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Abstract

Many quantitative problems in science, engineering, and economics are nowadays
solved via statistical sampling on a computer. Such Monte Carlo methods can
be used in three different ways: (1) to generate random objects and processes in
order to observe their behavior, (2) to estimate numerical quantities by repeated
sampling, and (3) to solve complicated optimization problems through randomized
algorithms.

The idea of using computers to carry out statistical sampling dates back to the
very beginning of electronic computing. Stanislav Ulam and John Von Neumann
pioneered this approach with the aim to study the behavior of neutron chain reac-
tions. Nicholas Metropolis suggested the name Monte Carlo for this methodology,
in reference to Ulam’s fondness of games of chance ].

This article gives an overview of modern Monte Carlo methods. Starting with ran-
dom number and process generation, we show how Monte Carlo can be useful
for both estimation and optimization purposes. We discuss a range of established
Monte Carlo methods as well as some of the latest adaptive techniques, such as
the cross-entropy method.

Generating Random Variables and Processes

At the heart of any Monte Carlo method isuaiform random number generator: a
procedure that produces an infinite stre@mUs, . . . of randorf numbers on the interval
(0,2).

1Since such numbers are usually produced via deterministiitigis, they are not truly random. However,
for most applications all that is required is that systeudorandom numbers are statistically indistinguishable
from genuine random numbers, which are uniformly distributedhe interval (0,1) and are independent of each
other.




Random Number Generators Based on Linear Recurrences

The most common methods for generating uniform random nusnise simple linear re-
currence relations. Forlimear congruential generator (LCG) the output streartiy, Us, . . .
is of the formU; = X;/m, where thestate X; satisfies the linear recursion

Xy = (aXt_l—i—c) mOd’I’I’l7 t= 1,2,... . (1)

Here, the integers:, a andc are called themodulus the multiplier, and theincrement
respectively. Applying the module: operator in/(1) means that\; ; + c is divided by
m, and the remainder is taken as the valueXor

An often-cited LCG is that of Lewis, Goodman, and Mill[lﬁﬂho proposed the choice
a = 7" = 16807, c = 0, andm = 23! — 1 = 2147483647. Although this LCG passes
many of the standard statistical tests for randomness asdéean successfully used in
many applications, its statistical properties no longeetrtee requirements of modern
Monte Carlo applications; see, for exampE [14].

A multiple-recursive generator (MRG) of order k is a random number generator defined

by ak-dimensional vectoK; = (X;_j41,...,X:) ', whose components satisfy the linear
recurrence

Xt = (althl-f—"'-f—akthk) mOdTI’L7 t:k,k+1, (2)
for some modulusn and multipliers{a;,7 = 1,. .., k}. To yield fast algorithms, all but a

few of the multipliers should be 0. When is a large integer the output stream of random
numbers is, similar to the LCG case, obtained&ja= X,;/m. Itis also possible to take

a small modulus, in particulan = 2, so that the state of the generator is represented by
a binary vector of lengtlt. The output function for sucmodulo 2 generatorsis then
typically of the form

U, = Z Xiwri12™"
i—1

for somew < k, e.g.,w = 32 or 64. Examples of modulo 2 generators are tbedback
shift register generators, the most popular of which are ifhersenne twisters see, for

example, [16] and [17].

MRGs with excellent statistical properties can be impletaérefficiently by combining
several simpler MRGs. One of the most successful is LEcsyMRG32k3agenerator;
seeﬁ?;].

Generating Random Variables

Generating a random variabké from an arbitrary (that is, not necessarily uniform) distri
bution invariably involves the following two steps:

1. Generate uniform random numbéfs, ..., U, on(0, 1) for somek = 1,2, .. ..

2. ReturnX = ¢(Uy,...,Uy), whereg is some real-valued function.

Two of the most useful general procedures for generatingaiarvariables are thaverse-
transformmethod and thacceptance-rejectiomethod.



Inverse-Transform Method

Let X be a random variable with cumulative distribution funct{odf) F. Let F~! denote
the inverse off’ andU be a uniform random number on (0,1) — we write thislasv
U(0,1). Then,

P(F~'(U) < z) =P(U < F(x)) = F() . ®)
This leads to the inverse-transform method: to generatagora variableX with cdf F,
drawU ~ U(0,1) and returnX = F~1(U).

Acceptance—Rejection Method

The acceptance—rejection method is used to sample fronffectidt’ probability density
function (pdf) f(z) by generating instead from an “easy” pglfz) satisfying f(z) <

C g(x) for some constan€® > 1 (for example, via the inverse-transform method), and
then accepting or rejecting the drawn sample with a certaibability. More precisely, the
algorithm is as follows.

