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Abstract The cross-entropy (CE) method is an

adaptive importance sampling procedure that has

been successfully applied to a diverse range of com-
plicated simulation problems. However, recent re-

search has shown that in some high-dimensional

settings, the likelihood ratio degeneracy problem
becomes severe and the importance sampling es-

timator obtained from the CE algorithm becomes

unreliable. We consider a variation of the CE method

whose performance does not deteriorate as the di-
mension of the problem increases. We then illus-

trate the algorithm via a high-dimensional estima-

tion problem in risk management.

Keywords cross-entropy, variance minimization,

importance sampling, Kullback-Leibler diver-
gence, rare-event simulation, likelihood ratio

degeneracy, t copula.

1 Introduction

The cross-entropy (CE) method is a versatile adap-

tive Monte Carlo algorithm originally developed
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for rare-event simulation by Rubinstein (1997, 1999).

Since its inception, it has been applied to a di-

verse range of difficult simulation problems, such
as network reliability estimation in telecommuni-

cations (Hui et al, 2005; Ridder, 2005), efficient

simulation of buffer overflow probabilities in queu-
ing networks (de Boer et al, 2004), estimation of

large portfolio loss probabilities in credit risk mod-

els (Chan and Kroese, 2010), adaptive proposal

design for Markov chain Monte Carlo (MCMC)
methods (Keith et al, 2008) and particle filtering

(Cornebise et al, 2008), marginal likelihood com-

putation in Bayesian statistics (Chan and Eisen-
stat, 2011), and other rare-event probability esti-

mation problems involving light- and heavy-tailed

random variables (Kroese and Rubinstein, 2004;
Asmussen et al, 2005). A recent review of the CE

method and its applications can be found in Kroese

(2011); a book-length treatment is given in Rubin-

stein and Kroese (2004). Despite its wide applica-
bility, recent research has shown that in some high-

dimensional settings, the likelihood ratio degener-

acy problem becomes severe and the importance
sampling estimator obtained from the CE algo-

rithm is unreliable (e.g., see Rubinstein and Glynn,

2009; Chan and Kroese, 2011). This calls for new
approaches that can handle rare-event probability

estimation in high-dimensional settings.

The purpose of this paper is threefold. First, we
show why the multi-level CE method often breaks

down in high-dimensional problems. In fact, we

demonstrate that it fails because the importance

density obtained from the multi-level procedure is
suboptimal. Second, we introduce a new variant
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of the CE method that can at least ameliorate

the degeneracy problem. This is achieved by ob-

taining the importance density in one single step,

thus avoiding the multi-level procedure altogether.
We demonstrate that this simple twist of the CE

method gives an estimator that is accurate even in

high-dimensional settings. We further show that
the proposed approach provides a practical way

to locate the minimum variance importance sam-

pling estimator within any given parametric fam-
ily of densities. Lastly, we illustrate the utility of

the proposed approach by applying it to a high-

dimensional estimation problem in risk manage-

ment — estimation of large portfolio loss proba-
bilities under the recently proposed t copula model

of Bassamboo et al (2008). We show that this im-

proved CE estimator outperforms existing impor-
tance sampling estimators.

It is worth mentioning that there is a related lit-

erature on estimating the normalizing constant of
an arbitrary density by MCMC methods; see, for

example, Gelfand and Dey (1994), Newton and

Raftery (1994), Chib (1995), Chib and Jeliazkov
(2001), Gelman and Meng (1998), among many

others. Although these methods may be adapted

to estimate rare-event probabilities, they are not

suitable for these problems. This is because in rare-
event simulation a high level of accuracy is typi-

cally required. Since MCMC draws often exhibit

high autocorrelation, especially in high-dimensional
settings, a substantial number of draws is needed

to achieve the level of accuracy required. To com-

pound the problem, MCMC draws are generally
costly to obtain. Therefore, using these methods in

rare-event settings is simply impractical. In con-

trast, the proposed method is essentially an im-

portance sampling approach and, as such, it cir-
cumvents these drawbacks by generating indepen-

dent draws from some convenient density, where

the computational cost of obtaining extra draws is
often trivial. Although the proposed approach also

requires MCMC draws for obtaining the optimal

importance density, the number of draws needed
is typically small. It is therefore no surprise that

in rare-event simulation, importance sampling is

the dominant approach.

The rest of this article is organized as follows. In
Section 2 we first describe the conventional CE

method for rare-event probability estimation, and

highlight the rationale for the multi-level approach.

Section 3 suggests reasons why the multi-level CE

method often breaks down in high-dimensional prob-

lems, and introduces a new variant that is robust

against the curse of dimensionality. We then dis-
cuss how the proposed approach can be used to lo-

cate the importance sampling estimator with min-

imum variance within any parametric family in
Section 4. Finally, in Section 5 we apply the pro-

posed methodology to a high-dimensional estima-

tion problem in risk management.

