numerical Results

This section presents simulation studies for the rare event probability ¢ =
P(S(X) > «) for several static and queueing models with both light and heavy
tail distributions. We shall employ both the SLR (25) and TLR estimators.

Unless otherwise specified we set in all our experiments with Algorithm 2.1
the rarity parameter p = 0.01, the sample size for step 2-4 of the algorithm
N = 10* and for the final sample size N; =5 - 10°.

For quite moderate probability like £ = 1073, we typically compare the CE
results with the corresponding CMC results.

6.1 Sum of Weibull random variables

Our first model concerns five i.i.d. Weib(a,u~!) random variables with a = 5
and ¢ = 0.2, respectively. For both cases we selected u = 1. We wish to
estimate

P(Xi 4+ 4+X5>7).
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Tables 1 and Tables 2 present, for the cases a = 5 and a = 0.2, respectively,
the performance of Algorithm 2.1 for the TLR method

X; = uZil/a, Z; ~ Exp(1) — Exp(v;")

which is equivalent to the (one-parameter) SLR method

X; ~ Weib(a,u ') — Weib(a, v, /") .

Vt

V1t

U2t

U3t

U4t

Ust

5.7
6.7
7.0
7.0
7.0
7.0
7.0
7.0

0~ O U W~ O+

Table 1: The evolution of the estimate of v; of the optimal parameters v

1
2.37
5.52
6.06
5.99
5.95
5.95
6.03
6.00

1
2.42
491
6.04
5.96
5.90
5.98
9.93
6.08

with the TLR method (80), with a =

1.6694 - 107, the relative error RE = 0.011763 and x? = 62.2

1
2.54
4.84
6.03
6.02
6.03
6.04
6.01
6.02

1
2.49
4.97
5.93
6.00
6.04
5.93
6.01
5.90

1
2.46
9.20
5.89
5.99
5.98
5.98
2.95
2.95

(80)

*

5. The estimated probability is V=

V't

U1t

V2t

U3t

V4t

Ust

9.7e+003
6.4e+005
1.0e+-006
1.0e+-006
1.0e+-006
1.0e+006
1.0e+006
1.0e+-006

00 ~J O UL WIN H O

1
245
3.06
3.68
4.37
4.13
4.15
4.10
4.18

1
2.25
3.70
5.82
3.88
4.47
4.53
4.22
4.39

1
2.55
4.28
3.92
4.13
4.11
3.98
4.40
4.35

1
1.97
3.54
3.34
4.62
3.77
3.94
4.11
4.53

1
2.12
4.62
4.35
3.67
4.37
3.99
4.16
4.11

Table 2: The evolution of the estimate of v; of the optimal parameters v* with
the TLR method (80), with a = 0.2. The estimated probability is £ = 6.54-10~7,
relative error RE = 0.0278 and x? = 386

Note that in both cases Algorithm 2.1 reaches the desired level v after three
iterations, but we have continued iterating steps 2 — 4 of Algorithm 2.1 in view of
Remark 2.2. We see that the parameter vector v; stabilizes very quickly. Note
also that we could have taken the average of the reference parameter at each
iteration as a more accurate estimate for the true optimal reference parameter.

The asymptotical value for optimal reference parameter v in the heavy tail

case is, see (70), given by

1
s

14~°

n
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In particular for Table 2 we obtain a value of (1 + 10'2)/5 ~ 3.4, which is not
too far from the observed value of around 4.2. Note that for the light tail case
the above formula does not hold.

