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Abstract

An important factor in the dynamic transmission of HIV is the mobility of the population. We formulate
various stochastic models for the spread of HIV in a heterosexual mobile population, under the assump-
tions of constant and varying population sizes. We also derive deterministic and diffusion analogues for
these models, using a convenient rescaling technique, and analyze their stability conditions and equilibrium
behavior. We illustrate the dynamic behavior of the models and their approximations via a range of numer-
ical experiments.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most urgent public-health problems in developing countries is the AIDS (Acquired
Immune Deficiency Syndrome) epidemic, caused by the Human Immunodeficiency Virus (HIV).
Since the first cases of AIDS were identified in 1981, the number of HIV infected people and
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AIDS deaths per year has continued to rise rapidly. In 2004, some 40 million people were living
with HIV, which has killed over 20 million since 1981 and 3 million in 2003 alone [32]. The epi-
demic is not homogeneous within geographical regions. Some countries are more affected than
others. Even at a country level, there are usually wide variations in infection levels between dif-
ferent provinces, states or districts, and between urban and rural areas. In reality, the national
picture is made up of a series of epidemics with their own characteristics and dynamics.

The dynamic transmission of HIV is quite complex and there is no other human infection which
has the same epidemiological characteristics with a similar mode of transmission. For instance,
the incubation period after infection with HIV is known to be extremely long and is measured
in years rather than days (such as in the case of measles, for example). During this period, the
individuals stay healthy and can unknowingly transmit the disease to others. In addition,
although the disease is known as a sexually transmitted disease, it is also passed on from infected
mothers to their babies, and from sharing infected syringes, which is common among injecting
drug users. All these factors have made it difficult to understand how this epidemic spreads in
the population. The growth of movement among populations further increases the contact be-
tween individuals in different patches and, consequently, it might trigger more epidemics. Thus,
the migration of people among subgroups has many significant consequences for the outcome
of epidemic spread [12,26]. Indonesia in particular, as one of the most populous countries in
the world, with a high population mobility among its regions [11], seems to have a high risk
for the spread of the epidemic [32]. The number infected has increased sharply, and the prevalence
among provinces varies widely.

Mathematical models based on the underlying transmission mechanism of HIV might help the
medical and scientific community understand better how the disease spreads in the community.
Even though the actual data needed for the models might not be accurate or even available, such
modelling is still vital in investigating how changes in the various assumptions and parameter val-
ues affect the course of the epidemic [16]. Therefore, by developing such mathematical models, we
can to some extent anticipate its spread in different populations and evaluate the potential effec-
tiveness of different approaches for bringing the epidemic under control, and thus help to devise
effective strategies to minimize the destruction caused by this epidemic.

Mathematical models for the spread of the HIV/AIDS epidemic have been studied extensively
since the first cases were recognized in the late 80s; see for example [9,17,21–23,28,29]. However,
this area of study is still challenging, since so many different factors affect the transmission of
HIV. Most of the articles have focused on only a single population of constant size, although
some studies have stressed the importance of variable population size in epidemic dynamics
[9,10,21]. In addition, many models have only focused on a single homosexual population [28],
whereas in much of the world, heterosexual contact is the predominant mode of transmission
[32]. Finally, the spatial aspect of the epidemic and, related with this, the mobility of the popula-
tion, is often ignored. All these assumptions might limit the application of such models in describ-
ing the complex dynamics of the epidemic.

The purpose of this paper is to develop new mathematical models for the spread of HIV that
incorporate factors such as mobility, heterosexual transmission and varying population size,
which are crucial for countries such as Indonesia, with its many distinct regions. The models will
be stochastic in nature, as opposed to the more common deterministic models. However, we will
show that the more natural stochastic approach can be approximated well with the traditional
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deterministic approach, which can be analyzed in more detail, in particular with respect to equi-
librium behavior. In addition we derive stochastic diffusion approximations, which show that the
original process around the equilibrium can be approximated well by an Ornstein–Uhlenbeck pro-
cess. Both the deterministic and diffusion approximations are derived using the theory of density
dependent processes [18,24].

Our models are motivated mostly by the works of Dietz [9] and May et al. [21], both of which
formulate deterministic models of HIV spread in a heterogeneous population. They consider the
female and male subpopulations separately (individuals are well mixed only in their subpopula-
tion), and assume that HIV transmission is possible only through sexual contact between female
and male. There are some differences between the two models: Dietz [9] assumes that the rate of
new recruits of susceptibles (for both males and females) is constant, whereas in May et al. [21],
this rate is assumed to be proportional to the total population, which varies in time. In Dietz [9],
only males choose partners from the female subpopulation. Thus, susceptible males and females
become infected at a rate which is proportional to the size of the total female population. On the
other hand, May et al. [21] assumes also that females choose partners from the male subpopula-
tion. Therefore, susceptible males are infected relative to the total female population and suscep-
tible females become infected relative to the total male population. Consequently, the models [9]
and [21] have slightly different formulations for the infection rate of susceptibles. Furthermore,
both study the situation under the assumption of a varying population.

The rest of the paper is organized as follows. In Section 2, we describe the various stochastic
models. We start with a single, constant (i.e., a closed system) or varying (i.e., an open system)
population with a female and male subpopulation, and then look at the case of a multiple-patch
population, incorporating the mobility of people. In Section 3, we present various results from
Kurtz [18,19] concerning density dependent processes. In particular, we review under what con-
ditions, and in what manner, such a stochastic process converges to its deterministic and diffusion
counterpart. In Section 4, we will use the results from Section 3 to study the dynamics of our sto-
chastic models. This approach has been used recently in the study of epidemic models; see for
example [7,6]. Numerical experiments are presented in Section 5. Finally, in Section 6, we summa-
rize our findings and give direction for future research.
2. Models

In this section, we formulate various stochastic models for the spread of HIV in both a single
population and in multiple populations, under the assumption of either a constant or varying
population size.

2.1. Model with a closed single population

We consider first a closed (constant) single heterosexual population of size N in which all indi-
viduals, both females and males, are well mixed in the population. We assume, as in [9] and [21],
that a susceptible female gets infected only by an infected male (via sexual contact) and, similarly,
a susceptible male gets the infection only from an infected female. A single female or male selects
her/his partner (of different sex) randomly from the whole population.
Please cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Let the random variables SF(t), IF(t), SM(t), IM(t) and A(t) represent the number of susceptible
females, infected females, susceptible males, infected males, and the number of AIDS cases at time
t, respectively. We assume that a susceptible female (male) will be infected by an infected male
(female) at a rate that is proportional to the fraction of infected males (females):
Fig. 1
only,

Plea
ci. (
kF ¼ b
IMðtÞ
N MðtÞ

kM ¼ b
IFðtÞ
N FðtÞ

� �
; ð1Þ
where kF and kM are called the forces of infection (see also Remark 2.1) which is the same as the
rate of infection per susceptible defined in Hyman et al. [14], NF(t) = SF(t) + IF(t) and
NM(t) = SM(t) + IM(t). We assume that all individuals, including AIDS people, leave the random
mixing sexually active population at rate l (due to natural death or for reasons other than dying).
In addition, AIDS people also die from the disease, at rate d. All individuals that leave the system
are replaced (balanced) by inflow of susceptibles, at a proportion a for females and (1 � a) for
males. Thus, the inflow rates for susceptible females and males are BF = a(lN + dA) and
BM = (1 � a)(lN + dA), respectively. The infected individuals develop AIDS at rate c. This situ-
ation can be viewed as a stochastic Susceptible-Infected-Removed (SIR) model; see for example
[1]. The scheme is illustrated in Fig. 1.