2 The CE Method for Rare-event

Probability Estimation

In Monte Carlo simulation, one fundamental prob-
lem is the efficient estimation of the possibly high-

dimensional integral of the form:

EfH(X) =

∫
H(x)f(x)dx, (1)

where X is an n × 1 vector of random variables
with probability density function (pdf) f and H :

R
n → R is a real-valued function. In fact, one im-

portant class of difficult problems is the estimation
of rare-event probabilities, where the real-valued

function H takes the form H(x) = 1l(S(x) > γ)

for some sufficiently large threshold γ and perfor-

mance function S. Then the estimation problem
becomes

` = P(S(X) > γ) =

∫
1l(S(x) > γ)f(x)dx. (2)

In what follows, we focus on the problem of esti-
mating the rare-event probability in (2). The orig-

inal estimation problem (1) can be tackled in the

same way with minor modifications. One popular
approach to solve the estimation problem (2) is via

importance sampling : take a random sample of size

M from an importance density g that dominates

f , i.e., g(x) = 0 ⇒ 1l(S(x) > γ)f(x) = 0 for all x,
and compute

̂̀
IS =

1

M

M∑

i=1

1l(S(Xi) > γ)
f(Xi)

g(Xi)
, (3)

where X1, . . . ,XM are iid draws from the impor-
tance density g, and the ratio f(Xi)/g(Xi) is known

as the likelihood ratio. Although the estimator ̂̀IS
is consistent and unbiased for any given g, its per-
formance depends critically on its choice.
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It is well-known that the zero-variance importance

density g∗ is simply the conditional density given

the rare event, i.e.,

g∗(x) = f(x |S(x) > γ) = `−1f(x)1l(S(x) > γ).

Since this density involves the unknown constant
`, it cannot be used directly. However, one could

choose an importance density within a parametric

family that is in some sense the “closest” to g∗.

The fundamental insight of the CE method is to
formalize this strategy as an optimization problem

as follows. Let f(x) = f(x;u) denote the nominal

density, where we make explicit the dependence on
the parameter vector u. Consider the family of pdfs

F = {f(x;v)} indexed by the parameter vector v

within which to obtain the optimal CE importance
density g. Various considerations of choosing the

parametric family F are discussed in Section 4; for

now we assume F is given. One particularly conve-

nient measure of the “distance” from a density h1

to another density h2 is the Kullback-Leibler diver-

gence, or cross-entropy distance, which is defined

as

D(h1, h2) =

∫
h1(x) log

h1(x)

h2(x)
dx.

We then locate the density g such that D(g∗, g)

is minimized. Since g is chosen within the para-
metric family F , we can write g(x) = f(x;v∗

ce)

where v∗
ce is referred to as the optimal CE param-

eter vector. Now the functional minimization prob-
lem of finding an optimal CE importance density

g reduces to a parametric minimization problem

of finding the optimal CE parameter vector v∗ =

argmin
v
D(g∗, f(·;v)). Further, note that

D(g∗,f(·;v)) =

∫
g∗(x) log g∗(x)dx

− `−1

∫
f(x;u)1l(S(x) > γ) log f(x;v)dx,

where the first term on the right-hand side does
not depend on v. Therefore, solving the CE mini-

mization problem is equivalent to finding

v∗
ce = argmax

v

∫
f(x;u)1l(S(x) > γ) log f(x;v)dx.

(4)

The deterministic problem (4) often does not ad-

mit an analytic solution. Instead, one can estimate

v∗
ce by finding

v̂∗
ce = argmax

v

1

N

N∑

i=1

1l(S(Xi) > γ) log f(Xi;v),

(5)

where X1, . . . ,XN are draws from f(·;u). One com-
plication arises in solving (5) when {S(X) > γ} is

a rare event. Specifically, if the event is sufficiently

rare, most of the 1l(S(Xi) > γ) terms in (5) are

zero and the solution would have a high variance.
On realizing that we can instead estimate v∗

ce, via

importance sampling, as the solution to the maxi-

mization program

max
v

1

N

N∑

i=1

1l(S(Xi) > γ)
f(Xi;u)

f(Xi;w)
log f(Xi;v),

(6)

where X1, . . . ,XN are draws from some arbitrary

density f(·;w) that dominates f(·;u), we obtain

the following multi-level CE procedure:

Algorithm 1 Multi-level CE Algorithm for

Rare-Event Probability Estimation

1. Define v̂0 = u. Let Ne = bρNc, where b·c de-
notes the integer part. Set t = 1.

2. Generate a random sample X1, . . . ,XN from

the density f(·; v̂t−1). Calculate the performances
S(Xi) for i = 1, . . . , N , and order them from

smallest to largest, S(1), . . . , S(N). Let γ̂t be the

sample (1 − ρ)-quantile of performances; that

is, γ̂t = S(N−Ne). If γ̂t > γ, reset γ̂t to γ.
3. Use the same sample X1, . . . ,XN to solve the

stochastic program (6), with w = v̂t−1. Denote

the solution by v̂t.
4. If γ̂t < γ, set t = t+1 and reiterate from Step 2;

otherwise, proceed with Step 5.

5. Let T be the final iteration counter. Generate
a sample X1, . . . ,XM from the density f(·; v̂T )

and estimate ` via importance sampling, as in (3).

3 Improved CE Method

The well-known degeneracy problem notwithstand-
ing, there is always an importance density that

gives a zero variance estimator—g∗ the conditional

density given the rare event. Therefore, intuitively,
if the importance density g is chosen “close enough”

to g∗, the resulting importance sampling estimator

should have reasonable accuracy. A natural ques-
tion is: what goes wrong with the multi-level CE
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algorithm in high-dimensional settings? A closer

look at Algorithm 1 reveals two possibilities: first,

the parametric family within which the optimal

CE importance density g is obtained might not
be large enough. As a result, even though g is

the “closest” to g∗ within its parametric family,

it still does not behave sufficiently like g∗. Second,
it might be the case that the importance density

g located via the multi-level procedure is subop-

timal: the parameter vector v̂T obtained from the
multi-level CE procedure is not a good estimator

for v∗
ce in some settings. We investigate the latter

possibility in this article, and propose a natural

remedy to the problem. We also discuss various
criteria in choosing a good parametric family F in

the next section.

