
Article type: Overview

Monte Carlo Methods
Article ID

Dirk P. Kroese

The University of Queensland

Reuven Y. Rubinstein

Technion, Israel Institute of Technology

Keywords

Monte Carlo, simulation, MCMC, estimation, optimization

Abstract

Many quantitative problems in science, engineering, and economics are nowadays
solved via statistical sampling on a computer. Such Monte Carlo methods can
be used in three different ways: (1) to generate random objects and processes in
order to observe their behavior, (2) to estimate numerical quantities by repeated
sampling, and (3) to solve complicated optimization problems through randomized
algorithms.

The idea of using computers to carry out statistical sampling dates back to the
very beginning of electronic computing. Stanislav Ulam and John Von Neumann
pioneered this approach with the aim to study the behavior of neutron chain reac-
tions. Nicholas Metropolis suggested the name Monte Carlo for this methodology,
in reference to Ulam’s fondness of games of chance [18].

This article gives an overview of modern Monte Carlo methods. Starting with ran-
dom number and process generation, we show how Monte Carlo can be useful
for both estimation and optimization purposes. We discuss a range of established
Monte Carlo methods as well as some of the latest adaptive techniques, such as
the cross-entropy method.

Generating Random Variables and Processes

At the heart of any Monte Carlo method is auniform random number generator: a
procedure that produces an infinite streamU1, U2, . . . of random1 numbers on the interval
(0,1).

1Since such numbers are usually produced via deterministic algorithms, they are not truly random. However,
for most applications all that is required is that suchpseudo-random numbers are statistically indistinguishable
from genuine random numbers, which are uniformly distributedon the interval (0,1) and are independent of each
other.

1

Random Number Generators Based on Linear Recurrences

The most common methods for generating uniform random numbers use simple linear re-
currence relations. For alinear congruential generator(LCG) the output streamU1, U2, . . .
is of the formUt = Xt/m, where thestateXt satisfies the linear recursion

Xt = (aXt−1 + c) modm , t = 1, 2, (1)

Here, the integersm, a andc are called themodulus, the multiplier, and theincrement,
respectively. Applying the modulo-m operator in (1) means thataXt−1 + c is divided by
m, and the remainder is taken as the value forXt.

An often-cited LCG is that of Lewis, Goodman, and Miller [15], who proposed the choice
a = 75 = 16807, c = 0, andm = 231 − 1 = 2147483647. Although this LCG passes
many of the standard statistical tests for randomness and has been successfully used in
many applications, its statistical properties no longer meet the requirements of modern
Monte Carlo applications; see, for example, [14].

A multiple-recursive generator (MRG) of orderk is a random number generator defined
by ak-dimensional vectorXt = (Xt−k+1, . . . ,Xt)

>, whose components satisfy the linear
recurrence

Xt = (a1Xt−1 + · · · + akXt−k) modm, t = k, k + 1, . . . (2)

for some modulusm and multipliers{ai, i = 1, . . . , k}. To yield fast algorithms, all but a
few of the multipliers should be 0. Whenm is a large integer the output stream of random
numbers is, similar to the LCG case, obtained viaUt = Xt/m. It is also possible to take
a small modulus, in particularm = 2, so that the state of the generator is represented by
a binary vector of lengthk. The output function for suchmodulo 2 generatorsis then
typically of the form

Ut =
w∑

i=1

Xtw+i−12
−i

for somew 6 k, e.g.,w = 32 or 64. Examples of modulo 2 generators are thefeedback
shift register generators, the most popular of which are theMersenne twisters; see, for
example, [16] and [17].

MRGs with excellent statistical properties can be implemented efficiently by combining
several simpler MRGs. One of the most successful is L’Ecuyer’s MRG32k3agenerator;
see [13].

Generating Random Variables

Generating a random variableX from an arbitrary (that is, not necessarily uniform) distri-
bution invariably involves the following two steps:

1. Generate uniform random numbersU1, . . . , Uk on (0, 1) for somek = 1, 2,

2. ReturnX = g(U1, . . . , Uk), whereg is some real-valued function.

Two of the most useful general procedures for generating random variables are theinverse-
transformmethod and theacceptance–rejectionmethod.

2

Inverse-Transform Method

Let X be a random variable with cumulative distribution function(cdf) F . LetF−1 denote
the inverse ofF andU be a uniform random number on (0,1) — we write this asU ∼
U(0, 1). Then,

P(F−1(U) 6 x) = P(U 6 F (x)) = F (x) . (3)

This leads to the inverse-transform method: to generate a random variableX with cdf F ,
drawU ∼ U(0, 1) and returnX = F−1(U).

Acceptance–Rejection Method

The acceptance–rejection method is used to sample from a “difficult” probability density
function (pdf) f(x) by generating instead from an “easy” pdfg(x) satisfyingf(x) 6

C g(x) for some constantC > 1 (for example, via the inverse-transform method), and
then accepting or rejecting the drawn sample with a certain probability. More precisely, the
algorithm is as follows.