Tables 3 and 4 present, for the same cases ¢ = 5 and a = 0.2 as above, the
performance of Algorithm 2.1 for the two-parameter SLR method

X; ~ Weib(a, u™") — Weib(b;, v; /") (81)
of Remark 2.2.

t Yt bi¢ V1t bay Vot b3t U3t bat V4t b5t Ust
0 - 5 1 5 1 5 1 5 1 5 1
1 5.19 7.57 2.84 7.10 2.69 7.03 2.63 7.40 2.99 7.25 2.67
2 5.87 9.12 8.73 8.93 7.87 9.89 10.38 10.09 10.11 10.47 10.50
3 6.41 11.22 28.51 11.86 37.42 12.10 39.75 11.27 34.33 12.21 34.50
4 6.86 12.25 70.59 12.09 106.44 14.33 153.19 14.69 238.96 14.30 158.26
5 7.00 14.43 231.51 14.13 250.12 12.96 109.01 11.25 92.41 13.88 179.26
6 7.00 14.08 201.95 13.78 206.56 13.63 167.13 12.81 128.66 14.32 246.63
7 7.00 14.04 211.85 13.99 209.57 14.22 206.02 13.33 167.56 14.01 205.50
8 7.00 14.19  202.57 13.22 193.80 13.98 183.36 12.71 133.98 13.43 193.81
9 7.00 14.00 194.39 13.35 195.35 14.25 201.32 13.04 146.14 13.74 195.68
10 7.00 14.24 200.73 13.63 191.78 13.28 185.02 12.59 124.85 14.14 202.64

Table 3: The evolution of the estimates b; and v; of the optimal parameters b*
and v* with the two-parameter SLR method (81). The estimated probability
is £ = 1.6570 - 1077, the relative error RE = 0.0041 and x? = 8.4

vt b1¢ V1t boy vat bs¢ U3t bat V4t bst Ust

- 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1
971.28 0.17 1.55 0.18 1.69 0.18 1.63 0.17 1.48 0.18 1.52
28750 0.15 1.76 0.15 2.09 0.15 1.89 0.15 1.75 0.14 1.40
461370 0.12 1.86 0.13 1.84 0.12 1.43 0.12 1.53 0.13 2.38
1000000 0.12 1.50 0.13 2.17  0.12 1.83 0.13 1.62 0.11 1.93
1000000 0.12 1.59 0.12 1.66 0.12 1.92 0.11 1.66 0.12 1.99
1000000 0.13 1.68 0.12 2.02 0.12 1.96 0.12 1.83 0.13 1.91
1000000 0.12 1.72 0.13 1.97 0.12 1.87 0.12 1.77 0.12 1.87
1000000 0.12 1.81 0.12 2.05 0.12 1.90 0.13 1.94 0.12 1.67
1000000 0.12 1.95 0.12 1.70 0.13 1.88 0.12 1.66 0.12 1.88

O 00~ U WN - O+

Table 4: The evolution of the estimates b; and v; of the optimal parameters b*
and v* with the two-parameter SLR method (81). The estimated probability
is £ = 6.5964 - 1077, the relative error RE = 0.014723 and x2 = 108.3

We see that both the one- and two-parameter methods give very accurate
results for both heavy and light tail Weibull distributions, and that the TLR
updating performs similar to its two-parameter counterpart, although repeated
measurements indicate that for the cases above the RE is about two times
smaller for the two-parameter TLR method.

6.2 Sum of Pareto random variables

Here we repeat the experiments of Tables 1 and 2 for the Pareto case. Specif-
ically, we now let the X; have a Pareto pdf f(z) = au (1 + zu~)~(1+%) and
consider the TLR change of measure

X = u (eZi/a - 1) . Zi ~Exp(1) — Exp(v; ) . (82)

30



Tables 5 and 6 present the performance of the TLR method for ¢ = 5 and
a = 0.2, respectively. For both cases we selected v = 1 and took N = 2-10°
and Ny = 106.

Tt U1t Ut U3t V4t Ust

- 1 1 1 1 1
214 190 188 1.88 193 1.93
5.06 295 294 293 293 296
13.06 3.67 3.62 3.46 3.68 3.87
2241 450 3.99 419 430 3.89
25.00 3.61 5.35 392 452 3.88
25.00 4.02 4.24 440 4.36 4.45
25.00 444 430 426 4.09 4.27
25.00 438 4.18 411 4.09 4.63
25.00 4.27 4.07 4.29 447 4.25
25.00 4.38 4.33 4.41 4.28 3.92

© 00~ O Ui W = O

—
o

Table 5: The evolution of the estimate of v; of the optimal parameters v* with
the TLR method for a = 5. The estimated probability is £ = 5.22 - 1077, the
relative error RE = 0.0238 and x? = 570.98