Algorithm 1 (Acceptance—Rejection)

1. GenerateX ~ g; thatis, drawX from pdfg.

2. Generatd/ ~ U(0, 1), independently oX .

3. IfU < f(X)/(C g(X)) outputX; otherwise, return to Step 1.
The efficiency of the acceptance—rejection method is defined as the piabaifiaccep-
tance, which isl /C. The acceptance-rejection method can also be used to tEen@na

dom vectors inX € R according to some pdf(x), although its efficiency is typically
very small for dimensiong > 10; see, for example [22, Remark 2.5.1].

Generating Normal (or Gaussian) Random Variables

The polar method is based on the polar coordinate transformatlon= Rcos©, Y =
Rsin ©, where® ~ U(0,27) andR ~ fr are independent. Using standard transformation
rules it follows that the joint pdf o andY” satisfies

fX7Y(x7y) = J;R—(r) ,  with r = \/W’

wr
sothatfx () = [;° fa(r)/(m ) dy. Whenfr(r) = re~""/2, thenfx (z) = e~/ //2r,
which corresponds to the pdf of the standard normal digighWN(0, 1). In this caseR

has the same distribution 8—21In U with U ~ U(0,1). These observations lead to the
Box—Mullermethod for generating standard normal random variables:

Algorithm 2 (N(0, 1) Generator, Box—Muller Approach)

1. Generatd/,, U; id u(o0,1).

2. Return two independent standard normal variablésandY’, via
X =+/—2InU; cos(2nUs) ,
Y =+/—2InU; sin(27U,) .

4

Many other generation method may be found, for examplgm [1
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Generating Random Vectors and Processes

AvectorX = (Xy,...,X,) of random variables is calledrandom vector. More gen-
erally, arandom processis a collection of random variablesX;}. The techniques for
generating such processes are as diverse as the randoraga®teemselves. We mention
a few important examples; see, also [11].

When X4, ..., X,, areindependentandom variables, with pdfg;, i = 1,...,n, so that
the joint pdf is f(x) = fi(z1) - fu(z,), the random vectoX = (Xi,...,X,,) can
be simply generated by drawing each compon&nt~ f; individually — for exam-
ple, via the inverse-transform method or acceptance-tiejed-ordependentomponents
X1,...,X,, we can represent the joint pdfx) as

f(x) = fz1,...,20) = fi(z1) falza | 1) - fulzn |21, o Tne1) (5)

where f1(x1) is the marginal pdf ofX; and fi(xy | z1,...,2,—1) is the conditional pdf
of Xi given Xy, = x1, Xo = x9,..., X1 = x;_1. Provided the conditional pdfs are
known, one can genera?¢ by first first generating(, then, givenX; = z;, generateX,
from fo(x2 | z1), and so on, until generating,, from f,,(z,, | z1,...,2n—1).

The latter method is particularly applicable for genemtiarkov chains. AMarkov
chain is a stochastic proceqsX;,¢ = 0,1,2,...} which satisfies théarkov property
meaning that for alt and s the conditional distribution o, given X,,,u < tis the
same as that ok, s given only X;. A direct consequence of the Markov property is that
Markov chains can be generatsequentially X, X1, ..., as expressed in the following
generic recipe.

Algorithm 3 (Generating a Markov Chain)

1. Draw X, from its distribution. Set = 0.
2. Draw X;; from the conditional distribution oKX, givenX;.

3. Sett = ¢+ 1 and repeat from Step 2.

In many cases of interest the chaintime-homogeneousmeaning that the conditional
distribution of (X, | X;) only depends on.

Diffusion processesare random processes that satisfy the Markov property aveldon-
tinuous paths and continuous time parameters. The prinekaanple is theNiener pro-
cess(Brownian motion). In addition to being a time-homogenedarkov process, the
Wiener process i§aussianthat is, all its finite-dimensional distributions are ninvariate
normal. In particulari; ~ N(0,¢) forall ¢t > 0.

The Wiener process can be viewed as a continuous version afidom walk process.
The basic generation algorithm below uses the MarkovianGeugssian properties of the
Wiener process.

Algorithm 4 (Generating a Wiener Process)Let0 = ¢y < t; < ts < --- < t,, be the
set of distinct times for which the outcom@®}, , £ = 0,1...,n} of the Wiener process is
required.

