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Abstract. The splitting method is a simulation technique for the estimation of very small probabilities. In this
technique, the sample paths are split into multiple copies, at various stages in the simulation. Of vital importance to
the efficiency of the method is the Importance Function (IF). This function governs the placement of the thresholds or
surfaces at which the paths are split. We derive a characterisation of the optimal IF and show that for multi-dimensional
models the “natural” choice for the IF is usually not optimal. We also show how nearly optimal splitting surfaces can be
derived or simulated using reverse time analysis. Our numerical experiments illustrate that by using the optimal IF, one
can obtain a significant improvement in simulation efficiency.

1 INTRODUCTION

The splitting method is a simple simulation method for
the estimation of rare event probabilities. The method is
based on the idea to restart the simulation in certain system
states, in order to generate more occurrences of the rare
event. For general references on the splitting method and
the closely related RESTART method we refer to [1, 2, 3, 4]
and [5, 6, 7].

During recent years many numerical and theoretical in-
vestigations have been made on the efficiency of the split-
ting/RESTART method. In various papers it was indicated
that the method could yield asymptotically optimal estima-
tors, and even yield estimators with bounded relative error
[3, 4, 1, 8]. In other papers the efficiency of the method was
put into question [9, 2]; in particular, when dealing with
multi-dimensional state spaces. However, it was pointed
out in [10] that the reduction in efficiency for the multi-
dimensional could be remedied by the correct choice the
Importance Function, which governs the placements of the
splitting surfaces. Indeed, this was already implicitly sug-
gested in [5, 6]. Another approach to efficiently deal with
multi-dimensional state spaces is to use Direct Probability
Redistribution as in [11, 12].

The purpose of this paper is to further develop the con-
cept of Importance Function (IF). In particular, we derive
a characterisation of the optimal IF and show how nearly
optimal “splitting surfaces” can be derived by reverse time
analysis/simulation.

The rest of the paper is organised as follows. We start
with a brief review of the splitting method in section 2. In
section 3 we characterise the optimal IF and discuss its rel-
evance to splitting simulation. In section 4 we show how
the optimal IF can be implemented; and in particular, how
the “optimal” splitting surfaces can be estimated by reverse
time analysis. In section 5 we investigate empirically the
usefulness of the IF in splitting simulation, focusing on the
2- and 3-node tandem queue. Conclusions are given in sec-
tion 6.

2 THE SPLITTING METHOD

We briefly review the splitting method in the setting
of [3]. Consider a Markov process � �� ���� � � ��
with state space �. We are interested in the probability
that � enters some set � � � before it enters (or re-
turns to) another set � � �. Often the sets � and �
can be characterised as � � �� � � ����� � 	� and
� � �� � � ����� � �� for some real function � and
positive number 	. From now on, we will assume this is
the case, unless specified otherwise.

Define the real-valued process 
 � �
��, by 
� ��
�����, for all � � �. For any level (or threshold) � � �,
let 
� denote the first time that the process 
 hits or up-
crosses level �. Using the characterisation above we are
thus interested in estimating the overflow probability, � say,
of the event � �� �
� � 
��. Note that � depends on the
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initial distribution of � . With a slight abuse of notation we
will sometimes use 
� for 
� and 
� for 
�, to indicate
that these times correspond to � entering the sets � and
�, respectively.

The splitting method works as follows, see figure 1 for
an illustration. First, we partition the interval ��� 	� into
� subintervals �	�� 	��� �	�� 	��� . . . , �	���, 	��, with
� �� 	� � 	� � � � � � 	� �� 	. We assume for simplic-
ity that 
 actually hits all thresholds 	�� � � � � 	� if event
� occurs. Let �� denote the event that process 
 reaches
level 	� before returning to 0. It is clear that this is equal
to defining �� �� �
� � 
��. Then ��� ��� � � � � �� is a
nested sequence of events, decreasing to �� � �. And,
with �� �� ������ �� �� ���� ����� � � �, we have

� � �� �� � � � ���

t

Z
t

L

L1

0

Figure 1: An illustration of the splitting method

Instead of estimating � directly, we estimate the con-
ditional probabilities ���� � � �� � � � ��� in � consecu-
tive stages. At the first stage we run �� (fixed) indepen-
dent copies of � (and 
). Define �

���
� as the indicator

that the �th copy of 
 reaches level 	� before visiting 0,
� � �� � � � � ��. Let �� be the total number of copies out
�	 that reach level 	�. Then an obvious estimate of ��
is �����. We save the entrance states (also called saved
states) of all paths that reach level 	�. Specifically, for
every copy of 
 which crosses level 	� we remember the
state of the corresponding � at the time of crossing. We
then proceed with the second stage. Here we start ����
new independent copies of 
, �� copies from each copy
from a certain saved state. Next, we generate Bernoulli
variables �

���
� � � � �� � � � � ����, such that �

���
� indicates

whether the �th copy of 
 (
 starting from level 	� and �
from a saved state) reaches level 	� before 0. This process
repeats itself at all the subsequent stages �� � � � ��. We call
�� �� ������ the simulation effort at stage �, and �� the
(random) number of starting states or successes at stage �,
� � �� � � � �� (�� �� �).

In general the indicators �� ���
 � are not independent;
the success probability of an indicator depends typically

on the state from which � restarts. However, with

	�� ��
��

��
� � � �� � � � ���

the ‘natural’ estimator

	� ��

��
���

	��� (1)

is still unbiased, see e.g. [3].
For the simplest case where all the indicators

�
���
� � � � � � �

���
�� are independent, the variance of 	� is given

(see [3]) by

�ar 	� � ��
��
���

�	 ����
��� ����

� ��
��
���

�	 ��
�� ���

� (2)

The efficiency of the splitting method, determined by the
variance of 	� above, depends crucially on the appropriate
choice of the number of intermediate levels 	�� � � � � 	�
and the number of copies ��� � � � � �� generated at each
threshold, also called the splitting number. Detailed inves-
tigations of the efficiency of the splitting method in [6, 3],
based on (2), indicate that the levels should be chosen such
that the probability of crossing a threshold when starting
from the previous threshold, i.e., ��, is roughly equal to
e�� 
 ����
. Moreover, �� should be chosen approxi-
mately equal to ���� 
 e�, and for small � we should take
approximately	 ��
����� thresholds.

Remark 1 The splitting implementation described above
is called the Fixed Splitting (FS) implementation [3], be-
cause in every stage � we have a fixed number of re-
samples of every saved state equal to �� . In [3] it is shown
that the Fixed Effort (FE) implementation, in which not the
number of re-samples but instead the simulation effort is
fixed, is much less sensitive to the choice of the simulation
parameters, is easier to implement, and above all, gives a
better performance, as measured by our performance evalu-
ation ratio �
� , to be discussed in the section 5. The only
disadvantages of the FE implementation is that the variance
estimation is more complicated and that it requires more
computer memory. We have chosen to implement the FS
method in the practical section because of memory limita-
tions.

3 THE IMPORTANCE FUNCTION

For a 1-dimensional process � � 
 the formulation of
the splitting method in the previous section yields a very
efficient and robust method for estimating the rare event
probability �. However, when � is a multi-dimensional
process, the situation becomes more difficult. An example
is the case where � represents the number of customers
in a 2-node tandem queue. The efficiency of the splitting
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method for this system was questioned in [9, 2]. However,
in [11, 10] it was shown that the efficiency could be dramat-
ically increased by correctly chosing the multi-dimensional
thresholds.

To understand the splitting procedure for multi-
dimensional processes we need to look at the formulation
in section 2 in a slightly different way. First, note that by
choosing the splitting levels 	�� 	�� � � � � 	� for the 
 pro-
cess we induce splitting surfaces ��� � � � ��� for the �
process on �, with �� � �� � � ����� � 	��. Every
time when � hits the splitting surface �� , �� copies of the
process are restarted from the point of impact. In this for-
mulation 
� can be viewed as the first time that � hits ��,
and �� is the event that � reaches � (or equivalently��)
before � (or equivalently ��).