Heuristically, the parameter vector v∗
ce should give

the best estimator according to the cross-entropy

criterion, as the density f(·;v∗
ce) is the “closest” to

g∗, and it should be used when it is available an-
alytically. However, since the deterministic prob-

lem (4) is often intractable, we need to estimate

v∗
ce via Monte Carlo methods in those cases. In

many models with moderate dimension, v̂T is close

enough to v∗
ce, and the corresponding importance

sampling estimator is reasonably accurate. How-

ever, in some settings, particularly when the di-
mension of the problem is large, the likelihood ra-

tio involved in obtaining v̂T becomes unstable. There-

fore, instead of solving (6) sequentially to obtain
v̂T , we consider an alternative estimator, which

does not involve any likelihood ratio and can be

obtained in one step.

Recall that the reason why solving (5) directly is

difficult is that if we generate draws from the nomi-

nal density f(·;u), most of the 1l(S(Xi) > γ) terms

are zero if {S(X) > γ} is a rare event. Conse-
quently, the estimator v̂∗

ce obtained from (5) would

have a high variance. With this in mind, we con-

sider the following small but significant modifica-
tion: instead of drawing from f(·;u), we can gen-

erate a random sample X1, . . . ,XN from g∗(·) =

`−1f(·;u)1l(S(·) > γ), and it is easy to see that v̂∗
ce

is exactly the solution to the maximization prob-

lem

max
v

1

N

N∑

i=1

log f(Xi;v). (7)

One important point to note is that in contrast
to (6), the maximization problem (7) does not in-

volve any indicator function or likelihood ratio. As

a result, it does not only afford substantial com-

putational saving in high-dimensional settings, but

its solution is more robust and numerically sta-
ble as well. Generating draws from g∗, however,

requires additional effort, but with the advent of

MCMC methods this problem is well studied and a
variety of techniques are available to our disposal.

In fact, for all the problems considered in this arti-

cle, efficient samplers exist to generate from g∗. In
addition, the number of draws required to estimate

v̂∗
ce is typically much smaller than that required in

the multi-level CE algorithm.

Algorithm 2 Improved CE Algorithm for Rare-

Event Probability Estimation

1. Generate a random sample X1, . . . ,XN from

the density g∗(x) and find the solution to (7),
which is denoted as v̂∗

ce.

2. Generate a sample X1, . . . ,XM from the den-

sity f(·; v̂∗
ce) and estimate ` via importance sam-

pling, as in (3).

As mentioned in the introduction, there is an im-

portant literature on estimating the normalizing

constant of an arbitrary density by MCMC meth-
ods. Since the rare-event probability ` can be writ-

ten as a normalizing constant of the zero-variance

importance density g∗, in principle ` may be esti-
mated by these methods. However, all these meth-

ods involve using MCMC draws to compute certain

Monte Carlo averages, which are then used to give

an estimate of `. The major drawback of this ap-
proach is that MCMC draws are typically costly to

obtain, especially in high-dimensional problems. In

fact, in complex models where the MCMC draws
exhibit high autocorrelation, the computational ef-

fort required to obtain enough draws for a suf-

ficiently accurate estimate might be formidable.
Therefore, these methods are inherently not suit-

able for rare-event simulation, where precise esti-

mates are often needed. In contrast, the proposed

method is an adaptive importance sampling ap-
proach, and it circumvents these drawbacks by gen-

erating independent draws from some convenient

density. Of course the proposed approach also re-
quires MCMC draws for obtaining the optimal im-

portance density, but the number of draws needed

is typically small (a few hundreds to a thousand
draws for obtaining the importance density versus
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tens of thousands draws for the main importance

sampling run).

3.1 A Toy Example

To investigate the quality of the optimal CE pa-

rameter estimators for the multi-level CE and the

proposed method, we consider a toy example where
we can analytically compute v∗

ce by solving inde-

pendently the deterministic problem (4). Specifi-

cally, let Xi ∼ Ber(pi) for i = 1, . . . , n. We wish

to estimate P(Sn(X) > γ), where Sn(X) = X1 +
· · · + Xn, γ = 0.6n, and X = (X1, . . . ,Xn). The

nominal density is

f(x;p) =
n∏

i=1

pxi

i (1 − pi)
(1−xi),

where x = (x1, . . . , xn) and p = (p1, . . . , pn). It
is natural to locate the optimal CE importance

density within the parametric family f(x;q) in-

dexed by q = (q1, . . . , qn), where qi ∈ (0, 1) for

i = 1, . . . , n. Therefore, the deterministic prob-
lem (4) becomes

q∗ = argmax
q

∑

x:Sn(x)>γ

(
n∏

i=1

pxi

i (1 − pi)
(1−xi)

)
×

(
n∑

i=1

xi log qi + (1 − xi) log(1 − qi)

)
.