Draw Zy,...,Z, id N(0,1) and outputiV;, = Zle Vie —th1 Zi;, k=1,...,n.
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The Wiener process plays a central role in probability amohfathe basis of other diffusion
processes. These are often formulated \stoahastic differential equation(SDE), which
is an expression of the form

dXt = Q(Xt,t) dt+b(Xt,t) th y (6)

where{W,t > 0} is a Wiener process andzx, t) andb(z, t) are deterministic functions.

The coefficient (function is called thedrift andb? is called thediffusion coefficient.

A simple technique for approximately simulating such difin processes Buler's method,;

see, for exampldﬂ[9]. The idea is to replace the SDE withtihehsstic difference equation
Vi1 = Yi 4 a(Yi, kh) h + b(Yi, kh)Vh Zy, @)

whereZy, Zs, ... ~ua N(0,1). For a small step sizk the procesqYy,k = 0,1,2,...}
approximates the proce$X;,t > 0} in the sense that, ~ Xy, k =0,1,2,.. ..

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a generic method fapproximatesampling from
an arbitrary distribution. The main idea is to generate aldarchain whose limiting
distribution is equal to the desired distribution.

The MCMC method originates from Metropolis et ﬂ[lQ] anglégs to the following
setting. Suppose that we wish to generate samples from @ragybmultidimensional pdf

o =" xew

wherep(x) is a known positive function ang is a known or unknown normalizing con-
stant. Letq(y |x) be aproposal or instrumental density: a Markov transition density
describing how to go from stateto y. Similar to the acceptance—rejection method, the
Metropolis—Hastings algorithm is based on the followingglitand-error” strategy.

Algorithm 5 (Metropolis—Hastings Algorithm) To sample from a densi§(x) known up
to a normalizing constant, initialize with son¥&, for which f(X,) > 0. Then, for each
t=0,1,2,...,T7 — 1 execute the following steps:

1. Given the current stat¥;, generateY ~ q(y | X;).

2. GeneratdJ ~ U(0,1) and deliver

(Y i U<aX,Y)
Xer1 = {Xt otherwise, ®)
where £ axy)
= min J\Y)RXTY) .
o) =min{ I 1) ©

The probabilitya(x,y) is called theacceptance probability Depending on the choice of

the proposal density the algorithm can overcome the liioitatof the acceptance—rejection
method for sampling from high-dimensional densities. Haeveunlike the acceptance—

rejection method, the algorithms produatependensamples. Moreover, the algorithm

may require a substantilirn-in period to reach stationarity of the Markov chain. Note
that in [9) we may replacg by p.



If the proposal functiory(y | x) does not depend ax, that is,q(y | x) = g(y) for some
pdf ¢(y), then the acceptance probability is

 win f(y)g(x)
alxy) = {f<x>g<y>’1}’

and Algorithm 5 is referred to as tiedependence sampler

If the proposal is symmetric, that ig(y | x) = ¢(x|y), then the acceptance probability

9 is
fly)

a(x,y) = min { %)’ 1} , (20)
and Algorithm 5 is referred to as thendom walk sampler. An example of a random walk
sampler is whefl¥ = X, + ¢Z in Step 1 of Algorithm 5, wheré is typically generated
from some spherically symmetrical distribution (in the ionous case), such &0, I).

The Gibbs sampler can be viewed as a particular instance of the Metropolistiitzs
algorithm for generating-dimensional random vectors [6]. The distinguishing featof
the Gibbs sampler is that the underlying Markov chain is troted from a sequence of
conditional distributions, in either a deterministic ondam fashion.

Suppose that we wish to sample a random veXtet (X1, ..., X,,) according to a target
pdf f(x). Let f(z;|z1,...,2i—1, Tiy1,...,2,) represent the conditional pdf of thieh
componentX;, given the other components, ..., z;—1,Tit1,.. -, Tn.

Algorithm 6 (Gibbs Sampler) Given an initial stateXy, iterate the following steps for
t=0,1,....
1. For agivenX;, generateY = (Y7,...,Y,,) as follows:

(a) DrawY; from the conditional pdf (x1 | X¢2,. .., Xin).
(b) DrawY; from f({I?Z |Y1, LY, Xt’lqu, ey Xt,n)v t1=2,...,n—1.
(c) DrawY,, from f(x, | Y1,...,Y,—1).

2. LetXt+1 = Y
Algorithm[6 presents aystematic(coordinatewise) Gibbs sampler. That is, the compo-
nents of vectorX are updated in the coordinatewise order—» 2 — --- — n. The
completion of all the conditional sampling steps in the #jext order is called aycle

Alternative updating of the components of vec¥rmare possible. In theeversible Gibbs
sampler a single cycle consists of the coordinatewise updating

1-2—---—>n—-1-n—-n—-1—-—2-—>1.