Algorithm 1 (Acceptance–Rejection)

1. GenerateX ∼ g; that is, drawX from pdfg.

2. GenerateU ∼ U(0, 1), independently ofX.

3. If U 6 f(X)/(C g(X)) outputX; otherwise, return to Step 1.

Theefficiencyof the acceptance–rejection method is defined as the probability of accep-
tance, which is1/C. The acceptance–rejection method can also be used to generate ran-
dom vectors inX ∈ R

d according to some pdff(x), although its efficiency is typically
very small for dimensionsd > 10; see, for example [22, Remark 2.5.1].

Generating Normal (or Gaussian) Random Variables

The polar method is based on the polar coordinate transformationX = R cos Θ, Y =
R sinΘ, whereΘ ∼ U(0, 2π) andR ∼ fR are independent. Using standard transformation
rules it follows that the joint pdf ofX andY satisfies

fX,Y (x, y) =
fR(r)

2πr
, with r =

√
x2 + y2 ,

so thatfX(x) =
∫ ∞

0
fR(r)/(π r) dy. WhenfR(r) = r e−r2/2, thenfX(x) = e−x2/2/

√
2π,

which corresponds to the pdf of the standard normal distribution N(0, 1). In this caseR
has the same distribution as

√
−2 ln U with U ∼ U(0, 1). These observations lead to the

Box–Mullermethod for generating standard normal random variables:

Algorithm 2 (N(0, 1) Generator, Box–Muller Approach)

1. GenerateU1, U2
iid∼ U(0, 1).

2. Return two independent standard normal variables,X andY , via

X =
√

−2 lnU1 cos(2πU2) ,

Y =
√
−2 lnU1 sin(2πU2) .

(4)

Many other generation method may be found, for example, in [11].

3

Generating Random Vectors and Processes

A vectorX = (X1, . . . ,Xn) of random variables is called arandom vector. More gen-
erally, arandom processis a collection of random variables{Xt}. The techniques for
generating such processes are as diverse as the random processes themselves. We mention
a few important examples; see, also [11].

WhenX1, . . . ,Xn are independentrandom variables, with pdfsfi, i = 1, . . . , n, so that
the joint pdf isf(x) = f1(x1) · · · fn(xn), the random vectorX = (X1, . . . ,Xn) can
be simply generated by drawing each componentXi ∼ fi individually — for exam-
ple, via the inverse-transform method or acceptance–rejection. Fordependentcomponents
X1, . . . ,Xn, we can represent the joint pdff(x) as

f(x) = f(x1, . . . , xn) = f1(x1) f2(x2 |x1) · · · fn(xn |x1, . . . , xn−1) , (5)

wheref1(x1) is the marginal pdf ofX1 andfk(xk |x1, . . . , xk−1) is the conditional pdf
of Xk given X1 = x1,X2 = x2, . . . ,Xk−1 = xk−1. Provided the conditional pdfs are
known, one can generateX by first first generatingX1, then, givenX1 = x1, generateX2

from f2(x2 |x1), and so on, until generatingXn from fn(xn |x1, . . . , xn−1).

The latter method is particularly applicable for generating Markov chains. AMarkov
chain is a stochastic process{Xt, t = 0, 1, 2, . . .} which satisfies theMarkov property;
meaning that for allt ands the conditional distribution ofXt+s given Xu, u 6 t is the
same as that ofXt+s given onlyXt. A direct consequence of the Markov property is that
Markov chains can be generatedsequentially: X0,X1, . . ., as expressed in the following
generic recipe.

Algorithm 3 (Generating a Markov Chain)

1. DrawX0 from its distribution. Sett = 0.

2. DrawXt+1 from the conditional distribution ofXt+1 givenXt.

3. Sett = t + 1 and repeat from Step 2.

In many cases of interest the chain istime-homogeneous, meaning that the conditional
distribution of(Xt+s |Xt) only depends ons.

Diffusion processesare random processes that satisfy the Markov property and have con-
tinuous paths and continuous time parameters. The principal example is theWiener pro-
cess(Brownian motion). In addition to being a time-homogeneousMarkov process, the
Wiener process isGaussian; that is, all its finite-dimensional distributions are multi-variate
normal. In particular,Wt ∼ N(0, t) for all t > 0.

The Wiener process can be viewed as a continuous version of a random walk process.
The basic generation algorithm below uses the Markovian andGaussian properties of the
Wiener process.

Algorithm 4 (Generating a Wiener Process)Let 0 = t0 < t1 < t2 < · · · < tn be the
set of distinct times for which the outcomes{Wtk

, k = 0, 1 . . . , n} of the Wiener process is
required.

Draw Z1, . . . , Zn
iid∼ N(0, 1) and outputWtk

=
∑k

i=1

√
tk − tk−1 Zi, k = 1, . . . , n .

4

The Wiener process plays a central role in probability and forms the basis of other diffusion
processes. These are often formulated via astochastic differential equation(SDE), which
is an expression of the form

dXt = a(Xt, t) dt + b(Xt, t) dWt , (6)

where{Wt, t > 0} is a Wiener process anda(x, t) andb(x, t) are deterministic functions.
The coefficient (function)a is called thedrift andb2 is called thediffusion coefficient.