Remark 2.1 (Force of Infection). The parameter b is defined in [9] as the product of the contact
rate j and the probability p that a successive number of contacts leads to infection. The constants
j and p are given as follows: j ¼ 1

T per unit time and p = 1 � (1 � h)cT, where T is the time interval
per partnership, c is the average number of sexual contacts per partnership, and h is the
probability that one sexual contact between a susceptible and an infected individual leads to
infection. Thus, the unit of b is per time unit (for the case of HIV/AIDS, the more reasonable unit
of b is per month [15] or per year [5]).

Consider the process (X(t), t P 0), with
X ðtÞ ¼ ðSFðtÞ; IFðtÞ; SMðtÞ; IMðtÞÞ;
. The scheme of the model. Susceptible females (males) are infected by infected males (females) via sexual contact
indicated by the dashed arrows.
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which takes values in E � N4, where N is the set of positive integers (including zero). We model
(X(t), t P 0) as a Continuous Time Markov Chain (CTMC) (see for example [25]), where the tran-
sition rates are chosen according to the description above. Thus, we assume that given the whole his-
tory X(s), s 6 t, a future state of the system, X(t + Dt), depends only on the current state X(t). In the
formulation of the model, we can ignore A(t), since the population size, N = SF(t) + IF(t) + SM(t)
+ IM(t) + A(t), is constant for all t. If one is interested in the number of AIDS cases, one can find
it from A(t) = N � SF(t) � IF(t) � SM(t) � IM(t).

2.1.1. Transition rates
We now have a closer look at the transition rates of the CTMC (X(t), t P 0). In a small time

interval Dt we assume that one of the following events occurs: (1) a new susceptible female enters
the group of single females, (2) a susceptible female gets infected, (3) a susceptible female dies, (4)
an infected female is removed (develops AIDS or dies), (5) a new susceptible male enters the group
of males, (6) a susceptible male becomes infected, (7) a susceptible male dies, or (8) an infected
male is removed (due to AIDS or natural death). The other possible events are ignored.

Suppose that the system at time t is in state k = (sF, iF, sM, iM), k 2 E. The transition scheme of
the process is described in Fig. 2 (ignoring boundary effects).

Thus, in any small time interval of length Dt, the process jumps from state k to k + l with prob-
ability qk,k+lDt, where the rates qk,k+l follow from the formulation above, and are given by
F

Plea
ci. (2
qk;kþl ¼

aðlN þ dAÞ; l ¼ e1;

b iM
sMþiM

sF; l ¼ �e1 þ e2;

lsF; l ¼ �e1;

ðlþ cÞiF; l ¼ �e2;

ð1� aÞðlN þ dAÞ; l ¼ e3;

b iF
sFþiF

sM; l ¼ �e3 þ e4;

lsM; l ¼ �e3;

ðlþ cÞiM; l ¼ �e4;

0; otherwise:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2Þ
ig. 2. The transition scheme from state k to other states, where ei represents the ith unit row vector in N4.
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Note that the process (X(t), t P 0) has an absorbing state 0, and once the process reaches a state
where no infection is present (i.e., IF(t) = IM(t) = 0), it will remain infection free forever, and will
eventually end up in 0.

2.2. Model with an open single population

In this model, we consider a population size N(t) which varies with time. We have now a slightly
different interpretation for the population size. In the constant population case, we include AIDS
people in the total population, which makes it possible to formulate the situation as a type of SIR
model. With a varying population size, both the female and male subpopulation are simply divid-
ed into two groups of susceptibles and infectives, as in the case of the standard SI model. We no
longer explicitly consider AIDS people as a part of the population, that is, N(t) = SF(t) +
IF(t) + SM(t) + IM(t). However, if one is interested in the number of AIDS cases at time t, A(t),
one can find it from the number of infectives who eventually develop AIDS, that is,
AðtÞ ¼

R t
0 cðIFðsÞ þ IMðsÞÞds. We assume as in Dietz [9] that the number of new susceptibles of

both females and males arrive into the system at a constant rate BF = BM = B (that is, according
to a Poisson process with rate B). Thus, the transition scheme is similar to the previous model, but
the transition rates of the process are given as follows:
Plea
ci. (
qk;kþl ¼

B; l ¼ e1;
b iM

sMþiM
sF; l ¼ �e1 þ e2;

lsF; l ¼ �e1;
ðlþ cÞiF; l ¼ �e2;
B; l ¼ e3;
b iF

sFþiF
sM; l ¼ �e3 þ e4;

lsM; l ¼ �e3;
ðlþ cÞiM; l ¼ �e4;
0; otherwise;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ
Similar to the previous case, this process has an absorbing state 0, and once the process reaches
the state with no infected individuals, it will remain infection free and will eventually go to 0.

2.3. Multiple patch models with varying population size

In order to incorporate mobility effects, we consider individuals residing in many patches or re-
gions. The population sizes of the patches need not be equal and may vary with time. Individuals
may get the infection or transmit the disease during their visit to other patches. People might visit
the same patches several times and spend a varying length of time in the visited patches. Suppose
vrj denotes the immigration rate of individuals from patch Rr to Rj. The diagram in Fig. 3 illus-
trates the mobility of people among patches.

We formulate two types of model, assuming that each patch (as in the previous models for a single
population) contains a female and a male subpopulation. In the first type of model, we assume that
individuals do not actually leave their home patches but that there is an infection force from other
patches. In the second type of model, we assume that individuals do leave their home patches and
spend a considerable amount of time in the visited patches before they return. They might emigrate
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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and stay permanently in a visited patch. We call the first model the model with a force of infection and
the second model the model with actual mobility. We consider both constant and varying population sizes.

In both models there are K patches and each patch contains a female and male subpopulation.
Let SðrÞF ðtÞ, I ðrÞF ðtÞ, SðrÞM ðtÞ, I ðrÞM ðtÞ represent the number of susceptible (infected) females and the num-
ber of susceptible (infected) males at time t P 0 in patch r, r = 1, . . . ,K, respectively. Define a
CTMC (X(t), t P 0) with
Plea
ci. (2
X ðtÞ ¼ ðSð1ÞF ðtÞ; I
ð1Þ
F ðtÞ; S

ð1Þ
M ðtÞ; I

ð1Þ
M ðtÞ; . . . ; SðrÞF ðtÞ; I

ðrÞ
F ðtÞ; S

ðrÞ
M ðtÞ; I

ðrÞ
M ðtÞ; . . . ;

SðKÞM ðtÞ; I
ðKÞ
F ðtÞ; S

ðKÞ
M ðtÞ; I

ðKÞ
M ðtÞÞ:
The state of this process is a 4K-dimensional row vector with elements in N, that is, the state is an
element of N4K .

