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 APPROXIMATIONS TO THE LIFETIME DISTRIBUTION OF
 K-OUT OF-N SYSTEMS WITH COLD STANDBY*

 D. P. KROESE AND W. C.M. KALLENBERG

 University of Twente

 We consider several approximations to the lifetime distribution of general k-out-of-n
 systems with cold standby, when n becomes large. The approximations are derived from
 limiting results for N(t), the number of failures in [0, t], when t -- oo. The approximations
 can be easily evaluated even though the derivation of the limiting result is rather technical, due
 to the discrete character of N(t). Numerical work shows excellent agreement with the
 theoretical error structure of the approximations.

 1. The model. A general k-out-of-n system consists of k component positions
 and n identical components. Each position has to be occupied by exactly one
 component in order that the entire system works. The lifetime distribution of a
 component at position i is given by a common distribution function (d.f.) F. (The
 more complicated case of different d.f.'s Fi, i = 1, 2,..., k, can be handled by the same
 method, cf. Remark 7.1.) The components that have not been placed into a component
 position are held in storage. The moment a component at position i fails, it is replaced
 by a component from the storage room. The entire system fails when the n - k + lth
 component fails.

 In Figure 1 the system is shown when p components have failed, k components are
 working and hence n - k - p components are still in storage.

 2. Main results. Let Mn be the lifetime of a k-out-of-n system and let Xi be the
 time between the (i - l)th and ith component failure, i = 1,..., n - k + 1. The exact
 system lifetime d.f., i.e. P(M, < x) for fixed k, is in general intractable. We therefore
 apply an asymptotic approach with fixed k and n -- oo. A natural approach to obtain
 asymptotic results would be to consider M, as the sum of n - k + 1 random variables
 (r.v.'s) Xi. This however gives rise to severe difficulties, that arise from the fact that the
 r.v.'s Xi are neither identically distributed, nor independent. These problems can be
 circumvented in the following way.

 Consider k independent ordinary renewal processes {Ni(t), t > 0), i = 1,..., k,
 in operation simultaneously, all with the same d.f. F of failure time. Define N(t) =
 Nl(t) + *.. +Nk(t), t > O. For t < M,, Ni(t) denotes the number of component
 failures during [0, t] at position i, i = 1,..., k and N(t) denotes the total number of
 failures during [0, t]. The following relationship between N(t) and M, is obvious

 (2.1) (M < t} NN(t) n - k + 1.

 In view of (2.1) we investigate the behaviour of N(t) for large values of t. Basic normal
 approximations for P(M, < t) as n -+ oo follow from the central limit theorem and
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 D. P. KROESE & W. C. M. KALLENBERG
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 FIGURE 1. k-out-of-n system with cold standby.

 (2.1), cf. Cox (1962, p. 73). Here we consider higher order expansions to obtain better
 approximations. The expansion of P(M, < t) is obtained in three steps. In ?3 we start
 with the expansion of the lifetime distribution of a 1-out-of-n system. Mn is then
 simply the sum of n i.i.d. r.v.'s, and much work has been done in this field. From this
 first expansion we derive an expansion of the discrete d.f. of N1(t), the number of
 renewals in [0, t], as t - oo (Theorem 3.1). For the general case of a k-out-of-n
 system, N(t) is the sum of k independent r.v.'s Ni(t), each distributed as N1(t). The
 expansion of P(N(t) < x) is derived in ?4 (Theorem 4.1) from the expansion of
 P(Ni(t) < x). The final step then will be the construction of the expansion of
 P(M, < t) through that of P(N(t) < x). This inversion step is well known for central
 limit theorems. We refer for general results in this area to Iglehart and Whitt (1971),
 Whitt (1980) and Glynn and Whitt (1988). Here a similar argument is used in the
 context of expansions.

 Henceforth we will denote the standard normal distribution function by 1 and its
 density by (p. A N(/, a2)-distribution means a normal distribution with expectation /
 and variance a2

 For the lifetime distribution of the components F we put
 Condition C. F is nonlattice, F(0) = 0 and EFX3 < oo.
 Further we define / = EFX,, a2 = varF Xi.
 Our main result is given in the next theorem.