It can be shown that the solution q∗ = (q∗1 , . . . , q∗n)
admits a closed-form expression, with

q∗j =

∑

x:Sn(x)>γ

xj

n∏

i=1

pxi

i (1 − pi)
(1−xi)

∑

x:Sn(x)>γ

n∏

i=1

pxi

i (1 − pi)
(1−xi)

,

for j = 1, . . . , n. As a numerical example, we first

set n = 50, γ = 30 and p1 = · · · = pn = 0.1.

The rare-event probability can be computed ana-

lytically and it is found to be ` = 6.21 × 10−18.
We estimate q∗ via the multi-level CE procedure

and the proposed method. For the CE method, we

implement Algorithm 1 with N = 10000 and ρ =
0.01. More specifically, we initialize with q̂0 = p.

At the t-th iteration, we first sample X1, . . . ,XN

from f(x; q̂t−1), where Xi = (Xi1, . . . ,Xin) and
q̂t−1 = (q̂t−1,1, . . . , q̂t−1,n). Then we use (6) to

compute q̂t, which involves n one-dimensional op-

timizations. In fact, after some algebra, it can be

shown that q̂tj , the j-th component of q̂t, is given

by

q̂tj =

∑N
i=1 WiXij∑N

i=1 Wi

,

where Wi = 1l(S(Xi) > γ̂t)f(Xi;p)/f(Xi; q̂t−1).

The algorithm terminates at the 4-th iteration, re-

quiring a total of 40000 draws. For the proposed

method, we run a Gibbs sampler to sample from g∗

with 10 parallel chains, each has a length of 1000,

and the total budget is therefore 10000. Given the

draws X1, . . . ,XN from g∗, the solution for (7) is
simply q̂∗

ce = N−1
∑N

i=1 Xi. It is also worth men-

tioning that drawing from g∗ via the Gibbs sam-

pler in this case only requires generating Bernoulli
draws. The empirical cumulative distribution func-

tions (cdf) of the CE and improved CE estimates,

together with the optimal CE parameter calcu-

lated analytically, are presented in Figure 1 (left
panel).

For this relatively low-dimensional problem with

only 50 parameters, the optimal CE parameters
estimated by both methods are reasonably close to

those obtained analytically. For instance, the opti-

mal CE parameter calculated analytically is about
0.6 and most of the CE estimates are concentrated

between 0.56 and 0.66. However, it is evident that

the CE estimates fluctuate more widely compared

to those obtained by the improved version, even
though the simulation budget for the former is four

times as large. Since the CE estimates are not as

accurate as the proposed method, it is not surpris-
ing that the variance of the resulting estimator

from the multi-level CE procedure is about 20%

larger. We next perform the same experiment with
n = 80 and γ = 48, and the rare-event probability

is ` = 8.11 × 10−28. We report the corresponding

cdfs of the CE and improved CE estimates in Fig-

ure 1 (right). As is apparent in the figure, as the
dimension of the problem gets larger, the CE es-

timates become more unreliable, while those from

the proposed method are essentially unaffected by
the increase in dimension. In terms of the quality

of the importance sampling estimators, the vari-

ance of the multi-level CE estimator is more than
100 times larger compared to the improved CE es-

timator.

The result from this toy example suggests a reason
why the multi-level CE method fails to give accu-
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Fig. 1 Empirical cdfs of the CE and improved CE estimates for the toy example with n = 50 (left) and n = 80 (right).

rate estimates in high-dimensional settings: the pa-

rameter vector obtained is suboptimal, and there-

fore the resulting importance density does not suf-
ficiently mimic the behavior of g∗. In principle one

can increase the accuracy of the multi-level CE

estimates by increasing the sample size N or the

rarity parameter ρ. In either case, however, the to-
tal simulation effort would increase, and in mod-

erately high-dimensional problems, this approach

might not be practical. On the other hand, the
result also suggests that if we avoid the multi-

level maximization procedure and estimate v∗
ce di-

rectly via (7), we can improve the performance
of the standard CE procedure. In Section 5, we

will demonstrate the proposed method by visiting

a credit risk model that involves hundreds or thou-

sands of random variables. We show that even in
this high-dimensional problem, the improved CE

method works well and gives estimators that com-

pare favorably to existing importance sampling es-
timators.

4 VM Method and the Choice of

Parametric Family

It is of interest to note that the above approach
also provides a practical way to locate the mini-

mum variance importance sampling estimator within

the parametric family F . That is, instead of us-
ing f(x; v̂∗

ce) that minimizes the cross-entropy dis-

tance to g∗, we can choose f(x;v) ∈ F such that

the variance, or equivalently the second moment,
of the associated importance sampling estimator is

minimized. The minimizer

v∗
vm = argmin

v

∫
f(x;v)1l(S(x) > γ)

f(x;u)2

f(x;v)2
dx

= argmin
v

∫
1l(S(x) > γ)

f(x;u)2

f(x;v)
dx (8)

is referred to as the optimal variance minimization
(VM) parameter vector. Again, the deterministic

minimization problem (8) is difficult to solve, and

analytic solutions are available only for certain spe-

cific examples (e.g. Chan et al, 2011). However, one
can estimate v∗

vm by first sampling X1, . . . ,XN

from g∗ and then solving

min
v

1

N

N∑

i=1

f(Xi;u)

f(Xi;v)
. (9)

This leads to the following algorithm.

Algorithm 3 VM Algorithm for Rare-Event

Probability Estimation

1. Generate a random sample X1, . . . ,XN from

the density g∗(x) and find the solution to (9),
which is denoted as v̂∗

vm.