2.3.1. Model with a force of infection
To formulate the first model, let brj denote the infection rate of susceptibles in patch r by infect-

ed individuals from patch j and br = brr the infection rate within patch r. Then, the transition rates
for this situation (r = 1,2, . . . ,K) are given as follows: For a constant population size
qk;kþl ¼

aðlN ðrÞ þ dAðrÞÞ; l ¼ e4r�3;PK
j¼1brj

iðjÞ
M

nðjÞ
M

sðrÞF ; l ¼ �e4r�3 þ e4r�2;

lsðrÞF ; l ¼ �e4r�3;

ðlþ cÞiðrÞF ; l ¼ �e4r�2;
ð1� aÞðlN ðrÞ þ dAðrÞÞ; l ¼ e4r�1;PK

j¼1brj
iðjÞ
F

nðjÞ
F

sðrÞM ; l ¼ �e4r�1 þ e4r;

lsðrÞM ; l ¼ �e4r�1;

ðlþ cÞiðrÞM ; l ¼ �e4r;
0; otherwise;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð4Þ
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with a constant N ðrÞ ¼ nðrÞF ðtÞ þ nðrÞM ðtÞ þ AðrÞðtÞ, where nðrÞF ðtÞ ¼ sðrÞF ðtÞ þ iðrÞF ðtÞ and nðrÞM ðtÞ ¼ sðrÞM ðtÞþ
iðrÞM ðtÞ. A vector em is the mth unit vector in N4K . For the case of varying population size
Plea
ci. (
qk;kþl ¼

B; l ¼ e4r�3;PK
j¼1brj �

iðjÞ
M

nðjÞ
M

sðrÞM ; l ¼ �e4r�3 þ e4r�2;

lsðrÞF ; l ¼ �e4r�3;

ðlþ cÞiðrÞF ; l ¼ �e4r�2;
B; l ¼ e4r�1;PK

j¼1brj
iðjÞ
F

nðjÞ
F

sðrÞM ; l ¼ �e4r�1 þ e4r;

lsðrÞM ; l ¼ �e4r�1;

ðlþ cÞiðrÞM ; l ¼ �e4r;
0; otherwise;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð5Þ
with a varying size nðrÞðtÞ ¼ nðrÞF ðtÞ þ nðrÞM ðtÞ. Note that with these notations, if there is only one
patch (r, j = 1), the transition rates have the same form as those in the previous models for an
open and closed single population.

2.3.2. Model with actual mobility
In this model, we assume that people physically visit other patches. During their visit the infected

individuals can transmit the disease to the susceptibles in the visited patches, and susceptibles vis-
iting a patch might get the infection from the infected individuals in a visited patch. This situation is
modelled by considering people moving from one patch to another without any forces of infection
from outside a patch; however we do have a force of infection within a patch. The force of infection
within a patch may differ from patch to patch. We consider for this situation a varying population
size only, since it is more realistic. The transition rates of the process are given by
qk;kþl ¼

B; l ¼ e4r�3;

bi
iðrÞ
M

nðrÞ
M

sðrÞF ; l ¼ �e4r�3 þ e4r�2;

lsðrÞF ; l ¼ �e4r�3;

qrj
U ðrÞ

nðrÞ
sðrÞF ; l ¼ �e4r�3 þ e4j�3;

qrj
U ðrÞ

nðrÞ
iðrÞF ; l ¼ �e4r�2 þ e4j�2;

ðlþ cÞiðrÞF ; l ¼ �e4r�2;
B; l ¼ e4r�1;

bi
iðrÞ
F

nðrÞ
F

sðrÞM ; l ¼ �e4r�1 þ e4r;

lsðrÞM ; l ¼ �e4r�1;

qrj
U ðrÞ

nðrÞ
sðrÞM ; l ¼ �e4r�1 þ e4j�1;

qrj
U ðrÞ

nðrÞ
iðrÞM ; l ¼ �e4r þ e4j;

ðlþ cÞiðrÞM ; l ¼ �e4r;
0; otherwise;

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ
with nðrÞ ¼ nðrÞF þ nðrÞM .
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3. Density dependence and diffusion approximation

To study the dynamic behavior of the stochastic models formulated previously, we present
some results developed by Kurtz [18,19]. These results also justify to some extent the use of deter-
ministic models, which is quite common in modelling the epidemic spread, whereas the real situ-
ation is in fact a random process.

Definition 3.1. A one-parameter family of CTMCs (X(N)(t), t P 0) with state space E � Zd and
transition rates (qij) is called density dependent if there exists a continuous function
f ðx; lÞ : Rd � Zd ! R, such that
Plea
ci. (2
qk;kþl ¼ Nf
k
N
; l

� �
; l 6¼ 0 and k; l 2 Zd :
Suppose (X(t) = X(N)(t), t P 0) is a density dependent process (from now on we drop the super-
script N). By rescaling with N we obtain another a CTMC (XN(t), t P 0) called the density process.
Thus,
X NðtÞ ¼
1

N
X ðtÞ:
It turns out that under certain mild conditions (XN(t)) converges to a deterministic process that is
the solution of a system of first order ODEs that is governed by the following function F:
F ðxÞ ¼
X
l2Zd

lf ðx; lÞ: ð7Þ
Theorem 3.1 (Deterministic Approximation). Suppose that there exists (1) an open set E � Rd

where the function f(x, l) is bounded for each l and (2) the function F is Lipschitz continuous on E.
Then, for every trajectory (x(s,x0), s P 0) satisfying the following system of ODEs
d

ds
xðs; x0Þ ¼ F ðxðs; x0ÞÞ;

xð0; x0Þ ¼ x0; xðs; x0Þ 2 E; 0 6 s 6 t;
limN!1 XN(0) = x0 implies for every d > 0,
lim
N!1

P sup
s6t
jX NðsÞ � xðs; x0Þj > d

� �
¼ 0; for every t P 0:
The proof is given in [18].

Theorem 3.1 implies that the process (XN(t)) can be approximated to first order by a determin-
istic process, for large N. If the density process (XN(t)) is initially close to x0, it will tend to stay
close to the trajectory (x(s,x0), s 6 t) in some appropriate time-interval, subject to small random
oscillations about the path.

It is even possible to describe the behavior of the random fluctuations of the density process
(XN(t), t P 0) around its deterministic approximation. This is done via a diffusion approximation,
which is governed by two d · d matrices G = G(x) = (gij(x)) and H = H(x) = (hij(x)) defined by
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Plea
ci. (
gijðxÞ ¼
Xd

i¼1

Xd

j¼1

liljf ðx; lÞ; where l ¼ ðl1; . . . ; ldÞ 2 Zd ;
and
hjkðxÞ ¼
oF jðxÞ

oxk
:

Note that H(x) is simply the Jacobian matrix of F(x).

Theorem 3.2 (Diffusion Approximation). Suppose F(x) is bounded and Lipschitz continuous on E.
Suppose G(x) is also bounded, and uniformly continuous on E. Suppose that
lim
N!1

ffiffiffiffi
N
p
ðX Nð0Þ � x0Þ ¼ z:
Then, as N!1, the family of processes (ZN(t), t P 0), defined by
ZNðtÞ ¼
ffiffiffiffi
N
p
ðX NðtÞ � xðt; x0ÞÞ; 0 6 t 6 s;
converges weakly in D[0, t] to a Gaussian diffusion (Z(t), t P 0) with initial value Z(0) = z and with
characteristic function Eeih�ZðtÞ � wðt; hÞ that satisfies
ow
ot
ðt; hÞ ¼ � 1

2

Xd

j¼1

Xd

k¼1

hjhkgjkðxðt; x0ÞÞwðt; hÞ þ
Xd

j¼1

Xd

k¼1

hjhjkðxðt; x0ÞÞ
ow
ohk
ðt; hÞ: ð8Þ
For every t, Z(t) has a multivariate Gaussian/normal distribution whose mean vector and
covariance matrix is easily determined. In particular, the mean vector of Z(t) is given by
l ¼ EZðtÞ ¼ MðtÞz; ð9ÞR

where MðtÞ ¼ e

t

0
Hsds

, that is, the unique solution to
dMðtÞ
dt
¼ HðtÞMðtÞ; with Mð0Þ ¼ I: ð10Þ
On the other hand, the covariance matrix, R(t), of Z(t) is given by
RðtÞ ¼ MðtÞ
Z t