 THEOREM 2.1. Assume Condition C, then

 (2.2)

 xsup P M V- (n- k + l )l'k-1 \ D x
 supxn k -1 < x - F(x)

 (1X) 3 + 2 (k- 1) - o(n/2) as n . 1Jn - k + 1 6a I)
 The proof of Theorem 2.1 is given in ?5.
 We infer from Theorem 2.1 the well-known result (cf. Cox 1962, p. 73) that

 M,- (n - k + 1)/~k- 1
 (2.3) n - (0,1).

 g'n - k + 1 ok-
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 APPROXIMATIONS TO LIFETIME DISTRIBUTION OF k-OUT-OF-n SYSTEMS

 Hence we take as approximation

 (2.4) P(M < x) ( x-(n- k+ 1 ).k-

 Thus M, is approximated by a N((n - k + 1)itk-1, (n - k + 1) 2k- 2)-distribution.
 The error term is easily obtained from (2.2) and is given by

 ~V'~n~x- (+- + 1 /6a - J

 (2.6) lI-k+ (1 Yn )-- x (n k + 1)(nLk-' (2.6) /Y = /(n - k + 1 ak-1

 REMARK 2.1. From a mathematical point of view (2.3) may also be written as

 M,, - n tIk- 1

 ;ok -1 N (, ),

 since k is fixed. The induced approximation would be

 P(Mn, < ) = ( x -k-l

 It is easily seen that

 x - (n - k + l)tk-1 D _ x - n.k- 1
 V n n-k + ak- \ aok-1

 is of exact order n-1/2. Therefore to give a mathematical justification for the factor
 (n - k + 1) instead of n in (2.4) one has to go beyond first order approximation.

 REMARK 2.2. Let Xi be the lifetime of the ith component in a k-out-of-n system.
 Construct a 1-out-of-(n - k + 1) system by contracting the k component positions to
 only one position which generates independent component lifetimes XJ/k, i = 1,...,
 n - k + 1. Approximation (2.4) states that at first order we may replace the k-out-of-n
 system by this new system. In that case the lifetime distribution immediately follows
 from the central limit theorem, since M, is then simply a sum of i.i.d. r.v.'s. However,
 as is seen in Theorem 2.1 and the following approximations, this sloppy argument is
 inadequate for more accurate approximations.

 Neglecting the o(n-1/2) term, the error term (2.5) has a systematic component
 p(y,,)(n - k + 1)-1/2?(k - 1)(aoX-1 - o-1) = S(yn), say. Denoting the remainder
 term by R(y,), this may be argued as follows. Firstly, one would like the expectation
 of M, to be equal to the expectation of its approximation. Since fx d(p(x)(1 - x2)) =
 O and fx dpq(x) - 0, the contribution of R to the expectation is indeed equal to 0, but
 that of S is unequal to 0. This argument is made more rigorous in Remark 7.4.
 Secondly, the systematic error in location can also be seen by considering the
 integrated error. Since f(p(x)(1 - x2) dx = 0 and f p(x) dx * 0, the contribution to
 the integrated error is indeed equal to 0 for R, but unequal to 0 for S. The systematic
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 D. P. KROESE & W. C. M. KALLENBERG

 component may be canceled out, leading to our second approximation

 (2.7) P(M <x) ( x (n k k+ +l)k- + (k-l) a -)) -- f/Mn - k -P + ak-1 2v/- k + 1 '

 Here Mn is approximated by a N((n - k + l)/Mk-1 - ?(k - l)k-'a(a-I1 - jo-1),
 (n - k + 1)k-2a2)-distribution. In this case the error term equals

 (2.8) (1 2) + O 2 asn -> .)vn - k + 1 I on 6a3 )

 where y,, is given by (2.6).
 REMARK 2.3. Note that these approximations are easy to evaluate and that only the

 first and second moment are involved. Theorem 2.1 justifies the heuristic argument
 used by Cox (1962, p. 75) to take (n - k + 1)j/k-1 - l(k - l)k-lo(a- 1 - tao-) as
 a normalizing constant instead of (n - k + l)ik-1 (cf. Remark 7.4). We can however
 improve on this result by taking the third central moment into account, stating

 (2.9) P(Mn<x)=() yn + /-k l 6a3 2+ n-k+l (a- vn - k - q16a Ih -klP 3 -j
 with y, as in (2.6).

 The error term now becomes o(n-1/2) as n -> oo. This approximation is not a
 normal approximation in the usual sense, since the expectation and variance vary
 with x!

 A second approach that also involves the third central moment is to use the
 Edgeworth approximation suggested by (2.2)

 (2.10) P(M, ?< x)

 (YJ + vn - k + (1 -Yn) 6,3 2(k - )

 where y, is given by (2.6). The error term of (2.10) is also o(n-1/2) as n --> o.
 One may expect that the approximations given by (2.9) and (2.10) are closest to the

 true d.f., since they have the smallest error term of the four suggested approximations.
 One may also expect that, on the whole, (2.7) is better than (2.5). The simulation
 results (?6) are in excellent agreement with the predicted error structure, even for very
 small n, cf. also Remark 7.3.