In the random sweep/scan Gibbs samplea single cycle can either consist of one or
several coordinates selected uniformly from the integers. , n, or a random permutation
T — T — -+ — m, Of all coordinates.

Monte Carlo for Estimation

Estimation of Expectations

Suppose the dafdg,, . . ., Y from a simulation experiment are independent and idetyical
distributed according to some known or unknown discreteoatinuous pdff. Often such
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data are obtained by executidgindependent runs of the simulation, producing oufigut

for thei-th run. Suppose the aim of the simulation is to estimate @m®pmance measure
¢ =FEY,withY ~ f. Assuming|{| < co, an unbiased estimator féiis thesample mean

of the{Y;}; that is,

1N
v==—%y,. 11
N; (11)

Provided that the variance 8f, sayc?, is finite, Y approximately has & (¢, o2 /N) dis-
tribution for large N (an immediate consequence of the central limit theorem):? Ifs
unknown, it can be estimated without bias via aenple variancef the {Y; }:
1 N
2= — N (v, -Y)? 12

$*= 1 g< i—Y), (12)
which (by the law of large numbers) tendsitbasN — oc. This leads to an approximate
1 — « confidence intervdior ¢:

_ S _ S
(Y - Zlfa/Q\/—Na Y + Zla/Q\/—N) ) (13)

wherez, denotes the-quantile of theN(0, 1) distribution.

Instead of specifying the confidence interval, one ofterempnly theestimated standard
error: S/v/N, or theestimated relative erro6/(Yv/N).

The basic estimation procedure for independent data is suined below. The procedure
is sometimes referred to asude Monte Carlo (CMC).

Algorithm 7 (Crude Monte Carlo for Independent Data)

1. Generatd?,..., Yy S f (for example, from independent simulation runs).

2. Calculate the point estimabé and confidence intervlL3) of ¢ = EY.

It is often the case that the outpltis a function of some underlying random vector or
stochastic process; that 8,= H(X), whereH is a real-valued performance function and
X is a random vector or process. The beauty of Monte Carlo fidmation is that[(13)
holds regardless of the dimensionXf

Example 1 In Monte Carlo integration, simulation is used to evaluate complicated inte-
grals. Consider, for example, the integral

= / / / Vi0rr + xo + a3 o~ (@i +ei+al)/2 dxq dao das .

DefiningY = | X1 + Xy + X3|1/2(27)3/2, with X1, X5, X3 id N(0,1), we can write

¢ = EY. Using the followingMarLAB program, with a sample size of = 108, we
obtained an estimat¥ = 17.04 with a95% confidence interval17.026, 17.054).

(2 *pi)"(3/2);

@(x) c=*sqrt(abs(sum(x,2)));

10°6; z = 1.96;

randn(N,3); y = H(x);

mY = mean(y); sY = std(y); RE = sY/mY/sqrt(N);
fprintfCEstimate = %g, Cl = (%g, %g)\n’, ...

mY, m¥(1- z *RE), mY*(1 + z *xRE))

c
H
N
X
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Variance Reduction

The estimation of performance measures in Monte Carlo sitioml can be made more
efficient by utilizing known information about the simulati model. Variance reduction
techniques include antithetic variables, control vagabimportance sampling, conditional
Monte Carlo, and stratified sampling; see, for examb—e\ Ctigpter 9]. We shall only deal
with the first three techniques.

One of the simplest approaches is to estinfate EY is to generate an independent se-
quence ofantithetic pairs (Y1,Y7"),..., (YN/Q,Y;,/Q), where each; andY;* are dis-
tributed asY” but arenegatively correlatedTheantithetic estimator

N/2

1
() = N Z Y+ Y/}, (14)

k=1

is an unbiased estimator 6f= EY with a variance that is a factdt + oy y~) of that of
the CMC estimator, whergyy - is the correlation betweeri andY ™.

In general, the output of a simulation run is of the foim= h(U), whereh is a real-
valued function andJ = (Uy, Us, . . .) is a random vector of iid) (0, 1) random variables.
Suppose thaJ* is another vector of iid) (0, 1) random variables which is dependentldn
and for whichY andY™* = h(U*) are negatively correlated. Thél, Y*) is an antithetic
pair. In particular, ifh is a monotone function in each of its components, then th&éeho
U* =1 — U, wherel is the vector of 1s, yields an antithetic pair.

Another useful variance reduction approach is to csetrol variables. Let Y be the
output of a simulation run. A random variabig obtained from the same simulation run,
is called a control variable for" if Y andY are correlated (negatively or positively) and
the expectation oY is known. The use of control variables for variance redurcigtbased
on the following observation.

