
On the Design of Multi-type Networks via the
Cross-Entropy Method

Sho Nariai and Dirk P. Kroese
Department of Mathematics, University of Queensland, Brisbane 4072, Australia

Email: sho@maths.uq.edu.au, kroese@maths.uq.edu.au

Abstract- We apply the cross-entropy method to a network
design problem with multi-type links and nodes, in which the
network's reliability is to be maximized subject to a fixed budget.
Numerical experiments illustrate the simplicity and effectiveness
of the method.

Index Terms- Network design, multi-type network, network
reliability, cross-entropy method, constrained stochastic optimiza-
tion.

I. INTRODUCTION

Network design problems can often be formulated in terms
of complicated optimization problems, possibly involving dis-
crete and/or continuous variables, multiple constraints, and
noise. Standard generic stochastic algorithms such as ge-
netic/evolutionary algorithms [1], [2] and simulated annealing
[3], [4] may provide a viable way to solve many of these
problems, but are frequently found to be not flexible enough
[5]. The purpose of this paper is to introduce the cross-entropy
(CE) method [6] as a powerful and flexible new way to solve
a wide range of design problems.
Most papers on optimal design deal with the selection of a

single type of link between each node pair, where the objective
is to either maximize the reliability subject to a cost constraint,
or minimize the cost subject to a network reliability constraint,
see for example [7]-[9] and references therein. In this paper
we focus on a multi-type design problem. Specifically, the
problem is to design a network by selecting or purchasing
predefined nodes and links of various types, subject to a
fixed budget, so that the system reliability is maximized. The
model considered is a generalization of both [10] and [11]. In
the former model, every node and link has to be purchased;
however, various link and node types can be selected. In the
latter model, the network design involves only single-type
links and no nodes.
The CE method is an adaptive Monte Carlo technique

for both optimization and rare event simulation, which has
attracted considerable interest around the world. It is based
on a simple iterative procedure where each iteration contains
two phases: (a) generate a random data sample (trajectories,
vectors, etc.) according to a specified mechanism, (b) update
the parameters of the random mechanism based on the data
to produce a "better" sample in the next iteration. This last
step involves cross-entropy minimization. The strengths of

This research was supported by the Australian Research Council, grant
number DP0558957.

the method are (1) its simplicity (CE programs are easy to
write and require little "tuning"), (2) generality (it can handle
without much alteration integer, discrete and continuous and
noisy problems) and (3) accuracy. The CE method has been
applied to a great range of problems in operations research,
including buffer allocation [12], the stochastic shortest path
problem [13], the vehicle routing problem [14], queueing
models of telecommunication systems [15], network reliability
[16], and network planning [11]. An introductory treatment of
the CE method can be found in the tutorial [17]. For a more
comprehensive treatment and further references, we refer to
the recent monograph [6]. The CE homepage can be found at
http: //www. cemethod. org.

It is out of the scope of this paper to discuss the advantages
and disadvantages of the multitude of stochastic search algo-
rithms that could be applied to the network design problem.
We simply wish to show that the CE method performs very
well with respect to all the above criteria (1)-(3). Simulated
annealing is probably closest to CE with respect to (1) and
(2), although simulated annealing is a local search algorithm
(whose performance depends critically on a proper choice
for the cooling scheme), while the CE method is a global
optimization method.
The rest of the paper is organized as follows. In Section II

we formulate the problem in mathematical terms. In Section III
we discuss how we tackle the design problem using the
CE method. Section IV presents numerical experiments on
three test cases, including some comparisons with simulated
annealing (SA) and genetic algorithms (GA).