 3. The l-out-of-n case. The most simple nontrivial example of a k-out-of-n
 system with cold standby is the 1-out-of-n system with cold standby. In this case there
 is only one component position that has to be occupied by a working component.
 Suppose component i has a lifetime Xi, i = 1,..., n, then the lifetime of the entire
 system is simply the sum of the n component lifetimes, i.e. M,, = X1 + .. + X,. The
 investigation of sums of independent r.v.'s has a rich history. Here we use Theorem
 XVI.4.1 in Feller (1971, p. 539).

 LetX1, X2,... be i.i.d. r.v.'s with d.f. F, and write M,, = Zi Xi. Suppose that Xi
 has a nonlattice distribution and that the third central moment 3- = E(X - EX,)3
 finitely exists.
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 Then

 (3.1) sup P( M,n - < x -( (x) -(1 - X = on- xeR (-n _< - n v 60 (

 as n -> o, where j = EX, and a2 = varXi.
 As a consequence we have the following result for N1(t), the number of renewals at

 position 1 in [0, t].

 THEOREM 3.1. Assume Condition C, then

 (3.2) sup P NI(t) - <3/2 ) - (x)
 xeR \ _ 3/2

 cp (x) { (X2 3/2 - ){(c - d)( -1)-d + a + x 3/2 )}

 o(t-1/2)

 as t -- oo.

 Here c = 30-31/2, d = -1/2, a = 13/2a-1 and 0(y) = [y] + 1 - y, where
 [y] denotes the largest integer less than or equal to y.

 PROOF. By definition we have { N(t) < n - 1} * {M, > t}. Let Ix,l < logt. As
 t - oo we obtain

 p N,(t) - t/! )<
 P ltt- 3/2 r- _ Xt
 CTI 3/2 ~/73

 = P N1(t) < - + Xt 3/2- )

 = P NI(t) < m, - + XtL 3/ ) = P(Mt > t)

 = 1 )- (t - 3mt1/2(1 -yt2)c(yt) + o(m-1/2), where

 m, =[ + Xtit 3/72 ] + 1 and

 t - mtl
 Yt o

 -X,+ Xt2-l/2- 1/2-1/2 _3/2- 1/23/2)
 2 - it120(
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 Therefore

 (33) P (t) - t x 0~- 3/2 / -

 = (x,) + ) (c - d)(x2- 1) - d + a + xto-3/2)

 +o(t-1/2) ast -> o.

 In particular we have

 p ( N l( t ) - t/1/ and ( 3/2 / -logt = -o(t-1/2) and
 N1(t) 3/2- /

 PN?(t)- t/l_a3/2 logt = - o(t -1/).

 By monotonicity of d.f.'s it now follows that (3.3) also holds if \xtl > log t. This
 completes the proof. *

 REMARK 3.1. Of course N,(t) has a discrete distribution. This is reflected in the
 expansion by the function 0, which gives the expansion also a discrete character.

 4. Expansions for N(t). In this section we derive an expansion for N(t). Note
 that N(t) is the sum of k independent r.v.'s Ni(t), each distributed as N1(t). For each
 Ni(t) we derived an expansion in ?3. We will show that the convolution of these k
 expansions constitutes the expansion for N(t). One of the main problems is to handle
 the discrete part of the expansions for N(t) and Ni(t). The function 0 plays an
 essential role for that matter. Therefore we will state two technical lemmas on the
 function 0 first.

 LEMMA 4.1. Let 0(y) = [y] + 1 - y, y e R. Let g be a differentiable function with
 derivative g', such that

 (4.1) ff (x - u)g'(u)ldu < oo.

 For t > O, ct E IR, m E Z define xm = (m - ct)t1/2
 Assume that for xm_ < u < xm

 (4.2) lf(x - u)g'(u) -f(x - xm)g'(xm) < hx(u)at with

 lim a =O and h,(u) du < oo.
 t -*00

 490
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 Then as t -> oo

 (4.3) f(c, + (x - u)t/2)f(x - u) dg(u) = f(x - u) dg(u) + o(l).

 PROOF. We have, writing X,(u) = O(c, + (x - u)t1/2) - 2,

 fxt(u)f(x - u)dg(u) = f Xt(u)f(x - x,)g'(xm) du
 m=- 00 Xm- 1,X ]

 00

 + f Xt(u){f(x - u)g'(u)
 m= 00 (Xm-1, Xm]

 -f(x - xm)g'(xm)} du.