Theorem 1 (Control Variable Estimation) LetY,...,Yy be the output ofV indepen-
dent simulation runs, and leYy,...,Yy be the correspondlng control variables, with
IEY,C — ¢ known. LethY be the correlat|on coefficient between edé¢hand Yk For
eacha € R the (linear) estimator

Ao _ L
=5

1=

[Yk py (?k - Z)] (15)

is an unbiased estimator fdr= EY". The minimal variance of® is

1

Var(f®) = - (1~ 6} 5)

Var(Y) (16)

which is obtained fory = o, ;-\/ Var(Y)/Var(Y).

Usually the optimaky in (16) is unknown, but it can be easily estimated from theam
covariance matrix of thé¢(Yy, Yi)}.

One of the most important variance reduction techniquésgrtance sampling This
technique is especially useful for the estimation of venakiprobabilities. The standard
setting is the estimation of a quantity

E:EfH(X):/H(X)f(X)dx, a7)



where H is a real-valued function angl the probability density of a random vect&,
called thenominal pdf. The subscriptf is added to the expectation operator to indicate
that it is taken with respect to the densjty

Let g be another probability density such thdtf is dominated by ¢g. That is,g(x) =
0 = H(x) f(x) = 0. Using the density we can represerftas
f(x) f(X)
€:/Hx—xdx:IEHX—. 18

Consequently, iXy, ..., Xy ~iq g, then

N
~ 1 f(Xk)
(==Y HX
N ; Xe) 5%
is an unbiased estimator ¢f This estimator is called thenportance sampling esti-
mator andg is called the importance sampling density. The ratio of diess W (x) =

f(x)/g(x), is called theikelihood ratio. The importance sampling algorithm is as fol-
lows.

(19)

Algorithm 8 (Importance Sampling Estimation)
1. Select an importance sampling dengityrat dominatedd f.
2. GeneratéX,,..., Xy ~ gand lety; = H(X;)f(X;)/g(X;), i=1,...,N.

3. Estimate via? = ¥ and determine an approximate— « confidence interval as

(Z Zl—a/Qia Z+ Zl—(x/2> )

VN VN
wherez., denotes the-quantile of theN(0, 1) distribution ands' is the sample stan-
dard deviation ofty, ..., Yy.

The main difficulty in importance sampling is how to choose ithportance sampling dis-
tribution. A poor choice ofy may seriously affect the accuracy of the estimate and the
confidence intervals. The theoretically optimal chgj¢dor the importance sampling den-
sity minimizes the variance @f and is therefore the solution to the functional minimiaati
program
. f(X)

min Var, (H(X) g(X)) . (20)

It is not difficult to show that if eithef (x) > 0 or H(x) < 0 for all x, then

in which caséeVar - (0 = Var,- (H(X)W (X)) = Varg« () = 0, so that the estimatdr
is constantunderg*. An obvious difficulty is that the evaluation of the optimalportance
sampling density* is usually not possible, singg (x) in (21) depends on the unknown
guantity/. Nevertheless, one can typically choose a good importaampling densityy
“close” to the minimum variance density .

(21)

One of the main considerations for choosing a good impoetaatpling pdf is that the
estimator[(19) should have finite variance. This is equivaie the requirement that
FA(X) 2 vy 4 (X)
E,H*(X =EH*(X)EL <00 (22)
s T T 9
This suggests thatshould not have lighter tails thaf) and that, preferably, the likelihood
ratio, f /¢, should be bounded.




Variance Minimization Method

When the pdff belongs to some parametric family of distributions, it ieofconvenient to
choose the importance sampling distribution from shenefamily. In particular, suppose
that f(-; @) belongs to the family

{f(';n)a ne 9} .

Then, the problem of finding an optimal importance sampliagsity in this class reduces
to the followingparametricminimization problem

min Vary (H(X) W(X;6,n)) . (23)

n
whereW(X;60,n) = f(X;0)/f(X;n). We call@ the nominal parameter andn the

reference parameter vectoror tilting vector. Since under any(-; n) the expectation of
H(X)W(X;80,n) is ¢, the optimal solution of (23) coincides with that of

ilnelg V(n), (24)
where
V(n) =E,H*(X)W?*(X;0,n) = Eg H*(X) W(X;6,7) . (25)