Yt U1t U2t U3t V4t Ust
- 1 1 1 1 1
2.6e+008 1.74 1.75 1.75 1.74 1.74
4.6e+014 2.32 234 233 238 234
4.9e4+019 2.78 2.86 2.72 2.89 2.82
4.9e+023 3.22 324 299 326 3.23
6.7e4+026 3.56 3.47 3.26 3.48 3.58
1.3e4+029 3.80 4.02 3.29 3.74 3.53
1.0e4+031 3.60 4.09 3.74 4.11 3.78
4.5e+032 3.74 4.05 3.91 3.39 4.67
9 2.8e+033 4.00 4.72 3.78 3.81 448
10 1le4+035 448 397 4.12 457 3.86
11 le+035 4.16 4.35 4.57 3.99 4.11
12 1e4+035 4.37 449 4.16 4.13 4.00
13 1e4+035 4.14 4.00 4.25 4.11 4.54
14 1le+035 412 424 444 416 4.24
15 1le+035 430 4.16 4.53 4.18 4.30

0 ~J O ULk W N O+

Table 6: The evolution of the estimate of v; of the optimal parameters v* with
the TLR method for @ = 0.2. The estimated probability is £ = 4.86 - 1077,
relative error RE = 0.0267 and * = 716.74

Although in this case the TLR change of measure (82) does not seem as
“natural” as the SLR one, where a or u is changed, we can see, however, that
again a good variance reduction is obtained. In fact, the variance reduction
with TLR was very similar to the SLR change of measure, which was also
implemented. An advantage of (82) is that only one line of the code for the
Weibull case needed to be changed.
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6.3 Stochastic shortest path

Our second model concerns a stochastic shortest path problem. Consider the
weighted graph of Figure 1, with random weights Xy,... , X5.

Figure 1: Stochastic shortest path from A to B

Suppose the rv’s Xi,..., X5 are independent of each other and have a
Weib(a;, u;) distribution, ¢ = 1,...,5. Let S(X) be the length of the shortest
path from node A to node B. Note that there are four possible paths. We wish
to estimate from simulation the probability £ = P(S(X) > ) that the length
of the shortest path S(X) will exceed some fixed ~.

We consider the light- and heavy-tail cases a; =5 and a; = 0.2, =1,... ,5.
In both cases u = (0.25,0.4,0.1,0.3,0.2).

Tables 7 and 8 present the performance of Algorithm 2.1 with the TLR
method (80), for the cases a = 5 and a = 0.2 respectively. The results are
self-explanatory.

Vt U1t V2t U3t V4t Ust

- 1 1 1 1 1
0.568  2.491 1.530 1.267 1.748 1.931
0.650 4.257 2.152 1.543 2.431 2.977
0.706  6.052 2.705 1.896 3.294 4.153
0.752 8125 3.476 2.260 4.128 5.360
0.792 10.356 4.074 2.630 4.994 6.687
0.800 10.293 4.126 2.850 5.519 7.460
0.800 10.712 4.265 2.520 5.090 7.109
0.800 10.550 4.125 2.565 5.310 7.383
0.800 10.897 4.377 2.577 5.277 7.096

© 00~ O Ui W= O

Table 7: The evolution of the estimate v; of the optimal parameter v* with
the TLR method and a = 5. The estimated probability is £ = 1.20 - 1070, the
relative error 0.044.
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Mt Vit Vot U3t V4t Ust

- 1 1 1 1 1
6.760 2.005 1.906 1.166 1.857 1.912
159.419 3.067 2.911 1.038 2.499 2.619
1070.002 4.226 3.940 1.052 3.029 3.211
4173.601 5.320 4930 0.854 3.598 3.901
11663.017  6.877 6.333 1.118 3.730 3.867
34307.081 9.237 8434 1.078 3.461 3.548
100000.000  7.030 6.623 0.842 7.762 7.658
100000.000 11.309 10.660 1.043 3.227 3.474
100000.000 14.038 13.035 0.981 1.126 1.189
100000.000 14.261 13.008 0.979 1.066 1.035

© 00 ~J O U i W N = O+

[y
jes)

Table 8: The evolution of the estimate v; of the optimal parameter vector v*
with the TLR method and @ = 0.2. The estimated probability is £ = 1.09-10~ !
the relative error 0.026.