 Since Jf(x X m x,(u) du = 0 and by (4.2)

 00

 m - X,(u){f(x - u)g'(u) -f(x - xm)g'(Xm)} du
 m=-00 (Xm-1,Xm]

 00

 < E f hx(u)a,du= a,t h(u) du,
 m= -00 (m- , X^n]

 (4.3) easily follows. ?
 REMARK 4.1. If f(x) = Pl(x)(p(ax) and g(x) = (D(bx) or g(x) = P2(x)<p(cx)

 with P1 and P2 polynomials, then (4.2) is satisfied by application of the mean value
 theorem, taking at = t-1/2

 REMARK 4.2. Note that (4.3) holds for every choice of ct, such that (4.2) holds true.
 Usually this does not imply any restriction on ct.

 REMARK 4.3. If supxR fJhx(u) du < oo, then (4.3) holds uniformly in x. This
 condition is satisfied for the choices of f, g in Remark 4.1.

 LEMMA 4.2. Assume that the conditions in Lemma 4.1 hold with (4.2) replaced by

 (4.4) If(x - u)g(u) -f(x - x)g(xm)I < hx(u)a, with

 lim at= 0 and fh(u) du < oo.
 -t 0oo 0

 Let bt E R. Then as t -, oo

 (4.5) -l/2 {O(b, + (x - u)tl/2)- - }f(x - u)d({O(ct + ut/2) - g(U))

 = 0{(b, + c, + xt/2) - } ff(x - u)g(u) du + o(1).
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 PROOF. By definition of 0 we have O(b, + (x - x,,)t1/2) = O(b, + ct + xt1/2) = t
 say. Writing Xt(u) = 0(bt + (x - u)t1/2) - ?, we have

 t '/2 1f (b + (x - u)t/2) - } - u)d({ (ct + ut/) - }g( ))
 00

 =t-1/2 - ) f( - Xm1)g(Xm)

 +t-1/2 E f Xt(u)f(x- u)d({- (U- x l)tl/2}g(u))
 X-oo 1( Xm ]1' xet ]

 o 00

 =( -) = - {f(x - Xm)g(xm) -f(x - u)g(u)} du
 fI= 00 (Xm- 1 Xnl]

 +(- ) f(x - )g() du

 - E f X,(u){ f(x- u)g(u) -f(x- Xm)g(x,,)} du

 00

 -- E | X_,xt(u)f(x - x,)g(xm) du
 W = - 00 (Xm - 1 Xnl ]

 00

 + -1/2 Xt(u)f(x - )g'(u) - (U - Xm_)t1/2} du.
 "l= 00 (Xm-1 , Xl

 Application of (4.4), f(xm _ ,,x xt(u) du = 0 and the inequalities

 l- 1< ?, Ix(u)lI< , 12 - (U - Xm_l)t/21 < 2 for Xm_1 < U < X,

 and (4.1) yield the result. *
 REMARK 4.4. If f(x) = Pl(x)(p(ax) and g(x) = P2(x))p(bx) with P1 and P2

 polynomials, then (4.4) is satisfied.
 REMARK 4.5. The only (very weak) restriction on ct is that (4.4) holds for xm_, <

 U < Xm.

 REMARK 4.6. If supX,R Jh,(u) du < oo and supX,R f If(x - u)g'(u)l du < oo,
 then (4.5) holds uniformly in x. This condition is satisfied for the choices of f and g in
 Remark 4.4.

 The preceding lemmas enable us to derive an expansion for N(t). The proof of the
 next theorem shows that such an expansion can indeed be derived by convoluting the
 expansions for Ni(t), i = 1,..., k.

 THEOREM 4.1. Let Nl(t),..., Nk(t) be i.i.d. r.v.'s with

 (4.{()6)) ( ?)X23/2) o(4~ (c - d6 d 3/2 xa - (x) V

 - G (c- d)(x2- 1) -d+aO + XOla-3/2 j7

 o(t-1/2)
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 as t -> oo, where

 C = 1/L32-3 1/2, d = -1/2, a =3/2-1, ( =[y] + 1 - Y.

 Then we have for the d.f. of N(t) = N1(t) + * * + Nk(t) the following expansion

 (4.7) sup P( N(t) - tk -' x ) () x R 0 _3/2 /k t

 (c -d)(x - 1) + a -d k

 +a k- +xkt a - 2

 =o(t-1/2) as t - oo.

 PROOF (By induction). For k = 1 the result is true. Assume that (4.7) holds for
 1,... k - 1. Write Gk for the d.f. of (N(t) - tk. -1)/(oat-3/2tl/2) and Gk for its
 approximation in (4.7).