But, it is not at all clear whether this is the best way
to choose the splitting surfaces. In fact, any choice ��� �
�� � � � ���� � 	��, � � �� � � � �� for some real function
� could define subsequent splitting surfaces, provided that
��� � �� and ��� � ��. The function � that governs the
choice of splitting surfaces is called the importance func-
tion (IF). It measures, in some sense, how close we are to
set �. In this section we have a closer look at how to choose
the IF.

3.1 ONE-DIMENSIONAL STATE SPACE

In the one-dimensional case the selection of an IF is not
an issue, since the splitting levels are basically fixed. To see
this, consider (for simplicity) the case where � � 
 is a
real-valued Markov process which is skip-free to the right.
In particular, the process must hit each intermediate level in
order to reach level 	. Define the random variable � as the
maximum state reached before � enters set � � �	�� ��.
The overflow probability, starting from � � ��� 	�, is easily
seen to be equal to

�� �� ��
� � 
� ��� � ��

� ��� � 	 �� � �� �
�

�� ���
� (3)

where �� is the survival function of � : �� ��� � ��� �
��. It is evident that this overflow probability is increasing
monotonically in the starting state �.

Suppose the variance of 	� in (2) is minimal for the
success probabilities ��� � � � � �� and splitting numbers
��� � � � � ��. Then, the levels 	�� � � � � 	� should be chosen
such that

��� � ���� � � � ��� � � �� � � � ��	 � �

In view of (3) we therefore have

	� � ����� � �� ��� �
�

���� � � � ��
� �

as �th optimal splitting level.

As explained at the end of the previous section, the op-
timal ��� � � � � �� are approximately equal (�� � �). If
� is exponentially decaying in 	, e.g., ������ ��� �
	� �
� �  , for some !�  � �� , then

� 

��� � 	����

��� � 	��



 ��
����

 ��
��
� ��
���������

and the threshold 	��� is given by 	��� � 	�	 ��
����!.
In other words, the thresholds are spaced equidistantly for
stages large enough. This formula also shows that for a
strong decay (! large) the thresholds will have to be close
together, whereas for a weak decay (! small) we will see
distant asymptotic thresholds.

3.2 MULTI-DIMENSIONAL STATE SPACE

When � is a multi-dimensional process, the choice of
the IF is not straightforward. The intuitive approach is to
simply take � equal to �. That is, to let the splitting surfaces
of � be �� � �� � � ����� � 	��, � � �� �� � � � �� for
some choice of � and intermediate levels 	�� � � � � 	���.
However, choosing the IF in this naive fashion will gener-
ally not be optimal (in the sense of minimal variance of 	�).
The reason is that the naive approach uses no information
regarding the system’s behaviour. We illustrate this with an
example.

Example 1 Consider figure 2. We wish to estimate the
probability that the process starting from 0 hits set � �
�� ����� � 	� before hitting � � �� ��� � �� by using a
splitting procedure with intermediate splitting surface/level
�� ����� � 	���, effectively using � as our importance
function.
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��
��

��
��
��
��
��
��
��
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��
��
��
��
��
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��
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Intermediate Level (IL)

Optimal IL

most likely path
to IL

most likely path
to FL

Final Level (FL)

h(x) = x1

Figure 2: An illustration of the importance function.

Using this “natural” IF will create lots of runs that hit
the intermediate level in Region ". However, we want
many runs to cross the intermediate level in Region �, be-
cause those will have a high probability of actually reach-
ing set �, whereas reaching � from Region " might even
be impossible. Defining # �"� as the probability of reach-
ing set " before hitting �, and # �" ��� the probability
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of reaching set " given that we have reached set �, we
analyse an example of how wrong the simple choice of IF
can be. Suppose for example that # �"� � ���� # ��� �
����� # ��� � ���� # �� �"� � ����� # �� ��� � ���. We
see that # �" ��� 
 
 � ���	 and # �� ��� 
 
 � ���
.
Clearly region � must be much more important than re-
gion " with respect to the rare event. We need to choose
a different intermediate splitting surface (and hence a dif-
ferent IF � ) such that it is more likely to reach � via the
intermediate level. This could well be established by an
optimal threshold represented by the dotted line. This new
IF is more likely to favour paths that pass through region
D and spend little effort on paths crossing region C, as we
would want the optimal simulation to occur.

