
Splitting for Optimization

Qibin Duana,∗, Dirk P. Kroesea

aSchool of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia

Abstract

The splitting method is a well-known method for rare-event simulation, where sample paths of a
Markov process are split into multiple copies during the simulation, so as to make the occurrence
of a rare event more frequent. Motivated by the splitting algorithm we introduce a novel global
optimization method for continuous optimization that is both very fast and accurate. Numerical
experiments demonstrate that the new splitting-based method outperforms known methods such
as the differential evolution and artificial bee colony algorithms for many bench mark cases.

Keywords:
Evolutionary computation, Splitting method, Continuous optimization, Artificial bee colony,
Differential evolution

1. Introduction

Randomized algorithms have shown to be of significant benefit for solving complicated opti-
mization problems. In particular, such methods are of great use in finding (near) optimal solutions
to highly multi-modal functions, “black-box” problems where gradients are difficult to obtain, and
problems with complicated constraints. Since the 1960s many well-known random algorithms for
optimization have been proposed. Many of these algorithms can be viewed as population Monte
Carlo algorithms, where a sample (population) of individuals is modified randomly over time in or-
der to produce a high-performing sample according to some chosen objective. Often such algorithms
are nature-inspired. Examples include evolution strategy (ES) [1], evolutionary programming (EP)
[2], genetic algorithms (GA) [3] and, more recently, the cross-entropy (CE) method [4], differen-
tial evolution (DE) [5], particle swarm optimization (PSO) [6], ant colony optimization(ACO)[7],
fast EP (FEP)[8], artificial bee colony (ABC) [9] and many other inventive methods based on the
principle of exploration and exploitation.

The splitting method is a well-known method for rare-event simulation, where sample paths of
a Markov process are split into multiple copies during the simulation, so as to make the occurrence
of a rare event more frequent. The purpose of this paper is to introduce the “splitting” idea to the
optimization toolbox for continuous optimization, and to show that the approach, when reduced to
its core elements, can outperform other well-known methods in terms of accuracy and speed.

To motivate the splitting technique, we draw on various ideas from rare-event simulation. It has
been realized for some time that the problem of minimizing a complicated continuous or discrete

∗Corresponding author.
Email addresses: q.duan@uq.edu.au (Qibin Duan), kroese@maths.uq.edu.au (Dirk P. Kroese)

Preprint submitted to Computers & Operations Research April 5, 2016

function S(x), x ∈ X is closely related to the efficient estimation of rare-event probabilities of the
form P(S(X) 6 γ), where X is a random element of X , distributed according to a given probability
density function (pdf), e.g., the uniform pdf on X . The latter requires efficient sampling from the
level set {x ∈ X : S(x) 6 γ}. By gradually decreasing γ the level set becomes smaller and smaller
until it only contains elements that lie close to the minimizer of S. For γ close to the minimum, the
event {S(X) 6 γ} will be very rare. Hence, it is useful to apply rare event simulation techniques to
optimization problems. This is, for example, the premise of the cross-entropy (CE) method, which
aims to find a sequence of pdfs f1, f2, f3, . . . that converges to the pdf that concentrates all its mass
in the set of points where S is minimal. In the CE method the densities f1, f2, . . . are parameterized
by a fixed-dimensional parameter vector, which is updated at each iteration using the cross-entropy
(or Kullback–Leibler) distance. If instead a non-parametric approach is taken, the densities can
be represented by a collection of particles, whose distribution is updated at each iteration. This is
where the splitting method enters the scene.

The splitting method was first put forward by [10] for time-dependent Markovian models and
later generalized in [11] to both static (that is, not involving time) and non-Markovian models. The
latter modification is called Generalized Splitting (GS), which will be the focus of our discussion
below.

The purpose of GS method is to estimate the rare-event probability P(S(X) 6 γ) for some
(small) γ, where X has a specified nominal distribution. This is done by first defining a sequence
of levels {γt} decreasing to γ and then constructing a sequential sampling scheme that samples
from the conditional distribution of X given {S(X) 6 γt}. Note that if γ is equal to the minimum
of S, then sampling X conditional on {S(X) 6 γ} is equivalent to sampling from the minimizer
of S. However, the problem is that in general the minimum value is not known, and hence the
intermediate values {γt} have to be determined adaptively. This is the motivation for the ADAptive
Multilevel splitting algorithm (ADAM) in [12, 13]. The ADAM algorithm has be applied to mostly
combinatorial optimization problems. For continuous optimization, where the nominal distribution
is taken to be uniform, the ADAM algorithm is generally more difficult to apply, as sampling X
conditional on {S(X) 6 γt} may be too time-consuming or complicated.

In this paper we propose to replace the complicated sampling step in the ADAM algorithm with
a simpler one, while retaining the other features. Instead of sampling (at stage t) from the uniform
distribution on the difficult “level set” {x : S(x) 6 γt}, our sampling scheme involves sampling
from a collection of multi-variate normal distributions, using a Gibbs sampler. The mean vector
and covariance matrix of the normal distributions are determined by the current population of
individuals. This simplification greatly increases the applicability of the ADAM method, making
it competitive for continuous optimization. We compare the method with the best performing
algorithms in this area and demonstrate that it can outperform them for a suite of established test
functions.

The rest of the paper is organized as follows. In Section 2, we review the mathematical frame-
work of the GS and ADAM algorithms, and put forward the new splitting idea for continuous
optimization. For easy comparison we summarize two well-performing algorithms, DE and ABC, in
Section 3. In Section 4, we employ a popular suite of test functions to evaluate the performance of
the proposed optimization technique. We describe the precise settings of the numerical experiments
and show the comparison between DE, ABC, and the new splitting algorithm for continuous opti-
mization (SCO). Finally, in Section 5, we further discuss the results of the numerical experiments,
and compare the proposed algorithm with other algorithms via existing comparative studies.

2

2. Mathematical Framework and Algorithms

2.1. Mathematical Framework

Let S(x) be a continuous function on Rn. We wish to find the minimum γ∗ = minx S(x) and
the global minimizer x∗ = argminx S(x), assuming for simplicity that there is only one minimizer.
Let f be some “nominal” pdf f , e.g., the uniform pdf on some bounded subset of Rn. Suppose first
that γ∗ is known. To find the corresponding x∗ we could sample a random vector X conditional
on the rare event {S(X) 6 γ∗}, which basically means sampling from the argmin set {x∗}. This
can be done using the GS method by sampling iteratively from intermediate (increasingly rare)
events {S(X) 6 γt}, for levels ∞ = γ0 > γ1 > . . . > γT−1 > γT = γ∗. Define the level set of S
corresponding to level γt to be the set {x : S(x) 6 γt}. We call it the γt-level set for short. Let ft
be the conditional pdf of X ∼ f given {S(X) 6 γt}; that is, ft(x) is proportional to f(x)I{S(x)6γt}.
In particular, we are interested in sampling from f∗(x) = fT (x) ∝ f(x)I{S(x)6γ∗}. The GS method
works as follows.

Given the sequence of intermediate levels γt, t = 0, . . . , T , and an initial sample (population) X0

from f0 = f , execute the following two phases at each iteration t, from t = 0 to t = T − 1:

(a) Let Et+1 = {x ∈ Xt : S(x) 6 γt+1}, which is referred as the elite set of Xt. Its size is denoted
by Nt+1. Note that the elite elements are distributed according ft+1.

(b) Split the elite population in Et+1 to create the next population Xt+1, distributed according
to ft+1. Increase t by one and go to Step (a).

The splitting step (b) can be implemented in many different ways; for example, in [12] it is done
by running a Markov chain on the γt+1-level set starting from each point in the elite set Et+1 and
storing each state in Xt+1. The only requirement is that the Markov chain has stationary pdf ft+1.

Figure 1 illustrates how the splitting is performed on a typical problem in 2-D space. Here, there

are three levels, γt, t = 1, 2, 3, and the initial sample set is X0 = {X1, . . . ,X5}, where X1, . . . ,X5
iid∼

f0. Since two of the five initial points, namely X1 and X2, are such that S(X1) and S(X2) are
below the γ1 threshold, we have that N1 = 2. The elite points X1 and X2 are the starting points
of two Markov chains, whose stationary pdf is f1. The length of each Markov chain is called the
splitting factor. In this case, the GS algorithm uses the same splitting factor, 5, for each chain.
This is called GS with Fixed Splitting.