 We now have

 Gk(y) = fGk_(y - u) dG,(u)

 = {Gk-l(Y- u)- ) k- (Y - u)} dG,(u) + fGk_(y - u) dG,(u)

 {Gk_1(Y - u) - (Y - u)} dG(u ) + (- )(u) (y-u)d ()

 = {Gkl(y - U) - dk_(y - u)} dG,(u)

 +f{G1(y - u) - G,(y - u)} dGk_,(u)

 + fG,(y - u) dG,k(u),

 and therefore

 sup G,(y) - f,(y - u) dGk_,(u) = o(t-1/2).

 Hence

 sup N(t)- t32- < (xk1/ - G k1 u) dGk_l(u) = o(t-1/2)

 as t -* oc.

 493
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 494 D. P. KROESE & W. C. M. KALLENBERG

 Next consider the following terms, which together form f Gx(xkl/2 - u) dGk_l(u):

 (4.8) Jf(xkl/2 - u) d4(u(k - 1) 1/2) = ((x),

 (4.9) fp(xk1/2 - u)t-/2(c - d){(xk/2 - u)2- 1} d(u(k - 1)-1/2)

 t- /2(c - d)p(x)(x2 - 1)
 k3/2

 (4.10) ( - d)f(xk1/2 - u)t-1/2 d(u(k - 1)-1/2)

 = (- d) t-l2k /2p(x),

 (4.11) at-1/2 0 t + (xk1/2 - u)tl/2a 1)

 Xp(xk1/2 - u) dD(u(k - 1)-1/2)

 o(t1/2)

 as t - oo, uniformly in x by Lemma 4.1 and Remark 4.3,

 (4.12) D (xk1/2 - u)d{(k - 1) -l/2t- 1/2 p(u(k- 1) 1/2)

 x (-d)( k_ - + (- d(k - l)

 +a 0 (k-1) + ut/21)a - ))}

 = k-l/2t- /2tp(x)(k- 1)

 x((k (X2- 1)+ 2 -d)+o(t-)

 as t - oo, uniformly in x by Lemma 4.1 and Remark 4.3,

 (4.13)

 fcp(xk1/2 - u)t 1/2 (c - d)((xk1/2 - u)2 -

 + - d + a(( + (xk'/2 - u)t1/2a1) -

 xd (k - 1)-l/2t-1/2(u(k - 1)-1/2) (c - d) 1 - ) + ( - d(k - 1)}

 = O(t-1) = o(t-1/2)
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 as t -- oc, uniformly in x by Lemma 4.1 and Remark 4.3,

 (4.14) cf(xk/2 - u)t-1/2[(c - d)(xkl/2 - u)2 - 1 + - d

 xd (k - 1) /2t- 1/2(u(k - 1)-/2)a((k - 1) + Ut ) - 1

 O(il)= (t-l/2)

 as t -, oc, uniformly in x by Lemma 4.1 and Remark 4.3,

 (4.15)  <p (xk1/2 - u)t -12a t + (xk1/2 - u) t2a-1 - J~ ~~ ~~~X'2 \)l/ \f' I -

 Xd (k - 1) /2t-/2(u(k - 1) )a ((k - 1) + utl/2a- -

 t- a k- 2k (x )( ikn + xk2t n a ) - + o(at 12)

 as t -x oo, uniformly in x by Lemma 4.2 and Remark 4.6.
 Combination of (4.8)-(4.15) yields the result. *

 5. Proof of Theorem 2.1. In this section we will prove Theorem 2.1. The essential
 steps already have been taken in ?4.

 PROOF. Writing
 definition of Mn

 tn = (n - k + 1)j~k-1 + xn(n - k + 1)'/2ak-1 we have by the

 p,(x)=P(M- (n - k + 1)l)k-1
 pn -p (X (() = n - k + 1 yk- < x. P(Mn < t.)

 = P(N(tn) > n - k) = 1 - P(N(tn) < n - k)

 1 N(t )- t,k1-'
 I ~-3/2 k-t

 n - k - t,,kL-1

 a- 3/2 ktn

 Let x,, = O(log n). Then

 n - k - t klp-1 1
 3 _/2 = -kxt n - oTL }k^

 k+l)- 1/2-

 - (n - k + 1)-/2+ O(n- log3n) a

 495
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 Hence

 p,(xn) = (- k + 1 - (nk + 1)1 + (nk2)

 -k-l/2qp(x )i -/2(n - k + 1)-1/2k1/2

 x{(c -d)(x2-1) + - -d)k+ + o(n 1/2)

 = (x,) + (p(x)(n - k + l)-/2

 X(3 -3(1 - x) + (k- 1)( -

 +o(n-1/2) as n -- oo.