It is therefore essential that we construct our simu-
lations using information about the system’s behaviour,
much as it is commonplace in Importance Sampling, where
a lot of attention has been focused on creating paths that
are compliant with the large deviations behaviour of the
system.

Glasserman et al. [2] also look at this problem and
prove that in certain cases the simple approach will not
yield asymptotically efficient estimates, and will even show
apparent bias with high probability. This effect is seen in
our Example 1 by the large waste of effort on uninteresting
samples, resulting in high variance and apparent bias in the
estimator.

Next, we investigate how to choose a “good” IF, i.e., an
IF which leads to a relatively small variance for 	�. We are
led by the following two-stage example from [3].

Consider a two-stage splitting simulation. Suppose at
the second stage we have �� saved states $�� � � � � $�� . As-
sume for simplicity that �� is fixed. We start a total of
�� �� ���� new runs; �� independent paths from each
starting state. The success probability of reaching the next
level, starting from state % will be denoted by ���%�. Let &

be the number of successful runs (that reach the next level)
starting from state $
. Since we have only one intermediate
stage, the $
’s are i.i.d. and ��� �$
� � ��. Consequently,
	�� ��

���

�� &
��� is an unbiased estimator of ��. It is not

difficult to see ([3]) that

�ar �	��� �
�

��
�����	 ��� � ��� 	 ���ar ����$���� �

(4)
The only factor in (4) that is dependent on the choice of the
IF is �ar ����$���. We can minimise (4) by choosing the
intermediate splitting surface in such a way that the prob-
ability of reaching the next level, starting from any state
on the splitting surface, is constant (��). This suggest the
following rule:

Rule 1 For a two-stage splitting simulation choose the IF
such that the probability of reaching the next level does not
depend on the starting state.

It is not difficult to extend this rule to � � � stages, us-
ing an induction argument. Suppose for � stages the “opti-
mal” IF is such that the probability of reaching the next lev-
els is constant within the splitting surfaces. We will show
that this should be the case for �� � stages as well. First,
let ��� � � � � ���� be the probabilities of reaching the next
surfaces, as in Section 2. By the induction assumption the
optimal IF for estimating �� � � � �� is such that the proba-
bility of reaching the next levels is constant over the split-
ting surfaces. The only problem then becomes the choice
of the last intermediate level. But now we are in exactly
the same situation as the 2-level splitting case considered
earlier. In particular, the final splitting surface should be
chosen such that the probability of reaching the final level
(or set �) is constant, ����, within that level.

Rule 2 For an �-stage splitting procedure choose the IF
such that the probability of reaching any intermediate and
final level does not depend on the starting state.

Note that an IF of the form above makes the stages in-
dependent, as the success or failure of a stage � � � path
does not depend on the entrance state produced by its par-
ent path in stage �.

Another observation to make is that the “optimal” IF �
can be directly related to the probabilities �� � ��
� �

� ��� � ��. Namely, Rule 2 above implies that �� is
constant for all � within each splitting surface. This is es-
tablished by taking ���� � '���� for some monotone in-
creasing function '. The actual form of this function ' will
be given in section 4.

Continuous and Discrete State Spaces

When � has a continuous state space splitting surfaces
of the form �� � � � �� �  � are generally well-defined,
and are hit by any sample path that reaches the rare event
set �. For discrete state spaces things become a bit more
difficult; the (nearly) optimal splitting surfaces should be
chosen such that �� is approximately constant on such sur-
faces. When all the probabilities �� are known, this could
be solved by a classical Set Partitioning problem, which is
proven to be hard to solve. Thus, in actual implementations
we have to resort to approximate methods for choosing the
splitting surfaces.

Remark 2 We note that the optimal way of choosing the
IF is the same in splitting and RESTART simulation. The
idea that the optimal IF should minimise the variance of the
probability of reaching the next level was already suggested
(for RESTART) in [5] and [6], and was further developped
in [10].

4 IMPLEMENTATION

In this section we pay attention to the various imple-
mentation issues that need to be resolved in order to make
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effective use of the implicit results found in the previous
section 3. In particular, we will focus on how the “opti-
mal” IF could be implemented.