Thus, we have two Markov chains on the γ1-level set that start from X1 and X2 respectively
and run for 5 steps, which are plotted in thicker lines. For the Markov chain starting from the
point X1, two of five points have entered the γ2-level set, say X1,3,X1,4, while only one point of
the Markov chain starting at X2 has reached the next level, namely, X2,2. So, N2 = 3. In the
final stage, we start three independent Markov chains (of length 5) on the γ2-level set from points
X1,3,X1,4 and X2,2 with the stationary pdf f2. Of all the points generated in the last stage, four
have reached the final level set, so N3 = 4.

3

x1

x2

γ1

γ2 γ3

X4

X5

X3

X2

X1

X1,3
X1,4

X2,2

X1,3,4

X1,4,2

X1,4,3

X1,4,5

Figure 1: Illustration of the GS algorithm in 2-D space

In practice γ∗ is not known and therefore one cannot determine the intermediate levels before-
hand. Instead, one can determine them adaptively via the ADAM algorithm. This involves a rarity
parameter %. Having again an initial sample set X0 from f0, the ADAM algorithm modifies the two
steps of the GS algorithm as follows:

(a) Calculate the function value S(x) for each x ∈ Xt and sort these from smallest to largest:
S1 6 S2 6 . . . 6 SN . For N e = d|Xt| %e, where |Xt| is the number of elements in Xt, let γt+1

be the N e-th, smallest function value; that is, γt+1 = SNe . Note that N e is the size of the
elite set Et+1 = {x ∈ Xt : S(x) 6 γt+1}.

(b) Split the elite population in Et+1 to create the next population {Xt+1}, distributed according
to ft+1. Increase t by one and repeat Steps (a) and (b) until some stopping condition is met.

Again, the splitting step can be implemented in different ways, e.g., by running a Markov chain
from each of the elite elements. Instead of splitting each element into a fixed number of samples
(fixed splitting factor) it is sometimes useful to keep the sample size (the number of elements of Xt)
constant, say N . This is called GS with a Fixed Effort. A way to “evenly” split the elite samples
into N new samples is by defining random splitting factors as follows:

si =

⌊
N

N e

⌋
+Bi, i = 1, . . . , N e, (1)

where B1, . . . , BNe ∼ Ber(1/2) and contingent on
∑Ne

i=1Bi = N mod N e.
The following pseudo code in Algorithm 1 summarizes the ADAM algorithm for minimization.

A possible terminating condition for Algorithm 1 is to stop when the overall best found solution
does not improve over d iterations. Other possible stopping criteria include the maximum number

4

of iterations or the CPU time exceeding a threshold. To keep the stopping criterion general, we use
the customary control statement “while the stopping criterion is not met do”.

Algorithm 1 The ADAM Algorithm for Minimization

Input: Sample size N , rarity parameter % ∈ (0, 1).
Output: Final iteration number t and sequence (Xbest,1, b1), . . . , (Xbest,t, bt) of best solutions and

function values found at iteration 1, . . . , t, respectively.
1: Generate X0 = {X1, . . . ,XN} from the pdf f0 = f . Set t = 0 and N e = dN%e.
2: while the stopping criterion is not met do
3: For all X ∈ Xt, evaluate S(X), and sort {S(X)} from smallest to largest: S1 6 . . . 6 SN ,

then select the N e smallest ones and store the corresponding X in Et+1, Set bt+1 = S1 and
record the corresponding individual as Xbest,t+1.

4: Compute the splitting factors st+1,i for each X(i) ∈ Et+1 as in Eq. (1), i = 1, . . . , N e.
5: for i = 1 to N e do
6: Sample Yi,j from the density κt+1(y |Yi,j−1), where Yi,0 = X(i), j = 1, . . . , st+1,i and

κt+1(y |Yi,j−1) is a Markov transition density with stationary pdf ft+1.
7: Add Yi,j to Xt+1.
8: end for
9: Set t = t+ 1.

10: end while
11: return {(Xbest,k, bk), k = 1, . . . , t}.

In Line 6, Yi,j denotes the j-th state of the Markov chain that starts from the i-th sample, X(i),
of the elite set Et+1.

Note that in Algorithm 1 the Markov transition density κt has not been specified. One could
use, for example, a Gibbs or Metropolis-Hastings sampler to sample from the stationary pdf ft.
A Gibbs sampler has the advantage that each component can be sampled from a one-dimensional
distribution.

Example. We illustrate the potential use of the ADAM algorithm for continuous optimization via
the minimization of the Rosenbrock function — a well-known difficult test function; see also [12].
The n-dimensional Rosenbrock function is given by

S(x) =

n−1∑
i=1

100(xi+1 − x2i)2 + (xi − 1)2, x ∈ [−2, 2]n.

To employ the ADAM algorithm, we first need to specify the nominal sampling pdf. It is natural to
let f be the uniform distribution on [−2, 2]n. This means that ft is the uniform pdf on the γt-level
set. The procedure is exactly as Algorithm 1, where the sampling step (Line 6) is now specified as
follows.

Let X = (X1, . . . , Xn) be the “current” point of the Markov chain. For example X could be one
of the elite points where the Markov chain starts (recall that there are N e Markov chains starting
from each of the elite points). To generate the “next” point Y = (Y1, . . . , Yn) we apply a Gibbs
sampler that samples each component uniformly on the corresponding level set. To identify the
boundaries of the uniform distribution for each component on the level set, a quartic equation needs

5

to be solved. For example, the distribution of Y1 given X2, . . . , Xn is uniformly distributed on the
set {x1 ∈ [−2, 2] : S(x1, X2, . . . , Xn) 6 γt+1}, which can be written as

{x1 ∈ [−2, 2] : S(X)− 100(X2 −X2
1)2 − (X1 − 1)2 + 100(X2 − x21)2 + (x1 − 1)2 6 γt+1}.

The roots of the quartic polynomial (in x1)

100(X2 − x21)2 + (x1 − 1)2 − γt+1 + S(X)− 100(X2 −X2
1)2 − (X1 − 1)2

identify the boundaries of the region on which Y1 is uniformly distributed. More generally, Y is
obtained via the following steps:

1. Set Σ = 100(X2 −X2
1)2 + (X1 − 1)2.

Generate Y1 ∼ ft+1(y1 |X2, . . . , Xn); that is, Y1 is a random variable uniformly distributed
on the set {[r1, r2] ∪ [r3, r4]} ∩ [−2, 2], where r1 < r2, r3 < r4 are the real roots of the quartic
equation a1x

4 + a2x
3 + a3x

2 + a4x+ a5 = 0 with coefficients

a1 = 100, a2 = 0, a3 = 1− 200X2, a4 = −2, a5 = 1 + 100X2 + S1 − Σ− γt+1,

with S1 = S(Ỹ), where Ỹ = (X1, . . . , Xn) is the initial intermediate point.

Depending on the coefficients, the quartic equation has either 2 or 4 real roots. Thus, in some
cases r3 = r1 and r4 = r2 and Y1 will be a random variable uniformly distributed on the set
[r1, r2] ∩ [−2, 2].

2. For each j = 2, . . . , n− 1, set Σ = 100(Xj+1 −X2
j)2 − 100(X2

j + 2Y 2
j−1Xj).

Generate Yj ∼ ft+1(yj |Y1, . . . , Yj−1, Xj+1, . . . , Xn); that is, Yj is a random variable uniformly
distributed on the set {[r1, r2] ∪ [r3, r4]} ∩ [−2, 2], where r1 < r2, r3 < r4 are the real roots of
the quartic equation a1x

4 + a2x
3 + a3x

2 + a4x+ a5 = 0 with coefficients

a1 = 100, a2 = 0, a3 = 101−200Xj+1, a4 = −2−200Y 2
j−1, a5 = 1+100Xj+1 +Sj−Σ−γt+1,

with Sj = S(Ỹ), where Ỹ = (Y1, . . . , Yj−1, Xj , . . . , Xn).

3. Set Σ = 100(Xn −X2
n−1)2.

Generate Yn ∼ ft+1(yn |Yl, . . . , Yn−1); that is, Yn is a random variable uniformly distributed
on the set [r1, r2] ∩ [−2, 2], where r1 < r2 are the real roots of the quadratic equation a1x

2 +
a2x+ a3 = 0 with coefficients

a1 = 100, a2 = −200(Yn−1)2, a3 = 100Y 4
n−1 + Sn − Σ− γt+1,

with Sn = S(Ỹ), where Ỹ = (Y1, . . . , Yn−1, Xn).