Notation
A
ci (x)
Cmax
L
m, n
N
pi(x)
r
T
x

y
a
(lx

p

sampling matrix
cost of component i of type x (C(x) total cost)
total budget
decay parameter for SA
number of [links, nodes]
sample size for CE
reliability of component i of type x
network reliability (r* optimal)
initial temperature for SA
network topology (x* optimal, X random)
system state (Y random)
smoothing parameter for CE
structure function of topology x
rarity parameter for CE

0-7803-9439-9/05/$20.00 ©2005 IEEE

109

II. PROBLEM DESCRIPTION

Consider an undirected graph with n nodes and m links.
The graph represents a communication network "on sale".
That is, each node and link in the graph can be bought for
a certain price. Without loss of generality, we may label the
nodes 1, ... , n and the links n+1, ... , n+m. Suppose that, for
each component (node or link) in the network, there are three
different types to select from: type 3 is the most reliable and
expensive, type 2 is the second most reliable and expensive,
and type 1 is the least reliable and cheapest. In addition,
type 0 is assigned to a component that we decide not to
purchase. The objective is to determine which types to assign
to all components, in order to maximize the reliability -
defined as the probability that certain specified terminal nodes
in the network are connected by operational links through
operational nodes - subject to a total budget Cmax.

To identify which types are assigned to which nodes and
links, we introduce a topology vector x= (xl,...* Xn+m),
where xi represents the type of component i, i 1, . . . , nr+m.
As an example, consider the network in Figure 1, where five
nodes and six links are for sale.
Assume that x = (1,3, 1, 0, 3, 2, 0, 2, 1, 3, 0). This means

that for nodes 2 and 5 the most reliable and expensive type is
purchased, the least expensive and unreliable type is purchased
for nodes 1 and 3, and node 4 is not bought at all. The same
notation applies for the links. Note that because node 4 is not
bought it makes no sense to buy links 7 and 11. The set of
all topology vectors is denoted by X.

For each component i, let pi(x) be the reliability of the
assigned node or link type x E {0,.. ., 3}, defined as the
probability that component of type x is operational. By def-
inition pi(0) = 0, i = 1, . .. , n + m. Similarly, let ci(x) be
the cost of component i of type x. Note that the reliabilities
and costs may depend on i. The total cost of a given network
topology x is thus

n+m

C(x) = ci(xi). (1)
i=l1

To identify operational components in the network, we
define for each component i its state by

{i 1 if xi is bought and operational,
0 otherwise.

Fig. 1. Network with 5 nodes and 6 links.

The corresponding vector y is called the state vector.
For each vector x, let px be the structure function of

the system. This function assigns the state of the system
determined by y. That is,

1 if the system is operational,
0 otherwise. (2)

Now consider random states, where each component i of
type x in the network is operational with probability pi(x),
independent of the other components. Let Yi be the random
state of component i, i = 1, ..., n + m and let Y be the
corresponding random state vector.
The reliability of the network defined by network topology

x is given by

r(x) = IP((p (Y) = 1) Z=E (y)p(Y - y). (3)
y

The network design problem is thus translated into the
following constrained optimization problem:

Maximize r(x), with x E X, (4)
subject to

C(x) < Cmax. (5)
Let x* be an optimal solution and r* := r(x*) denote the

optimal network reliability.

III. CROSS-ENTROPY METHOD
In this section, we look at how the CE method can be used

to solve the constrained optimization problem (4), (5). The CE
method in this context involves two steps:

1) Generate a random sample of topology vectors
X1,... XN according to a specified random mecha-
nism, and

2) Update the parameters of this random mechanism in
order to generate a better sample in the next iteration.
This last step involves cross-entropy minimization.

By iterating the above two steps, the CE aims to locate an
optimal sampling distribution, in this case the sampling distri-
bution which assigns probability mass 1 to x*, corresponding
to the optimal network topology.
The mechanism that is used to generate a random topology

vector is determined by a (n + m) x 4 stochastic matrix A;
where A is updated in each iteration of the algorithm. Denote
the i-th row by ai = (aio.... , ai3), i = 1, . , n+m. The gen-
eration of X = (X1, . . . , Xn+,n) is as follows: First, generate
a uniform permutation (71, ... , 7rn+m) of (1, ... , n+ m). This
can be done, for example, by independently drawing n + m
samples from the uniform distribution on [0, 1] and letting
1rI, 7F2,... denote indices of ordered observations. Second,
for a given permutation (7F ,...- 7Tn+m), if there is enough
money left to purchase type 3 for component 7r,, we draw
XX1 from {0,1,2,3} according to a,,. If this is not the
case, but there is enough money to by type 2, then draw
X71 from {0, 1, 2} according to a7r truncated to this set.
Otherwise, if there is only enough money to assign type 1,