6.4 GI/G/1 queue

Our third model is the GI/G/1 queue with inter-arrival time distribution
Weib(ay,u; ") and service time distribution Weib(ag, u]?). Note that the traffic
intensity of the queue is thus given by

UZF(l + 1/a2)
ulI‘(l + 1/a1) ’

We first consider the estimation of the probability that the stationary wait-
ing time in the queue exceeds some fixed level v, using the random walk method
described in Section 5.

In particular, with A; and B; the inter-arrival and service times, we use the
TLR change of measure

1/a1
A = (Zi(l)) / . 2 ~Exp(1) — Exp(v; ) -

1/a
B; = us (Zi(z)) fe , ZZ.(Q) ~ Exp(1) — Exp(vy ') .

Table 9 illustrates the evolution of Algorithm 2.1 for determining the CE opti-
mal parameters v; and vs to be used in the TLR estimator. In this particular
case the parameters are a; = 0.5, u; = 1, as = 0.5 and us = 0.5, which gives
a traffic intensity of 0.5. The level to be exceeded is v = 80. The sample size
used in steps 1-4 was N = 50,000. The rarity parameter p was set to 0.01.
We have repeated steps 2—4 four more times after reaching « in order to
show the accuracy of the estimation of the true optimal CE parameter. (The
corresponding estimate and RE for this case are given in Table 10.)
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L m U1 V2

0 - 1 1

1 39.5 0.774073 1.39477
2 80 0.796896  1.44949
3 80 0.813729 1.42962
4 80 0.810056  1.40465
5 80 0.799487 1.43608
6 80 0.801236 1.44118

Table 9: The evolution of Algorithm 2.1 using the TLR method for the GI/G/1
with the following parameters: a; = 0.5, v1 = 1, as = 0.5, vo = 0.5

It is interesting to note that after one iteration the system becomes unstable,
so that 7, in step 2 of the CE algorithm reaches level 7 in just fwo iterations.
This is in accordance with the instability property of the CE algorithm described
and analyzed in [6]. As a consequence, the choice of the rarity parameter does
not matter very much.

Tables 10 — 13 summarize some performance characteristics of the TLR
estimation procedure as a function of v, for various light and heavy-tail cases.
In all cases we set N = 10* and N; = 5-10°. Also, the rarity parameter p was
set to 0.1 (in fact any parameter p < 1 would be ok) and the level —L was set
low enough to —100.

In all tables we report the optimal CE parameters (recall that the original
ones are 1), the estimate of the probability, the relative error and the CPU time
in seconds.

a1 =0.5,u; =1,

as = 0.5,us = 0.5 |

5 20 40 60 80 100 120
vy 0.78 0.79 0.80 0.80 0.80 0.81
v 1.36 1.38 1.40 1.41 1.43 1.45

£ | 7.139-1072  1.152-1072 2.08-10"3 4.25-10"% 8.99-107° 2.08.-10"°
RE 0.002 0.0036 0.0067 0.016 0.020 0.045
sec 149 264 396 467 587 696

Table 10: Simulation results for method 2 for the waiting time probabilities of
a GI/G/1 queue with heavy tail inter-arrival and service time distributions, as
a function of 7. The traffic intensity is 0.5.

a; =2,u1 =1,

as = 2,us = 0.75 |

7 3 6 9 12 15 18
vi 0.56 0.56 0.56 0.56 0.56 0.56
v} 1.57 1.58 1.58 1.58 1.58 1.59
l 1.031-1072 1.63-10~* 2.60-10-% 4.15-10"% 6.63-10"10 1.56.10"1!
RE 0.0017 0.0027 0.0040 0.0053 0.013 0.016
sec 101 154 210 274 338 398