The above ADAM procedure works well for minimizing the Rosenbrock function because sam-
pling from the uniform distribution on a level set can be carried out by sampling 1-D uniform
random variables from relatively easy regions (determined by solving a 4th degree polynomial).
Unfortunately, such an approach may not be feasible for other continuous objective functions.

6

2.2. Splitting Algorithm for Continuous Optimization

To be able to use the ADAM framework for general continuous optimization, we provide a
new method for splitting the samples. The idea is to “split” (at iteration t) each elite point

X(i) = (X
(i)
1 , . . . , X

(i)
n) ∈ Et+1 on the γt+1-level set into st+1,i points by using a multivariate normal

distribution with mean vector µi = X(i) and a diagonal covariance matrix with corresponding
vector of standard deviations σi. Hence, the components of the multivariate normal distribution
are independent of each other. In theory, any distribution could have been used to sample from
the level sets. The multivariate normal distribution was chosen for computational convenience and
efficiency.

In the splitting step, to have most of the new samples still on the current γt-level set the
components of σi should be chosen not too large. Neither should they be chosen too small, as
otherwise there will be little exploration. To choose an appropriate sampling region (determined
by σi) we employ another elite point, in the following way. For each elite point X(i) (“base point”)
choose another elite point X(R) (“assistant point”) from Et+1, where R is uniformly selected from
{1, . . . , Nt} \ {i}. We now choose the vector of standard deviations as

σi = w |X(i) −X(R)| def= w

|X(i)

1 −X
(R)
1 |

|X(i)
2 −X

(R)
2 |

. . .

|X(i)
n −X(R)

n |

 , (2)

where w is a scale factor. From our experience, w = 0.5 performs well in practice.
It is important to realize that the splitting step does not involve direct sampling from an n-D

normal distribution. Instead, as in the GS algorithm, we sample the components of the normal
distribution via the Gibbs sampler. To improve efficiency each component of the base point is
updated in a random order r = (r1, . . . , rn) instead of a fixed order (1, . . . , n). By updating the
components in a random order, some components with better feasible regions can be updated before
those with poor (e.g., very narrow) ones. This enhances the probability to improve the base point
to a better point.

During the Gibbs sampler steps, an intermediate point y is used to store the component updates.
Initially, y = X(i) for the current base point that is to be split. At step k of the Gibbs sampler, the
rkth component of y is sampled from the 1-D normal distribution with mean y(rk) and standard
deviation σi(rk), and the other components remain the same, giving rise to a new trial vector ỹ.

If S(ỹ) < S(y) then ỹ is accepted as the new intermediate point; otherwise, we repeat the
sampling of the rkth component up to MaxTry times (say 3 or 5 times). If still no improvement
is found after this many tries, then the intermediate point y remains unchanged. Note that a
successful update ỹ is determined by comparing with the previous intermediate point y instead
of the base point X(i). When all n components have been processed, the last intermediate point
is taken as the outcome of the splitting of X(i). This is repeated st+1,i times, independently, for
each base (elite) point X(i), i = 1, . . . , N e. We call our proposed method SCO, which is short
for Splitting for Continuous Optimization. The exact algorithm is specified in Algorithm 2. It is
also worth noting that, at iteration t, the proposed method is not sampling from the conditional
distribution ft+1, as in Algorithm 1. Instead, in the splitting step, we use multiple multivariate
normal distributions to sample on the level set. This heuristic modification greatly reduces the
algorithm’s running time.

7

Algorithm 2 Splitting for Continuous Optimization (SCO)

Input: Objective function S, sample size N , rarity parameter % ∈ (0, 1], and scale factor w,
maximum number of attempts MaxTry

Output: Final iteration number t and sequence (Xbest,1, b1), . . . , (Xbest,t, bt) of best solutions and
function values found at iteration 1, . . . , t, respectively.

1: Generate X0 = {X1, . . . ,XN} via uniform sampling. Set t = 0 and N e = dN%e.
2: while the stopping criterion is not met do
3: For all X ∈ Xt, evaluate S(X), and sort {S(X)} from smallest to largest: S1 6 . . . 6 SN ,

then select the N e smallest ones and store the corresponding X in Et+1; set bt+1 = S1 and
record the corresponding individual as Xbest,t+1.

4: Compute the splitting factors st+1,i for each individual element X(i) ∈ Et+1, i = 1, . . . , N e

according to Eq. (1).
5: for i = 1 to N e do
6: for j = 1 to st+1,i do
7: Select R uniformly from the set {1, . . . , N e} \ {i}.
8: Compute σi as Eq. (2).
9: Set y = ỹ = X(i) ∈ Et+1.

10: Generate a random order r = (r1, . . . , rn).
11: for k = 1 to n do
12: for Try = 1 to MaxTry do
13: Update the rkth component of y: set ỹ(rk) = y(rk) + σi(rk)Z, Z ∼ N(0, 1).
14: If S(ỹ) < S(y), then set y(rk) = ỹ(rk), break the for loop.
15: end for
16: end for
17: Add y to Xt+1.
18: end for
19: end for
20: end while
21: Set t = t+ 1.
22: return {(Xbest,k, bk), k = 1, . . . , t}.

In Figure 2, the sampling procedure is illustrated. Consider two base points X(1),X(2) from the
elite set {X(1),X(2),X(3),X(4)} on the γ1-level set. Suppose the corresponding assistant points for
X(1) and X(2) are X(3) and X(4), respectively. So, R1 = 3 and R2 = 4. These assistant points
determine the standard deviation for the sampling distribution of the base points X(1) and X(2).
Also assume that MaxTry = 2 and w = 0.5.

Let Y
(i)
u,v be the trial values (y in the algorithm) starting from the base point X(i) at the uth

try for the first component and the vth try for the second component. Suppose for base point X(1)

the components are updated in order r = (1, 2) and for X(2) they are updated in order r = (2, 1).

Initially, Y
(1)
0,0 = X(1) and Y

(2)
0,0 = X(2).

As for the first base point X(1), the horizontal dotted segment to its right indicates 1.5 times the
length of standard deviation of the normal distribution of the first component. The first updating

step is with respect to the the first component. The corresponding trial point is denoted by Y
(1)
1,0.

But this potential update is rejected by comparing with Y
(1)
0,0 = X(1). As MaxTry = 2, we can

8

x1

x2

γ1

γ2

X(1)

X(3)

X(2)

X(4)

Y
(1)
1,0 Y

(1)
2,0

Y
(1)
2,2

Y
(1)
2,1

Y
(2)
1,1Y

(2)
2,1

Y
(2)
0,1

Figure 2: Illustration of splitting method for two base (elite) points X(1) and X(2), with assistant points X(3) and
X(4), respectively. The relative distance between the base and assistant points determines the standard deviation of

the sampling distribution. Y
(1)
2,0, Y

(1)
2,2 and Y

(2)
0,1 are intermediate points, which are indicated by •, while ◦ indicates

the failed trial points.

sample one more time the first component, giving the second try Y
(1)
2,0. Because the corresponding

function value is better, this trial point is accepted as an intermediate point. Then based on Y
(1)
2,0,

the second component is updated. The vertical dotted segment starting from X(1) is 1.5 times the
length of standard deviation of normal distribution of the second component. Here, also the first

try Y
(1)
2,1 is rejected and the second try Y

(1)
2,2 is accepted. As this is the final intermediate point,

Y
(1)
2,2 is added to X2. As for the second base point X(2), the second component is updated before the

first one. The first try for the second component Y
(2)
0,1 has resulted in a good intermediate value, so

that this change is accepted and an update the first component is attempted next. However, both

two attempts Y
(2)
1,1 and Y

(2)
2,1 are rejected (as they have worse function value that Y

(2)
0,1, so that Y

(2)
0,1

is the last intermediate point, which is added to X2.
In Algorithm 2, apart from the maximum number of attempts, MaxTry, there are three param-

eters: the sample size N , the rarity parameter %, and the scaling factor w. The rarity parameter %
is the proportion of the samples to be selected for the elite set, which is the most important control
parameter for the SCO algorithm. When the objective function has relatively few modes, setting
% small significantly increases the convergence speed. However, when the surface of the objective
function is very convoluted, like for the Rosenbrock function, or has many local optima, a larger %

9

(even % = 1) might be required. The reason is that when % < 1 the splitting method discards “bad”
samples from previous level sets. For complicated functions this could lead to an under-exploration
of the space and therefore failure to converge to a global optimum.