A simple technique for approximately simulating such diffusion processes isEuler’s method;
see, for example, [9]. The idea is to replace the SDE with the stochastic difference equation

Yk+1 = Yk + a(Yk, kh)h + b(Yk, kh)
√

h Zk , (7)

whereZ1, Z2, . . . ∼iid N(0, 1). For a small step sizeh the process{Yk, k = 0, 1, 2, . . .}
approximates the process{Xt, t > 0} in the sense thatYk ≈ Xkh, k = 0, 1, 2,

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a generic method forapproximatesampling from
an arbitrary distribution. The main idea is to generate a Markov chain whose limiting
distribution is equal to the desired distribution.

The MCMC method originates from Metropolis et al. [19] and applies to the following
setting. Suppose that we wish to generate samples from an arbitrary multidimensional pdf

f(x) =
p(x)

Z , x ∈ X ,

wherep(x) is a known positive function andZ is a known or unknown normalizing con-
stant. Letq(y |x) be aproposal or instrumental density: a Markov transition density
describing how to go from statex to y. Similar to the acceptance–rejection method, the
Metropolis–Hastings algorithm is based on the following “trial-and-error” strategy.

Algorithm 5 (Metropolis–Hastings Algorithm) To sample from a densityf(x) known up
to a normalizing constant, initialize with someX0 for whichf(X0) > 0. Then, for each
t = 0, 1, 2, . . . , T − 1 execute the following steps:

1. Given the current stateXt, generateY ∼ q(y |Xt).

2. GenerateU ∼ U(0, 1) and deliver

Xt+1 =

{
Y if U 6 α(Xt,Y)

Xt otherwise,
(8)

where

α(x,y) = min

{
f(y) q(x |y)

f(x) q(y |x)
, 1

}
. (9)

The probabilityα(x,y) is called theacceptance probability. Depending on the choice of
the proposal density the algorithm can overcome the limitations of the acceptance–rejection
method for sampling from high-dimensional densities. However, unlike the acceptance–
rejection method, the algorithms producesdependentsamples. Moreover, the algorithm
may require a substantialburn-in period to reach stationarity of the Markov chain. Note
that in (9) we may replacef by p.

5

If the proposal functionq(y |x) does not depend onx, that is,q(y |x) = g(y) for some
pdf g(y), then the acceptance probability is

α(x,y) = min

{
f(y) g(x)

f(x) g(y)
, 1

}
,

and Algorithm 5 is referred to as theindependence sampler.

If the proposal is symmetric, that is,q(y |x) = q(x |y), then the acceptance probability
(9) is

α(x,y) = min

{
f(y)

f(x)
, 1

}
, (10)

and Algorithm 5 is referred to as therandom walk sampler. An example of a random walk
sampler is whenY = Xt + σZ in Step 1 of Algorithm 5, whereZ is typically generated
from some spherically symmetrical distribution (in the continuous case), such asN(0, I).

The Gibbs sampler can be viewed as a particular instance of the Metropolis–Hastings
algorithm for generatingn-dimensional random vectors [6]. The distinguishing feature of
the Gibbs sampler is that the underlying Markov chain is constructed from a sequence of
conditional distributions, in either a deterministic or random fashion.

Suppose that we wish to sample a random vectorX = (X1, . . . ,Xn) according to a target
pdf f(x). Let f(xi |x1, . . . , xi−1, xi+1, . . . , xn) represent the conditional pdf of thei-th
component,Xi, given the other componentsx1, . . . , xi−1, xi+1, . . . , xn.

Algorithm 6 (Gibbs Sampler) Given an initial stateX0, iterate the following steps for
t = 0, 1,

1. For a givenXt, generateY = (Y1, . . . , Yn) as follows:

(a) DrawY1 from the conditional pdff(x1 |Xt,2, . . . ,Xt,n).

(b) DrawYi fromf(xi |Y1, . . . , Yi−1,Xt,i+1, . . . ,Xt,n), i = 2, . . . , n − 1.

(c) DrawYn fromf(xn |Y1, . . . , Yn−1).

2. LetXt+1 = Y.

Algorithm 6 presents asystematic(coordinatewise) Gibbs sampler. That is, the compo-
nents of vectorX are updated in the coordinatewise order1 → 2 → · · · → n. The
completion of all the conditional sampling steps in the specified order is called acycle.
Alternative updating of the components of vectorX are possible. In thereversible Gibbs
samplera single cycle consists of the coordinatewise updating

1 → 2 → · · · → n − 1 → n → n − 1 → · · · → 2 → 1 .

In the random sweep/scan Gibbs samplera single cycle can either consist of one or
several coordinates selected uniformly from the integers1, . . . , n, or a random permutation
π1 → π2 → · · · → πn of all coordinates.

Monte Carlo for Estimation

Estimation of Expectations

Suppose the dataY1, . . . , YN from a simulation experiment are independent and identically
distributed according to some known or unknown discrete or continuous pdff . Often such

6

data are obtained by executingN independent runs of the simulation, producing outputYi

for thei-th run. Suppose the aim of the simulation is to estimate the performance measure
` = EY , with Y ∼ f . Assuming|`| < ∞, an unbiased estimator for` is thesample mean
of the{Yi}; that is,

Ȳ =
1

N

N∑

i=1

Yi . (11)

Provided that the variance ofY , sayσ2, is finite, Ȳ approximately has aN(`, σ2/N) dis-
tribution for largeN (an immediate consequence of the central limit theorem). Ifσ2 is
unknown, it can be estimated without bias via thesample varianceof the{Yi}:

S2 =
1

N − 1

N∑

i=1

(Yi − Ȳ)2 , (12)

which (by the law of large numbers) tends toσ2 asN → ∞. This leads to an approximate
1 − α confidence intervalfor `:

(
Ȳ − z1−α/2

S√
N

, Ȳ + z1−α/2
S√
N

)
, (13)

wherezγ denotes theγ-quantile of theN(0, 1) distribution.