Table 11: Simulation results for method 2 for the waiting time probabilities of
a GI/G/1 queue with light tail inter-arrival and service time distributions, as a
function of . The traffic intensity is 0.75.
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a1 = 1,u;p =2,

az = l,uz = 1.5

~ 20 40 60 80 100 120

vy 0.75 0.75 0.75 0.75 0.75 0.75

v} 1.33 1.33 1.33 1.33 1.33 1.33

l 2.676 102  9.539-10—% 3.404-10"° 1.214-10"% 4.333.10"% 1.546 -10?
RE 0.00036 0.00039 0.00040 0.00040 0.00038 0.00053
sec 160 429 509 558 691 828

Table 12: Simulation results for method 2 for the waiting time probabilities of

an M/M/1 queue, as a function of . The traffic intensity is 0.75.

ap = 1lu; =1,

a2 = 0.5,us = 0.25

5 10 20 30 40 50 60
v} 0.81 0.83 0.84 0.85 0.85 0.89
v; 1.64 1.68 1.71 1.65 1.73 1.77
Y] 2.83-10"2 | 3.55-1073 | 5.63-10~% | 1.05-10"* | 2.60-10=% | 7.07-106
RE 0.003 0.0067 0.012 0.017 0.047 0.093
sec 108 190 224 306 335 407

Table 13: Simulation results for method 2 for the waiting time probabilities of
an M/G/1 queue, with heavy tail service distribution, as a function of . The
traffic intensity is 0.5.

The results seem to indicate that the RE increases (sub)linearly, but there is
not sufficient evidence to conclude that the estimators are polynomial, except
in the M/M/1 case, where the RE remains constant. In the latter case we
have the well-known optimal (exponential) change of measure where the service
and inter-arrival rates are interchanged. What is clearer is that for the light
tail case we can estimate much smaller probabilities than for the heavy tail
case, for a given accuracy (RE) and simulation effort. It is interesting to note
that for the second experiment (with a; = as = 2) quite small probabilities
can be efficiently estimated despite the fact that the TLR estimator is not
asymptotically optimal. Namely, the only asymptotically optimal estimator is
obtained by an exponential change of measure, see Sadowsky [26] and Asmussen
and Rubinstein [5], and the TLR change of measure for this case is obviously
not an exponential change of measure.

Note also that for both light-tail cases the reference parameters seem to
have “converged”, but not yet for the two heavy-tail cases. Also the estimates
for the reference parameters seem more noisy in the heavy tail case. In both
the light and heavy tail case we observed that the estimates for the proba-
bilities stabilized quite quickly (for moderate sample sizes). However, we also
observed that accurate estimates for the variance of the estimator were much
more difficult to obtain in the heavy-tail case than in the light-tail case.

We have repeated the experiments in Tables 10-13 for method 1, the switch-
ing regenerative method, using N1 = 5-10° regeneration cycles and using exactly
the same CE parameters v] and v3 as reported for method 2. The results were
very similar to those of method 2. Tables 14 and 15 give the results for two
of these experiments. We also ran the model with crude Monte Carlo, that is
method 1 with v; = vy = 1, increasing the number of cycles to 5 - 10° in order
to obtain execution times of the same order as the other methods. The SMC
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estimates were in exact agreement with the IS estimates, and the IS estimates
consistently gave a significant variance reduction, although less pronounced in
the heavy-tail case.

a1 = 0.5,u; =1,

a2 = 0.5,us = 0.5 |

7 20 40 60 80 100 120
l 7.19-102  1.161-10—2 2.08-1073 4.38-10~* 8.63-10"% 2.01.-10"°
RE 0.0087 0.011 0.017 0.029 0.034 0.071
sec 59 80 109 135 170 200

Table 14: Simulation results for method 1 for the waiting time probabilities of
a GI/G/1 queue with heavy tail inter-arrival and service time distributions, as
a function of 7. The traffic intensity is 0.5.

| a1 =2,u; =1, as = 2,us = 0.75 |

v 3 6 9 12 15 18
l 1.028 -10~2 | 1.63-10~% | 2.58-10=¢ | 4.12-10~% | 6.76-10~10 | 1.05-10" 11
RE 0.0064 0.0084 0.011 0.019 0.020 0.021
sec 51 91 167 173 212 398

Table 15: Simulation results for method 1 for the waiting time probabilities of
a GI/G/1 queue with light tail inter-arrival and service time distributions, as a
function of . The traffic intensity is 0.75.