To handle both situations with the same algorithm, we recommend three values for %: 0.4, 0.8
and 1. In particular, 0.4 and 0.8 are preferred for uni-modal problems, while 0.8 and 1 are preferred
for multi-modal ones. In any case, % = 1 is a safe choice for finding the global optimum, but may
not lead to the fastest convergence. For % < 1, the worst (1− %)N particles are discarded, and the
remaining population is split into N new particles. For % = 1, no particle is discarded, and the
whole population is split into N new particles.

The choice of the sample size N depends on the choice of % and the dimension of the problem.
In general, a larger dimension requires a larger N . For % = 1, N could be taken a small multiple
of the dimension. For example, in a 10-D problem one could take N = 20. When decreasing % , N
should be increased correspondingly.

The parameter w scales the standard deviations of each component of the independent multi-
variate normal distribution. In most cases, w = 0.5 works well. Although the proposed SCO
algorithm has four parameters, all of them are easy to choose. Even simpler, one can take MaxTry =
5 and w = 0.5 by default, and then N and % are the only parameters to be adjusted.

3. The DE and ABC Algorithms

For ease of comparison we summarize the DE and ABC algorithms.

The DE Algorithm

The DE algorithm, introduced in [5] in 1995, is a stochastic population-based optimization
algorithm. It belongs to the class of evolutionary algorithms (EAs), which also includes genetic
algorithms, evolutionary strategies and evolutionary programming. All evolutionary algorithms use
similar operations, such as crossover, mutation and selection. The main difference between DE
and the traditional EAs is the generation of new candidate solutions. In the DE algorithm, the
mutation operation is used as a search mechanism. Then a selection operation with a greedy scheme
is used to direct the search toward the prospective regions in the search space. The DE works as
follows. Initially, a population of individuals is generated randomly and evaluated via the fitness
(objective) function. Afterwards, for each individual in the population, an offspring candidate is
constructed using the weighted difference of a pair of parent solutions. Then greedy selection is
used to determine if an offspring candidate is accepted or rejected.

In our study, we only use the DE/rand/1/bin scheme, which is the classical version. This involves
the following mutation step at each iteration. For the ith individual (out of a population of N)

X(i) = (X
(i)
1 , . . . , X

(i)
n), construct a new vector Y(i) =

(
Y

(i)
1 , . . . , Y

(i)
n

)
as

Y(i) = X(R1) + F
(
X(R2) + X(R3)

)
, (3)

where R1 6= R2 6= R3 are uniformly sampled from {1, . . . , N} \ {i}, and F is a fixed scaling
factor. After mutation a binary crossover between Y(i) and X(i) is applied, to obtain a trial vector

X̃(i) =
(
X̃

(i)
1 , . . . , X̃

(i)
n

)
; that is,

X̃(i) =
(
B1Y

(i)
1 + (1−B1)X

(i)
1 , . . . , BnY

(i)
n + (1−Bn)X(i)

n

)
, (4)

10

where B1, . . . , Bn
iid∼ Ber(p) and p is the crossover factor. The DE algorithm is summarized in

Algorithm 3.

Algorithm 3 The DE Algorithm for Minimization

Input: Objective function S, population size N , scaling factor F and crossover factor p.
Output: Final iteration number t and sequence (Xbest,1, b1), . . . , (Xbest,t, bt) of best solutions and

function values found at iteration 1, . . . , t, respectively.
1: Generate a population X(1), . . . ,X(N) via uniform sampling. Set iteration counter t = 0.
2: while the stopping criterion is not met do
3: for i = 1 to N do
4: Mutation: Construct a vector Y(i) as in Eq. (3).

5: Crossover: Construct a trial vector X̃(i) by using binary crossover between Y(i) and X(i),
as indicated in Eq. (4).

6: Selection: If S(X̃(i)) 6 S(X(i)), set X(i) = X̃(i); otherwise, keep X(i).
7: end for
8: t = t+ 1
9: Set bt = min{S(X(i)), i = 1, . . . , N} and record the corresponding individual as Xbest,t.

10: end while
11: return {(Xbest,k, bk), k = 1, . . . , t}.

Although the DE algorithm is one of the most successful randomized optimization algorithms,
its performance quite relies on the choice of the parameters. In the DE/rand/1/bin version, there
are 3 parameters: the population size N , the scaling factor F , and the crossover factor p. In many
comparative studies for DE performance, the same choice of parameters for all test functions is
used. For example, in [14] all experiments use the setting N = 100, F = 0.5 and p = 0.9.

Even in such settings, DE can outperform many other algorithms in terms of the mean and
variance of the final optimum. In our study, we not only compare the final optimum, but also the
CPU time. To make a fair comparison, it is required to tune the DE parameters as efficiently as
possible. For each experiment, we choose the parameters based on highly cited references on the
DE algorithm, e.g., [5, 15], and then adjust them to the best we can find.

The ABC Algorithm

The ABC algorithm is a recently introduced evolutionary algorithm which is based on the
intelligent foraging behavior of honey bees. The idea was first proposed in [16] and then published
in [9]. In the ABC algorithm the objective value is interpreted as the amount of nectar at a
food source (position). Artificial bees fly around in a multidimensional search space to seek out
food sources. The colony contains three groups of bees who do different tasks: employed bees are
associated with a specific food source, onlookers watch the dance of employed bees within the hive
to choose a food source, and scouts bees search for food sources randomly.

Initially, a population of food source positions is generated randomly. Then, the food sources are
exploited by employed bees and onlooker bees, and their continual exploitation will ultimately cause
the food sources to become exhausted. Once this happens, an employed bee that was associated
with that food source now becomes a scout bee and searches randomly again. The employed and
onlooker bees choose new food sources depending on their own experience and that of their nest

11

mates, and adjust their positions accordingly. In the basic form of the ABC algorithm, the number
of employed bees and onlooker bees is equal to the number of food source positions.

There are three main step involved in each search cycle (iteration) of ABC the algorithm:

1. The employed bees are sent to a food source within the neighborhood of their previous food
sources and evaluate the fitness (nectar amounts) of these food sources.

2. The employed bees share this information with the onlooker bees, who will select one of food
sources. Onlooker bees choose a food source within the neighborhood of their selected food
sources and, after visiting, evaluate the nectar amounts at these positions.

3. An employed bee of a food source that has not been replaced for many times becomes a scout
and will search for a new food source randomly in the search space.

An artificial onlooker bee chooses a food source depending on the information (nectar amount) of
each food source, which is communicated by dance by corresponding employed bees in the previous
cycle. To determine to which food source an onlooker bee should go, the information is transformed
into a probability

pi =
Si∑N
k=1 Sk

, (5)

where Si is the fitness of the ith food source and i = 1, . . . , N , N is the total number of food
sources. Note that each probability must be positive. If not, it must be converted to a positive
number in such a way that a better food source always has a larger probability to be visited than
a poorer one.

To construct a new food source position Y(i) =
(
Y

(i)
1 , . . . , Y

(i)
n

)
from a previous position X(i) =(

X
(i)
1 , . . . , X

(i)
n

)
, the ABC algorithm uses the following mechanism:

Y
(i)
j = X

(i)
j + φij(X

(i)
j −X

(k)
j), (6)

where j is uniformly sampled from {1, . . . , n}, k is uniformly sampled from {1, . . . , N}\{i} and φij
is a uniform random number on the interval [−1, 1].

To determine whether an employed bee becomes a scout, a parameter, referred to as “limit”,
is used, indicating the maximum number of cycles that a food source can not be improved. If the
food source can not be improved within “limit” trials, the corresponding employed bee becomes a
scout, and is sent to a new food source, whose location is generated randomly. As indicated in [17],
the “limit” can be specified as the product of the number of food sources and the dimension of the
objective function; that is,

limit = N × n . (7)

The ABC algorithm is summarized in Algorithm 4.
Since the invention of ABC in 2005, it has been well studied. For example, [9] evaluates its

performance and compares it to GA, PSO, and particle swarm inspired evolutionary algorithm on a
limited number of test functions, and [18] compares ABC to GA, DE, PSO and evolution strategies
on a comprehensive set of problems. In the above the studies ABC has been found to be very
effective and able to obtain very good results with a low computational cost. Therefore, involving
ABC in our numerical experiments is meaningful. Note that although several modified versions of
ABC algorithms are available, e.g., [19, 20], only the standard ABC is involved in our research.

12

Algorithm 4 The ABC Algorithm for Minimization.