4.1 DEFINING THE OPTIMAL IF

So far we have only obtained an implicit characterisa-
tion of our optimal IF as a function of � 
� ��. We now
want to give a more explicit expression that could be used
in actual implementations.

First, let

 
 �

��
��


 � � ( � �� � � � ��

be the probability of reaching the final level starting from
threshold ( 	 �. Second, we assume that splitting surfaces
are of the form

�
 � �� � ���� � (�� ( � �� �� � � � �� �

It follows that the “optimal” IF � , as described in the pre-
vious section, is constructed such that for a given �

 
 � �� � ( � ���� � (5)

When we also assume that the process does not cross more
than one threshold at a time, we arrive at the following
tighter relation

 
 � �� �  
�� � ( � ���� � (� � � (6)

Since we want an explicit expression for � we restrict
it further by enforcing the following simple rules which
we found as the optimal implementation techniques as pre-
sented in section 2. Make

1. the success probability in each stage equal,

2. the number of stages equal to � � 	 ��
�����,

3. the number of samples per stage equal.

Since we have

 
 � �� ( � �� �� � � � ��

for the optimal implementation, we obtain  
 � ���
, and
since  � � �� � �, we obtain ��
��� � ��
����� result-
ing in

����
��� � �� � ����
����� � ( � ���� � (� � �

The definition of

���� � �
�
�	

��
 ��
��
 �

�

is easily seen to fulfill the requirement above, as well as
making the function � continuous in the case that the suc-
cess probability is continuous over the state space �. Fill-
ing in the optimal � we obtain

���� �
�

�
��

���
�

�
� (7)

The remaining problem is that the quantities �� are not
known, in general, because it is as hard to solve as the orig-
inal problem (substitute � � ��). Therefore, we look at
methods to find estimators for the unknown parameters.

4.2 REVERSE TIME ANALYSIS

We consider a reverse time simulation scheme to gen-
erate an estimate for the optimal IF. We focus on a specific
type of system for which we can derive good estimates for
the IF, which will feature in our simulation results section
5. Specifically we assume that � is a discrete-time Markov
chain on a (countable) space � – for example, the discrete
skeleton of a continuous-time Markov chain. Let the one-
step transition probability from ( to � be given by ��(� ��,
for all ( and � in �. We assume � is irreducible and has a
stationary distribution ).

When we view the Markov chain � “backwards in
time”, we obtain the time reversed Markov chain & �
�&	�, which is a Markov chain on � with one-step prob-
abilities

���(� �� � )��� ���� (� � )�(��

see, e.g., [13]. Moreover, & has the same stationary prob-
ability distribution ) as � . When we have # � �# we call
� reversible.

Let �� be the event that process � reaches � before �,
starting from � � �. We wish to estimate the probability
�� � �����. Denote by �� the set of “paths” of the form
�(�� (�� � � � � (	� starting at (� � � and ending at a state in
�, such that none of the intermediate states are in �. Also,
let ��� be the set of paths of & , of the form ���� � � � � �	� for
some �, which start somewhere at � and reach � before �,
without returning to �. Let � �

� denote the corresponding
event that & reaches � before � and �, starting from �.
Note that each path �(�� (�� � � � � (	� in �� corresponds to a
path �(	� (	��� � � � � (�� in ��� and vise versa. Moreover, for
each such path we have

���� � ��� � � � � �	 � �	�

� ����� ��� � � � ���	��� �	�

� ������ ���
)����

)����
� � � ����	� �	���

)��	�

)��	���

� ��&� � �	� � � � � &	 � ���
)��	�

)���
�

Consequently, we have

�� � ���� � ����

�
	�

where 	 � )�&���)���. 	 can be view. Namely, it is
the quotient of the likelihood of a forward path of the �
process and the likelihood of the corresponding backward
path for the & process. The expression above gives rise to
a simulation scheme which will estimate �� for all � in �
as follows:
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1. Generate * samples of & ; run each sample until �
is hit.

2. If the (th sample (( � �� � � � � * ) hits � before � and
�, let +
 be equal to the likelihood ratio of the (th
sample (as defined by 	 above) or else let +
 � �.

3. Estimate �� by the mean

��� � *��
��

��

+
 �

4. Use this estimator to obtain the IF value for �.

The whole procedure gives fast estimates for the IF in
the Jackson networks we simulate in section 5.

