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ABSTRACT

We present a new stochastic method for finding the opti-
mal alignment of DNA sequences. The method works by

between sequences of different type (for example, alignment
of a DNA sequence to a protein sequence, or of a protein
to a three-dimensional structurePairwise alignmentn-
volves only two sequences, whereagltiple sequence align-

generating random paths through a graph (the edit graph) mentinvolves more than two sequences (although the term
according to a Markov chain. Each path is assigned a score, sometimes encompasses pairwise alignment alstgbal
and these scores are used to modify the transition proba- alignment aligns whole sequences, whelleaal alignment

bilities of the Markov chain. This procedure converges to
a fixed path through the graph, corresponding to the opti-
mal (or near-optimal) sequence alignment. The rules with
which to update the transition probabilities are based on
Rubinstein’sCross-Entropy Methada new technique for
stochastic optimization. This leads to very simple and nat-
ural updating formulas. Due to its versatility, mathematical
tractability and simplicity, the method has great potential
for a large class of combinatorial optimization problems, in
particular in biological sciences.

1 INTRODUCTION

aligns only parts of sequences.

Algorithms for sequence alignment have been exten-
sively studied. The inaugural paper on the subject is that
of Needleman and Wunsch (1970) and a useful reference is
Gusfield (1997). The many algorithms used for sequence
alignment are here classified deterministi¢ stochastic
or heuristic Deterministicalgorithms formulate sequence
alignment as an optimisation problem and search determin-
istically for a globally optimal alignment. Two examples are
the dynamic programming approach initiated by Needleman
and Wunsch (1970), and the polyhedral approach initiated by
Kececioglu, Lenhof, Mehlhorn, Mutzel, Reinert, and Vin-
gron (2000).Stochasti@lgorithms also formulate sequence

Sequence alignment is a frequently encountered theme alignment as an optimisation problem, but use stochastic

in computational biology. Many biologically important

optimisation techniques to search for a global optimum.

molecules are linear arrangements of subunits and can there-Stochastic algorithms are often faster than deterministic
fore be characterised as sequences. For example, a proteirones, but have the disadvantage that they may return a sub-
consists of amino acid residues linked by peptide bonds in optimal alignment. Two examples are the HMM approach

a specific order known as ifgimary structure A protein

(Krogh, Brown, Mian, Sjolander, and Haussler 1994) and the

can alternatively be characterised as a sequence of largerGibbs sampler approach (Lawrence, Altschul, Boguski, Liu,

subunits calledecondary structuresret another character-
isation of a protein is it¢ertiary structure the sequence of

Neuwald, and Wootton 1993Heuristic algorithms differ
from stochastic algorithms in that they use a problem-specific

spatial positions and orientations taken by each of its amino search method, rather than standard stochastic optimisation
acid residues. In order to study the structural, functional techniques. Heuristic algorithms also may return a sub-
and evolutionary relationships amongst biologically similar optimal alignment. A list of examples is given by Pevzner
molecules, it is often useful to first align the corresponding (1992) (this paper also mentions several key references
sequences. Sequence alignment is also an aspect of searchen the dynamic programming approach). The distinction
ing biological databases to detect homologies and is a key between stochastic and heuristic algorithms is admittedly
step in shotgun sequence assembly. somewhat arbitrary.

There are various forms of sequence alignment. Align- The method presented here is a stochastic algorithm
ments can be made between sequences of the same typdor pairwise global alignment. It uses an exciting new tech-
(for example, between the primary structures of proteins) or nique for stochastic optimisation known as the cross-entropy
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method (Rubinstein 1999). This is the first application of
the cross-entropy method to a problem in computational
biology, but we anticipate that this versatile technique will
find many other uses in this field.

The paper is structured as follows. The remainder of
this introduction provides definitions of some key terms and
notation. Section 2 describes global pairwise alignment in
more detail, and in particular describes how alignments may

be characterised as paths in a graph. Section 3 discusses

cross-entropy and combinatorial optimisation via rare events
simulation. Section 4 describes our main algorithm for
sequence alignment by rare event simulation. In Section 5

we present some examples and in Section 6 we discuss the

merits of the approach and potential directions for further
research.