Input: Objective function S, the number of food sources N .
Output: Final iteration number t and sequence (Xbest,1, b1), . . . , (Xbest,t, bt) of best solutions and

function values found at iteration 1, . . . , t, respectively.
1: Generate a set of food sources X(1), . . . ,X(N) via uniform sampling. Set iteration counter t = 0.
2: while the stopping criterion is not met do
3: for i = 1 to N do
4: Produce a new position Y(i) for the employed bee from X(i) by using (6).
5: Apply the greedy selection for employed bees: if S(Y(i)) < S(X(i)), set X(i) = Y(i);

otherwise, keep X(i).
6: end for
7: Calculate the probability pi for each X(i) according to Eq. (5) and i = 1, . . . , N .
8: for i = 1 to N do
9: Draw I from {1, . . . , N} according to probability distribution {pi}. Produce a new position

Y(I) for the ith onlooker bee from X(I), according to Eq. (6).
10: Apply the greedy selection for onlooker bees: if S(Y(I)) < S(X(I)), set X(I) = Y(I);

otherwise, keep X(I).
11: end for
12: If there exists X(k) =

(
X

(k)
1 , . . . , X

(k)
n

)
whose fitness did not improve for a “limit” number

of trials, then set

X
(k)
j = Lowerj + U(Upperj − Lowerj), U ∼ U(0, 1),

for j ∈ {1, . . . , n} and k ∈ {1, . . . , N}. Lowerj and Upperj are given fixed lower and upper
bound on the jth component of the food position.

13: Set t = t+ 1.
14: Set the best position Xbest,t and the corresponding fitness bt = S(Xbest,t).
15: end while
16: return {(Xbest,k, bk), k = 1, . . . , t}.

In our experiments, we used the MATLAB code of the ABC algorithm version 2, which was released
on Dec.14, 2009 and can be downloaded from the ABC homepage http://mf.erciyes.edu.tr/

abc/. In this implementation, φij in Eq. (6) is set to φij = 2(U − 0.5), with U ∼ U(0, 1). Thus,
there is only one parameter left, that is, the number of food source positions N , since the “limit”
can be determined by Eq. (7). Similar with DE, for each problem, a good parameter will be chosen
to guarantee a fair comparison.

4. Experiments

4.1. Benchmark functions

To test our proposed algorithm SCO, we used a well-known suite of 23 benchmark functions that
were first introduced in [8] to compare the classical EP and the FEP algorithms. The same functions
were used to compare the performances of DE, PSO, the attractive and repulsive PSO (arPSO),
and a simple EA in [14]. Also, [21] has compared four different Evolutionary strategies (namely,

13

Canonical ES, Fast ES (FES), Covariance Matrix Adaptation ES (CMAES) and ES Learned with
Automatic Termination (ESLAT)) using these 23 functions. From these comparative works, the
overall performance of DE was found to be much better than that of other methods on this test suite.
Recently in [17], the same functions were used to compare the ABC algorithm with many popular
evolutionary algorithm, where the results of [21] were also included in the comparison. In these
comparisons, ABC was found to be superior to the other methods. Because of the widespread use
of this test suite, by directly comparing our algorithm with DE and ABC only, we can indirectly
compare with many other algorithms using the existing comparative studies. In the numerical
experiments we do not make reference to any probability density function pdf f . Consequently,
below we have used the conventional notation f for the objective function, rather than S.

The suite of test problems contains a diverse set of functions, including unimodal and multi-
modal functions. Note that we only consider minimization problems. We have conducted two sets
of numerical experiments. In the first set, we have divided the 23 test functions into three groups:
Group A contains functions f1, . . . , f7, which are all unimodal, Group B are functions f8, . . . , f13,
which are multimodal functions with many local minima and Group C (f14, . . . , f23) are multi-
modal functions with only a few local minima. Functions in Group B are such that the number of
local minima increases exponentially with the dimension, so they appear to be more difficult than
functions in Group C. Functions in Group A and B are all in 30 dimensions and functions in Group
C are in 2, 4 or 6 dimensions. In the second set, we use 100-D f5, f8, . . . , f13 in order to test the
performance of DE, ABC and SCO in high dimensions. The problems in this set of experiments
are much more difficult.

4.2. Setting of Experiments

For each function, a level of accuracy is specified. Suppose that the algorithm returns a value
γ̂. For functions whose minimum value is 0, if γ̂ < 10−10 we consider that the minimum solution
has been found. For other functions, whose minimum value is not equal to 0, we consider that the
minimum has been found if γ̂ agrees with the true minimum in at least 8 digits after the decimal
point. The stopping criterion for the three methods in the experiments is to terminate when the
minimum value of the population has reached the accuracy level or the running time of algorithm
exceeds the predefined maximum CPU time, which is 600s for the Experiment Set 1 and 1,800s for
the Experiment Set 2.

In terms of the algorithms, all the parameters are specified in a parameter table before displaying
the experimental outcomes. Since [14] has shown that DE can solve all the 23 problems, we first
select a good set of parameters for DE. These parameters are chosen to make DE work in a stable
and efficient manner. The parameters of the ABC and SCO algorithms are easier to select. For
example, the population sizes will be similar to those of DE. If ABC and SCO fail to converge
toward the global minimum within a reasonable CPU time, we regard the experiment to have failed
for such functions and we do not display the parameters and outcomes. It is worth noting that
we mainly compare for speed, rather than accuracy, when all the methods converge to the global
minimum. For each experiment, the average CPU time of best performing algorithm is highlighted
in gray.

All the experiments have been coded in MATLAB R2014b, and conducted on a desktop personal
computer with Intel(R) Core(TM) i7-4970 CPU @ 3.60GHz. Each experiment is repeated 10 times
independently, and the minimum (Min), mean (Mean), and maximum (Max) of the function values
are reported, as well as the CPU time in seconds (CPU) and the average number of iterations (T̄).

14

4.3. Experiment Set 1: 30-D or Less Functions

A. 30-D Unimodal Functions

1. The First De Jong function (Sphere):

f1(x) =

n−1∑
i=1

x2i , x ∈ [−100, 100]n. (8)

2. The Schwefel Problem 2.22:

f2(x) =

n∑
i=1

|xi|+
n∏
i=1

|xi|, x ∈ [−10, 10]n. (9)

3. The Schwefel Problem 1.2:

f3(x) =

n∑
i=1

 i∑
j=1

xj

2

, x ∈ [−100, 100]n. (10)

4. The Schwefel Problem 2.21:

f4(x) = max{|xi|}, x ∈ [−100, 100]n. (11)

5. The Second De Jong function (Rosenbrock):

f5(x) =

n−1∑
i=1

100(xi+1 − x2i)2 + (xi − 1)2, x ∈ [−30, 30]n. (12)

6. The Step function:

f6(x) =

n−1∑
i=0

(⌊
xi +

1

2

⌋)2

, x ∈ [−100, 100]n. (13)

7. The Fourth De Jong function (Quartic with random noise):

f7(x) =

n∑
i=1

(i x4i + η), x ∈ [−1.28, 1.28]n, η ∼ U(0, 1). (14)

The experiments in Group A are aimed at testing and comparing the convergence of the three
methods. The parameters of DE are tuned based on the work in [5, 15]. With the selected values,
it works efficiently for all 10 runs. A slight decrease in population size may speed up DE, but may
affect convergence. ABC and SCO use the same population size as DE, for fair comparison.

In our experiments with the function f5, the ABC algorithm can get a solution near the global
minimum, but does not converge toward it within our specified tolerance level, which is in accordance
with [17, 9], so the results were not recorded. For f3 we observed the same phenomenon, so we
omitted the results. The parameters used in these experiments are summarized in Table 1 and the

15

outcomes of the experiments are given in Table 2. The parameters of the unrecorded results are
represented with a × in the parameters tables.

Table 1: The parameters for the three algorithms for 30-D f1, . . . , f7.

Function n
DE ABC SCO

N F p N N % w
f1 30 30 0.5 0.2 30 30 0.4 0.5
f2 30 30 0.5 0.9 30 30 0.4 0.5
f3 30 30 0.7 0.9 × 30 0.4 0.5
f4 30 30 0.5 0.2 30 30 0.8 0.5
f5 30 50 0.7 0.9 × 50 0.8 0.5
f6 30 30 0.5 0.7 30 30 0.4 0.5
f7 30 30 0.5 0.2 30 30 0.4 0.5

Table 2: Results for the 30-dimensional functions f1, . . . , f7. The experiments were repeated 10 times and the
average, minimum, maximum of the objective function were recorded. CPU is the average time and T̄ is the average
numbers of iterations.