2. Generate a sample X1, . . . ,XM from the den-

sity f(·; v̂∗
vm) and estimate ` via importance

sampling, as in (3).

By construction the VM method gives the mini-
mum variance importance sampling estimator within

the parametric family F . Therefore, if F is cho-

sen to contain the nominal density f(·;u), then
the variance of the VM estimator is no larger than
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that of the crude Monte Carlo, which is not true for

importance sampling estimators in general. For the

same reason, the VM estimator has a smaller vari-

ance than the CE one. Thus, in situations where
the VM optimal parameter vector v̂∗

vm can be eas-

ily obtained, the VM method is preferable. On the

other hand, it is typically much easier to solve (7)
to find v̂∗

ce than to solve the VM problem in (9) to

obtain v̂∗
vm. This is because the former problem is

“separable” in the sense that one can often reduce
the potentially high-dimensional problem in (7)

into several low-dimensional ones by, e.g., choosing

the parametric family in the form F = {f(x;v) =∏k
i=1 f(xi;vi)} where x = (x1, . . . ,xk) and v =

(v1, . . . ,vk). In contrast, the VM problem is not

separable, and often involves high-dimensional op-

timization in typical applications. Moreover, in many
settings the VM and CE methods prescribe very

similar importance sampling densities (de Boer et al,

2004; Chan et al, 2011). Hence, in applications
where it is difficult to obtain v̂∗

vm, one might want

to consider the CE method instead.

We now discuss various considerations for choos-
ing F . It is obvious that if we choose the para-

metric family to be the singleton F = {f(x;u)},
then both the VM and CE estimators reduce to

the crude Monte Carlo estimator, and no variance
reduction is achieved. On the other extreme, if F
is chosen to include all pdfs, then both f(x;v∗

vm)

and f(x;v∗
ce) become g∗, and neither estimators

can be used in practice. Hence, the fundamental

trade-off is between system complexity (in obtain-

ing the VM/CE optimal parameter vectors, gener-
ating random samples from the importance density

and evaluating the likelihood ratio) and match-

ing g∗ sufficiently well. The objective is to select

a parametric family such that (1) the family is
sufficiently large/diverse, and (2) each member in

F is easy to sample from and easy to evaluate.

One “default” choice that is often easy to imple-
ment is to select F to be the same family of pdfs

as the nominal density f(x;u). For example, if

f(x;u) is a product of k Exp(ui) densities, then
F can be chosen to be a product of k Exp(vi)

densities indexed by v = (v1, . . . , vk). This sim-

ple strategy is found to be adequate in typical

applications. An additional advantage of selecting
the product form F = {f(x;v) =

∏k
i=1 f(xi;vi)},

as discussed earlier, is that the CE optimization

problem (7) becomes separable, and the poten-
tially high-dimensional problem is reduced into sev-

eral low-dimensional ones. For more discussions on

various strategies and trade-offs in approximating

g∗, we refer the readers to the review in Smith et al

(1997).

Other more sophisticated strategies can be imple-

mented if one has an asymptotic description of how

the rare event {S(X) > γ} occurs. For instance,
Orsak (1993) shows that a necessary condition to

achieve variance reduction is that the rare event

{S(X) > γ} occurs more frequently under the
importance density than that obtained using the

nominal density. This suggests that special atten-

tion should be paid to random variables that deter-
mine the occurrence of the rare event {S(X) > γ}.
For instance, in applications where the rare event

{S(X) > γ} occurs primarily when one or a few

random variables attain certain values, one could
change only the distributions of those variables,

while keeping the distributions of other variables

fixed. In this way, the dimension of the optimiza-
tion problems in (7) and (9) is reduced, while the

quality of the estimators are not substantially af-

fected.

5 Application: Large Portfolio Loss in the t

Copula Model

We illustrate the utility of the proposed approach
by estimating an important measure of risk—the

probability of large portfolio losses—under the re-

cently proposed t copula model of Bassamboo et al
(2008). Suppose we have a portfolio of loans con-

sisting of n obligors, each of them has a given

probability of defaulting, which we denote as pi ∈
(0, 1), i = 1, . . . , n. Introduce a vector of under-

lying latent variables X = (X1, . . . ,Xn) such that

the i-th obligor defaults if Xi exceeds some given

threshold level xi, i.e., pi = P(Xi > xi). We define
the portfolio loss incurred from defaults as

L(X) = c11l(X1 > x1) + · · · + cn1l(Xn > xn),

where ci is the monetary loss associated with the

default of the i-th obligor. A natural risk measure
of the portfolio is the probability of large losses of

the form

`(γ) = P(L(X) > γ), (10)

where γ = bn for some b > 0. To complete the
model specifications, one needs to specify the joint
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distribution of X. One popular model that is widely

used in the financial industry is the normal copula

model that forms the basis of the CreditMetrics

and other related models. Specifically, the under-
lying correlations are specified through a linear fac-

tor model: Xi = wi1Z1 + · · · + wimZm + wiηi, i =

1, . . . , n, where Z1, . . . , Zm are iid standard nor-
mal variables known as factors and ηi is a normal

random variable independent of the factors that

captures the idiosyncratic risk of the i-th obligor.
In addition, we assume (without loss of generality)

that w2
i1 + · · · + w2

im + w2
i = 1.