110

draw X,1 from {0, 1}, with probabilities a,,O/(a7ro + a71rl)
and arll/(arlo + ar1_), respectively. Finally, if there is no
money to purchase component 7r,, set X,1 = 0. We repeat the
above procedure for X7.2, X,3, . . ., until all components are
assigned one of the four types. The algorithm for generating
random topology vectors is thus summarized as follows:

Algorithm I (Generation Algorithm):
1) Generate a uniform random permutation ir = (X1,

1rn+m). Set k= 1 and B0 = 0.
2) If C,k (3) + Bk-1 < Cm,a, then draw Xlk from a,k.
3) Otherwise, if CQk (2) + Bk-i < Cmax, draw Xlk from

alrk truncated to {0, 1, 2}.
4) Otherwise, if c,k (1) + Bk-i < Cmax, draw Xlk from

alrk truncated to {0,1}.
5) Otherwise set XXk = 0.
6) Terminate if k =m + n; otherwise let Bk = Bk-i +

C7rk (Xlk), set k = k + 1, and reiterate from step 2.

The idea is now to generate a sequence of sampling ma-
trices with the aim of reaching a "degenerate" matrix A* -
consisting only of zeros and ones - that corresponds to the
optimal sampling distribution. This is done via a two-stage
procedure.

In the first stage, one determines the (1 - p)-quantile -Yt of
the performance (i.e., network reliability) under the previous
sampling distribution. The parameter p is typically chosen
between 0.01 and 0.1. An estimator at of at can be obtained
by first generating a random sample X1,... , XN using
the above generation algorithm, computing the performances
r(Xi),i = 1,...,N, and setting at = r(E(i-p)Nj), where
r(l) < ... < r(N) are the order statistics of the performances.

In the second stage, the reference matrix A is updated.
More precisely, A is chosen such that the sampling distribution
is as close as possible to the theoretically optimal sampling
distribution for estimating IP(r(X) > -yt). In the CE method,
the CE distance (also called Kullback-Leibler distance) is used
[6] as a measure of proximity between the distributions. The
result is that the updating rules are often of a simple form. In
particular, the estimated optimal sampling parameters corre-
spond to the maximum likelihood estimates of the parameters
of the distribution, using only the elite samples: those samples
for which r(X) > i't. Denote the set of elite samples at
iteration t by Et, and let At = (&t,jx) be the estimated
optimal sampling matrix at iteration t. In our case, the updating
formula for the sampling parameters is given by

at' zxExiESt i{xij=x}
at,jx= ~~~~~~St

(6)

where Xij is the j-th coordinate of Xi. That is, we simply
count how many times in the elite sample type x is assigned
to component j.
The main CE algorithm for optimizing (4), (5) using the

above generation algorithm is summarized as follows.

Algorithm 2 (Main CE Algorithm):
1) Initialize Ao. Set t = 1 (iteration counter).
2) Generate a random sample X1, ..., XN using Algo-

rithm 1 with A = At-,. Compute the (1 - p)-sample
quantile of performances at and identify the set £t of
elite samples.

3) Update At, using (6).
4) If some stopping criterion is met, then stop; otherwise

set t = t + 1 and reiterate from step 2.

Remark 1 (Smoothed Updating): Instead of updating di-
rectly using (6), one may choose to use a smoothed updating
procedure

At = aAt + (1 - a)At-I (7)

where At is obtained via (6) and a is a smoothing parameter.
Note that for a = 1 the original updating procedure is attained.
Typically the parameter is set between 0.7 < a < 1. Smoothed
updating can help prevent the algorithm from converging too
fast to a sub-optimal solution.

IV. NUMERICAL EXPERIMENTS

To illustrate the performance of the CE algorithm, we
present three test cases. In each test case, we also compare the
results with those obtained by SA (see the appendix for the
implementation details). To make a fair comparison between
the algorithms, we run them for the same number of function
evaluations.

In each test case the cost and reliability of a node is only
dependent on the type, but not on the node itself, i.e., ci (x) =
cj (x) and pi(x) = pj (x), for all i, j E {1, . , n}. The same
holds for the reliabilities of the links. The cost of the links is
the product of the unit cost per length, which is the same for
all links (depending on the type), and the length of the link
(the distance between the corresponding nodes).