1.1 Definitions and Notation
The definitions and notation introduced here closely follow

Gusfield (1997).
A characteris an element of a sét called thealphabet

A tokenis a character or a space. The set of tokens is denoted

by ¥’. A string S is an ordered list of characters written
contiguously from left to right. (We use the termfing
andsequencénterchangeably.) For any strin§ S[i..j] is
the (contiguousyubstringof S that starts at positioh and
ends at positiory of S. In particular,S[1..;] is the prefix
of S that ends at position For any stringS, S(i) denotes
the ith character ofS.

A (global)alignmentf two stringsS; andsSs is obtained
by first inserting spaces, either into or at the ends;oénd
S», and then placing the two resulting strings one above

the otr_\er SO that every character or space in elther string is Sa[L..i] and Sp[1.../]
opposite a unigue character or a unique space in the other

string.

When comparing two characters, we say that the char-
actersmatchif they areidenticat otherwise we say they
mismatch An edit operationon a strings is one of three
operations: asubstitutionof one character for another, an
insertionof a character into or at the end of the string, or
a deletionof a character. Thedit distancebetween two
stringsS; andS> is the minimum number of edit operations
needed to transform the first string into the second.

2 SEQUENCE ALIGNMENT

To be useful in applications, an alignment of two sequences

should reflect in some way the commonalities of the se-

guences. Some alignments are therefore better than others.

This concept is formalised usingsaoring functiorto assign
a value to an alignment. Lef; and S> be two sequences
of length ny and ny, respectively, and lef; and 7> be

lengthl. Let x = (71, T») represent an alignment of;
and S2. Conceptionally we can viewlr, T>) as a matrix
with 2 rows and! columns where the first row contains
the tokens offy in order and the second row contains the
tokens ofT» in order. LetV(x) be a scoring function on
the space of all possible alignments. An optimal global
sequence alignment is then an alignmenwhich solves
rf}jn V(x) 1)
(or max V(x), depending on the nature of the scoring
function.)

Many of the scoring functions encountered in practice
are of the following form. Each columnof the alignment
is assigned a score(T1(i), T2(i)), whereTy(i) and T>(i)
are theith tokens off; and7» respectively ana is the so-
calledscoring matrixdefined over pairs of tokens (elements
of X’). The score of the alignment is the sum of the column
scores:

V@) =) vl T20)) . 2)
1

An example of a scoring matrix is(x, y) = 0 if x = y,
otherwisev(x, y) = 1, wherex, y € ¥’. In this case, the
minimum score is equal to the edit distance betwgeand
So.

The classic approach to computing optimal alignments
is via dynamic programming (Needleman and Wunsch 1970,
Smith and Waterman 1981). Using this approach, the edit
distance can be computed@n(n1n2) time (Gusfield 1997).
The algorithm is outlined below.

Let D(i, j) be the edit distance between the prefixes
. Note that we allow null prefixes, in
which case either or j is zero (or both). The edit distance
betweensS; and S, can then be calculated recursively using
the following relation:

D@, j) min[D({ —1,j)+1, DG, j—1 +1,

DG —1,j—1)+1¢G, j)l,

wheret (i, j) is defined to have value 18 (i) # S2(j), and

t(i, j) has value 0 ifS1(i) = S2(j). The initial conditions

on the recurrence are
D(,0) =i and D, j)=.

The set of alignments realising the minimum score can
be obtained at the same time by recursively computing the
set of optimal alignments for each pair of prefixes. With
some modifications, the algorithm can be implemented in
O (n1n2) complexity (time) and) (n1) space, where; < n»

sequences of tokens obtained by inserting spaces into or (Hirschberg 1977).

at the ends ofS; and S2 such that7; and 7, are of equal
321
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Figure 1: Each Alignment Corresponds to a Path