We call either of the equivalent problems (23) and (24)\whgance minimization (VM)
problem; and we call the parameter vectgrthat minimizes the programs (23)/— (24) the
VM-optimal reference parameter vector. The VM problem can be viewed as a stochastic
optimization problem, and can be approximately solved vianid Carlo simulation by
considering the stochastic counterpart of (24) - (25):

min V(1) (26)
where
. 1 &
Vi) = ; H?(Xg) W (X 0,m) 27)
andXy,..., Xy ~iq f(+;0). This problem can be solved via standard numerical opti-

mization techniques, such as the Newton—Raphson methaslgiies the following mod-
ification of Algorithm'8.
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Algorithm 9 (Variance Minimization Method)

1. Select a parameterized family of importance samplingites{ f(-;n)}.

2. Generate a pilot samplX, ..., Xy S f(+;0), and determine the solutiom to
the variance minimization proble(26).

3. GenerateX,, ..., Xy, < f(-;.7) and letY; = H(X;)f(X:;0)/f(Xi; .7),i =
1,...,Ny.

4. Estimate viaZ = Y and determine an approximate— « confidence interval as

~ S S
l— Zlfa/Q\/—Fa 0+ Zlfoz/2\/—ﬁ )
1 1

wherez., denotes the-quantile of theN(0, 1) distribution ands' is the sample stan-
dard deviation oft7, ..., Yx;,.

Cross-Entropy Method

An alternative approach to the VM method for choosing an ifopt’ importance sam-
pling distribution is based on the Kullback—Leibler crasgropy distance, or simpkross-
entropy (CE) distance. The CE distance between two continuousgadifel /. is given by

D(g,h) =E, hlhg?) = /g(x) lnzggdx 8)

:/g(x) In g(x) dxf/g(x) Inh(x) dx .

For discrete pdfs replace the integrals with the corresjpgndums. Observe that, by
Jensen’s inequalityD(g, h) > 0, with equality if and only ifg = h. The CE distance
is sometimes called the Kullback—Leibldivergencebecause it is not symmetric, that is,
D(g,h) # D(h,g) for g £ h.

The idea of the CE method is to choose the importance samgdingity,h say, such that
the CE distance between the optimal importance samplingityeq® in (21) andh, is
minimal. We call this theCE-optimal pdf. This pdf solves théunctional optimization
programming D (¢*, h). If we optimize over all densities, then it is immediate that the
CE-optimal pdf coincides with the VM-optimal pgf .

As with the VM approach il (23) and (24), we shall restrictsmives to a parametric family
of densities{ f(-;n),n € ©} that contains the nominal densify-; #). Moreover, without
any loss of generality, we only consider positive functiéhsThe CE method now aims to
solve theparametricoptimization problem

nmeigD(g*7f(-;n)) : (29)

The optimal solution coincides with that of

max D(n) , (30)
where
D(n) =EeH(X) In f(X;7m) . (31)
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Similar to the VM program (24), we call either of the equival@rograms/(29) and (30)
the CE program; and we call the parameter vectgt that minimizes the program (29)
and [(30) theCE-optimal reference parameter.

Similar to (26) we can estimatg* via the stochastic counterpart method as the solution of
the stochastic program

~

N
mw:i;LxD(n) = mf}xx %; H(Xg) In f(Xg;m) , (32)

whereX, ..., Xy ~ia f(-;: 0).

In typical applications the functiod in (32) is convex and differentiable with respect to
7. In such cases the solution 6f (32) may be obtained by solirip respect tap) the
following system of equations:

N

& ST HX) Vinf(Xeim) =0, (33
k=1

where the gradient is with respect 4o Various numerical and theoretical studies have
shown that the solutions to the VM and CE programs are qtigétg similar. The main
advantage of the CE approach over the VM approach is thablbéa to (32) (or[(33))
can often be foundnalytically, see, for example, [3].

Monte Carlo for Optimization

In this section we discuss several Monte Carlo optimizatiethods. Such randomized
algorithms can be useful for solving optimization problewith many local optima and

complicated constraints, possibly involving a mix of contbus and discrete variables.
Randomized algorithms are also used to salwesyoptimization problems, in which the
objective function is unknown and has to be obtained via Mdurlo simulation.

Suppose we have a minimization problem8hC R™ of the form

min S(x), (34)

xex

where S is an unknown function of the forrﬁ§(x,£), with & a random vector and

a known function. A typical example is whef&x) is the (usually unknown) expected
performance measure from a Monte Carlo simulation. Suchbllgm is said to be aoisy
optimization problem, as typically only realizations$fx, £) can be observed.