Instead of specifying the confidence interval, one often reports only theestimated standard
error: S/

√
N , or theestimated relative errorS/(Ȳ

√
N).

The basic estimation procedure for independent data is summarized below. The procedure
is sometimes referred to ascrude Monte Carlo (CMC).

Algorithm 7 (Crude Monte Carlo for Independent Data)

1. GenerateY1, . . . , YN
iid∼ f (for example, from independent simulation runs).

2. Calculate the point estimatēY and confidence interval(13)of ` = EY .

It is often the case that the outputY is a function of some underlying random vector or
stochastic process; that is,Y = H(X), whereH is a real-valued performance function and
X is a random vector or process. The beauty of Monte Carlo for estimation is that (13)
holds regardless of the dimension ofX.

Example 1 In Monte Carlo integration , simulation is used to evaluate complicated inte-
grals. Consider, for example, the integral

` =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

√
|x1 + x2 + x3| e−(x2

1+x2
2+x2

3)/2 dx1 dx2 dx3 .

DefiningY = |X1 + X2 + X3|1/2(2π)3/2, with X1,X2,X3
iid∼ N(0, 1), we can write

` = EY . Using the followingMATLAB program, with a sample size ofN = 106, we
obtained an estimatēY = 17.04 with a95% confidence interval(17.026, 17.054).

c = (2 * pi)ˆ(3/2);
H = @(x) c * sqrt(abs(sum(x,2)));
N = 10ˆ6; z = 1.96;
x = randn(N,3); y = H(x);
mY = mean(y); sY = std(y); RE = sY/mY/sqrt(N);
fprintf(’Estimate = %g, CI = (%g, %g)\n’, ...

mY, mY* (1- z * RE), mY* (1 + z * RE))

7

Variance Reduction

The estimation of performance measures in Monte Carlo simulation can be made more
efficient by utilizing known information about the simulation model. Variance reduction
techniques include antithetic variables, control variables, importance sampling, conditional
Monte Carlo, and stratified sampling; see, for example, [11,Chapter 9]. We shall only deal
with the first three techniques.

One of the simplest approaches is to estimate` = EY is to generate an independent se-
quence ofantithetic pairs (Y1, Y

∗
1), . . . , (YN/2, Y

∗
N/2), where eachYi and Y ∗

i are dis-
tributed asY but arenegatively correlated. Theantithetic estimator

̂̀(a) =
1

N

N/2∑

k=1

{Yk + Y ∗
k } , (14)

is an unbiased estimator of` = EY with a variance that is a factor(1 + %Y,Y ∗) of that of
the CMC estimator, where%Y,Y ∗ is the correlation betweenY andY ∗.

In general, the output of a simulation run is of the formY = h(U), whereh is a real-
valued function andU = (U1, U2, . . .) is a random vector of iidU(0, 1) random variables.
Suppose thatU∗ is another vector of iidU(0, 1) random variables which is dependent onU
and for whichY andY ∗ = h(U∗) are negatively correlated. Then(Y, Y ∗) is an antithetic
pair. In particular, ifh is a monotone function in each of its components, then the choice
U∗ = 1 − U, where1 is the vector of 1s, yields an antithetic pair.

Another useful variance reduction approach is to usecontrol variables. Let Y be the
output of a simulation run. A random variablẽY , obtained from the same simulation run,
is called a control variable forY if Y andỸ are correlated (negatively or positively) and
the expectation of̃Y is known. The use of control variables for variance reduction is based
on the following observation.

Theorem 1 (Control Variable Estimation) Let Y1, . . . , YN be the output ofN indepen-
dent simulation runs, and let̃Y1, . . . , ỸN be the corresponding control variables, with
EỸk = ˜̀ known. Let%Y,eY be the correlation coefficient between eachYk and Ỹk. For
eachα ∈ R the (linear) estimator

̂̀(c) =
1

N

N∑

k=1

[
Yk − α

(
Ỹk − ˜̀

)]
(15)

is an unbiased estimator for̀= EY . The minimal variance of̀̂(c) is

Var(̂̀(c)) =
1

N
(1 − %2

Y,eY
)Var(Y) (16)

which is obtained forα = %Y,eY

√
Var(Y)/Var(Ỹ).

Usually the optimalα in (16) is unknown, but it can be easily estimated from the sample
covariance matrix of the{(Yk, Ỹk)}.

One of the most important variance reduction techniques isimportance sampling. This
technique is especially useful for the estimation of very small probabilities. The standard
setting is the estimation of a quantity

` = EfH(X) =

∫
H(x) f(x) dx , (17)

8

whereH is a real-valued function andf the probability density of a random vectorX,
called thenominal pdf. The subscriptf is added to the expectation operator to indicate
that it is taken with respect to the densityf .