Function n Method Min Mean Max CPU T̄

f1 30
DE 8.3296 × 10−11 9.2307 × 10−11 9.6917 × 10−11 1.07 861.4

ABC 3.8247 × 10−11 7.8605 × 10−11 9.8754 × 10−11 1.10 931.1
SCO 1.1478 × 10−12 2.8822 × 10−11 7.2469 × 10−11 0.20 12.6

f2 30
DE 8.3879 × 10−11 9.6256 × 10−11 9.9970 × 10−11 3.96 1636.1

ABC 7.3659 × 10−11 8.9666 × 10−11 9.9947 × 10−11 1.93 1582.5
SCO 2.5659 × 10−11 5.5492 × 10−11 8.3617 × 10−11 0.50 22.8

f3 30
DE 8.9752 × 10−11 9.5390 × 10−11 9.9600 × 10−11 19.79 8640.4
SCO 9.5598 × 10−11 9.7618 × 10−11 9.9978 × 10−11 15.42 848.9

f4 30
DE 9.1888 × 10−11 9.5490 × 10−11 9.9530 × 10−11 8.50 4794.5

ABC 9.2581 × 10−11 9.7329 × 10−11 9.9771 × 10−11 34.63 32224.3
SCO 8.1875 × 10−11 9.1788 × 10−11 9.9736 × 10−11 2.48 299.8

f5 30
DE 6.8419 × 10−11 8.5554 × 10−11 9.6158 × 10−11 37.94 9455.8
SCO 9.9630 × 10−11 9.9726 × 10−11 9.9871 × 10−11 304.22 6772.7

f6 30
DE 0 0 0 0.68 280.6

ABC 0 0 0 0.31 222.4
SCO 0 0 0 0.086 8.7

f7 30
DE 13.72410384 13.72410384 13.72410384 0.95 381.4

ABC 13.72410383 13.72410384 13.72410384 0.58 359.9
SCO 13.72410383 13.72410383 13.72410383 0.22 6.8

Table 2 shows that the DE algorithm and our proposed SCO algorithm converge to the correct
minimum for the seven functions. Moreover, the SCO algorithm outperforms both the DE and
ABC algorithm for functions f1, . . . , f4, f6, f7 in terms of average CPU time. Even though the
ABC fails in f3 and f5 and perform badly in f4, it is almost twice faster than DE on functions
f2, f6 and f7. DE has best performance in function f5, converging to the global minimum much
faster than the SCO algorithm. Function f5 is the Rosenbrock function, whose global minimum
lies inside a long, narrow and parabolic shaped flat valley and is very difficult to find. As indicated

16

in Figure 3, although SCO can find the valley region faster than DE, the convergence rate to the
global minimum is slower.

CPU time (s)
0 50 100 150 200 250 300

m
in

10-10

10-5

100

105

1010

SCO
DE

Figure 3: Evolution of DE and SCO algorithms for the Rosenbrock function f5

Note that again for some of the functions, decreasing the population size might speed up the
algorithms. However, if the convergence is not affected, all the three methods can work with a same
population size, so the the comparison in CPU time-consuming is still similar to that of Table 2.

B. 30-D Multimodal Functions

The functions f8, . . . , f13 are multimodal with many local minima, and the number of local
minima increases exponentially as the dimension of the function increases. In this group, the
dimensions of f8, . . . , f13 are 30 and the level of accuracy is set to 10−11. The parameters of the
three methods are indicated in Table 3. The parameters of DE algorithm are adapted from [5, 15].
For the ABC algorithm, the size of the population is 30 in all cases, where the “limit” is N×n = 90.
The SCO algorithm uses the same size of population, and % takes value 1 for f8, . . . , f11 and 0.8 for
f12 and f13. The Table 4 summarizes the results of ten runs.

1. The Schwefel Problem 2.26:

f8(x) =

n−1∑
i=0

−xi sin
(√
|xi|
)
, x ∈ [−500, 500]n. (15)

2. The Rastrigin function:

f9(x) =

30∑
i=1

[
x2i − 10 cos(2πxi) + 10

]
, x ∈ [−5.12, 5.12]n. (16)

17

3. The Ackley function:

f10(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=

x2i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e, x ∈ [−30, 30]n.

(17)

4. The Griewank function:

f11(x) =
1

4000

n∑
i=1

x2i −
n∏
i=1

cos

(
xi√
i

)
+ 1, x ∈ [−600, 600]n. (18)

5. The Penalized function 1:

f12(x) =
π

n

{
10(sin(πy1))2 +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi + 1)] + (yn − 1)2

}

+

n∑
i=1

u(xi, 10, 100, 4), x ∈ [−50, 50]n,

(19)

where yi = 1 + 1
4xi and

u(xi, a, k,m) =

k(xi − a)m, xi > a,

0, −a 6 xi 6 a,

k(−xi − a)m, xi < −a.

6. The Penalized function 2:

f13(x) = 0.1

{
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)[1 + sin2(2πxn)]

}

+

n∑
i=1

u(xi, 5, 100, 4), x ∈ [−50, 50]n,

(20)
where yi and u are defined as in f12.

Table 3: The parameters selection for the three algorithms for 30-D f8, . . . , f13.

Function n
DE ABC SCO

N F p N N % w
f8 30 30 0.5 0 30 30 1 0.5
f9 30 25 0.5 0 30 30 1 0.5
f10 30 20 0.5 0.1 30 30 1 0.5
f11 30 20 0.5 0.1 30 30 1 0.5
f12 30 30 0.5 0.2 30 30 0.8 0.5
f13 30 30 0.5 0.2 30 30 0.8 0.5

18

Table 4: Results for the 30-dimensional functions f8, . . . , f13. The experiments were repeated 10 times and the
average, minimum, maximum of the objective function were recorded. CPU is the average time and T̄ is the average
numbers of iterations.

Function n Method Min Mean Max CPU T̄

f8 30
DE −12569.48661817 −12569.48661817 −12569.48661816 2.30 1087.1

ABC −12569.48661817 −12569.48661817 −12569.48661817 3.13 2015.8
SCO −12569.48661817 −12569.48661817 −12569.48661817 1.69 95.7

f9 30
DE 7.9837 × 10−11 9.2210 × 10−11 9.9522 × 10−11 2.41 1, 171.5

ABC 2.1149 × 10−11 5.8284 × 10−11 9.9918 × 10−11 1.58 1, 273.7
SCO 4.2633 × 10−14 3.6740 × 10−11 8.9090 × 10−11 1.08 93.2

f10 30
DE 9.5295 × 10−11 9.8002 × 10−11 9.9953 × 10−11 2.84 1, 401.9

ABC 7.6178 × 10−11 8.9128 × 10−11 9.9267 × 10−11 5.86 1, 634.6
SCO 2.1953 × 10−11 6.5364 × 10−11 9.3430 × 10−11 1.66 61.7

f11 30
DE 8.2883 × 10−11 9.1398 × 10−11 9.5228 × 10−11 1.52 938.4
ABC 1.6721 × 10−11 6.2046 × 10−11 9.9988 × 10−11 2.15 1, 165.8
SCO 3.8907 × 10−12 4.3107 × 10−11 8.5327 × 10−11 1.42 43.8

f12 30
DE 7.6932 × 10−11 9.0782 × 10−11 9.9077 × 10−11 3.57 840.6

ABC 4.2338 × 10−11 7.9264 × 10−11 9.8755 × 10−11 2.43 834.9
SCO 1.3005 × 10−11 6.6929 × 10−11 9.6349 × 10−11 2.58 33.5

f13 30
DE 7.4773 × 10−11 8.8599 × 10−11 9.8990 × 10−11 3.54 853.5
ABC 3.5438 × 10−11 7.1386 × 10−11 9.8533 × 10−11 2.61 947.3
SCO 2.3145 × 10−11 5.6150 × 10−11 9.6540 × 10−11 2.60 35.0

It is obvious that all the three methods have reached the global optimum for all the 6 functions.
When comparing the average CPU time, the SCO is superior to both DE and ABC on functions
f8, . . . , f11. As for functions f12 and f13, the ABC and SCO perform better than DE. We used
% = 0.8 in SCO for functions f12 and f13, where % = 1 also performs well but is a little slower in
convergence. If so, in terms of CPU time, ABC will outperform SCO on functions f12 and f13.
Thus, for multimodal functions, we recommend to use % = 1 for a safe choice, but also % = 0.8 as
a more efficient choice.