An alignment can alternatively be characterised as a weight isv(S(i + 1), S(j +1)). The score of a given path
path through a graph. Given two strings and So of is then the sum of the weights on its edges.
lengthny andny respectively, theedit graphfor the strings
is the array of(n1 + 1)(n2 + 1) nodes, each labelled with 3 COMBINATORIAL OPTIMISATION VIA RARE

a distinct pair(i, j), 0 < i < n1,0 < j < n2 and a set EVENT SIMULATION

of horizontal vertical and diagonaldirected edges joining

node pairs of the forni(i, j), (i, j +1)), (G, j), (i +1, j)) Consider the following minimisation problem. Léf be a
and ((i, j), ¢ + 1, j + 1)) respectively. An edit graph is finite set ofstates and letV be a real function orit. We
illustrated in Figure 1. Define aalignment paththrough wish to find a stata™ € argmin, V (x). In other words, we
the edit graph to be a path from no@e 0) to node(n1, n2), wish to findx* such that

that is, a sequence of edge-joined no@:®), . . ., (n1, n2).

Let X be the space of all alignment paths. There is a one-to- Vix*) <V(x), forallxeX. 3)
one correspondence between alignments;0énd S, and

alignment paths through the edit graph. This correspon- When the number of states M is large, simulation be-

dence may be seen by defining the following isomorphism, comes a viable approach to the above optimisation problem.
mapping an alignment path to an alignment. First number A possible simulation procedure is described next.

the edges of the alignment path in ordes 1,...,.. Then Let f be some probability mass function (pmf) an

the kth column of the alignment is determined from the such thatf(x) > 0 for all x. For eachx € X andthreshold

kth edge of the alignment path in the following manner: y € R define

for a horizontal edgé(, j), (i, j + 1)), let the column be

(—, S(j+1)) (“—"means space and*indicates transposi- H(x:y) = { 1 if V) <y,
tion); for a vertical edgé(i, j), (i +1, j)) let the column be S0 i V) >y
(S(i+1), —)’; and for a diagonal edggi, j), (i +1, j+1))
let the column be&S(@i + 1), S(j + 1))'. Suppose we wish to estimate
Since there is a one to one correspondence between
alignments and alignment paths it should not cause confusion Li(y) = Z Hx; ) f(x) =EsH(X;y), 4)
if the same symbat is used to represent both objects, and x

the same symbak’ is used to represent the corresponding ) )
spaces. Moreover, any scoring function for alignments may WhereX is a random vector anil; denotes the expectation
be regarded as a scoring function for alignment paths, thus OPerator under pmf'. Equation (4) indicates how we may
conferring alengthto each path. The optimal alignment ~ estimatet () by simulation: IfX®, ..., X isarandom
therefore corresponds to the shortest (or longest) alignment S&8mple from the pmif' then
path. For scoring functions of the form (2) one can associate
weights to each edge in the edit graph: for a horizontal edge
(@, j), (i, j+1)) the corresponding weightig—, s(j+1));
for a vertical edg€(i, j), (i + 1, j)) the weight isv(S(i +
1), —); and for a diagonal edg€i, j), i + 1, j + 1)) the
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is an unbiased estimator éf (y).
Now let g be another pmf ort’. Observe that

fx)

g(x)

[
gX)
(6)
Hence, an alternative way to estimdte(y) is by taking a
random sampleX@, ..., X™) from g and evaluating the

(unbiased) estimator

Lr(y)=>_ H(x:y)

x

gx)=E,H(X;y)

F(X®)

. 7
g(X®) @

1 N
5 Y HEX®Y)
k=1

In simulation jargon, we have usdthportance Sampling
with achange of measurg. The optimal choice fog is de-
termined by the variance of the random variaHI€X) %
under pmfg. The smaller the variance, the more accurate
our estimate will be. Itis not difficult to see that the change
of measureg that yields the smallest variance is given by

) = H(JZ, y)f(x) (®)
r)

Under this change of measure the random variable

H(X) % is constant and equal ty(y).

We can now see the connection with our optimisation
problem (3). Namely, if we choosg = y*, wherey™* is
the minimum ofV, then the best way to simulate (y*)
is to generate a random sample from pgnfwhich in this
case has only positive mass on argp¥irix). Hence, if we
know g then we can solve (3). Moreover, f is close to
y* then generating samples from the correspondingill
yield vectorsX for which V(X) is close to the optimal
value (namelyV (X) < y)).