0

MðsÞ�1Gðxðs; x0ÞÞðMðsÞ�1ÞT ds
� �

MðtÞT ; ð11Þ
which is the unique solution to
dRðtÞ
dt
¼ HðtÞRðtÞ þ RðtÞHðtÞT þ Gðxðt; x0ÞÞ; with R0 ¼ Rð0Þ ¼ 0: ð12Þ
If XN(0) and x0 are chosen to be equal to an equilibrium point x* of the ODE system in Theorem
3.1, one can be far more precise in specifying the approximating diffusion. Namely, in that case
(Z(t)) is an Ornstein–Uhlenbeck (OU) process (i.e., a stationary, Gaussian, and Markovian pro-
cess), with local drift matrix H(x*) and local covariance matrix G = G(x*). In particular, Z(t) has a
normal distribution with zero mean and a covariance matrix R which is given by the solution of
(12) with dRt

dt ¼ 0; see [4]. It follows that XN(t) has an approximate normal distribution with
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Plea
ci. (2
VarðX NðtÞÞ �
1

N
R; ð13Þ
and the mean, obtained by setting z ¼
ffiffiffiffi
N
p
ðX Nð0Þ � x0Þ, is given by
EX NðtÞ � x�: ð14Þ

Therefore, we can approximate the equilibrium distribution of the process (X(t), t P 0) by a

multivariate normal distribution with mean vector l ¼ NX �2 and covariance matrix NR. For more
general results of density dependent processes, we refer the reader to see Refs. [3,24].
4. Analysis

In this section we analyze the stochastic models formulated in Section 2 by using the results in
Section 3, and predict their dynamic behavior via their deterministic and diffusion counterparts.

4.1. Closed single population

To study the behavior of (X(t), t P 0) with the transition rates qk,k+l as given in (2), we show
that it is a density-dependent Markov process, parameterized by the population size N. By scaling
with N, we obtain a scaled Markov process (XN(t), t P 0) with X NðtÞ ¼ 1

N X ðtÞ ¼ 1
N ðSFðtÞ;

IFðtÞ; SMðtÞ; IMðtÞÞ. Define the function f as follows
f ðx; lÞ ¼

aðlþ dzÞ; if l ¼ e1;

b y2

y1þy2
x1; if l ¼ �e1 þ e2;

lx1; if l ¼ �e1;

ðlþ cÞx2; if l ¼ �e2;

ð1� aÞðlþ dzÞ; if l ¼ e3;

b x2

x1þx2
y1; if l ¼ �e3 þ e4;

ly1; if l ¼ �e3;

ðlþ cÞy2; if l ¼ �e4;

0; otherwise;

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð15Þ
with x ¼ k
N ¼ ðx1; x2; y1; y2Þ and z = 1 � (x1 + x2 + y1 + y2). Then, one can check that

qk,k+l = Nf(x, l). Therefore, (X(t), t P 0) is, by Definition 3.1, a density dependent process. The
corresponding function F is derived from (15) and (7):
F ðxÞ ¼

aðlþ dzÞ � b y2

y1þy2
x1 � lx1;

b y2

y1þy2
x1 � ðlþ cÞx2

ð1� aÞðlþ dzÞ � b x2

x1þx2
y1 � ly1

bx2y1 � ðlþ cÞy2

0
BBBB@

1
CCCCA: ð16Þ
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The function F is Lipschitz continuous. So, the dynamic behavior of the process (XN(t), t P 0), see
Theorem 3.1, can be approximated by a system of first order ODEs
Plea
ci. (
x0ðtÞ ¼ F ðxÞ; ð17Þ

as N!1.

4.2. Equilibria and their stability

From now on we assume for simplicity that a ¼ 1
2

(i.e., females and males enter the population
in equal proportion). Solving F(X) = 0 in (16) gives three equilibrium points, two of which fall in
the positive quadrant: the disease-free equilibrium and the positive endemic equilibrium. Let
X � ¼ ðx�1; x�2; y�1; y�2Þ denote a generic equilibrium of the system (17).

4.2.1. Disease-free equilibrium
The disease-free equilibrium is given by
X �1 ¼ x�1 ¼
1

2
; x�2 ¼ 0; y�1 ¼

1

2
; y�2 ¼ 0

� �
: ð18Þ
In the absence of the disease (x2 = y2 = 0), the fraction of susceptibles of both females and
males will reach a constant number: x1 ¼ x�1 ¼ 1

2
and y1 ¼ y�1 ¼ 1

2
, respectively. We are interested

in whether in the early epidemic spread (after a few infected people are present) the number of
infectives will grow or die out. The following result sheds some light onto this. Here, the basic
quantity R0 serves the same role as the basic reproduction rate in epidemiology.

Theorem 4.1. Let R0 ¼ b
lþc. The disease-free equilibrium X �1 in (18) is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Proof . The Jacobian matrix of (16) is given by
HðxÞ ¼

� d
2
� ba3 � l � d

2
� d

2
þ ba3a4 � d

2
� ba4ð1� a3Þ

ba3 �ðlþ cÞ �ba3a4 ba4ð1� a3Þ
� d

2
þ ba1a2 � d

2
� ba2ð1� ba1Þ � d

2
� ba1 � l � d

2

�ba1a2 ba2ð1� a1Þ ba2 �ðlþ cÞ

0
BBBBB@

1
CCCCCA
; ð19Þ
where a1 ¼ x2

x1þx2
, a2 ¼ y1

x1þx2
, a3 ¼ y2

y1þy2
, and a4 ¼ x1

y1þy2
.

Evaluating (19) at X �1 yields
HðX �1Þ ¼

� d
2
� l � d

2
� d

2
� 1

2
d� b

0 �ðlþ cÞ 0 b

� d
2

� 1
2
d� b � d

2
� l � d

2

0 b 0 �ðlþ cÞ

0
BBB@

1
CCCA: ð20Þ
If the real parts of all the eigenvalues of this matrix are negative, then the disease-free steady-state
is locally asymptotically stable. The matrix (20) has four eigenvalues
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Plea
ci. (2
r1 ¼ �l; r2 ¼ �ðlþ dÞ; r3 ¼ �ðbþ lþ cÞ; r4 ¼ �ðlþ cÞ þ b: ð21Þ

Therefore, the stability of this equilibrium is determined by the last eigenvalue r4, since the other
eigenvalues are always negative for the non-negative parameters b, c, l, d. Thus, the disease-free
equilibrium is stable if and only if r4 = �(l + c) + b < 0 (R0 < 1) and it is unstable if and only if
r4 = �(l + c) + b > 0 (R0 > 1). h
4.2.2. Positive endemic equilibrium
The endemic equilibrium is given by
X �2 ¼ ðx�1 ¼ q; x�2 ¼ g; y�1 ¼ q; y�2 ¼ gÞ; ð22Þ

where q ¼ C

2D, g ¼ ðR0�1ÞC
2D with C = l + d and D = R0C + c(R0 � 1). It is clear from (22) that the

system (17) has a positive-endemic equilibrium if and only if R0 > 1. The Jacobian matrix for
the positive-endemic equilibrium is
HðX �2Þ ¼

� d
2
� bX� l � d

2
� d

2
þ bXU � d

2
� bUð1� XÞ

bX� l �l� c �bXU bXð1� UÞ
�bXU � d

2
� bXð1� UÞ � d

2
� bU� l � d

2

�bXU bXð1� UÞ bU �c� l

0
BBB@

1
CCCA; ð23Þ
with X ¼ q
qþg and U ¼ g

qþg.