Case 1: Network with 5 Nodes and 6 Links
The first test case is concerned with the all-terminal network

based on Figure 1. We assume that any two adjacent nodes are
some distance away from each other and that each link type
has a fixed cost per unit distance. The cost and reliability of
component and the distance matrix are given in Tables I and
II respectively.
The total budget is equal to Cmax = 13000. For each

algorithm we terminate when the number of function eval-
uations reaches 16000. We used the following CE parameters:
N = 800, p = 0.1, a = 0.7 and SA parameters: T

TABLE I
RELIABILITY AND COST OF COMPONENTS (CASE 1)

[7~ I Node Link
Type Reliability Cost Reliability Cost per Unit Length

_ 0.99171 1400 0.9907 8
2 [0.99232 190 0.9927 12
3____ 0.99658 2550 0.9941 20

111

TABLE II

DISTANCES BETWEEN NODES (CASE I)

1 2 3 4 5
1 - 62 - 34 -

2 57 - 25
3 - 19
4 - 42
5

2,3 = 0.9, L = 20. Initially, we set ao,j,, = 0.25 for
j = 1,...,n+Im and x E {0,1,2,3}.

In this case it is possible to obtain the optimal network
topologies via an exhaustive search. The three optimal solu-
tions x* are listed below:

(3,3,3,2,1,1,1,1,1,2,1)
(2,3,3,3,1,1,1,1,1,2,1)
(1,3,3,3,2,1,1,1,1,2,1)

The optimal network reliability is equal to r* = 0.97371 and
the optimal cost is C(x*) = 12988.

Figure 2 shows the performance of the CE method. Each
cell represents the probability of assigning a certain type to
a corresponding component. For example, the first column in
each picture represents the probability of assigning each type
to component 1. As the figure shows, the probability matrix At
quickly converges to an optimal solution out of 411 possible
solutions.

Table III shows the results for CE and SA on the first test
case over 20 independent replications. Here Success denotes
the number of times the algorithm obtained the optimal
topology; rbest is the best network reliability obtained; rworst
is the worst reliability; and rmean is the average reliability of
the best solutions throughout the numerical experiments.
The CE performed exceptionally, finding an optimal topol-

Network Component Network Component
Ita,ation A Iteration 9

11

a

TABLE III

COMPARISON OF CE AND SA FOR TEST CASE 1, BASED ON 20

INDEPENDENT TRIALS

Algorithm Success rb, t rmean rworst
CE 20 0.9737 0.9737 0.9737
SA 9 0.9737 0.9723 0.9696

ogy in all 20 replications. SA performed less effectively,
obtaining an optimal solutions on 9 occasions. A possible
reason is that the function values for different topologies
sometimes lie very close together; e.g., less than Ar = 10-4
apart. This causes a problem with SA since when Ar is very

small, the algorithm almost always takes a worse solution as

eAr/T is very close to 1.
Both algorithms take around the same CPU time (9 seconds)

to output a solution, using a Matlab implementation on a

3.0GHz PC.

Case 2: 6 Nodes and 7 Links
The second case concems a network design problem with 6

nodes and 7 links given in Figure 3. The setting is the same as

[10] where a genetic algorithm (GA) was used to tackle this
problem, except that we also allow type 0 to be assigned to a

component, which increases the search space.

One advantage of using CE over GA is that it does not
require the penalty function to solve this problem, as in [10].
At each iteration samples are generated in such way that no

infeasible networks are generated. However, there is nothing
preventing CE from using penalty functions. In [10], the
authors introduce the following penalty function:

r(X) if C(x) < Cma,
r(x) rc Y>C- otherwise,

to penalize infeasible solutions, as the reproduction procedure
does not ensure that all new solutions are feasible. They argue

that it is important to take infeasible solutions into account as a

good solution is often reproduced from feasible and infeasible
solutions.
The total budget is Cmax = 14505. The total number of

function evaluations is set to 15000. We take the following
CE parameters: N = 750, p = 0.1, a = 0.7, and SA
parameters: T = 2, = 0.99, L = 20. The optimal network
is x* = (2,2,2,2,2,2,2,22,21,1,2,3) and the corresponding
reliability and cost are 0.4576 and 14504 respectively. The cost

Network Component Network Component

Iteration 12 Iteration 15

a-,
a

3 s 7 9
Network Component

I-

11 3 7 9
Network Component

11

0.2 0.4 0.6 0.8

Fig. 2. Convergence of the CE method for test case 1. Fig. 3. Network with 6 nodes and 7 links.