Distribution of &�

The last problem we have in the algorithm presented
is that we do not always know where to start, i.e., what to
choose for the starting state in a sample path of & . If we
define 
 as the first time at which � hits set �, and ��

as the event that � hits � before �, starting from �, then
the distribution of &� should by definition be equal to the
conditional distribution of �� given the event ��. Any
failure to comply to the actual entrance distribution will
lead to a bias in the generated estimates. We usually do not
know the real distribution of this variable since this is hard
to obtain in general.

As an approximation we propose to choose &� from the
steady state probabilities of the border of �, ,� say, as
follows:

��&� � �� �
)���

)�,��
� � � ,� �

Another possibility is to generate actual samples of ���

and use these in a bootstrapping manner. Such samples
may be obtained using any splitting method, even for inef-
ficient splitting methods we can usually obtain a few hits of
the rare event set.

The fact that this entrance distribution is unknown in
general makes the algorithm unfit for estimation of � in the
pilot run because an unknown bias will be introduced by
sampling from another distribution than the true entrance
distribution.

We will try to find out how close this heuristic is to the
optimal function for a number of systems in the following
section.

5 NUMERICAL EXPERIMENTS

In this section we present a number of numerical ex-
periments, illustrating the use of the Importance Function.
Our focus will be on the 2- and 3-node tandem queue. The
2-node tandem queue, in particular, has served as a con-
venient reference model for rare event simulation, see e.g.,

[14, 15, 16, 17, 18, 2, 19, 20, 11, 10]. For this system,
rare events probabilities such as the overflow of the second
queue or the overflow of the total populaton have proved
to be difficult to estimate, both using importance sampling
and the splitting method (see e.g. [2, 19, 14]).

The simulations were carried out on a Sun system run-
ning the Solaris operating system version ��� and equipped
with 6 UltraSparcII ��� MHz processors online and 3 GB
of RAM.

In all tables � denotes the rare event probability of in-
terest. The estimate of � is given by 	�. For each 	� the
corresponding estimate of the Relative Error (RE) is in-
cluded. As a measure of the efficiency of the estimator 	�
we use the Relative Time Variance product (RTV), which
we define as the simulation time (in seconds) multiplied by
squared (estimate of the) relative error of 	�. Notice that the
RTV is equivalent to the ‘work-balanced variance” used in
[21]. Once a stable estimate of the variance is reached, the
RTV becomes constant. This constant is smaller for more
efficient simulation schemes. Practically, if scheme 1 gives
a RTV which is half that of scheme 2, it would take twice as
long to estimate � within a certain accuracy via scheme 2
than via scheme 1. We introduce the gain of using scheme 1
rather than using scheme 2 as

Gain����� ���� � RTV�

RTV�
�

RE�
���

RE�
���



�ar�������
�ar�������

and it is clear that the gain is now equal to the speed-up
ratio in simulation time ����� for achieving a fixed variance
when using estimator ��� instead of ���.

The number of simulation runs in each example is typ-
ically ���, all other splitting parameters are chosen in an
optimal fashion by a pilot run.

5.1 TWO-NODE TANDEM QUEUE

Consider the following 2-node tandem queue, see fig-
ure 3. Customers arrive at the first buffer according to a
Poisson process with parameter -. The first buffer has a
fixed capacity ", the second buffer has infinite capacity.
The servers operate at Poisson rates .� and .� respectively.

μμ1 2

λ
Buffer 1 Buffer 2 Server 2Server 1

Figure 3: The 2-node tandem queue

The underlying Markov process is given by � �
���� � � �� where �� � ������ �����, in which the
stochastic variable �
�� denotes the number of clients in
buffer number ( at time �. We wish to estimate the prob-
ability � that the second buffer fills up to at least level 	
before it empties.

5
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In our simulations we use �� � ��� ��� " � ��� - � �,
and .� � �, leaving .� as a variable.

Anantharam et al. [15] look specifically at this sys-
tem and derive the limiting ”flow” that the successful paths
(paths that lead to a buffer overflow) take through reverse–
time analysis. The results show that a typical path with the
first buffer being the bottleneck, leading to overflow of the
second buffer, starts with queue 1 building up on its own,
and then emptying until buffer 2 hits the overflow level and
buffer 1 is empty.