 In particular this implies that p,(-log n) = o(n-1/2) and p,(log n) = 1 - o(n-1/2),
 and the result easily follows. *

 6. Numerical results. To verify how well the asymptotic theory applies for finite
 n, several experiments were carried out to compare the true lifetime d.f. of the system
 with the approximations to it as developed in ?2. Only in some special cases the true
 lifetime d.f. of the system can be evaluated. In the other cases it has been estimated by
 means of 10000 Monte-Carlo experiments, reducing the simulation error to less than
 0.01 with confidence 0.95. Here we give some typical examples.

 We have the following presentation. For each example a table is presented with the
 (estimated) true lifetime d.f. of the system and the various approximations. In each
 case a picture is made of the errors of the approximations with respect to the
 (estimated) true d.f. In the pictures we made use of the unrounded numerical results.
 In several examples approximation (2.9) and (2.10) almost coincide. In the pictures we
 then only present the error of approximation (2.9).

 0.30 -

 Appr:.(2.7)

 0.00 Appr. (2.9)

 -0.33 -

 oC \ /

 \ App.(.
 -0.60 -

 -0.90

 -! .20 I I I I I L 24 26 28 30 32 34
 X-AXIS

 FIGURE 2. Approximation errors for a 2-out-of-20 system with a Weibull component
 distribution (a = 3, X = 0.3).
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 TABLE 1

 2-out-of-20 System with a Weibull Component Distribution (a = 3, X = 0.3)

 Estimated Appr. Appr. Appr. Appr.
 x D.F. (2.4) (2.7) (2.9) (2.10)

 24.21 0.03 0.04 0.02 0.02 0.02

 24.68 0.04 0.06 0.04 0.04 0.03

 25.15 0.06 0.09 0.05 0.05 0.05

 25.62 0.09 0.13 0.08 0.08 0.07

 26.09 0.13 0.18 0.12 0.12 0.11

 26.57 0.17 0.23 0.16 0.16 0.15

 27.04 0.22 0.30 0.21 0.21 0.21

 27.51 0.29 0.37 0.27 0.28 0.27

 27.98 0.36 0.45 0.34 0.35 0.34

 28.45 0.43 0.53 0.42 0.42 0.42

 28.92 0.50 0.61 0.50 0.50 0.50

 29.40 0.58 0.68 0.58 0.58 0.59

 29.87 0.66 0.75 0.66 0.66 0.66

 30.34 0.72 0.81 0.73 0.73 0.73

 30.81 0.78 0.86 0.79 0.79 0.80

 31.28 0.83 0.90 0.84 0.84 0.85

 31.75 0.88 0.93 0.88 0.88 0.89

 32.22 0.91 0.95 0.92 0.92 0.92

 32.70 0.93 0.97 0.95 0.94 0.95

 33.17 0.96 0.98 0.96 0.96 0.97

 6.1. 2-out-of-20 system. Weibull-distribution. In our first example we consider the
 lifetime distribution of a 2-out-of-20 system of which the component lifetime distribu-
 tion is a Weibull-distribution with shape parameter a and scale parameter X, i.e.
 F(x) = 1 - exp((-Xx)a), x > 0. Here we take a = 3 and A = 0.3. (See Table 1 and
 Figure 2.)

 Notice that approximation (2.7) gives an excellent correction for the relatively large
 systematic error in approximation (2.4). In this case approximation (2.9) is only slightly
 better than approximation (2.7), due to the fact that m3/6a3 = 0.028, which is very
 small. The maximal absolute error of approximations (2.7) and (2.9) is 0.015.

 6.2. 2-out-of-7 system. Erlang2-distribution. To see how the approximations apply
 for a very small number of components n, we take in this example n equal to 7. (See
 Table 2 and Figure 3.) There are two component positions, both generating component
 lifetimes with an Erlang2 distribution, i.e. F(x) = 1 - e-XX(l + Xx), x > 0. Here we
 take A = 0.2. Note that F can be interpreted as the d.f. of the sum of two independent
 exponentially distributed r.v.'s. It can be shown that in this special case the system
 lifetime d.f. G is given by

 I(0.4x12 2 (0.4x) 1-j .4x
 G(x) = 1 - 2 12 + E (0 2-j).4e-

 Approximation (2.9) and (2.10) are surprisingly close to the estimated d.f. The maximal

 Approximation (2.9) and (2.10) are surprisingly close to the estimated d.f. The maximal
 absolute error is 0.012. In contrast to the previous example here approximation (2.7) is
 worse than (2.9) and (2.10). On the whole (2.7) is better than (2.4), which again has a
 systematic error. However, in the middle part (2.7) gives an overcorrection.