112

0.2 0.4 0.6 0.8

..

E

and reliability of each component and the distance matrix are
given in Tables IV and V respectively.

Table VI shows the results for CE and SA on the second test
case over 10 independent replications. We also list the results
for the GA algorithm from [10], including the coefficient of
variation e (standard deviation divided by mean) which is
used [10] to report the variability of the results (based on
10 replications).
Although the search space for this test case (413 -

67108864) is around 40 times larger than the case that GA was
applied to (313 = 1594323), the CE achieved better results
than the GA and SA, obtaining an optimal solution in all
replications. The worst value obtained by SA was 0.4446.

Case 3: 6 Nodes and 15 Links
Test case 3 deals with a 3-terminal network based on 6-

node fully connected graph given in Figure 4. We take the
same cost and reliability structure as given in Table I, with
the distance matrix given in Table VII.

This problem is a lot harder than the previous two cases,
not only because the search space is much larger (421), but
also because there are many near-optimal solutions.
The total budget is Cmax = 22000 and we take the following

CE and SA parameters: N = 3000, p = 0.1, a = 0.7, T =
2, 3 = 0.99, L = 50. The maximum number of function
evaluations is set to 60000. The optimal topology is equal to

=*= (3,3,3,3,3,3,2,3,2,2,3,2,0,0,2,2,2,3,0,2,3)

and the corresponding network reliability and cost are
0.989775 and 21924.

TABLE IV
RELIABILITY AND COST OF COMPONENTS FOR TEST CASE 2

Ir| Node 11 Link
Type Reliability Cost Reliability Cost per Unit Length
T1 0.85 1500 0.75 8
2 0.90 1750 0.85 12

L3 0.95 2500 0.95 20

TABLE V
DISTANCES BETWEEN NODES (CASE 2)

1 2 3 4 5 6
1. A1 I .

2
3
4
5
6

- 46 - 64 - -

- 39 - 92 -
- 69

- 47 -
- 35

TABLE VI
COMPARISON OF CE AND SA FOR TEST CASE 2, BASED ON 10

INDEPENDENT TRIALS

Algorithm Success rbest rmean E

CE 10 0.4576 0.4576 0.0000
SA 2 0.4576 0.4504 0.0137
GA n/a 0.4576 0.4563 0.0090

2

Fig. 4. 6-node fully connected graph with 3 terminal nodes, denoted by
black nodes.

TABLE VII
DISTANCES BETWEEN NODES FOR TEST CASE 3

1 2 3 4 5 6
1
2
3
4
5
6

t2 16 55 56 44
- 47 39 51 49

- 25 50 25
39 33
- 20

In 20 trials CE found the optimal solution in every case.
However, SA did not find a single optimal solution. Two
examples of solutions found by SA are

(3,3,3,2,1,3,3,3,3,2,3,2,1,1,2,3,1,3,2,2,2)
(3,3,3,1,3,3,2,1,2,3,1,3,2,1,2,2,2,2,0,3, 1).

These have reliabilities very close to the optimal reliability
(less than 10-6 away).

APPENDIX
Simulated annealing is a well-know generic search and

optimization algorithm. There are many different variants, but
in its basic form (see e.g. [5]) the algorithm, when applied to
our network design problem, involves the following steps:

1) Randomly generate a neighboring topology Xnew from
a current topology Xcurr. If r(Xnew) > r(Xcurr), ac-
cept Xnew as the new topology; otherwise accept Xnew
only with probability e/r/T where A/r = r(Xnew)-
r(Xcurr) and T is the temperature.

2) Reduce the temperature using a pre-specified cooling
scheme.