The obvious problem with (8) is, of course, that we
do not know/ ¢ (y). We will shortly discuss a way around
this problem.

3.1 Parametric Families

The pmfs discussed above often belong to the same family
of distributions, e.g.{f(-; p)} where the parameter vector

p takes values in some subsetRf, for some fixedk. For
such pmfs let us rewrite (4) as

L) =Y HEx:y)fx;p) =E,HX;y), (9

where we have used a simplified notation in which the
subscriptp replacesf(-; p). Henceforth we will use this
simplified notation when convenient, without further dis-
cussion.
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The best way to estimatg,(y) via (7) is to use the
change of measurg defined as in (8). However, this pmf
may not lie in the parametric family' (-, p). But we can
still try to choose an “optimal” pmff (-, p) in the sense
that thedistancebetween this pmf ang is minimal.

3.2 Cross Entropy

There are several ways to measure the distance between two
distributions (or pmfs). A particular convenient “distance”

is the Cross Entropyor the Kullback-Leibler distancelf u

andv are two pmfs, the Cross Entropy is defined as

C(u,v) =E,log % .

For estimating (9) we choose the optimal paramgtsuch
that the Cross Entropy betwedh(-; y) f(; p)/¢p(y) and
f(; p) is minimal. Writing out this cross entropy, it is easy
to see thatp should be such that

¢(p; p.y) =E, HX:y)log f(X; p)  (10)
is maximal The power of the Cross Entropy approach
is that the optimal parametep can often be calculated
analytically. We will see an example of this in the next
section, where each component pfis found to be of the
form

Ep H(X; y)(xea)

Ep H(X; V)I{XEB} '
wherelxc4y and I xcp) respectively denote the indicators
of the event{X € A} and{X € B} forsomeA Cc B C X.

This number typically needs to be estimated. For this we
can use the estimator

N

Y HXO) Iy
N

> k=1 H(X®Y) I{X(")EB}

: 11)

where X ..., X™ is a random sample from the pmf
fGp).

It is important to note that the estimator above is only
of practical use whemv, p andy are such that the total
number of samples for which the score is less than or equal
to y is not too small. For example whep is close to
y* and p assigns almost no probability mass to vecters
for which V (x) < y, most random samples would provide
an estimator 00, unlessN is exceedingly large. This
poses a problem to the proposed minimisation procedure.
On the one hand we would like to choogeas close as
possible togy*, and find (an estimate) gf via the procedure
above, which assigns almost all mass to vectors close to
the optimal vector(s). On the other hand, we would like to
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keepy relative large in order to obtain a viable estimator

for p. Table 1: The Transition Probabilities
. L from to with prob.
3.3 Adaptive Estimation — - - —
P @] G+L) rG )
To overcome this problem, one may consideseguencef (l,’ ],) ,(l’i + 1)1 1 d(l ])d ..
thresholdsyo, y1. ... and a sequence of parameter vectors G E+Lj+D [1=rG ) —dG j)

Do P1, - - -» such that{y,,} converges to a value close to the

optimal y* and{p, } converges to a pmf that assigns high 1 the transition probability from(i, np) to (i + 1,n2) is
probability mass to vectors that give a small score. This 1 Finally, (n1,n2) is an absorbing state. Let be the
Stl’ategy iS embodied in the fO”OWing procedure, see e.g., t|me by Wh|ChM has reached the absorbing state (note

Rubinstein (1999): that t < n1 + nz), and let M® denote the path taken
) by M through the edit graph. We gather all parameters
Start with some py. Letr? =0. . {rG, j),dG, j),0<i<n—10<j<np—1}into a
Repeatthe following until convergence is reached: single parameter vectgr. For each suclp let
- Draw a random samplex®, ... x™ from FGe:p) =Pp(MT =x), forallx e X.

fC, p,), whereN is some fixed number.
*  Calculate the scores for each of these vectors, and Thjs defines a proper probability distribution o with

order them from smallest to biggest,< ... < sy. pmf £(-; p). Denote byX (i, j) the collection of all paths
Let & be the integer part 0bN. Definey, = s¢. going through nodéi, j), and by.X (i, j) the collection of