Because the gradient .S is unknown, one cannot directly apply classical optimizati
methods. Thestochastic approximation methodmimics the classical gradient descent
method by replacing a deterministic gradient with a rand@preximation. More gen-
erally, one can approximate a subgradient instead of théiegra It is assumed that an
estimate of the gradient ¢f is available at any point € .2". We denote such an estimate
by ﬁ(x). There are several established ways of obtaiﬁi’/rfgx). These include the fi-
nite difference method, infinitesimal perturbation analythe score function method, and
the method of weak derivatives; see, for examﬂe, [7, Cnafjte

In direct analogy to gradient descent methods, the stachggproximation method pro-
duces a sequence of iterates, starting with seme 2", via

xi41 = o (Xt — B ﬁ(xt)) ; (35)
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wheregy, 32, . .. is a sequence of strictly positive step sizes ahg is a projection op-
erator that takes a point iR™ and returns a closest (typically in Euclidean distance)
point in 27, ensuring that iterates remain feasible. That is, for gny R”, [14 (y) €
argmin,. o ||z — y||. Naturally, if 2" = R", thenIl (y) = y. A generic stochastic
approximation algorithm is as follows.

Algorithm 10 (Stochastic Approximation)

1. Initializex; € 2. Sett = 1.
2. Obtain an estimated gradie@(xt) of S atx;.

3. Determine a step sizg.
4. Seb(t+1 = H% (Xt - Bt ﬁ(xﬁ)

5. If a stopping criterion is met, stop; otherwise, set ¢ 4+ 1 and repeat from Step 2.

There are many theorems on the convergence of stochastioxapgation algorithms. In
particular, for an arbitrary deterministic positive seqces;, Bz, . . . such that

0o oo
D Bi=o0, ) B <oo,
t=1 t=1

the random sequence, x», . .. converges in the mean square sense to the miningizer
of S(x) under certain regularity conditions. See, for example].[12

When @(xt) is anunbiasedestimator ofV.S(x;) in (35) the stochastic approximation
Algorithm[10 is referred to as thRobbins—Monro algorithm. When finite differences
are used to estima@(xt) the resulting algorithm is known as tli@efer—Wolfowitz
algorithm.

An alternative approach to stochastic approximation istbehastic counterpart method
(also calledsample average approximatiof). The idea is to replace the noisy optimization
problem|(34) with

min S5(x), (36)
where
. 1M
560 = 7 3568
is a sample average estimatorgifk) = ES(x, £) on the basis olV iid samplest,, . .., & .

A solutionx* to this sample average version is taken to be an estimatosafisionx* to
the original problem (34). Note that (36) islaterministicoptimization problem to which
any of the standard deterministic optimization methodddcapply.

Simulated annealingis a Markov chain Monte Carlo technique for approximately lo
cating a global maximum of a given densifyx). The idea is to create a sequence of
points X, Xo, ... that are approximately distributed according to pfféx), f2(x), . ..
with f,(x) o< f(x)Y/Tt, whereTy, Ty, ... is a sequence demperatures (known as the
annealing schedulgthat decreases to If eachX, were sampleg@xactlyfrom f(x)/7t,
then X; would converge to a global maximum ¢fx) asT; — 0. However, in practice
sampling isapproximateand convergence to a global maximum is not assured. A hig-le
simulated annealing algorithm is as follows.

13



Algorithm 11 (Simulated Annealing)

1. Choose a starting stai€, and an initial temperaturdy,. Sett = 1.
2. Select atemperatufg < T;_; according to the annealing schedule.
3. Approximately generate a new st&e from f;(x) oc (f(x))"/ .

4. Sett =t + 1 and repeat from Step 2 until stopping.

The most common application for simulated annealing is itingipation. In particular,
consider the minimization problem (34) for some deterntioi®al-valued functiort (x).
Define theBoltzmann pdf as

f(x)xe X xe2 .

For T > 0 close to 0 the global maximum gf(x)*/”  exp(—S(x)/T) is close to the
global minimum ofS(x). Hence, by applying simulated annealing to the Boltzmarfn pd
one can also minimiz&(x). Maximization problems can be handled in a similar way, by
using a Boltzmann pdf (x) « exp(S(x)). Note that this may not define a valid pdf if the
exponential terms are not normalizable.

There are many different ways to implement simulated ammgalgorithms, depending
on (1) the choice of Markov chain Monte Carlo sampling altdon, (2) the length of the
Markov chain between temperature updates, and (3) the impeghedule. A popular
annealing schedule geometric cooling whereT, = 87, 1,t = 1,2,..., for a given
initial temperaturel, and acooling factor 5 € (0,1). Appropriate values fofy and 3
are problem-dependent, and this has traditionally reduiaeing on the part of the user.
Theoretical results on adaptive tuning schemes may be fdandxample, in@3].