Generating a sample path that has these characteristics
is very hard to do in splitting, and it is, at first, not clear
what the optimal IF will look like. Fortunately, it is not
too difficult to actually calculate the probability �� in (7),
for all �, and hence find the optimal IF. For a detailed de-
scription of how to the evaluate ��, we refer to [22, 4]. Of
course, in this case we can also find the overflow probabil-
ity � itself by substituting the starting state.

In figure 4 we depict the optimal IF graphically; the
contour levels for multiples of five of the IF only are drawn
for clarity. These represent the optimal thresholds for the
splitting method. Note that the “naive” IF would have given
vertical contour lines.
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Figure 4: The optimal IF for the two-node tandem queue.

In Table 1, we compate the efficiency of the splitting
method using the naive IF and the numerically obtained
optimal IF.

To see what the effect is of estimating the IF via the
reverse-time method, we repeated the experiment by using
the estimated optimal IF instead of the true optimal IF. The
results are given in Table 2.

We interpret these results by looking at the efficiency
gain which is the quotient of the �
� ’s. The efficiency
gain is then equal to the ratio of the time needed by method
/ to reach a certain fixed accuracy and the time needed by
method 0 to reach that same accuracy. It is thus the simu-
lation time speedup factor of method 0 over method /. We
see that the efficiency gain of the numerically obtained op-
timal IF compared to the standard splitting typically lies

Table 1: Simulation results for the two-node tandem queue using
the optimal IF obtained numerically.

Optimal IF splitting Naive splitting

�� � �� RE RTV �� RE RTV

2 50 1.009e-26 3.0e-2 6.0e+0 1.166e-26 2.0e-1 2.8e+3

2 75 1.399e-39 3.2e-2 1.2e+1 1.417e-39 1.5e-1 2.7e+3

2 100 2.123e-52 5.6e-2 5.1e+1 2.383e-52 3.9e-1 3.5e+4

3 50 7.145e-25 1.6e-2 1.3e+0 7.035-25 4.0e-2 1.5e+2

3 75 6.951e-37 2.0e-2 2.5e+0 1.023e-36 3.5e-1 2.3e+4

3 100 7.217e-49 2.9e-2 6.0e+0 5.541e-49 1.0e-1 1.9e+3

4 50 1.772e-24 1.1e-2 3.5e-1 1.785e-24 2.7e-2 2.1e+1

4 75 2.070e-36 1.4e-2 1.0e+0 2.005e-36 8.4e-2 4.5e+2

4 100 2.494e-48 2.0e-2 2.4e+0 2.165e-48 4.0e-2 7.8e+1

Table 2: Simulation results for the two-node tandem queue using
the estimated IF obtained by time-reversal.