C. Low-Dimensional Multimodal Functions

1. The Fifth De Jong function (Shekel’s Foxholes):

f14(x) =
1

0.002 +
∑25
j=1

1
j+

∑2
i=1(xi−aij)6

, x ∈ [−65.536, 65.536]2, (21)

where
(a1j) = (c, . . . , c︸ ︷︷ ︸

5 times

), with c = (−32,−16, 0, 16, 32),

and
(a2j) = (−32, . . . ,−32︸ ︷︷ ︸

5 times

, −16, . . . ,−16︸ ︷︷ ︸
5 times

, 0, . . . , 0︸ ︷︷ ︸
5 times

, 16, . . . , 16︸ ︷︷ ︸
5 times

, 32, . . . , 32︸ ︷︷ ︸
5 times

).

2. The Kowalik function:

f15(x) =

10∑
j=0

(
aj −

x1(b2j + bjx2)

b2j + bjx3 + x4

)2

, x ∈ [−5, 5]4, (22)

19

where

(aj) = (0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246),

and

(bj) = (4, 2, 1,
1

2
,

1

4
,

1

6
,

1

8
,

1

10
,

1

12
,

1

14
,

1

16
).

3. The Six-hump Camel function:

f16(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x42, x ∈ [−5, 5]2. (23)

4. The Branin–Hoo function:

f17(x) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+10

(
1− 1

8π

)
cos(x1)+10, x1 ∈ [−5, 10], x2 ∈ [0, 15].

(24)

5. The Goldstein–Price function:

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

]
×[

30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
]
, x ∈ [−2, 2]2.

(25)

6. The 3-dimensional Hartmann function:

f19(x) = −
4∑
j=1

cj exp

(
−

3∑
i=1

aij(xi − pij)2
)
, x ∈ [0, 1]4, (26)

where

(aij) =

3.0 0.1 3.0 0.1
10 10 10 10
30 35 30 35

 , (cj) = (1, 1.2, 3, 3.2), and (pij) = 10−4

3689 4699 1091 381
1170 4387 8732 5743
2673 7470 5547 8828

 .

7. The 6-dimensional Hartmann function:

f20(x) = −
4∑
j=1

cj exp

(
−

6∑
i=1

aij(xi − pij)2
)
, x ∈ [0, 1]6. (27)

where

(aij) =

10 0.05 3 17
3 10 3.5 8
17 17 1.7 0.05
3.5 0.1 10 10
1.7 8 17 0.1
8 14 8 14

 , (cj) = (1, 1.2, 3, 3.2), and (pij) = 10−4

1312 2329 2348 4047
1696 4135 1451 8828
5569 8307 3522 8732
124 3736 2883 5743
8283 1004 3047 1091
5886 9991 6650 381

 .

20

8. The Shekel function 5:

f21(x) = −
5∑
j=1

(
(x− aj)

>(x− aj) + cj
)−1

, x ∈ [0, 1]4, (28)

where (cj) = (0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5) and

(a1 . . . ,a10) = (aij) =

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3

 .

Notice that the Shekel function 5 only uses the first 5 columns of the matrix (aij). The Shekel
functions 7 and 10 below use respectively 7 and 10 columns of the same matrix.

9. The Shekel function 7:

f22(x) = −
7∑
j=1

(
(x− aj)

>(x− aj) + cj
)−1

, x ∈ [0, 1]4. (29)

10. The Shekel function 10:

f23(x) = −
10∑
j=1

(
(x− aj)

>(x− aj) + cj
)−1

, x ∈ [0, 1]4. (30)

Functions f14, . . . , f23 have low dimensions (2, 4, or 6), but some of them are hard to optimize. The
ABC algorithm fails on f15, which has been shown in [17], so we will not compare the performance
of ABC algorithm for function f15. The parameters of DE algorithm are adapted from existing
experiments in [14, 15] or chosen by us based on the best recommendations we could find. Table 5
summarizes the values of parameters and the outcomes are in Table 6.

Table 5: The parameters for the three algorithms for f14, . . . , f23.

Function n
DE ABC SCO

N F p N N % w
f14 2 20 0.5 0.2 30 30 1 0.5
f15 4 50 0.5 0.9 × 50 0.8 0.5
f16 2 20 0.5 0.9 20 20 0.8 0.5
f17 2 20 0.5 0.9 20 20 0.8 0.5
f18 2 20 0.5 0.9 40 30 0.8 0.5
f19 4 20 0.5 0.9 20 20 0.8 0.5
f20 6 30 0.5 0.2 30 30 0.8 0.5
f21 4 50 0.5 0.7 30 50 0.8 0.5
f22 4 50 0.5 0.9 30 50 0.8 0.5
f23 4 50 0.5 0.9 30 50 0.8 0.5

21

Table 6: Results for functions f14, . . . , f23. The experiments were repeated 10 times and the average, minimum,
maximum of the objective function were recorded. CPU is the average time and T̄ is the average numbers of
iterations.

Function n Method Min Mean Max CPU T̄

f14 2
DE 0.99800384 0.99800388 0.99800399 0.041 35.4
ABC 0.99800384 0.99800385 0.99800388 0.086 37.4
SCO 0.99800384 0.99800386 0.99800396 0.058 21.6

f15 4
DE 3.0749 × 10−4 3.0750 × 10−4 3.0750 × 10−4 0.24 109.9
SCO 3.0750 × 10−4 3.0750 × 10−4 3.0750 × 10−4 7.74 1, 737.7

f16 2
DE −1.03162843 −1.03162813 −1.03162793 0.040 30.2

ABC −1.03162844 −1.03162828 −1.03162802 0.066 38.6
SCO −1.03162837 −1.03162822 −1.03162802 0.031 11.7

f17 2
DE 0.39788974 0.39789434 0.39789878 0.026 32.1
ABC 0.39788757 0.39789190 0.39789544 0.063 50.6
SCO 0.39788844 0.39789201 0.39789541 0.022 14.0

f18 2
DE 3 3 3 0.10 58.4

ABC 3 3 3 2.29 643.4
SCO 3 3 3 0.12 28.8

f19 4
DE −3.86277976 −3.86277974 −3.86277971 0.040 39.3

ABC −3.86277977 −3.86277974 −3.86277971 0.094 115.2
SCO −3.86277978 −3.86277976 −3.86277973 0.033 12.6

f20 6
DE −3.32236570 −3.32236532 −3.32236502 0.14 175.7

ABC −3.32236708 −3.32236603 −3.32236516 0.098 121.2
SCO −3.32236751 −3.32236642 −3.32236522 0.040 13.9

f21 4
DE −10.15319812 −10.15319325 −10.15319018 0.21 75.3
ABC −10.15319844 −10.15319479 −10.15319066 0.17 109.6
SCO −10.15319937 −10.15319537 −10.15319157 0.13 14.0

f22 4
DE −10.40294054 −10.40294021 −10.40294002 0.22 76.9
ABC −10.40294055 −10.40294031 −10.40294001 0.27 171.6
SCO −10.40294054 −10.40294035 −10.40294001 0.16 17.0

f23 4
DE −10.53640740 −10.53640300 −10.53640021 0.19 63.8
ABC −10.53640776 −10.53640391 −10.53640010 0.27 168.2
SCO −10.53640930 −10.53640507 −10.53640002 0.16 16.5

Among the 10 functions, f15 is challenging for all three methods: ABC fails it; DE and SCO
have risks to get in a poor local minimum. Nevertheless, we still get ten continuous successful runs
for both DE and SCO. However, SCO consumes much more CPU time than DE. Similar to Figure 3,
SCO can quickly find good solutions close to the global optimizer, but has a smaller convergence
rate than DE.

Beside function f15, both DE and SCO could solve all the other functions f14, . . . , f23. For
functions f14, f16, . . . , f19, f22 and f23, the performance of DE and SCO are close and better than
that of ABC. In particular, for function f18, DE and SCO are almost 20 times faster than ABC.
For functions f20 and f21, ABC and SCO are slightly superior to DE. Overall, in Experiment Set
1, SCO has a better performance than DE and ABC for all the functions except f14 and f15.

4.4. Experiment Set 2: 100-D Functions

This experiment set is to compare the performance of the three methods for high-dimensional
functions. The test functions are some of the most difficult problems in the test suite, namely f5,

22

f8, . . . , f13 in 100 dimensions.
For function 100-D f5, the population sizes for DE and SCO are increased to 100, while for the

other functions the population sizes for the three methods are exactly the same as in the 30-D case
(Table 3). Regarding DE, for the 100-D functions f5 and f8, the selection of the other parameters
is slightly different from that in the 30-D case, because DE did not perform well with the original
parameters in terms of finding the minimum and CPU time. All the parameters are summarized
in Table 7. The results of the experiments are shown in Table 8.