The following algorithm describes a popular simulated afing framework for minimiza-
tion, which uses a random walk sampler; that is, a Metropblastings sampler with a
symmetric proposal distribution. Note that the tempemaisiupdated after singlestep of
the Markov chain.

Algorithm 12 (Simulated Annealing for Minimization)

1. Initialize the starting stat&, and temperaturdy,. Sett = 1.
2. Select a temperatufg < T;_, from the annealing schedule.

3. Generate a candidate stat® from the symmetric proposal densiyY | X;) =
(X |Y).

4. Compute the acceptance probability
. _ (S(Y)—=S(X+))
a(X¢,Y) = min {e T , 1}

Generatel/ ~ U(0, 1) and set

AKX, iU > a(X,Y).

5. Sett =t + 1 and repeat from Step 2 until a stopping criterion is met.
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Thecross-entropy(CE) method can be used for both deterministic and noisyropdtion.
Consider first the deterministic minimization problem](3dhereS is some real-valued
performance function on a s&”. The basic idea of the CE method for optimization is
to define a parametric family of probability densitigh(-; v),v € ¥’} on the state space
2, and to iteratively update the parameteso thatf(-;v) places more mass closer to
solutions than on the previous iteration.

In practice, this results in an algorithm with two basic p&s

e Sampling SamplesX, ..., X are drawn independently accordingfto; v). The
objective functionS is evaluated at these points.

e Updating A new parametev is selected on the basis of thdse for which S(X;) <
~ for some levely. These{X;} form theelite sampleset,&.

At each iteration the level parameteiis chosen as the worst performance (for minimiza-
tion: the largest) of the best performid¢® samples, and the parameteis updated as

V = argmax Z In f(X;v) . (37)
vey Xc&

This updating formula is the result of minimizing the Kultka-Leibler or CE distance
between the conditional density &f ~ f(x;v) givenS(X) < 7, and f(x;V); see [21].
Note that[(37) yields the maximum likelihood estimatorvobased on the elite samples.
Hence, for many specific families of distributions, inclugliexponential families, explicit
solutions can be found. An important example is whXre- N(gu, diag(o?)), where the
mean vectoy: and the vector of variances® are updated via the sample mean and sample
variance of the elite samples. This is knowmasmal updating. A generic CE algorithm

for minimization is as follows.

Algorithm 13 (CE Algorithm for Minimization)

1. Choose an initial parameter vect®,. Let N® = [o N be the number of elite
samples. Set= 1.

2. GenerateX, ..., Xy ~iiq f(-;V¢_1). Calculate the performance$(X;) for all i
and order them from smallest to largesf;;) < ... < S(y). Let?; be the sample
o-quantile of performances; that i§; = S(ye).

3. Use thesamesampleX, ..., Xy and set
N
Vi = argmaxZI{s(ka%} In f(Xp;v) . (38)
Vo k=1

4. If some stopping criterion is met, stop; otherwise tsett + 1 and return to Step 2.

Algorithm[13 can easily be modified to minimizeisy functions S(x) = ES(x, &), as
defined in((34). The only change required in the algorithmhat every function value
S(x) be replaced by its estimat&x).

In practice various modifications of the basic algorithmased; see, for exampl& 10].
In particular, it is often useful to includemoothing of the parameter vectors: given a
vector ofsmoothing parameters, replace Stejp]3 of Algorithm 13 by
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[3. Use thesamesampleX, ..., Xy and set

N
vy = argmaxZI{S(XkK%} In f(Xp;v), (39)

v k=1

updatingv; as
v = diag(a) vy + diag(1l — ) v .

Conclusion

Monte Carlo simulation provides one of the most useful generic approaches to sta-
tistical computing. During the last few years significant advances have taken place
in the application and theory of Monte Carlo. Recent insights in adaptive estimation
methods provide novel approaches to rare-event simulation and randomized opti-
mization, while Markov chain Monte Carlo techniques have significantly increased
the scope and applicability of Bayesian statistical techniques.
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Further Reading

In addition to the references in the text, further information on Monte Carlo methods
may be found, for example, in ﬁ QBE]

Cross-References

Markov chain Monte Carlo, Simulation methods, Importance sampling

Supplementary Information

The homepage www.montecarlohandbook.org for the Handbook of Monte
Carlo Methods contains an extensive library of MaTLaB code for Monte Carlo sim-
ulation.

The homepage for the Cross-Entropy Method, featuring many articles on the CE
method, is www.cemethod.org
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