This matrix has four eigenvalues
r1 ¼
1

2
ðB1 þ

ffiffiffiffiffiffi
H1

p
Þ; r3 ¼

1

2
ðB2 þ

ffiffiffiffiffiffi
H2

p
Þ;

r2 ¼
1

2
ðB1 �

ffiffiffiffiffiffi
H1

p
Þ; r4 ¼

1

2
ðB2 �

ffiffiffiffiffiffi
H2

p
Þ;
where
B1 ¼� l� c
2
� b

2
;

B2 ¼�
1

2
ðbþ d� cÞ;

H1 ¼
1

4
ðb� cÞ2 þ cb

R2
0

;

H2 ¼
1

4
ðb2 þ c2 þ d2Þ � c

2
ðbþ dÞ � bd

2
þ b

R0

dþ 1� 1

R0

� �
ðc� bÞ

� �
:

If R0 > 1, it follows that B1, B2 < 0. Therefore, Re(r2) and Re(r4) are always negative. We need to
show that for some b, l, c, d > 0, Re(r1) and Re(r3) are also negative. If H1 6 0 and H2 6 0,
Re(r1) = B1 < 0 and Re(r3) = B2 < 0. Now, suppose that H1 > 0 and H2 > 0. Let C1 = �B1 > 0
and let C2 = �B2. Then, we obtain
H1 � C2
1 ¼ �cb 1� 1

R2
0

� �
� lðlþ cþ bÞ < 0 ð24Þ
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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and
Plea
ci. (
H2 � C2
2 ¼ 1� 1

R0

� �
ððlþ cÞðc� bÞ � bdÞ < 0: ð25Þ
From (24), we have H1 � C2
1 < 0() 0 < H1 < C2

1 () 0 <
ffiffiffiffiffiffi
H1

p
< C1. Thus, �C1 þ

ffiffiffiffiffiffi
H1

p
¼ B1þffiffiffiffiffiffi

H1

p
< 0, which implies Re(r1) < 0. From (25), we have H2 � C2

2 < 0() 0 < H2 < C2
2 () 0 <ffiffiffiffiffiffi

H2

p
< C2. Thus, �C2 þ

ffiffiffiffiffiffi
H2

p
¼ B2 þ

ffiffiffiffiffiffi
H2

p
< 0, which implies Re(r3) < 0. We summarize these

findings in the following theorem.

Theorem 4.2. The endemic equilibrium X �2 exists iff R0 > 1, and it is locally asymptotically stable.
4.2.3. Diffusion approximation
The approximating OU process (Z(t), t P 0) around the equilibrium point X �2 has local drift

matrix HðX �2Þ in (23), and local covariance matrix GðX �2Þ, defined in Theorem 3.2, as follows
GðX �2Þ ¼

g11 g12 0 0

g21 g22 0 0

0 0 g33 g34

0 0 g43 g44

0
BBB@

1
CCCA; ð26Þ
where
g11 ¼
1

2
ðlþ dzÞ þ b

y�2
y�1 þ y�2

x�1 þ lx�1;

g12 ¼g21 ¼ �b
y�2

y�1 þ y�2
x�1;

g22 ¼b
y�2

y�1 þ y�2
x�1 þ ðlþ cÞx�2;

g33 ¼
1

2
ðlþ dzÞ þ b

x�2
x�1 þ x�2

y�1 þ ly�1;

g34 ¼g43 ¼ �b
x�2

x�1 þ x�2
y�1;

g44 ¼b
x�2

x�1 þ x�2
y�1 þ ðlþ cÞy�2:
Therefore, we can approximate the equilibrium distribution of the process (X(t), t P 0) by a mul-
tivariate normal distribution, see (14) and (13), with mean l ¼ NX �2 and covariance matrix NR.

4.3. Open single population

To derive a deterministic analogue, as in the previous model, we show that the process
(X(t), t P 0) with the transition rates qk,k+l as given in (3) is a density-dependent Markov process
parameterized by V ¼ 2B

l . We will see shortly that this constant corresponds to the total population
size in the disease-free equilibrium. Define x ¼ k

V ¼ ðx1ðtÞ; x2ðtÞ; y1ðtÞ; y2ðtÞÞ. Then, we can write
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Plea
ci. (2
qk;kþl ¼ Vf ðx; lÞ;
where f(x, l) is given by
f ðx; lÞ ¼

l
2
; l ¼ e1;

b y2

nM
x1; l ¼ �e1 þ e2;

lx1; l ¼ �e1;

ðlþ cÞx2; l ¼ �e2;

l
2
; l ¼ e3;

b x2

nF
y1; l ¼ �e3 þ e4;

ly1; l ¼ �e3;

ðlþ cÞy2; l ¼ �e4;

0; otherwise;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð27Þ
with nF = x1 + x2 and nM = y1 + y2. Therefore, the process (X(t),t P 0) is a density dependent
Markov process. As the parameter V!1, by Theorem 3.1, the dynamic behavior of the scaled
Markov process (XV(t), t P 0) can be approximated by a system of first order ODEs x 0 = F(x),
with F(x) defined as follows:
F ðxÞ ¼

l
2
� b y2

nM
x1 � lx1

b y2

nM
x1 � ðlþ cÞx2

l
2
� b x2

nM
y1 � ly1

b x2

nM
y1 � ðlþ cÞy2

0
BBBB@

1
CCCCA: ð28Þ
Again, we examine the dynamic behavior of the deterministic model around its equilibrium
points.

4.4. Equilibrium points and analysis

This system also has two equilibrium points: the disease-free and the endemic equilibrium. As in
the previous model, the disease-free equilibrium is
X �1 ¼ x�1 ¼ 1
2
; x�2 ¼ 0; y�1 ¼ 1

2
; y�2 ¼ 0

� �
: ð29Þ
The Jacobian matrix of (28) is of the form
HðX �1Þ ¼

�bK� l 0 bW �bWð1� KÞ
bK �l� c �bW bWð1� KÞ

bDH �bHð1� DÞ �bD� l 0

�bDH bHð1� DÞ bD �l� c

0
BBB@

1
CCCA; ð30Þ
with K ¼ y2

y1þy2
, W ¼ x1

y1þy2
, D ¼ x2

x1þx2
and H ¼ y1

x1þx2
. Evaluated at the disease-free equilibrium (29),

we obtain
se cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Plea
ci. (
HðX �1Þ ¼

�l 0 0 �b

0 �l� c 0 b

0 �b �l 0

0 b 0 �l� c

0
BBB@

1
CCCA; ð31Þ
This matrix (31) has four eigenvalues (two of which are equal)
r1 ¼ r2 ¼ �l; r3 ¼ �b� l� c; and r4 ¼ b� l� c: ð32Þ
Thus, the stability of this equilibrium is determined by r4, since the other eigenvalues are always neg-
ative for the non-negative parameters b, c, l, d. Hence, the disease-free equilibrium is stable if and
only if r4 = b � l � c < 0 (R0 ¼ b

lþc < 1) and it is unstable if and only if b � l � c > 0 (R0 > 1).
Next, we analyze the endemic equilibrium. The endemic equilibrium is of the form
X �2 ¼ ðx�1 ¼ n1; x
�
2 ¼ n2; y