One of the potential problems of the normal copula
model is that it might assign too low a probabil-

ity to the event of many simultaneous defaults. In

view of this inadequacy of the normal copula, Bas-

samboo et al (2008) propose the t-copula model,
based on the multivariate t-distribution, that at-

tempts to capture the relatively frequent occur-

rences of extremal comovements of financial vari-
ables. Following Bassamboo et al (2008) we restrict

our attention to the single factor model (m=1) to

keep the notations simple. It is important to re-
alize that the techniques developed here can be

easily generalized to a general m-factor model. As

in the normal copula model, the factors and the

individuals’ idiosyncratic risks are modeled as in-
dependent normally distributed random variables.

More precisely, Z ∼ N(0, 1) and ηi
iid∼ N(0, σ2

η
), i =

1, . . . , n. To induce a t structure, we introduce a

shock variable λ > 0 that is independent of Z and
η = (η1, . . . , ηn) such that λ ∼ Gamma(ν/2, ν/2)

for some ν > 0. Define

Xi =
(
ρZ +

√
1 − ρ2 ηi

)
λ− 1

2 , i = 1, . . . , n.

(11)

It is well-known that if λ ∼ Gamma(ν/2, ν/2), then

marginally X = (X1, . . . ,Xn) follows a multivari-

ate t distribution with degree of freedom ν. Bas-
samboo et al (2008) propose two importance sam-

pling algorithms to estimate the probability that

the portfolio incurs large losses. The first estimator

uses importance sampling based on an exponential
change of measure (ECM) (see, e.g., Asmussen and

Glynn, 2007) and has bounded relative error; the

second uses a variant of hazard rate twisting (HRT)
(Juneja and Shahabuddin, 2002), which is shown

to be logarithmically efficient. An extensive simu-

lation study shows that while both estimators offer
substantial variance reduction, the former provides

6 to 10 times higher variance reduction than the

latter. Nevertheless, the more efficient ECM algo-

rithm involves generating random variables from a

nonstandard distribution, which takes on average
three times more time compared to naive Monte

Carlo simulation. In addition, the normalizing con-

stant of the proposal density is not known, and has
to be computed by numerical routines in order to

be used in the likelihood ratio evaluation.

We now apply the proposed methods to estimate
the probability of large portfolio loss in (10). First,

we obtain a sample from the zero-variance impor-

tance density g∗ via the Gibbs sampler. Second,
given the draws, we locate the optimal CE and VM

importance densities within an appropriate family

of distributions. To this end, let f̊(z,η, λ) denote

the joint density of (z,η, λ), i.e.,

f̊(z,η, λ) = fN(z; 0, 1)fG(λ; ν/2, ν/2)
n∏

i=1

fN(ηi; 0, σ
2
η
),

where fN(·; a, b) denotes the density of N(a, b) and

fG(·; c, d) represents the density of Gamma(c, d).

Note that the zero-variance importance density is

g∗(z,η, λ) = f̊(z,η, λ |L(x) > γ)

∝ f̊(z,η, λ)1l(L(x) > γ),

where x is defined in (11). A Gibbs sampler can be
constructed by sequentially drawing from g∗(z |η, λ),

g∗(λ | z,η) and g∗(η | z, λ). Two points on imple-

mentation are worth mentioning. First, the Gibbs
sampler involves only drawing from univariate trun-

cated normal and right truncated gamma distribu-

tions, and a draw from either distribution can be
obtained by the inverse-transform method or vari-

ous efficient rejection methods (e.g., Robert, 1995;

Philippe, 1997). Second, since the performance of

the proposed estimator is relatively insensitive to
the autocorrelation of the MCMC draws, even though

more efficient sampling scheme might exist, the

gain in efficiency might not worth the extra effort.
The detailed implementation of the Gibbs sampler

is discussed in the appendix.

Now suppose we have a sample {Zi,ηi, λi}N
i=1 from

g∗. We consider the following family of distribu-

tions within which to locate the optimal CE and

VM importance densities:

F = {f(z,η, λ;v) = fN(z;µz, σ
2
z)fG(λ;αλ, βλ)

×
n∏

i=1

fN(ηi;µη, σ2
η
)},
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where the family is indexed by v = (µz, σ
2
z , αλ, βλ, µη)

with µz, µη ∈ R and σ2
z , αλ, βλ > 0. In particular,

we have f̊(·) = f(·;u) where u = (0, 1, ν/2, ν/2, 0).

Note that F is the “default” choice discussed in
Section 4 (i.e., the same family as the nominal den-

sity), except that we fix the variance of ηi at σ2
η
.

This is because the rare event {L(X) > γ} is de-
termined primarily by the values of λ and Z (see

Bassamboo et al, 2008, for the precise statements

of the asymptotics), while the random variables ηi

are relatively unimportant. It is therefore sufficient

to allow the mean of ηi to change but not its vari-

ance.

Since any member of F is a product of densi-

ties, standard techniques of obtaining the maxi-

mum likelihood estimator (MLE) can be applied

to estimate the optimal CE parameter vector v∗
ce.