Let g be another probability density such thatH f is dominated by g. That is,g(x) =
0 ⇒ H(x) f(x) = 0. Using the densityg we can represent̀as

` =

∫
H(x)

f(x)

g(x)
g(x) dx = EgH(X)

f(X)

g(X)
. (18)

Consequently, ifX1, . . . ,XN ∼iid g, then

̂̀=
1

N

N∑

k=1

H(Xk)
f(Xk)

g(Xk)
(19)

is an unbiased estimator of`. This estimator is called theimportance sampling esti-
mator andg is called the importance sampling density. The ratio of densities, W (x) =
f(x)/g(x), is called thelikelihood ratio . The importance sampling algorithm is as fol-
lows.

Algorithm 8 (Importance Sampling Estimation)

1. Select an importance sampling densityg that dominatesHf .

2. GenerateX1, . . . ,XN
iid∼ g and letYi = H(Xi)f(Xi)/g(Xi), i = 1, . . . , N .

3. Estimatè via ̂̀= Ȳ and determine an approximate1 − α confidence interval as
(

̂̀− z1−α/2
S√
N

, ̂̀+ z1−α/2
S√
N

)
,

wherezγ denotes theγ-quantile of theN(0, 1) distribution andS is the sample stan-
dard deviation ofY1, . . . , YN .

The main difficulty in importance sampling is how to choose the importance sampling dis-
tribution. A poor choice ofg may seriously affect the accuracy of the estimate and the
confidence intervals. The theoretically optimal choiceg∗ for the importance sampling den-
sity minimizes the variance of̂`, and is therefore the solution to the functional minimization
program

min
g

Varg

(
H(X)

f(X)

g(X)

)
. (20)

It is not difficult to show that if eitherH(x) > 0 or H(x) 6 0 for all x, then

g∗(x) =
H(x) f(x)

`
, (21)

in which caseVarg∗(̂̀) = Varg∗(H(X)W (X)) = Varg∗(`) = 0, so that the estimator̀̂
is constantunderg∗. An obvious difficulty is that the evaluation of the optimal importance
sampling densityg∗ is usually not possible, sinceg∗(x) in (21) depends on the unknown
quantity`. Nevertheless, one can typically choose a good importance sampling densityg
“close” to the minimum variance densityg∗.

One of the main considerations for choosing a good importance sampling pdf is that the
estimator (19) should have finite variance. This is equivalent to the requirement that

EgH
2(X)

f2(X)

g2(X)
= EfH2(X)

f(X)

g(X)
< ∞ . (22)

This suggests thatg should not have lighter tails thanf , and that, preferably, the likelihood
ratio,f/g, should be bounded.

9

Variance Minimization Method

When the pdff belongs to some parametric family of distributions, it is often convenient to
choose the importance sampling distribution from thesamefamily. In particular, suppose
thatf(·;θ) belongs to the family

{f(·;η), η ∈ Θ} .

Then, the problem of finding an optimal importance sampling density in this class reduces
to the followingparametricminimization problem

min
η∈Θ

Varη (H(X)W (X;θ,η)) , (23)

whereW (X;θ,η) = f(X;θ)/f(X;η). We call θ the nominal parameter andη the
reference parameter vectoror tilting vector . Since under anyf(·;η) the expectation of
H(X)W (X;θ,η) is `, the optimal solution of (23) coincides with that of

min
η∈Θ

V (η) , (24)

where
V (η) = EηH2(X)W 2(X;θ,η) = EθH2(X)W (X;θ,η) . (25)

We call either of the equivalent problems (23) and (24) thevariance minimization (VM)
problem; and we call the parameter vector∗η that minimizes the programs (23) – (24) the
VM-optimal reference parameter vector. The VM problem can be viewed as a stochastic
optimization problem, and can be approximately solved via Monte Carlo simulation by
considering the stochastic counterpart of (24) – (25):

min
η∈Θ

V̂ (η) , (26)

where

V̂ (η) =
1

N

N∑

k=1

H2(Xk)W (Xk;θ,η) , (27)

andX1, . . . ,XN ∼iid f(·;θ). This problem can be solved via standard numerical opti-
mization techniques, such as the Newton–Raphson method. This gives the following mod-
ification of Algorithm 8.

10

Algorithm 9 (Variance Minimization Method)

1. Select a parameterized family of importance sampling densities{f(·;η)}.

2. Generate a pilot sampleX1, . . . ,XN
iid∼ f(·;θ), and determine the solution∗η̂ to

the variance minimization problem(26).

3. GenerateX1, . . . ,XN1

iid∼ f(·; ∗η̂) and letYi = H(Xi)f(Xi;θ)/f(Xi; ∗η̂), i =
1, . . . , N1.

4. Estimatè via ̂̀= Ȳ and determine an approximate1 − α confidence interval as
(

̂̀− z1−α/2
S√
N1

, ̂̀+ z1−α/2
S√
N1

)
,

wherezγ denotes theγ-quantile of theN(0, 1) distribution andS is the sample stan-
dard deviation ofY1, . . . , YN1

.