�
1 ¼ n1; y

�
2 ¼ n2Þ; ð33Þ
where n1 ¼ l
2ðb�cÞ, and n2 ¼ lðR0�1Þ

2ðb�cÞ . So, a positive endemic equilibrium occurs if and only if R0 > 1.
The Jacobian matrix evaluated around this positive endemic equilibrium X �2 has four eigenvalues:
s1 ¼
1

2
ðB3 þ

ffiffiffiffiffiffi
H3

p
Þ; s3 ¼

1

2
ðB4 þ

ffiffiffiffiffiffi
H4

p
Þ;

s2 ¼
1

2
ðB3 �

ffiffiffiffiffiffi
H3

p
Þ; s4 ¼

1

2
ðB4 �

ffiffiffiffiffiffi
H4

p
Þ;
where
B3 ¼� l� 1

2
ðbþ cÞ;

B4 ¼�
1

2
ðb� cÞ;

H3 ¼
1

4
ðb2 þ c2Þ þ bc

1

R2
0

� 1

2

� �
;

H4 ¼
1

4
ðb2 þ c2Þ þ b

R0

1

R0

� 1

� �
ðb� cÞ þ bc

1

R0

� 1

2

� �
:

Since R0 > 1 () b > l + c () b � c > 0, we have B3, B4 < 0. Let C = �B > 0, then
H3 � C2
3 ¼ bc

1

R2
0

� 1

� �
� lðbþ lþ cÞ; ð34Þ
and
H4 � C2
4 ¼

b
R0

1

R0

� 1

� �
ðb� cÞ: ð35Þ
Since R0 > 1, Eq. (34) implies H3 � C2
3 < 0() 0 < H3 < C2

3 () 0 <
ffiffiffiffiffiffi
H3

p
< C3. Thus, �C3þffiffiffiffiffiffi

H3

p
¼ B3 þ

ffiffiffiffiffiffi
H3

p
< 0, which gives Re(r1) < 0. Also, from (35), we have H4 � C2

4 < 0()
0 < H4 < C2

4 () 0 <
ffiffiffiffiffiffi
H4

p
< C4. Thus, �C4 þ

ffiffiffiffiffiffi
H4

p
¼ B4 þ

ffiffiffiffiffiffi
H4

p
< 0, which implies Re(r3) < 0.

We summarize these findings in the following theorem.
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Theorem 4.3. The disease-free equilibrium X �1 (29) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1. A stable positive endemic equilibrium X �2 (5) exists iff R0 > 1.

Thus both the open and closed population models, under the assumption of both constant and
variable population size, have the same stability conditions: the disease-free equilibrium is stable if
R0 < 1, otherwise, it is unstable, and the endemic equilibrium occurs when R0 > 1 and it is stable.
The differences are only in the size of the endemic equilibrium and the eigenvalues of the corre-
sponding Jacobian matrix.

This reproduction number R0 can be also derived by using the definition introduced in [8,31].
When the results (Theorem 2, [31]) are applied to the models for single population both constant
and varying population size, one gets the same threshold condition as Theorem 4.1 and Theorem
4.2. For the case where the infection rates from an infected female to a susceptible male (say b1)
and from an infected male to a susceptible female (b2) are different [21], the reproduction number

is given by R0 ¼
ffiffiffiffiffiffiffi
b1b2

p
lþc .

4.5. Multiple patch models

To study the dynamic behaviour of the multiple patch models presented in Section 2, we apply
the deterministic and diffusion approach, as in the case of a single population. We construct a den-
sity Markov process by scaling with a certain parameter, and derive a deterministic model to
approximate the scaled process. The deterministic analogues of those two multiple patch models
are given next.

4.5.1. Model with a force of infection
For the multiple patch model with constant population size; if all patches have equal size N, we

can use this parameter as a scale factor for all random variables in the process. However, for the
case where the patches have unequal size, all random variables are scaled by the total population
size N ¼

PK
r¼1N ðrÞ and we define an extra constant cðrÞ ¼ N ðrÞ

N for each r. Thus, one can obtain
qk,k+l = Nf(x, l), r = 1, . . . ,K where f is given as follows
Plea
ci. (2
f ðx; lÞ ¼

aðlcðrÞ þ dzðrÞÞ; l ¼ e4r�3;PK
j¼1brj

yðjÞ
2

nðjÞ
M

xðrÞ1 ; l ¼ �e4r�3 þ e4r�2;

lxðrÞ1 ; l ¼ �e4r�3;

ðlþ cÞxðrÞ2 ; l ¼ �e4r�2;

ð1� aÞðlcðrÞ þ dzðrÞÞ; l ¼ e4r�1;PK
j¼1brj

xðjÞ
2

nðjÞ
F

yðrÞ1 ; l ¼ �e4r�1 þ e4r;

lyðrÞ1 ; l ¼ �e4r�1;

ðlþ cÞyðrÞ2 ; l ¼ �e4r;

0; otherwise;

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð36Þ
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with nðrÞF ¼ xðrÞ1 þ xðrÞ2 , nðrÞM ¼ yðrÞ1 þ yðrÞ2 , and zðrÞ ¼ 1� ðnðrÞF þ nðrÞM Þ.
As N!1, we can apply again the results of Kurtz and derive the following deterministic ana-

logue, for the process with transition rates (4):
Plea
ci. (
dxðrÞ1

dt
¼aðlcðrÞ þ dzðrÞÞ �

XK

j¼1

brj
yðjÞ2

nðjÞM

xðrÞ1 � lxðrÞ1 ;

dxðrÞ2

dt
¼
XK

j¼1

brj
yðjÞ2

nðjÞM

xðrÞ1 � ðlþ cÞxðrÞ2 ;

dyðrÞ1

dt
¼ð1� aÞðlcðrÞ þ dzðrÞÞ �

XK

j¼1

brj
xðjÞ2

nðjÞF

yðrÞ1 � lyðrÞ1 ;

dyðrÞ2

dt
¼
XK

j¼1

brj
xðjÞ2

nðjÞF

yðrÞ1 � ðlþ cÞyðrÞ2 ;
with zðrÞ ¼ cðrÞ � nðrÞF � nðrÞM .
For the varying population case, the ODEs version of the stochastic model is derived by param-

eterizing each random variable of the process (X(t), t P 0) (with the transition rates (5)) with the
parameter V ¼ 2B

l (as in the single varying population model). The deterministic system is given by
the following equations:
dxðrÞ1

dt
¼ l

2
�
XK

j¼1

brj
yðjÞ2

nðjÞM

xðrÞ1 � lxðrÞ1 ;

dxðrÞ2

dt
¼
XK

j¼1

brj
yðjÞ2

nðjÞM

xðrÞ1 � ðlþ cÞxðrÞ2 ;

dyðrÞ1

dt
¼ l

2
�
XK

j¼1

brj
xðjÞ2

nðjÞF

yðrÞ1 � lyðrÞ1 ;

dyðrÞ2

dt
¼
XK

j¼1

brj
xðjÞ2

nðjÞF

yðrÞ1 � ðlþ cÞyðrÞ2 ;
with nðrÞF and nðrÞM defined as before.