» Define p,,, as the estimate of the optimal in all pathsnot going through nodéi, ;).
(10) with p = p,,. Thus, the components @f, , ; Now, consider the estimation of (9) via Importance
are found from (11). Increaseby 1. Sampling. The optimal change of measure within the same

) ) ) parametric family is given byf (-, p), where p is such
In each iteration, the new threshold value is selected that (10) is maximal. To maximise (10) let us first look at

to be greater than or equal_ toa pro_port';@_rmf the CL_Jrrent f(x; p) for some fixedx and p. Let X, (i, j) be the set of
§ample scores, thus ensuring (1_1) is a V|_a_b_le estimator for 5| pathsx making the transition frongi, j) to (i + 1, j).
p. Note that the stopping criterion, the initial vectpg, Similarly definex,(i, j) as the set of all paths making

the sample siz&/ and the numbep have to be specified i ne transition from(, j) to (i, j + 1). Defining 1, as the

4 RARE EVENT SIMULATION IN SEQUENCE ni—1lnp—1
ALIGNMENT fep = []11 (r(i,j>1x,a.,-><x)
i=0 j=0
In this section we derive our main algorithm by combining +d(, j) Layq. ) (x) (12)

the main ideas of Sections 2 and 3.

In Section 2 the optimal sequence alignment problem
was formulated in terms of a shortest path problem through
a graph. Specifically, in that context, we need to find an
alignment pathx through the edit graph for which the ]
alignment scoreV (x) is minimal. It is clear that this  Where we have abbreviated the seti, j) — & (i, j) —
problem fits the combinatorial optimisation formulation of ~a(i j) to X’(i, j). It follows that
Section 3. In particular, the state spatéeis given by the

+ @=rG, j)—da,j) Ly &)

12?(:',/)(")) ’

+

collection of all possible alignment paths. ¢(p;p.y) =
On this space we define a class of probability mass n1—1na—1

functions {f(-, p)} in the following way: LetM = Z Z EpH(X; V)<|09(7("vj))er(i,j)(X)

{Mp, M1, ..., } beaMarkov chain on the edit graph, starting i=0 j=0

at the top left-hand cornéf, 0) with the one-step transition + Iog(c?(i, M L, (X)

probabilities shown in Table 1 (for all@ i <n1 —1 and ~

0<j=<nz2-1). +log(1 —7(i, j) —d(, j)) 1X’(i,j)(X)> .
Note that here r stands faight and d for down

Moreover, forj =0, ...,nz — 1 the transition probability

from(n1, j)to(n1, j+21)is1l. Similarly, fori =0, ..., n1—
324
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Hence, maximising (10) with respeiti, j) andd(i, j) for

all i and j amounts to differentiating the expression above
with respect toF(i, j) andd(i, j) and equating it to zero.
This gives the set of equations

= EpH(X; ¥) Iixe x.i,)))

R )
! E,H(X;y)I =0
17 ) —dg) T e e =
and
d(, j)
1

— E,H(X: ) Iixe v =0
L7 ) —d.g) e

from which it follows that

Ep H(X: y) Iixe x4, j))
Ep H(X:y) Iixe x.)))

r@, j) =

and

Ep H(X; y) Iixe x4, )
Ep H(X: y) Iixexd,jyy

Asin (11), we can estimaf&i, j)andd (i, j) in the following
way. We runN independent copies of the Markov process
M using the one-step transition probabilities pn This
leads to the random sample of patkis¥, ..., X*) from
the pmf f(-; p). The estimators of (i, j) andd(, j) are
respectively given by

dii, j) =

Y HXD:y) Iywe v ) (13)
Z L H(X( )»V)I{X(k>€X(l])}
and
).
SN HX ,y)l{x<k>exd<u)} (14)

Z L HX® sV Lixwe x jy

These estimators have an easy interpretation. For example,

to obtain7 (i, j) we count the number of paths (out &)
going from(i, j) to (i, j + 1) that have a score less than or
equal toy, and divide this number by the total number of
paths passing througti, j) that have a score less than or
equal toy. The estimator fod (i, j) has a similar natural
interpretation.