There are many possible ways to generate a neighboring
topology Xnew. The simplest one is to select, given the
current topology Xcurr, randomly and uniformly a component
Xcurr,i, i = 1 ... ,rn + m, and set this component to any of
0,1,2,3, with equal probability. If the new topology does not
satisfy the constraint (5), we repeat the above process until a
feasible topology is obtained. We repeat this process L times
where L is a positive integer before the temperature decrement.
The temperature decrement at each iteration is very impor-

tant in obtaining the optimal network topology. For example,
if the temperature decreases very quickly, the algorithm may
be trapped in sub-optimal region. On the other hand, if the
temperature decreases very slowly, it will slow down the
convergence and as a result will increase a computational time.

113

4

There are number of methods to decrease the temperature.
A simple method is to use geometric decay:

T=/3 T, (8)

where the decay parameter / is a constant close but not equal
to 1. For other decrement methods see [18], [19].

ACKNOWLEDGMENTS
We like to thank Dr Kin-Ping Hui of the Australian De-

fence Science and Technology Organisation for his assistance
with the numerical expenments, and Dr Michael Bulmer of
the University of Queensland for his valuable comments on
simulated annealing.

REFERENCES
[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison Wesley, 1989.
[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, 1996.
[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by

simulated annealing," Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671-680, 1983.

[4] E. H. L. Aarts and J. H. M. Korst, Simulated Annealing and Boltzmann
Machines. John Wiley & Sons, 1989.

[5] J. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. Wiley, 2003.

[6] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A unified
approach to Combinatorial Optimization, Monte Carlo Simulation and
Machine Learning. New York: Springer Verlag, 2004.

[7] R. H. Jan, F. J. Hwang, and S. T. Chen, "Topological optimization
of a communication network subject to reliability constraint," IEEE
Transactions on Reliability, vol. 42, pp. 63 - 70, 1993.

[8] B. Dengiz, F. Altiparmak, and A. E. Smith, "Efficient optimization of
all-terminal reliable networks, using an evolutionary approach," IEEE
Transactions on Reliability, vol. 46, no. 1, pp. 18 - 26, March 1997.

[9] D. L. Deeter and A. E. Smith, "Heuristic optimization of network design
considering all-terminal reliability," in Proceedings of the Reliability &
Maintainability Symposium, 1997, pp. 194 - 199.

[10] F. Altiparmak, B. Dengiz, and A. E. Smith, "Reliability optimization of
computer communication networks using genetic algorithms," in IEEE
International Conference on Systems, Man., and Cybernetics, vol. 5,
October 1998, pp. 4676 - 4681.

[11] S. Nariai, K.-P. Hui, and D. P. Kroese, "Designing an optimal network
using the cross-entropy method," in IDEAL, ser. Lecture Notes in
Computer Science, M. Gallagher, J. M. Hogan, and F. Maire, Eds., vol.
3578. Springer, 2005, pp. 228-233.

[12] G. Alon, D. P. Kroese, T. Raviv, and R. Y. Rubinstein, "Application of
the buffer allocation problem in simulation-based environment," Annals
of Operations Research, vol. 134, no. 1, pp. 137 - 151, 2005.

[13] R. Y. Rubinstein, "Combinatorial optimisation, cross-entropy, ants and
rare events," in Stochastic Optimization: Algorithms and Applications,
S. Uryasev and P. M. Pardalos, Eds., Kluwer, 2001, pp. 304-358.

[14] K. Chepuri and T. Homem de Mello, "Solving the vehicle routing
problem with stochastic demands using the cross-entropy method,"
Annals of Operations Research, vol. 134, no. 1, pp. 153 - 181, 2005.

[15] P. T. de Boer, D. P. Kroese, and R. Y. Rubinstein, "A fast cross-
entropy method for estimating buffer overflows in queueing networks,"
Management Science, vol. 50, no. 7, pp. 883 - 895, 2004.

[16] K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese, "The cross-entropy
method for network reliability estimation," Annals of Operations Re-
search, vol. 134, no. 1, pp. 101-118, 2005.

[17] P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, "A tutorial
on the cross-entropy method," Annals of Operations Research, vol. 134,
no. 1, pp. 19 - 67, 2005.

[18] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory
and Applications. D. Reidel Publishing Company, 1987.

[19] M. Lundy and A. Mees, "Convergence of an annealing algorithm," Math.
Prog., pp. 111 - 124, 1986.

114