4.5.2. Model with actual mobility
As explained previously, for the model with actual mobility we only consider the case under a

varying population size. The ODE analogue of this model is given, after scaling the process
(X(t), t P 0) (with transition rates in (6)) with V ¼ 2B

l , by the following system:
dxðrÞ1

dt
¼ l

2
� br

yðrÞ2

nðrÞM

xðrÞ1 � lxðrÞ1 þ
XK

j¼1

qrj
uðjÞ

nðjÞ
xðjÞ1 �

uðrÞ

nðrÞ
xðrÞ1 ;

dxðrÞ2

dt
¼br

yðrÞ2

nðrÞM

xðrÞ1 � ðlþ cÞxðrÞ2 þ
XK

j¼1

qrj
uðjÞ

nðjÞ
xðjÞ2 �

uðrÞ

nðrÞ
xðrÞ2 ;
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Plea
ci. (2
dyðrÞ1

dt
¼ l

2
� br

xðrÞ2

nðrÞF

yðrÞ1 � lyðrÞ1 þ
XK

j¼1

qrj
uðjÞ

nðjÞ
yðjÞ1 �

uðrÞ

nðrÞ
yðrÞ1 ;

dyðrÞ2

dt
¼br

xðrÞ2

nðrÞF

yðrÞ1 � ðlþ cÞyðrÞ2 þ
XK

j¼1

qrj
uðjÞ

nðjÞ
yðjÞ2 �

uðrÞ

nðrÞ
yðrÞ2 ;
where nðrÞ ¼ nðrÞF þ nðrÞM .
Here, we have not proved analytically the existence and the stability of their equilibrium points

but we believe that one could derive the reproduction number R0 by using the concept of next
generation matrix introduced in [8] and the results of the method (Theorem 2 and Theorem 4,
[31]) to discuss the stability of the equilibria. [13,2] have used the result (Theorem 2, [31]) to ana-
lyse the multi compartmental models.

Thus, we only consider the endemic equilibria numerically and use them to derive the diffusion
counterparts.
5. Numerical experiments and discussion

In this section, we illustrate the behavior of the various population models and their determin-
istic and diffusion approximations via a number of numerical experiments. The following param-
eters are the same in each experiment: The natural death rate is l = 0.02 (which corresponds to
the life expectancy 50 years), the death rate due to AIDS is d = 0.05 (which means a life expec-
tancy for AIDS people of only 20 years), and the removal rate is c = 0.08 (which corresponds
to a 12 year infectious period of HIV before AIDS sets in). We always assume a ¼ 1

2
, which implies

a 50:50 ratio of females and males in the recruitment of new susceptibles. The other parameter
settings are explained in each individual experiment.

5.1. Models for a single population

In these experiments the important parameter is b, since it determines the stability of the dis-
ease-free equilibrium (see Section 4 for the threshold condition assuming the parameters l and
c are fixed). The numerical results in Fig. 4, for the deterministic model with a constant single pop-
ulation, illustrate how crucial the parameter b is.

It can be seen from the two logarithmic plots in Fig. 4(b) and (c) that when R0 is below the
threshold (R0 < 1) the proportion of infectives of both females and males, after a few infectives
are introduced in the population, returns to no infection, but it grows away from the disease-free
equilibrium if R0 is above the threshold (R0 > 1).

The value of the parameter b can be set by using the formula in Remark 2.1. In some studies,
the value of the infection rate b was estimated in a range 0.48–1.98 per year for homo/bisexuals [5]
depending on the population investigated. For the purpose of our numerical study, we choose the
parameter b = 0.5 so that R0 > 1 which results in a positive endemic equilibrium. We consider
how the stochastic processes converge to their deterministic and diffusion approximation around
the equilibrium.
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006), doi:10.1016/j.mbs.2006.09.024



a b c

Fig. 4. (a). The stability of the disease-free equilibrium, and the birth of the endemic equilibrium as the parameter b
varies. (b) and (c) illustrate how the disease-free equilibrium of the deterministic model behaves for three different values
of b, (0.5(R0 > 1); 0.1(R0 = 1); 0.05(R0 < 1)).
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5.1.1. Model with a closed single population
For the numerical experiments, we apply the parameter settings above and use the following

initial values: 50000 susceptible females and 50000 susceptible males, 100 infected males, no
infected females, and no AIDS cases. So, the total population size is N = 100100.

Fig. 5 describes the dynamic behaviour in the male subpopulation (similar results hold for the
female subpopulation).

We can see that the stochastic process remains close to the trajectory of its deterministic
analogue during a finite time interval. We should note that the process will eventually leave the
trajectory and be absorbed in the disease-free equilibrium.

The histograms in Fig. 6 describe the empirical distribution of the number of infectives based
on a simulation of the CTMC with transition rates 2 around the equilibrium point of the
deterministic process.

These numerical results illustrate that the ‘stationary’ distribution of the process can be approx-
imated by a normal distribution. The empirical means and standard deviations for the number of
infected females (males) are 20910 and 128.9 (20914 and 126.7), respectively. From the diffusion
approximation, the exact form of the mean �x ¼ NX �2 and covariance matrix NR of X(t) can be cal-
culated from Eqs. (9) and (11), which numerically can be found to be
Fig. 5
evolu
the gr

Plea
ci. (
�x ¼ ð5224; 20895; 5224; 20895Þ;
. The behavior of the stochastic model and its deterministic counterpart for Male Subpopulation for long term
tion. (a) The number of male infectives versus time, (b) the dynamic behavior in the male subpopulation, and (c)
aph of (b) around the endemic equilibrium.
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Fig. 6. Endemic distributions of the stochastic model around the endemic equilibrium of its deterministic analogue
behave as a normal distribution. (a) The distribution of the number of infected females and (b) the distribution of the
number of infected males.
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and
Fig. 7
subpo
proces

Plea
ci. (2
NR ¼ N

0:05256277166437 �0:00960963034076 0:00840185581453 �0:01661760123708

�0:00960963034076 0:17922317018881 �0:01661760123708 �0:02293806664514

0:00840185581453 �0:01661760123708 0:05256277166437 �0:00960963034076

�0:01661760123708 �0:02293806664514 �0:00960963034076 0:17922317018881

0
BB@

1
CCA:
The means and standard deviations obtained from the diffusion approximation for the number of
infected females (males), which are 20916 and 133.9 for both females and males, are close to the
experiment results.

To illustrate the accuracy of this diffusion approximation, we plot the dynamic behavior of the
male subpopulation around the equilibrium point, together with its diffusion analogue, see Fig. 7.

We see that the equilibrium distribution of infectives around the endemic equilibrium is closely
approximated by a two-dimensional Gaussian distribution derived from the diffusion process.

5.1.2. Model with an open single population
In these experiments we use the same parameters as in the model with a single closed (constant)

population. In addition, we set B = 1000. Fig. 8 illustrates that the stochastic process for an open
single population converges to its deterministic counterpart.
. The stochastic model and its deterministic and diffusion analogues for a constant population size for male
pulation. (a) The p.d.f of male population corresponding to the diffusion approximation and (b) the stochastic
s with its deterministic limit, and the contour lines corresponding to the p.d.f in (a).
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Fig. 8. Stochastic and deterministic model for the female subpopulation. (a) The number of female infectives versus
time, (b) the dynamic behavior in the female subpopulation, and (c) the graph of (b) around the endemic equilibrium.
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From the diffusion approximation, the mean and covariance of the process (X(t), t P 0) can be
approximated using Eqs. (14) and (13). The Gaussian distribution derived from the diffusion pro-
cess (with V = 100000) has the mean vector
Fig. 9
popul
proce

Plea
ci. (
�x ¼ VX �2 ¼ ð2381; 9524; 2381; 9524Þ;

and the covariance matrix VR, with
R ¼

0:02415856711539 0:00153711928687 �0:00001949907606 �0:00725191311387

0:00153711928687 0:10548710082854 �0:00758259929573 �0:00982775497753

�0:00001949907606 �0:00758259929573 0:02416688585698 �0:00075143305884

�0:00725191311387 �0:00982775497753 �0:00075143305884 0:09606834250022

0
BBB@

1
CCCA:
Fig. 9 illustrates the accuracy of the diffusion approach in approximating the distribution of sus-
ceptibles and infectives around the equilibrium point.