We also conducted various experiments in the transient setting (that is tak-
ing L = 0, see Remark 5.1, and using Pareto arrival and service times. Tables 16
— 17 present two examples. Table 18 presents an example using Pareto arrival
and Weibull service time. For the Pareto case a similar TLR change of measure
as in (82) was used. In all tables 7 is as in (79) with L = 0 and SCV stands
for the squared coefficient of variation for the random variable IW in the TLR
estimator.

7 40 120 160 240 300 360
N 5.10% 5.10% 5. 107 5. 10% 5. 10% 5. 10%
Ny 5.10° 5.10° 5-10° 5-10° 108 108
n 1.76e-002  1.49e-003  4.78e-004  5.32e-005  1.00e-005  1.81e-006
RE 0.0068 0.013 0.016 0.023 0.021 0.026
7 94.26 655.96 1137.86 2075.22 3305.66 3703.51
scvV 23.46 87.73 129.57 283.18 430.81 664.02

Table 16: Transient simulation results as function of v for a GI/G/1 queue
with the inter-arrival distribution Pareto(0.5,0.4) and service distribution
Pareto(0.5,0.36). The traffic intensity is 0.9. For v = 40 the probability was
checked by CMC estimator: £ = 1.78 - 1072
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~ 25 50 80 120 250 350
N 10° 10° 10° 10° 10° 10°
N1 5.10° 5-10° 5-10° 5-10° 5-10° 5-10°
7 1.25e-003  8.72e-005  9.66e-006  2.51e-006  2.59e-007  7.54e-008
RE 0.011 0.029 0.041 0.047 0.053 0.051
7 75.60 88.26 69.75 79.20 92.18 93.76
scv 61.81 427.33 841.23 1082.71 1387.39 1301.01

Table 17: Transient simulation results as function of v for GI/G/1 queue with
the inter-arrival distribution Pareto(3, 0.75) and service distribution Pareto(3, 1).
The traffic intensity is 0.75.

7 20 50 130 160 300 400
N 5. 10% 5. 10% 5. 10% 5. 10% 5. 10% 5-10%
Ny 2-10° 3-.10° 3-.10° 3-.10° 3-.10° 3.10°
A 2.37e-003  2.20e-004  1.05e-005  8.25e-006  1.33e-006  5.75e-007
RE 0.016 0.030 0.033 0.029 0.028 0.027
7 18.38 17.21 16.03 14.44 16.08 14.92
scv 51.94 275.31 326.70 258.69 239.94 220.05

Table 18: Transient simulation results as function of y for GI/G/1 queue with
the inter-arrival distribution Weib(2,1) and service distribution Pareto(2.5,1).
The traffic intensity is 0.75225.

6.5 Two non-Markovian queues with feedback

As a final example, we consider the network depicted in Figure 2. It consists
of two queues in tandem, where customers departing from the second queue
either leave the network (with probability p), or go back to the first queue (with
probability 1—p). We are interested in estimating the transient probability that
the total number of customers in the network exceeds some high level, 50 in this
example, during one busy cycle. This model was also considered in [6], using
only light-tail distributions and applying IS with exponential twisting.