Cross-Entropy Method

An alternative approach to the VM method for choosing an “optimal” importance sam-
pling distribution is based on the Kullback–Leibler cross-entropy distance, or simplycross-
entropy (CE) distance. The CE distance between two continuous pdfsg andh is given by

D(g, h) = Eg ln
g(X)

h(X)
=

∫
g(x) ln

g(x)

h(x)
dx

=

∫
g(x) ln g(x) dx −

∫
g(x) ln h(x) dx .

(28)

For discrete pdfs replace the integrals with the corresponding sums. Observe that, by
Jensen’s inequality,D(g, h) > 0, with equality if and only ifg = h. The CE distance
is sometimes called the Kullback–Leiblerdivergence, because it is not symmetric, that is,
D(g, h) 6= D(h, g) for g 6≡ h.

The idea of the CE method is to choose the importance samplingdensity,h say, such that
the CE distance between the optimal importance sampling density g∗ in (21) andh, is
minimal. We call this theCE-optimal pdf . This pdf solves thefunctionaloptimization
programminh D (g∗, h). If we optimize over all densitiesh, then it is immediate that the
CE-optimal pdf coincides with the VM-optimal pdfg∗.

As with the VM approach in (23) and (24), we shall restrict ourselves to a parametric family
of densities{f(·;η),η ∈ Θ} that contains the nominal densityf(·;θ). Moreover, without
any loss of generality, we only consider positive functionsH. The CE method now aims to
solve theparametricoptimization problem

min
η∈Θ

D (g∗, f(·;η)) . (29)

The optimal solution coincides with that of

max
η∈Θ

D(η) , (30)

where
D(η) = EθH(X) ln f(X;η) . (31)

11

Similar to the VM program (24), we call either of the equivalent programs (29) and (30)
the CE program; and we call the parameter vectorη∗ that minimizes the program (29)
and (30) theCE-optimal reference parameter.

Similar to (26) we can estimateη∗ via the stochastic counterpart method as the solution of
the stochastic program

max
η

D̂(η) = max
η

1

N

N∑

k=1

H(Xk) ln f(Xk;η) , (32)

whereX1, . . . ,XN ∼iid f(·;θ).

In typical applications the function̂D in (32) is convex and differentiable with respect to
η. In such cases the solution of (32) may be obtained by solving(with respect toη) the
following system of equations:

1

N

N∑

k=1

H(Xk) ∇ ln f(Xk;η) = 0 , (33)

where the gradient is with respect toη. Various numerical and theoretical studies have
shown that the solutions to the VM and CE programs are qualitatively similar. The main
advantage of the CE approach over the VM approach is that the solution to (32) (or (33))
can often be foundanalytically; see, for example, [3].

Monte Carlo for Optimization

In this section we discuss several Monte Carlo optimizationmethods. Such randomized
algorithms can be useful for solving optimization problemswith many local optima and
complicated constraints, possibly involving a mix of continuous and discrete variables.
Randomized algorithms are also used to solvenoisyoptimization problems, in which the
objective function is unknown and has to be obtained via Monte Carlo simulation.

Suppose we have a minimization problem onX ⊆ R
n of the form

min
x∈X

S(x) , (34)

whereS is an unknown function of the formES̃(x, ξ), with ξ a random vector and̃S
a known function. A typical example is whereS(x) is the (usually unknown) expected
performance measure from a Monte Carlo simulation. Such a problem is said to be anoisy
optimization problem, as typically only realizations ofS̃(x, ξ) can be observed.

Because the gradient∇S is unknown, one cannot directly apply classical optimization
methods. Thestochastic approximation methodmimics the classical gradient descent
method by replacing a deterministic gradient with a random approximation. More gen-
erally, one can approximate a subgradient instead of the gradient. It is assumed that an
estimate of the gradient ofS is available at any pointx ∈ X . We denote such an estimate
by ∇̂S(x). There are several established ways of obtaininĝ∇S(x). These include the fi-
nite difference method, infinitesimal perturbation analysis, the score function method, and
the method of weak derivatives; see, for example, [7, Chapter 7].

In direct analogy to gradient descent methods, the stochastic approximation method pro-
duces a sequence of iterates, starting with somex1 ∈ X , via

xt+1 = ΠX

(
xt − βt ∇̂S(xt)

)
, (35)

12

whereβ1, β2, . . . is a sequence of strictly positive step sizes andΠX is a projection op-
erator that takes a point inRn and returns a closest (typically in Euclidean distance)
point in X , ensuring that iterates remain feasible. That is, for anyy ∈ R

n, ΠX (y) ∈
argmin

z∈X ‖z − y‖. Naturally, if X = R
n, thenΠX (y) = y. A generic stochastic

approximation algorithm is as follows.

Algorithm 10 (Stochastic Approximation)

1. Initializex1 ∈ X . Sett = 1.

2. Obtain an estimated gradient̂∇S(xt) of S at xt.

3. Determine a step sizeβt.

4. Setxt+1 = ΠX

(
xt − βt ∇̂S(xt)

)
.

5. If a stopping criterion is met, stop; otherwise, sett = t + 1 and repeat from Step 2.

There are many theorems on the convergence of stochastic approximation algorithms. In
particular, for an arbitrary deterministic positive sequenceβ1, β2, . . . such that

∞∑

t=1

βt = ∞,

∞∑

t=1

β2
t < ∞ ,

the random sequencex1,x2, . . . converges in the mean square sense to the minimizerx∗

of S(x) under certain regularity conditions. See, for example, [12].