Using the algorithm outlined in Section 3 we now con-
struct a sequence), 1, . .. decreasing tgr and a sequence
Do, P1, - -- tending to some vectop such thaty is close
to y* and such thatf (-; p) assigns positive mass only to
alignment pathx for which V(x) < y.
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4.1 Main Algorithm

1. Initialize as follows: j := 0 (iteration counter);
Choose an initial vector of transition probabilities
po, for example withr (i, j) =d(, j) = 1/3.

2. GenerateV paths of the Markov procesd, using
the transition probabilities specified j;

3. Calculate the scores for each of these paths, and
order them from smallest to biggest,< ... < sy.
Let £ be the integer part 0bN. Definey; = s¢.

4. Find the next parameter vectpy ; from (13) and
(14), for each(i, j).

5. Increment and repeat steps 2-5, until convergence

has been reached.

Note that the stopping criterion, the initial vectpg,
the sample siz&v and the numbep have to be specified
in advance.

4.2 A Modified Algorithm

Paths generated by the Markov process described above are
centred around the path consisting of diagonal edges leading
down and to the right front0, 0). Paths that deviate far from
this centre path are rare, and consequently some parts of the
edit graph are unlikely to be explored. This poses a problem
when the optimal path deviates substantially from the centre
path. For example, to optimally alighAAAABBBBRvith
BBBBB we must prefix the second string with 5 spaces. This
means that the corresponding path through the edit graph,
(0,0),...,(5,0),(6,1),...,(10,5), initially travels along
the upper border. The algorithm does not converge properly
in this case because it is most unlikely that the Markov chain
M will follow such a path along the border unlegss such
thatr(0,0),...,r(4,0) are very close to 1.

To remedy this problem, we allow/ to start at any posi-
tion along theupper borderB, := {(0, j), j =0, 1, ..., ny}
or theleft border B; := {(i,0),i =0,1,...,n1}. Denote
the probability thatV starts at(i, j) by «(i, j). The theory
above can be carried through with only slight modifications.
For example, X’ is now the set of paths through the edit
graph, starting on the upper or left boundary; and the param-
eter vectorp now includes the initial probabilities (i, ;).
Moreover, letting) (i, j) be the set of paths that start at
(i, j), the right-hand side of (12) should be multiplied by

> al, Ny @),

(i,j)eB

whereB = B; U B, is the set of possible starting states. In
addition to updating the(i, j) andd(i, j), we now also
have to update the(i, j). This leads in addition to (13)
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and (14) to the following updating formula fos(i, j):

N k).
Yimt HXO:9) Lyw ey )
Y  HXW:y)

: (15)

where X® .., X™ is a random sample of alignment
paths from the pmff (-; p).
5 SOME EXAMPLES

In this section we give the results of a number of tests to

DVARVIRIRTGEEDDAAI

MKLVTVIIKPFKLEDVREALSSIGIQGLTVTEVKGFGRQ
KGHAELYRGAEYSVNFLPKVKIDVAIADDQLDEVIDIVS
KAAYTGKIGDGKIFVAELQRVIRIRTGEADEAAL

The algorithm found the following alignment:

MKKIDAIIKPFKLDDVREALAEVGITGMTVTEVKGFGRQ
MKLVTVIIKPFKLEDVREALSSIGIQGLTVTEVKGFGRQ
KGHTELYRGAEYMVDFLPKVKI

E_ R

which the algorithm has been subjected. In each case we KGHAELYRGAEYSVNFLPKVKIDVAIADDQLDﬁDWS

search for an optimal alignment of two sequensyesf length

n1 and Sy of lengthny, with respect to the scoring matrix
v(x,y) =0 if x =y, otherwisev(x, y) = 1. For all cases
we chose the parameteps= 0.1 and N = 100(n1 + n2).
Moreover, the initial transition probabilities for the Markov
chain M were 13 for each of the three directions, and the
starting state off was chosen uniformly on the union of
the upper border and the left border.