 6.3. 3-out-of-n. Hyperexponential distribution. Next we compare two 3-out-of-n
 systems with the same component lifetime distributions but with different n. Here we
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 TABLE 2

 2-out-of-7 System with an Erlang' Component Distribution (X = 0.2)

 Estimated Appr. Appr. Appr. Appr.
 x D.F. (2.4) (2.7) (2.9) (2.10)

 10.00 0.001 0.010 0.007 0.002 -0.005
 12.50 0.004 0.022 0.015 0.007 -0.001
 15.00 0.014 0.042 0.030 0.019 0.012
 17.50 0.040 0.074 0.056 0.045 0.039
 20.00 0.088 0.124 0.097 0.092 0.088
 22.50 0.161 0.193 0.156 0.162 0.160
 25.00 0.256 0.282 0.235 0.255 0.255
 27.50 0.366 0.386 0.333 0.365 0.365
 30.00 0.481 0.500 0.443 0.481 0.481
 32.50 0.592 0.614 0.557 0.592 0.592
 35.00 0.691 0.718 0.667 0.690 0.691
 37.50 0.774 0.807 0.765 0.772 0.774
 40.00 0.840 0.876 0.844 0.836 0.840

 42.50 0.890 0.926 0.903 0.884 0.891

 45.00 0.927 0.958 0.944 0.919 0.928
 47.50 0.952 0.978 0.970 0.943 0.956

 50.00 0.970 0.990 0.985 0.960 0.974
 52.50 0.981 0.995 0.993 0.971 0.986
 55.00 0.989 0.998 0.997 0.979 0.993
 57.50 0.993 0.999 0.999 0.984 0.997

 use a Hyperexponential distribution, F(x) = p(l - e-Xlx) + (1 - p)(l - eX2X), with
 X1 = 1, X2 = 4 and p = 0.2. The theory indicates that the error in approximation (2.4)
 and (2.7) should be reduced by a factor F5 2.2, while the reduction factor for (2.9)
 and (2.10) should be 5, cf. Remark 7.4. Indeed generally those reductions come true.
 (See Tables 3 and 4 and Figures 4 and 5.)

 6.4. Conclusion. The Monte-Carlo results are in excellent agreement with the
 error structure presented in ?2. Note the important role of the correction term
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 FIGURE 3. Approximation errors for a 2-out-of-7 system with an Erlang2 component
 distribution (X = 0.2).
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 TABLE 3

 3-out-of-20 System with a Hyperexponential Component Distribution (X1 = 1, = 4, p = 0.2)

 Estimated Appr. Appr. Appr. Appr.
 x D.F. (2.4) (2.7) (2.9) (2.10)

 0.60 0.00 0.01 0.02 0.00 0.00

 0.77 0.00 0.02 0.04 0.01 0.01

 0.93 0.00 0.04 0.05 0.03 0.02

 1.10 0.02 0.06 0.08 0.05 0.05

 1.26 0.05 0.08 0.12 0.09 0.09

 1.43 0.10 0.12 0.16 0.14 0.14

 1.59 0.18 0.16 0.21 0.21 0.21

 1.76 0.27 0.22 0.27 0.30 0.29

 1.92 0.37 0.28 0.34 0.38 0.38

 2.09 0.47 0.35 0.42 0.47 0.47

 2.25 0.56 0.43 0.50 0.56 0.56

 2.41 0.64 0.51 0.58 0.64 0.64

 2.58 0.72 0.59 0.66 0.71 0.72

 2.74 0.78 0.66 0.73 0.77 0.78

 2.91 0.83 0.73 0.79 0.82 0.82

 3.07 0.87 0.79 0.84 0.85 0.86

 3.24 0.90 0.85 0.88 0.88 0.89
 3.40 0.92 0.89 0.92 0.91 0.91

 3.57 0.94 0.92 0.95 0.92 0.92

 3.73 0.96 0.95 0.96 0.94 0.94

 ?(k- 1)(a-1 - yo-t). Without this term the approximated lifetime distribution
 (2.4) is indeed shifted to the right or to the left with respect to the true distribution. An
 intuitive explanation is given in remark 7.4. It is also remarkable that the approxima-
 tions (2.9) and (2.10) are already quite good for very small values of n, which is very
 convenient for real case applications. In some examples (2.9) and (2.10) differed
 significantly in the tail. In those cases the latter one yielded slightly better approxima-