When∇̂S(xt) is anunbiasedestimator of∇S(xt) in (35) the stochastic approximation
Algorithm 10 is referred to as theRobbins–Monro algorithm. When finite differences
are used to estimatê∇S(xt) the resulting algorithm is known as theKiefer–Wolfowitz
algorithm.

An alternative approach to stochastic approximation is thestochastic counterpart method
(also calledsample average approximation). The idea is to replace the noisy optimization
problem (34) with

min
x∈Rn

Ŝ(x) , (36)

where

Ŝ(x) =
1

N

N∑

i=1

S̃(x, ξi)

is a sample average estimator ofS(x) = ES̃(x, ξ) on the basis ofN iid samplesξ1, . . . , ξN .

A solutionx̂∗ to this sample average version is taken to be an estimator of asolutionx∗ to
the original problem (34). Note that (36) is adeterministicoptimization problem to which
any of the standard deterministic optimization methods could apply.

Simulated annealing is a Markov chain Monte Carlo technique for approximately lo-
cating a global maximum of a given densityf(x). The idea is to create a sequence of
pointsX1,X2, . . . that are approximately distributed according to pdfsf1(x), f2(x), . . .
with ft(x) ∝ f(x)1/Tt , whereT1, T2, . . . is a sequence oftemperatures (known as the
annealing schedule) that decreases to0. If eachXt were sampledexactlyfrom f(x)1/Tt ,
thenXt would converge to a global maximum off(x) asTt → 0. However, in practice
sampling isapproximateand convergence to a global maximum is not assured. A high-level
simulated annealing algorithm is as follows.

13

Algorithm 11 (Simulated Annealing)

1. Choose a starting stateX0 and an initial temperatureT0. Sett = 1.

2. Select a temperatureTt 6 Tt−1 according to the annealing schedule.

3. Approximately generate a new stateXt fromft(x) ∝ (f(x))1/Tt .

4. Sett = t + 1 and repeat from Step 2 until stopping.

The most common application for simulated annealing is in optimization. In particular,
consider the minimization problem (34) for some deterministic real-valued functionS(x).
Define theBoltzmann pdf as

f(x) ∝ e−S(x), x ∈ X .

For T > 0 close to 0 the global maximum off(x)1/T ∝ exp(−S(x)/T) is close to the
global minimum ofS(x). Hence, by applying simulated annealing to the Boltzmann pdf,
one can also minimizeS(x). Maximization problems can be handled in a similar way, by
using a Boltzmann pdff(x) ∝ exp(S(x)). Note that this may not define a valid pdf if the
exponential terms are not normalizable.

There are many different ways to implement simulated annealing algorithms, depending
on (1) the choice of Markov chain Monte Carlo sampling algorithm, (2) the length of the
Markov chain between temperature updates, and (3) the annealing schedule. A popular
annealing schedule isgeometric cooling, whereTt = βTt−1, t = 1, 2, . . ., for a given
initial temperatureT0 and acooling factor β ∈ (0, 1). Appropriate values forT0 andβ
are problem-dependent, and this has traditionally required tuning on the part of the user.
Theoretical results on adaptive tuning schemes may be found, for example, in [23].

The following algorithm describes a popular simulated annealing framework for minimiza-
tion, which uses a random walk sampler; that is, a Metropolis–Hastings sampler with a
symmetric proposal distribution. Note that the temperature is updated after asinglestep of
the Markov chain.

Algorithm 12 (Simulated Annealing for Minimization)

1. Initialize the starting stateX0 and temperatureT0. Sett = 1.

2. Select a temperatureTt 6 Tt−1 from the annealing schedule.

3. Generate a candidate stateY from the symmetric proposal densityq(Y |Xt) =
q(Xt |Y).

4. Compute the acceptance probability

α(Xt,Y) = min
{

e−
(S(Y)−S(Xt))

Tt , 1
}

.

GenerateU ∼ U(0, 1) and set

Xt+1 =

{
Y if U 6 α(Xt,Y) ,

Xt if U > α(Xt,Y) .

5. Sett = t + 1 and repeat from Step 2 until a stopping criterion is met.

14

Thecross-entropy(CE) method can be used for both deterministic and noisy optimization.
Consider first the deterministic minimization problem (34), whereS is some real-valued
performance function on a setX . The basic idea of the CE method for optimization is
to define a parametric family of probability densities{f(·;v),v ∈ V } on the state space
X , and to iteratively update the parameterv so thatf(·;v) places more mass closer to
solutions than on the previous iteration.

In practice, this results in an algorithm with two basic phases:

• Sampling: SamplesX1, . . . ,XN are drawn independently according tof(·;v). The
objective functionS is evaluated at these points.

• Updating: A new parameter̂v is selected on the basis of thoseXi for whichS(Xi) 6

γ̂ for some level̂γ. These{Xi} form theelite sampleset,E .