In fact, it is easy to solve the maximization prob-

lem in (7) analytically for (µ̂∗
z, σ̂

2∗
z , µ̂∗

η
):

µ̂∗
z =

1

N

N∑

i=1

Zi, σ̂2∗
z =

1

N

N∑

i=1

(Zi − µ̂∗
z)

2,

µ̂∗
η

=
1

nN

N∑

i=1

n∑

j=1

ηi,j ,

where ηi,j is the j-th element of ηi. Moreover,

(α̂∗
λ, β̂∗

λ) can be obtained, for example, by the Newton-

Raphson method. Alternatively, they can be ap-

proximated by the method of moments estimates:
α̃ = µ̄2

λ/S2
λ and β̃ = µ̄λ/S2

λ, where µ̄λ and S2
λ

are respectively the sample mean and sample vari-

ance of λ1, . . . , λN . The latter approach is the one
we adopt here. Once we obtain the optimal CE

importance density f(·; v̂∗
ce), we then deliver the

importance sampling estimator:

1

M

M∑

i=1

1l(L(Xi) > γ)
f(Zi,ηi, λi;u)

f(Zi,ηi, λi; v̂∗
ce)

, (12)

where (Zi,ηi, λi), i = 1, . . . ,M are generated from
the importance density f(·; v̂∗

ce).

To obtain the VM optimal parameter vector v̂∗
vm,

we use a numerical routine to solve (9). Although
this is a high-dimensional application involving hun-

dreds of random variables, the optimization prob-

lem (9) involves only five parameters
v = (µz, σ

2
z , αλ, βλ, µη). Therefore, finding v̂∗

vm

numerically in this example is still feasible. While

v̂∗
ce can be obtained instantly, it takes the opti-

mization routine about 2 seconds on a Dual-core

2.6 GHz desktop to find v̂∗
vm. Once we have v̂∗

vm,

we deliver the estimator as in (12) with the impor-

tance density f(Zi,ηi, λi; v̂
∗
vm) instead.

5.1 Numerical Results

We demonstrate the performance of the proposed

importance sampling estimators via simulation stud-

ies similar to those in Bassamboo et al (2008). The
broad conclusions drawn from these experiments

are that even though the t copula model involves

hundreds of random variables, the proposed esti-
mators perform remarkably well and offer accurate

estimates for a relatively small replication sample

size (M = 50000). In addition, both compare fa-
vorably to the two other importance sampling es-

timators, ECM and HRT, proposed in Bassamboo

et al (2008). Except in one scenario, they outper-

form the ECM algorithm, offering up to 8 times
higher variance reduction, and are more efficient

than the HRT algorithm in all scenarios, provid-

ing 2 to 16 times higher variance reduction. An-
other factor that is in favor of the proposed esti-

mators is that they only involve generating from

standard distributions. In contrast, the ECM esti-
mator involves generating from a nonstandard dis-

tribution, where the normalizing constant is not

known, and has to be computed by numerical rou-

tines. In addition, it involves accept-reject sam-
pling, which takes on average three times longer

than naive simulation, thus making the algorithm

slower and more difficult to implement.

For comparison purposes, we consider the same

sets of parameter values as those in Bassamboo

et al (2008) Tables 1–4. In all the experiments in
this subsection we set σ2

η
= 9 and l = b × n. The

individual threshold xi and monetary loss asso-

ciated to the i-th obligor ci are the same across
the obligors: x1 = · · · = xn =

√
n × 0.5, and

c1 = · · · = cn = 1. For each set of specified pa-

rameters, we run 5 parallel chains via the Gibbs

sampler described in the appendix. Each chain is
of length 1000 and we discard the first 50 draws in

each chain as “burn-in”. We use the Gibbs output

to estimate the optimal CE and VM parameters.
Then we generate M = 50000 samples for the main

run. Table 1 shows the relative errors (in %) of

the proposed estimators, as well those of the ECM
and HRT, for various values of the degree of free-
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dom parameter ν. The estimated probability ̂̀(γ)

is obtained by the CE estimator. Other model pa-

rameters are chosen to be n = 250, ρ = 0.25 and

b = 0.25. In Table 2 we perform the same compar-
ison but now we vary the correlation parameter ρ

while keeping ν fixed at 12.

Table 1 Relative errors (in %) of the improved CE and

VM estimators for various values of ν.

ν b̀(γ) CE VM ECM HRT

4 8.14× 10−3 0.5 0.5 0.6 1.1

8 2.41× 10−4 0.8 0.7 0.9 1.8
12 1.08× 10−5 1.1 1.0 1.7 2.6
16 6.08× 10−7 1.4 1.3 2.8 3.6
20 4.43× 10−8 1.8 1.7 3.7 5.4

Table 2 Relative errors (in %) of the improved CE and
VM estimators for various values of ρ.

ρ b̀(γ) CE VM ECM HRT

0.1 8.52× 10−6 1.1 1.0 0.9 1.8

0.2 9.77× 10−6 1.2 1.0 1.2 2.3
0.3 1.17× 10−5 1.1 1.0 1.7 3.2
0.4 1.37× 10−5 1.1 1.0 3.1 4.0

In Table 3 we report the relative errors (in %) of

the proposed estimator as well as those of ECM

and HRT for various values of n, the number of
obligors. Other model parameters are chosen to be

ν = 12, ρ = 0.25 and b = 0.25. Table 4 shows

the results of a similar analysis but now we vary
b, the proportion of defaults in the portfolio, while

keeping n fixed at 250. The results suggest that

the improved CE estimator performs remarkably
well even when n is large, where the model con-

tains hundreds of random variables. It is of inter-

est to note that even though the VM etimator per-

forms better than the CE one in all scenario as ex-
pected, their performaces are remarkably similar.