 TABLE 4

 3-out-of-100 System with a Hyperexponential Component Distribution (X = 1, X, = 4, p = 0.2)

 Estimated Appr. Appr. Appr. Appr.
 x D.F. (2.4) (2.7) (2.9) (2.10)

 9.07 0.01 0.02 0.02 0.01 0.01

 9.45 0.02 0.03 0.04 0.02 0.02

 9.84 0.03 0.05 0.05 0.04 0.04

 10.22 0.06 0.07 0.08 0.07 0.07

 10.61 0.10 0.10 0.12 0.11 0.11

 10.99 0.15 0.14 0.16 0.16 0.16

 11.38 0.21 0.19 0.21 0.22 0.22

 11.76 0.28 0.25 0.27 0.29 0.29

 12.15 0.36 0.32 0.34 0.36 0.36

 12.53 0.44 0.39 0.42 0.45 0.44

 12.92 0.52 0.47 0.50 0.53 0.53

 13.30 0.61 0.55 0.58 0.61 0.61

 13.69 0.68 0.63 0.66 0.68 0.68

 14.07 0.75 0.70 0.73 0.74 0.74

 14.46 0.81 0.76 0.79 0.80 0.80

 14.84 0.85 0.82 0.84 0.84 0.84

 15.23 0.89 0.87 0.88 0.88 0.88

 15.61 0.92 0.91 0.92 0.91 0.91

 16.00 0.94 0.94 0.95 0.93 0.93

 16.38 0.96 0.96 0.96 0.95 0.95

 499
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 FIGURE 4. Approximation errors for a 3-out-of-20 systems with a hyperexponential component
 distribution (X, = 1, X2 = 4, p = 0.2).
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 FIGURE 5. Approximation errors for a 3-out-of-100 system with a hyperexponential component
 distribution (Xi = 1, X2 = 4, p = 0.2).

 tions. Several
 results.

 other simulations have been performed, all giving the same kind of

 7. Recommendations and remarks. We recommend the use of the approximation
 (2.7) when only / and a2 are known, since it corrects for the systematic error that
 occurs in (2.4). If however / 3 is known too, then approximation (2.7) can be
 considerably improved by using approximation (2.9) or (2.10). The extra amount of
 calculations that have to be made is almost negligible. Approximation (2.10) seems to
 behave better in the tails than (2.9).
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 REMARK 7.1. In the preceding sections we have assumed that the lifetime d.f. Fi of
 a component at position i is the same for all positions i = 1,..., k. This assumption is
 however not really used. It is easy to see that all the preceding theorems and lemmas
 hold when we only assume that Fi is a nonlattice distribution with F1(0) = 0 and first
 three moments independent of i. If the first three moments in fact depend on i,
 straightforward but tedious generalizations of the results can be made, leading to
 slightly more complicated formulae.

 REMARK 7.2. Although the absolute error of the approximations in the tail of the
 distribution is almost zero, the relative error can be considerable. To obtain approxi-
 mations with a small relative error in the tails, we have to replace Feller's theorem in
 ?3 by a moderate or large deviation theorem for sums of i.i.d. r.v.'s, which can be
 found for instance in Petrov (1975, Chapter VIII). We do not work out the details of
 such approximations here.

 REMARK 7.3. In this paper we have only assumed the finite existence of the first
 three moments of the component lifetime distributions. If the fourth moment is also
 finite, then in Theorem 2.1 the o(n- /2)-term is in fact O(n-'). This can be easily
 seen, since in (3.1) we may replace o(n-1/2) by 0(n-1), leading to 0(t 1) in Theo-
 rem 3.1. Moreover, the o(1)-term in Lemmas 4.1 and 4.2 are in fact O(at) and
 O(a, + t-1/2), respectively. Therefore o(tn 1/2) in Theorem 4.1 may now be replaced
 by 0(t-1) and with some minor changes in the proof this gives the O(n-')-term in
 Theorem 2.1.

 REMARK 7.4. To explain the correction term in (2.7), we use an argument of Cox
 (1959). Denote the remaining lifetime of the k - 1 working components at time M,, by
 R', i = 1,..., k - 1. Consider the system at instant Mn. The total time for which all
 components have been in use is kMn. But k - 1 of the components have still not
 failed. Thus we have

 kM, = X,1 + X2 -(R + * + - ... +R -1)

 and hence

 kim kn -- k n-* oo K I = _ k- k lim ER, k 2 )
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