The first test was to see if the algorithm could cor-
rectly find alignments of the strings of the forfh = S =
AAAAAAAAAAAfor various lengthsi1(= n2). The algo-
rithm was found to converge to correct “self-alignment” for
n1 = 10, 100 and 1000. The number of iterations required
seem to vary ag/ni, see the table below.

Table 2: The Number of Iterations Required for the Self-
Alignment Test, for Various String Lengths

10 100 1000
15 41

ni
iterations| 6

The second series of tests involvedght-shifts
of the form S; AAAAAAAAAA and S>
BBBBBBBBBBAAAAAAAAAAN other words,S> is ob-
tained from S1 by prependingn; B's. Note that the
size of S is 2n1. The test was performed for dif-
ferent values ofn1 (10, 100 and 1000), and the algo-
rithm was found to converge to the optimal alignment.
Similar results were found for a third series of tests,
this time involving left-shifts §; = AAAAAAAAAAand
S» = AAAAAAAAAABBBBBBBBBB

Finally, we applied the algorithm to two protein se-
guences from Escherichia colNitrogen Regulatory Pro-
tein P-1l 1 (database: @i121386) anditrogen Regu-
latory Protein P-1l 2 (database: @i1707971), cf. Carr,
Cheah, Suffolk, Vasudevan, Dixon, and Ollis (1996) and
Xu, Cheah, Carr, van Heeswijk, Westerhoff, Vasudevan, and
Ollis (1998).

The two protein sequences are shown below:

MKKIDAIIKPFKLDDVREALAEVGITGMTVTEVKGFGRQ
KGHTELYRGAEYMVDFLPKVKIERTAQTGKIGDGKIFVF
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TAQ_TGKIGDGKIFVFDVARVIRIRTGEEDDAAI
KAAYTGKIGDGKIFVAELQRVIRIRTGEADEAAL

which gives an optimal edit score of 39. The algorithm took
a few seconds to execute. Note that the edit distance does
not impose gap penalties. A more sophisticated scoring
function would favour a single big gap to multiple small

gaps.
6 CONCLUSIONS

In this paper we have described a new randomized algorithm
for sequence alignment. The algorithm generates random
alignments via a random walk. The transition probabili-
ties of the random walk are altered/updated dynamically
by minimizing the Cross-Entropy distance between two
distributions. This leads to simple and effective updating
rules.

In the examples given, the new algorithm does not
outperform the standard dynamic programming approach.
The examples are trivial, and merely demonstrate that the
algorithm behaves sensibly. The significance of the new
algorithm is that it may be possible to use it in conjunction
with scoring functions that are not easily handled via existing
approaches.

The cross entropy method has recently proved to be use-
ful for solving difficult combinatorial problems in telecom-
munications and management science, see for example
de Boer (2000), Lieber, Rubinstein, and Elmakis (1997),
and Rubinstein (2000). In this paper, it is applied to a
problem in computational biology for the first time. One
of the merits of the Cross-Entropy (CE) approach is that it
opens up a whole range of possible applications in compu-
tational biology. For example, it could be of help in solving
multiple DNA sequence alignment and protein sequence
alignment that involve complicated scoring functions for
which no polynomial time algorithms exist. From a mathe-
matical point of view the CE method is attractive because,
unlike many other randomized algorithms, it can be sub-
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jected to a rigorous analysis. This is important for any
further developments and improvements of the algorithm.

An obvious direction for future research is to investigate
which problems in computational biology could benefit from
the CE approach. Work is underway to apply the CE method
to protein folding, in which (due to the three dimensional
structure of a protein) the score is a complicated function
of the positions of the amino acids.

Another direction for research is to study in more detalil
how the algorithm could be modified and how this would
affect its efficiency. For example, there are many ways to
randomly generate the alignments. In the current algorithm

the alignments are generated through a Markov process, but

this is not essential for the CE approach. Other modifications
could include “Ant Colony” heuristics, see for example
Dorigo and Gambardella (1997) and Gutjahr (2000).

Finally, in this introductory paper we have made no
attempt to compare the algorithm with other (randomized)
algorithms for sequence alignment. It would be interesting
to carry out such investigations in the future.
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