At each iteration the level parameterγ̂ is chosen as the worst performance (for minimiza-
tion: the largest) of the best performingN e samples, and the parameterv is updated as

v̂ = argmax
v∈V

∑

X∈E

ln f(X;v) . (37)

This updating formula is the result of minimizing the Kullback–Leibler or CE distance
between the conditional density ofX ∼ f(x;v) givenS(X) 6 γ̂, andf(x; v̂); see [21].
Note that (37) yields the maximum likelihood estimator ofv based on the elite samples.
Hence, for many specific families of distributions, including exponential families, explicit
solutions can be found. An important example is whereX ∼ N(µ,diag(σ2)), where the
mean vectorµ and the vector of variancesσ2 are updated via the sample mean and sample
variance of the elite samples. This is known asnormal updating. A generic CE algorithm
for minimization is as follows.

Algorithm 13 (CE Algorithm for Minimization)

1. Choose an initial parameter vector̂v0. Let N e = d%Ne be the number of elite
samples. Sett = 1.

2. GenerateX1, . . . ,XN ∼iid f(·; v̂t−1). Calculate the performancesS(Xi) for all i
and order them from smallest to largest:S(1) 6 . . . 6 S(N). Let γ̂t be the sample
%-quantile of performances; that is,̂γt = S(Ne).

3. Use thesamesampleX1, . . . ,XN and set

v̂t = argmax
v

N∑

k=1

I{S(Xk)6bγt} ln f(Xk;v) . (38)

4. If some stopping criterion is met, stop; otherwise, sett = t + 1 and return to Step 2.

Algorithm 13 can easily be modified to minimizenoisy functionsS(x) = ES̃(x, ξ), as
defined in (34). The only change required in the algorithm is that every function value
S(x) be replaced by its estimatêS(x).

In practice various modifications of the basic algorithm areused; see, for example, [2, 10].
In particular, it is often useful to includesmoothing of the parameter vectors: given a
vector ofsmoothing parametersα, replace Step 3 of Algorithm 13 by

15

3’. Use thesamesampleX1, . . . ,XN and set

ṽt = argmax
v

N∑

k=1

I{S(Xk)6bγt} ln f(Xk;v) , (39)

updatingv̂t as
v̂t = diag(α) ṽt + diag(1 − α) v̂t−1 .

Conclusion

Monte Carlo simulation provides one of the most useful generic approaches to sta-
tistical computing. During the last few years significant advances have taken place
in the application and theory of Monte Carlo. Recent insights in adaptive estimation
methods provide novel approaches to rare-event simulation and randomized opti-
mization, while Markov chain Monte Carlo techniques have significantly increased
the scope and applicability of Bayesian statistical techniques.

References

[1] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag, New York, 2007.

[2] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer. The cross-entropy
method for optimization. In V. Govindaraju and C.R. Rao, editors, Handbook of
Statistics, volume 31:Machine Learning. North Holland, 2011.

[3] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

[4] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
1986.

[5] G. S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer-
Verlag, New York, 1996.

[6] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(6):721–741, 1984.

[7] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag,
New York, 2004.

[8] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods, Volume I: Basics. John
Wiley & Sons, New York, 1986.

[9] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equa-
tions. Springer-Verlag, New York, 1992. corrected third printing.

[10] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The cross-entropy method for con-
tinuous multi-extremal optimization. Methodology and Computing in Applied Prob-
ability, 8(3):383–407, 2006.

[11] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John
Wiley & Sons, New York, 2011.

[12] H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms
and Applications. Springer-Verlag, New York, second edition, 2003.

16

[13] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1):159 – 164, 1999.

[14] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random
number generators. ACM Transactions on Mathematical Software, 33(4), 2007.
Article 22.

[15] P. A. Lewis, A. S. Goodman, and J. M. Miller. A pseudo-random number generator
for the system/360. IBM Systems Journal, 8(2):136–146, 1969.

[16] T. G. Lewis and W. H. Payne. Generalized feedback shift register pseudorandom
number algorithm. Journal of the ACM, 20(3):456–468, 1973.

[17] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Model-
ing and Computer Simulation, 8(1):3–30, 1998.

[18] N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science,
15:125–130, 1987.

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of Chemi-
cal Physics, 21(6):1087–1092, 1953.

[20] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag,
New York, second edition, 2004.

[21] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning.
Springer-Verlag, New York, 2004.

[22] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

[23] Y. Shen, S. Kiatsupaibul, Z. B. Zabinsky, and R. L. Smith. An analytically de-
rived cooling schedule for simulated annealing. Journal of Global Optimization,
38(2):333–365, 2007.

Further Reading
In addition to the references in the text, further information on Monte Carlo methods
may be found, for example, in [1, 4, 5, 8, 20].

Cross-References

Markov chain Monte Carlo, Simulation methods, Importance sampling

Supplementary Information

The homepage www.montecarlohandbook.org for the Handbook of Monte
Carlo Methods contains an extensive library of MATLAB code for Monte Carlo sim-
ulation.

The homepage for the Cross-Entropy Method, featuring many articles on the CE
method, is www.cemethod.org .

17

www.montecarlohandbook.org
www.cemethod.org

	Generating Random Variables and Processes
	Random Number Generators Based on Linear Recurrences
	Generating Random Variables
	Generating Random Vectors and Processes
	Markov Chain Monte Carlo

	Monte Carlo for Estimation
	Estimation of Expectations
	Variance Reduction

	Monte Carlo for Optimization