TS

n n, 1-p

Figure 2: Two queues in tandem with feedback

In the experiments reported below the inter-arrival time distribution is a
two-stage Erlang distribution, with exponential parameter A\ = 0.2. The service
time distributions of the first queue is uniform on [0, 3.333]. In the second queue
the service time distribution is Weib(a, ¢). In Table 19 we consider the light tail
case with ¢ = 2 and ¢ = 0.354491, which gives a mean service time of 2.5, while
in Table 20 we consider the heavy tail case with ¢ = 0.8 and ¢ = 0.453201,
which gives again mean service time of 2.5. We note that this is the same mean
service time as in [6]. In the tables, € is the the exponential twisting parameter
for the uniform distribution. The A column gives the evolution of reference
parameter for the Erlang inter-arrivals, and similar for U and p.
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t v A 0 ¢ P

0 3.0 0.200000 0.000000 0.354491 0.5

1 50 0.342317 -0.023671 0.294095 0.177778
2 50 0.363233 0.000000 0.315648 0.225282
3 50 0.360159 0.000000 0.320599 0.234336
4 50 0.360873 -0.003051 0.320986 0.234113
5 50 0.358857 -0.003623 0.320894 0.235779
6 50 0.360186 -0.000707 0.320591 0.234769
7 50 0.359469 -0.003483 0.320718 0.234796

Table 19: Simulation results for the non-Markovian network for £ = 50. Here
N = N; = 10%. The estimated probability is £ = 1.62e — 25, the relative error
RE =0.018

We see that the optimal CE parameters are estimated quite accurately for a
relatively small N. Since the second queue is the bottleneck state independent
tilting, changing the parameters irrespective of the state of the queue, seems
to work nicely, and the TRL method seems to deliver an accurate estimate
of a very small probability. No numerical results are available for validation;
therefore, we repeated the experiment various times. The fact that we obtained
similar estimates gives confidence.

Yt A 4 c P
3.0 0.200000 0.000000 0.453201 0.5
50 0.300620 0.000000 0.263503 0.3019
50 0.301135 0.000000 0.263982 0.3031
50 0.301291 -0.000000 0.264346 0.3026
50 0.300832 0.000000 0.263580 0.3031
50 0.301350 -0.000000 0.263770 0.3029
50 0.300620 0.000000 0.263503 0.3019
50 0.301135 0.000000 0.263982 0.3031

O U W N = O

Table 20: Simulation results for the non-Markovian network for £ = 50. Here
N = N; = 10°The estimated probability is ¢/ = 4.323e — 18, the relative error
RE = 0.0079

For this heavy tail case a similar picture emerges: the estimates for the
reference parameters are quite stable a small probability can be estimated with
reasonable accuracy. However, when we repeat this for a smaller a (a = 0.5)
the results were not so satisfactory, indicating that a (much) larger sample size
is required.

A The sum of two Weibulls

As noted in Remark (4.1) for the sum of n heavy-tail Weibulls, the change of
measure given by (68) for any constant ¢ in (69) gives an SLR estimator which
is asymptoticall optimal. A proof of this is given in Theorem 3.2 of [19]. In
this appendix we prove that for the case n = 2 and for large v the best, that is,
minimum variance, choice for ¢ is ¢ = n = 2 and that the estimator is not only
asymptotically optimal, but in fact polynomial. We conjecture that in general
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c = n. We show explictly that the relative error grows (for n = 2) as y?%, and
we conjecture that in general it grows as y"*. The proof below uses the TLR
representation of the change of measure, but it could as easily have been given
via an SLR approach. Most of the result hold for the light (¢ > 1) and heavy
tail @ < 1 case, except when the subexponentiality property is used for the
heavy-tail case. Without loss of generality we take u = 1.

Thus the problem is as follows: Let X, Xo be i.i.d. Weib(a, 1) distributed;
estimate

C=P(X1+ Xy >v) =P(Z/"+ 2/ > ),

with Z; ~ Exp(1), independent. Consider the exponential change of measure
Z;i ~ Exp(l) — Exp(1 — 0), where 0 < 6 < 1 is the exponential twisting
parameter. Let Ey denote the corresponding expectation operator. Thus Eg
corresponds to the original Exp(1) distribution. We have

EZEGI{ZI/Q—FZI/“ }W
Here W = W (0) is shorthand notation for the likelihood ratio

79(214»22)
_ o 0(Z1+Z2)+2¢(0) _ €

where we have used the fact that the cumulant function for this exponential
family is given by () =In(1/(1 — 0)) = —In(1 — 6).