Also note that in Bassamboo et al (2008) Tables 3–

4, the authors actually computed P(L(X) > γ) in-
stead of P(L(X) > γ) as stated. As a result, the es-

timated rare-event probabilities there are slightly

larger than those we report in the corresponding
tables.

Table 3 Relative errors (in %) of the improved CE and

VM estimators for various values of n.

n b̀(γ) CE VM ECM HRT

100 1.86× 10−3 1.3 1.1 1.6 1.8

250 1.08× 10−5 1.1 1.0 1.7 2.6
500 1.47× 10−7 1.0 0.9 1.5 3.4
1000 2.28× 10−9 0.9 0.8 1.6 3.6

Table 4 Relative errors (in %) of the improved CE and

VM estimators for various values of b.

b b̀(γ) CE VM ECM HRT

0.1 3.47× 10−3 0.8 0.7 0.9 1.6

0.2 7.44× 10−5 1.0 0.9 1.2 2.5
0.3 1.12× 10−6 1.4 1.2 2.0 3.4

6 Concluding Remarks and Future

Research

In this article we first document the main rea-

son why the standard CE method fails in certain
high-dimensional settings: the importance density

obtained from the multi-level procedure is subop-

timal. We therefore introduce a small but signif-

icant modification to the standard CE method,
and demonstrate that it gives substantial improve-

ment over the traditional approach. We then apply

the proposed method to a high-dimensional esti-
mation problem under a recently proposed credit

risk model, and show that it outperforms existing

importance sampling estimators.

The proposed approach gives the best importance

density within the class of densities considered,

and therefore in a sense it is the optimal impor-
tance sampling strategy. Many, if not all, of the

problems previously considered with the multi-level

CE and VM approach, particularly those mentioned

in the introduction, can be tackled by the improved
variant, which is expected to give better results.

Moreover, its applicability is not limited to rare-

event simulation, but it can be applied to a wide
variety of problems, ranging from pricing exotic

options to estimating normalizing constants of an

arbitrary density, particularly the marginal likeli-
hood in Bayesian statistics.
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Appendix: Gibbs Sampler for the t copula

Model

In this appendix we discuss the implementation

of the Gibbs sampler of drawing from g∗(z,η, λ),

the zero-variance importance density for estimat-

ing the rare-event probability P(L(X) > γ) un-
der the t copula model. The Gibbs sampler is con-

structed by sequentially drawing from g∗(z |η, λ),

g∗(λ | z,η) and g∗(η | z, λ). The first conditional
density g∗(z |η, λ) is a univariate truncated nor-

mal. To see this, first define Gi = ρ−1(xiλ
1/2 −√

1 − ρ2ηi). Arrange G1, . . . , Gn in ascending or-
der, let G(i) denote the i-th ordered value, and c(i)

the corresponding ordered monetary loss. Then the

event {L(X) > γ} occurs if and only if Z > G(k)

where k = min{l : γ <
∑l

i=1 c(i)}. In particular,

if ci = c for all i = 1, . . . , n, then k = bγ/cc + 1,
where b·c indicates the integer part. Hence, the

conditional density of Z is a univariate truncated

normal distribution:

g∗(z|η, λ) ∝ fN(z; 0, 1)1l(z > G(k)),

and a draw from this distribution can be obtained

either by the inverse-transform method or vari-
ous efficient rejection methods (e.g., Robert, 1995).

We use the inverse-transform method to generate

draws from the truncated normal distribution.

Next define Hi = (ρZ +
√

1 − ρ2ηi)x
−1
i and let

H(i) be the i-th ordered value of H1, . . . ,Hn and

c(i) the corresponding ordered monetary loss. Since

the event {L(X) > γ} occurs if and only if
√

λ <

H(n−k) where k = min{l : γ <
∑l

i=1 c(i)}, the
conditional density g∗(λ | z,η) is a right-truncated

gamma distribution:

g∗(λ | z,η) ∝ fG(λ; ν/2, ν/2)1l(λ < min(H2
(n−k), 0)),

and a draw from this distribution can be obtained
either by the inverse-transform method or the re-

jection method described in Philippe (1997). We

adopt the latter approach to generate draws from
the right-truncated gamma distribution.

Lastly, we need to obtain a draw from g∗(η | z, λ),

which is a truncated multivariate normal distribu-
tion. A feasible approach is to sequentially draw

from g∗(ηi|z, λ,η−i) for i = 1, . . . , n, each of which

is a univariate truncated normal density, where
η−i denotes the vector η except the i-th element,

i.e., η−i = (η1, . . . , ηi−1, ηi+1, . . . , ηn). More specif-

ically, given (η−i, Z, λ), if

∑

j 6=i

cj1l((ρZ +
√

1 − ρ2ηj)λ
−1/2) > γ,

then there is no restriction on ηi and

g∗(ηi|Z, λ,η−i) = fN(ηi; 0, σ
2
η
);

otherwise,

g∗(ηi|Z, λ,η−i) = fN(ηi; 0, σ
2
η
)1l

(
ηi >

xiλ
1/2 − ρZ√
1 − ρ2

)
.

Alternatively, one can simply generate ηc
i

iid∼ N(0, σ2
η
),

for i = 1, . . . , n, and compute the corresponding

L(X). If L(X) > γ, set η = ηc; otherwise, repeat

the process until a draw is accepted. We adopt the
latter approach. In the numerical examples, the

acceptance rate is over 0.8.
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