5.2. Multiple patch models

In these numerical experiments we carry out the simulations with M = 10 patches in all multiple
patch models. We set the initial values to 50000 susceptibles females and 50000 susceptibles males
for each patch. The infected people – set to be 100 infected males – are assumed to be initially
concentrated only in patch 1. Thus, initially no infected individuals are present in other patches.
All parameters (except b) have the same values as specified previously.
. The stochastic model and its deterministic and diffusion analogue for the female subpopulation using a varying
ation size. (a) The p.d.f of female population corresponding to the diffusion approximation and (b) the stochastic
ss with its deterministic limit, and the contour lines corresponding to the p.d.f in (a).
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5.2.1. Models with force of infection
In this model, we assumed that within-patch mixing is stronger (and often considerably stron-

ger) than between-patch mixing, and hence that the between-patch transmission parameters brj

(for r 5 j) are small compared to the within-patch transmission parameters br (or brr); see [20].
In addition, the force of infection from the patch where the infection is initially concentrated
to is assumed to be stronger than the forces among other patches. We might consider this patch,
for example, as a big city where people from other small cities come to visit often. With these
assumptions, we set the values of b as follows: br = 0.5, b1j = 0.5, j = 1, . . . , 10, and brj = 0.01,
r = 2, . . . , 10, j = 1, . . . , 10.

The following numerical results (see Fig. 10) describe the dynamic behavior of the process and
its deterministic analogue in patch 1 for the female subpopulation. This behaviour is similar to
that in other patches, for each subpopulation.

We conclude that the stochastic process in the multiple patch model, at least from the numerical
evidence, converges to its deterministic version.

To obtain the diffusion approximation, we evaluate the equilibrium points by solving the deter-
ministic counterparts numerically. Then, we determine numerically the mean vectors and the
covariance matrices around these equilibria for their multivariate Gaussian distributions. These
results can be seen in Tables 1 and 2 for the case of constant population sizes and varying pop-
ulation sizes, respectively.

These calculation are in close agreement with the empirical means and standard deviations ob-
tained by simulating the stochastic process and collecting data after equilibrium has been reached.
We summarize in Tables 3 and 4 the sample means and sample standard deviations obtained from
a Monte Carlo simulation for a closed and open multiple population, respectively, with the force
of infection.
Fig. 10. Stochastic and deterministic model. (a) The dynamic behavior in the female subpopulation in the patch-1, (b)
the graph of (a) around the endemic equilibrium, and (c) the distribution of the number of the infected females in the
patch-1.

Table 1
Means and standard deviations of the diffusion approximation; for the closed population model

Patches Infected females Infected males

�x r �x r

1 21354 133 21354 134
2–10 22230 135 22230 134
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Table 2
Means and standard deviations of the diffusion approximation; for the open population model

Patches Infected females Infected males

�x r �x r

1 9614 106 9614 98
2–10 9792 103 9792 99

Table 3
Sample means and standard deviations for the model with a constant population size

Patches Infected females Infected males

~�x ~r ~�x ~r

1 21350 138 21358 130
2 22239 137 22238 139
3 22229 138 22234 142
4 22221 141 22230 135
5 22225 135 22233 135
6 22223 140 22234 133
7 22222 141 22237 134
8 22231 137 22231 136
9 22226 138 22229 140

10 22235 130 22236 135

Table 4
Sample means and standard deviations for the model with a varying population size

Patches Infected females Infected males

~�x ~r ~�x ~r

1 9600 103 9611 93
2 9802 96 9800 103
3 9783 99 9797 99
4 9776 98 9788 94
5 9790 101 9792 95
6 9792 96 9787 94
7 9776 101 9784 101
8 9791 99 9785 103
9 9801 99 9801 102

10 9795 100 9794 100
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5.2.2. Model with actual mobility
For the model with actual mobility, we assume that the forces of infection within a patch are

the same for all patches, which is set to bi = 0.5. The initial numbers of susceptibles and infectives
in each patch are as in the model with force of infection. Here, we assume that the number of peo-
ple leaving their home patches is equal for all patches (assumed ur = 10 per capita per year,
r = 1, . . . ,K) and they will visit other patches with the same probability.
Please cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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Table 5
Means and standard deviations of Multivariate Gaussian distribution

Patches Infected females Infected males

�x r �x r

1–10 9524 98 9524 98

Table 6
Sample means and sample standard deviations from numerical experiments

Patches Infected females Infected males

~�x ~r ~�x ~r

1 9476 100 9527 95
2 9499 100 9528 100
3 9500 94 9527 99
4 9505 94 9518 95
5 9536 98 9523 101
6 9538 100 9528 95
7 9527 94 9522 101
8 9542 99 9521 99
9 9455 99 9523 98

10 9492 96 9524 99
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The mean vector and standard deviation of the multivariate Gaussian distribution correspond-
ing to the diffusion approximation are obtained in the same way as before, and the corresponding
mean vectors and standard deviations obtained from the numerical simulation of the stochastic
models are presented in Tables 5 and 6, respectively. Again there is close agreement with the sam-
ple means and variances obtained by Monte Carlo simulation.

Thus, the deterministic and diffusion approach can be applied to study the dynamic behavior of
the stochastic multiple patch model with the actual mobility.
6. Conclusion and future research

The dynamic behavior of the stochastic models for the spread of HIV presented in this paper
are well approximated by their deterministic and diffusion counterparts. We find the same thresh-
old conditions R0 = 1 for a disease-free equilibrium in the case of both an open and closed single
population. As R0 > 1 (above threshold), this equilibrium loses its stability and a stable endemic
state occurs. The numerical results also indicate that there exists a positive-stable endemic equi-
librium in the multiple patch models, although we have not proved this analytically. Although
the stochastic models presented in this paper are perhaps too simple to describe the actual spread
of HIV, they provide some clues, how e.g., more realistic models can be formulated. Moreover,
for future research, it should be feasible to use the deterministic and diffusion approaches to study
more complex stochastic models of HIV/AIDS spread; for example, stochastic models in a mobile
Please cite this article in press as: A. Sani et al., Stochastic models for the spread of HIV in a mobile ..., Math. Bios-
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heterogeneous population, classified according to age and sexual behavior [15,28–30], various
stages of infectivity [14,22], or (since the disease is primarily a sexually transmitted disease) models
that include partnership pattern formation [9,21,27]. Another possible direction for future re-
search is to consider how control strategies may be devised. For example, to find a strategy that
provides the greatest reduction in the endemic level of the disease for a given cost, or to find the
cheapest strategy that guarantees an upper level of prevalence of HIV in all patches. Finally, tak-
ing into account the available statistical data and control strategies into the models will further
improve our understanding how the disease spread into the heterogeneous population. However,
as many factors of consideration are included in the models, the complexity of the models
increases.
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