There does not exist a simple formula for £ as a function of ¢ and ~y, but it
is not difficult to verify that

( // // +2 // ) Z1+22 dzleZ
A As Ag
= exp (—y"2'" a)+2/7/2 exp( {’Y—xl/“}a—x> dz
0 )

where the regions A;, A and A3 are given in Figure 3.
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Figure 3: £ is equal to the integral of e (?11%2) gver the shaded region.

Let us mention some known facts about ¢. First, for the heavy-tail case
a < 1 it is well-known that the Weibull distribution is sub-exponential, which
means that the sum of n i.i.d. Weibull random variables satisfies
P(X 4+ X, > )

li -
el P(X; > 7) "

In particular, for our n = 2 case we have that

lim E(v)a
y—o00 27

For a = 1 it is not difficult to see that
L=e"T(y+1).
For a > 1 one can show that

lim 490)

S =7 e = €@

for some constant c(a), decreasing as « increases. For example, for a = 2,
c(a) = \/7/2 and for a = 3, c(a) = V37 /4.

Let us now turn to the complexity properties of the TLR estimator, as a
function of . This is, as always, determined by the second moment (under 0)

of the random variable IW = I{le/“+Z;/“27}W(0)' Using a simplified notation
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we have

Ey (IW)? = By ITW?
=Ey IW

e 9(Z1 +Z2)

]Eofio

S )

We wish to show that the SCV increases at most polynomially in v, for a certain
choice of #. This is equivalent to showing that Fy(IW)?/£? increases at most
polynomially in . We do this by considering the contributions of the three
integrals in (84) individually.

Define D; = ffA %Wdz,i = 1,2,3. The easiest of these is Dy;

. o (1H0)(7/2)7 \ 2
=\ Time )

It follows that for fixed 0

Dy _ 4 s et {102 2}
vooo 02 (1 — 62)2 vlggoe =0

namely

?

provided that 1+ 6 > 2% or equivalently 1 — 6 < 2 — 2%,
Second, we have

. [e%¢] o0 e*(1+9)(zl+22) 1 o
D, <Dy = A T a—— O
1> 1 /0 /y“ (1 _ 0)2 (1 - 92)2

The contribution of D; to the SCV is therefore bounded by

D _ 1 — 7 (140—2)
2 ~ 2 © :
¢ 2(1—-62?)

As a consequence, this contribution remains polynomial in v if we choose 6 =
1 — ¢y~ ®, for any c. In that case

51 B ec,.y4a
2280 4c2(c — 2y2)2

If we minimize this with respect to ¢, we obtain for fixed  the minimal argument
==y +4+2.

For large v we have thus ¢ ~ 2. This suggests we take

0=1-—2y"1*.
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It is obvious that with this choice of # the contribution of Dy to the SCV is
tends 0, as 7y increases. It follows that

2D, + D e?

It remains to show that the contribution of D3 remains polynomial. We have

27 7/2 1+9)(Z1+Z2)
2 / /7 zl/“ 1= 0) dz

T o(1- 9) 1+06)

where
2 a
ds = /(7/ ) e21" g (1+0)z {e_(H‘g)(’Y_zl/a)a — e_(1+0)7a}dz >0.
0

(1+6)=

For fixed z and @ = 1 — 2y~ write the integrand of d3 as e~ g(z,7), where

g(z,7) = 2" {2 (1=21/2/7)" _ o227y

1/a @ 1/a @
:exp{’ya [2-2(1—z7 ) +2(1—Z7 ) }—e2

decreases monotone to 0 as v — 0o. By the monotone convergence theorem, it

follows that d3 — 0 as well, as ¥ — oo. Hence, we have D3//? = o (72“).
Concluding, for a < 1 we have proved that with the exponential twist 8 =

1 — 2y7% the SCV of the TLR estimator increases proportionally to %

v — o0, that is

() = O(¥**) as v — oo (85)

It is interesting to note that x? decreases with a, that is as the tail of Weibull
pdf becomes heavier.

We conjecture that for arbitrary n the optimal twisting parameter is asymp-
totically 6" =~ 1 — ny~® and that the SCV increases proportionally to ~™¢
v — 0.
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