Estimated Optimal IF splitting

�� � �� RE RTV

2 50 1.050e-26 2.7e-2 1.5e+1

2 75 1.510e-39 1.1e-1 4.0e+2

2 100 2.669e-52 1.0e-1 5.0e+2

3 50 7.185e-25 1.1e-2 2.7e+0

3 75 7.208e-37 2.4e-2 2.0e+1

3 100 7.744e-49 6.2e-2 1.4e+2

4 50 1.786e-24 5.5e-3 6.4e-1

4 75 2.134e-36 1.3e-2 7.8e+0

4 100 2.635e-48 2.1e-2 1.1e+1

between 2 to 200 for the simulated tandem queue. Com-
paring the proposed time-reversal method for the IF and the
standard splitting we observe gains ranging from � to about
���, and the gain using the numerically obtained IF over
the IF obtained by the time-reversal method is also usually
between � and ��. This causes us to believe that the pro-
posed estimation method works well but could be improved
upon to obtain the optimal gain. One such method could be
the diversion of more simulation effort towards the estima-
tion of the optimal IF; in our test beds this has typically
been ��� of the total effort. Comparing the optimal IF
to the IS results, we see that the IS gain over the optimal
splitting typically ranges from � to ��, indicating that this
IS approach does a better job. Note however that the RTV
seems to grow linearly in the buffer capacity for all cases,
indicating that the complexity properties of both methods
are equal. A last conclusion is that the �
� decreases dra-
matically for the IS method for an increasing .�, whereas
the splitting �
� is very constant for all the optimal split-
ting implementations. We expected this behaviour for the
splitting method as in all cases the optimal efficiency is ob-
tained; the remaining variability is caused by the rounding
effects of the thresholds and the different costs of simula-
tion for different .�. This insensitivity of the efficiency of
the optimal splitting method with respect to the model pa-
rameters can be seen as a sign of robustness of the optimal
splitting method, as defined in [23] page 5.
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5.2 THREE-NODE TANDEM QUEUE

Consider the following 3-node tandem queue, as de-
picted in figure 5. Customers arrive at the first buffer ac-
cording to a Poisson process with parameter -. The buffer
capacities for the first, second and third buffer are "�, "�

and �, respectively. The first and second server operate at
Poisson rates .� and .�, respectively.

λ
μ μ μ2 31

Figure 5: The 3-node tandem queue.

The underlying Markov process in this case is � �
���� � � �� with a three-dimensional state space: �� �
������ ����� �
��� in which again �
�� denotes the number
of clients present in queue number ( at time �. We wish to
estimate the probability � that the third buffer fills up to at
least 	 customers before it empties out.

In our simulation we use the following values for the
parameters: starting state �� � ��� �� ��� buffer capacities
"� � �� and "� � ��, arrival rate - � � and service rates
.� � �� .� � � and .
 � �.

Unlike the 2-node case, the optimal IF is difficult, if
not impossible to calculate. But, we can still estimate
the optimal IF via the time-reverse method. However, the
state space for this model is much bigger than the previous
model, which results in a greater variance of the estimates
of the IF. This increased variance in turn can cause the level
process �
� �� ������ � � �� to jump erratically, which
can create a bias in the estimate. In order to overcome this
effect we used a smoothing technique that reduces the vari-
ance in the IF estimates, for more details see [4].

The results of the simulations carried out with this sys-
tem are given in Table 3. From these simulations we see

Table 3: Simulation results for the 3-node tandem queue using the
proposed time-reversal method for the IF.

Estimated Optimal IS splitting Naive IF splitting

� �� RE RTV �� RE RTV

10 1.188e-7 4.2e-3 5.4e-2 1.182e-7 5.2e-3 4.3e-1

15 2.338e-11 2.9e-2 3.4e-1 2.338e-11 2.9e-2 2.8e+1

20 5.310e-15 2.0e-2 3.8e+0 5.481e-15 1.6e-1 1.4e+3

that the new method generates more efficient results, the ef-
ficiency gain ranges between �� and ���, just as in the pre-
vious simulations with the two-node tandem queue. Typ-
ically the gain increases with increased rarity of the rare
event set. This behaviour is exactly what we aimed for,
since we devised our method especially for those extremely
small probabilities. Note that the last result (	 � ��, stan-
dard splitting) does not produce reliable results because the
RTV is so large.

6 CONCLUSIONS

In this paper we have looked at the optimisation of the
splitting method with respect to the decision of when to
split. This is done by choosing an Importance Function
that gives a certain weight to every system state. The exact
optimum is hard to find, since it involves exact knowledge
of the quantities to be estimated. A time-reversal method
is proposed and evaluated that works well for Jackson net-
works; typical efficiency gains ranging from � to ��� are
achieved with this method. The methodology is simple and
adaptable to a broader range of systems; other heuristics
for estimating a good IF may even perform better. Future
research will need to determine such heuristics.

Knowledge about the behaviour of the system leading
to the rare event is necessary for finding the optimal IF.
Interestingly, the same information is necessary when im-
plementing an optimal Importance Sampling strategy. The
optimal IF will change the complexity properties from a
worst case scenario of Monte Carlo complexity of 1�����
(in the case of extremely high dependencies), to a com-
plexity of 1��	 ��
������ (in the case of independence, see
[3]), making the efficiency of the splitting method a com-
parable to Importance Sampling . The robustness of the
splitting simulation method combined with its complexity
properties make it a very attractive rare event simulation
method.
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