Table 7: The parameters for the three algorithms for 100-D f5, f8 . . . , f13.

Function n
DE ABC SCO

N F p N N % w
f5 100 100 0.5 0.8 × 100 0.8 0.5
f8 100 30 0.7 0.2 30 30 1 0.5
f9 100 25 0.5 0 30 30 1 0.5
f10 100 20 0.5 0.1 30 30 1 0.5
f11 100 20 0.5 0.1 30 30 1 0.5
f12 100 30 0.5 0.2 30 30 0.8 0.5
f13 100 30 0.5 0.2 30 30 0.8 0.5

Table 8: Results for the functions f5, f8, . . . , f13 in 100-dimension. The experiments were repeated 10 times and the
average, minimum, maximum of the objective function were recorded. CPU is the average time and T̄ is the average
numbers of iterations.

Function n Method Min Mean Max CPU T̄

f5 100
DE 9.2893 × 10−11 9.7321 × 10−11 9.9908 × 10−11 965.42 48320.8
SCO 6.8320 × 10−11 9.6005 × 10−11 9.9983 × 10−11 1, 464.85 5, 516.6

f8 100
DE −41898.28872722 −41898.28872722 −41898.28872722 17.73 4192.8

ABC −41898.28872724 −41898.28872723 −41898.28872722 16.29 9675.3
SCO −41898.28872724 −41898.28872723 −41898.28872722 9.19 140.0

f9 100
DE 8.3554 × 10−11 9.4213 × 10−11 9.9936 × 10−11 15.28 4, 276.0

ABC 7.6178 × 10−11 8.9128 × 10−11 9.9267 × 10−11 5.77 4342.7
SCO 3.7002 × 10−11 5.3482 × 10−11 9.7948 × 10−11 5.01 92.7

f10 100
DE 9.3967 × 10−11 9.7685 × 10−11 9.9900 × 10−11 12.90 4494.7

ABC 8.9572 × 10−11 9.4292 × 10−11 9.9637 × 10−11 21.69 5675.7
SCO 5.3107 × 10−11 7.7458 × 10−11 9.8656 × 10−11 6.48 72.3

f11 100
DE 9.3395 × 10−11 9.6480 × 10−11 9.9961 × 10−11 9.04 2, 904.5

ABC 6.0127 × 10−11 7.8212 × 10−11 9.8108 × 10−11 7.11 3, 548.3
SCO 2.5731 × 10−11 5.9148 × 10−11 8.8098 × 10−11 4.33 46.3

f12 100
DE 9.6326 × 10−11 9.7523 × 10−11 9.9364 × 10−11 25.67 3, 665.0

ABC 8.3713 × 10−11 8.9108 × 10−11 9.8624 × 10−11 9.32 2, 991.0
SCO 3.4134 × 10−11 6.9295 × 10−11 9.4202 × 10−11 10.38 36.0

f13 100
DE 9.2595 × 10−11 9.6520 × 10−11 9.9168 × 10−11 26.39 3, 748.0

ABC 8.4791 × 10−11 9.2497 × 10−11 9.7289 × 10−11 10.03 3, 230.0
SCO 5.8721 × 10−11 7.9251 × 10−11 9.4134 × 10−11 10.79 40.0

For function 100-D f5, both DE and SCO converged toward the optimum exactly, but SCO

23

consumes more CPU time. Since ABC failed on 30-D f5, it is not included in the 100-D case.
Overall, for the 100-D functions f8, . . . , f13, all three methods can find the global minimum. As for
the CPU time, the SCO and ABC algorithms perform better than DE, except for f10. Specifically,
on functions f8 and f11, ABC is a little better than DE, but both of them have worse performance
than SCO. For functions f9, f12 and f13, SCO performs quite close to ABC and they are almost
twice faster than DE in CPU time. On function f10, ABC has a lower performance than SCO and
DE, where SCO is twice faster than DE.

5. Discussion and Conclusion

In this paper we introduced the splitting method for continuous optimization (SCO) and com-
pared its performance with that of the DE and ABC algorithms through two sets of numerical
experiments based on a widely used suite of test functions. All the 23 functions used in first set
of experiments were of dimension 30 or less and these were divided into three groups (A,B,C),
depending on their number of modes. Overall, both SCO and DE could reliably converge toward
the minimum values for all 23 functions, while ABC failed on f3, f5 and f15 for various reasons.
From this aspect, SCO outperforms ABC. When also considering the CPU time consumption, SCO
performs favorably compared with DE and ABC. In particular, for functions in Group A, SCO has
the fastest convergence rate among the three methods, except for function 30-D f5. Similarly, for
functions in Group B, although all three methods work well, SCO is consistently the best perform-
ing. In Group C, except for function f15 where SCO consumes more CPU time than DE, SCO is
the most efficient. The second set of experiments has shown than SCO also can perform well on
high dimensional multi-modal problems, in terms of finding the optimal solution and CPU time
consumption. From the results, it can be concluded that SCO is competitive with both DE and
ABC algorithm on this test suite.

Besides DE and ABC, other algorithms are also worthy to be mentioned and compared. We
do this indirectly via existing comparative studies on the same test suite, e.g., [14, 17, 21]. In [14]
the means and standard deviations of the final function values are compared. If the average of
a method is close to the real minimum and the standard deviation is small, then the method is
regarded well-performing. Among the four methods that were compared, DE was found to be the
best-performing algorithm, finding the optimal solution in all cases. In contrast, the standard PSO
could only converge to the minimum value exactly for 3 functions. Also, arPSO solved 6 of them,
while SEA solved 8 functions. Therefore, from the perspective of accuracy of the final solutions,
SCO performs better than PSO, arPSO, since SCO can solve all 23 problems.

In [21] various advanced evolution strategies are compared. Again, only means and standard
deviations are compared. The study finds that canonical ES fails on 12 functions, and both ESLAT
and CMA-ES fail on 10 functions, while FEP fails on 9 functions. Also, the performance of ABC
has also been compared with these methods in [17], where ABC is superior. Consequently, in this
aspect, SCO also has better performance than these methods.

Our work compared the performance of SCO with that of DE and ABC on a large suite of test
functions. In addition to comparing whether an algorithm can find the optimal solution reliably,
we also compared the speed of the algorithm. From the numerical results we conclude that SCO is
competitive with DE and ABC algorithm in terms of accuracy and speed, at least for this test suite.
When comparing with other methods through some comparative studies indirectly, the performance
of SCO is better than that of the methods mentioned above. SCO is simple, robust, and converges

24

fast to the true global minimum. Besides, it has only a few control parameters which are easy to
set and tune.

Acknowledgement

We thank the referees for their helpful comments. This work was supported by the Australian
Research Council Centre of Excellence for Mathematical and Statistical Frontiers, under grant
number CE140100049. Qibin Duan would also like to acknowledge the support from the University
of Queensland through the UQ International Scholarships scheme.

References

[1] Rechenberg I. Evolution Strategy: Optimization of Technical Systems by Means of Biological
Evolution. Stuttgart: Fromman-Holzboog; 1973.

[2] Fogel LJ, Owens AJ, Walsh MJ. Artificial Intelligence through Simulated Evolution. New
York: John Wiley & Sons; 1966.

[3] Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial intelligence. U Michigan Press; 1975.

[4] Rubinstein RY, Kroese DP. The Cross-Entropy Method: A Unified Approach to Combinatorial
Optimization, Monte-Carlo Simulation and Machine Learning. Berlin: Springer; 2004.

[5] Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. J Glob Optim 1997;11(4):341–59.

[6] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings. IEEE International
Conference on Neural Networks; vol. 4. 1995, p. 1942–1948 vol.4.

[7] Dorigo M, Stützle T. Ant Colony Optimization. Cambridge, MA, USA: MIT Press; 2004.

[8] Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE T Evolut Comput
1999;3(2):82–102.

[9] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization:
Artificial bee colony (ABC) algorithm. J Glob Optim 2007;39(3):459–71.

[10] Kahn H, Harris TE. Estimation of particle transmission by random sampling. National Bureau
of Standards applied mathematics series 1951;12:27–30.

[11] Botev ZI, Kroese DP. Efficient Monte Carlo simulation via the generalized splitting method.
Stat Comput 2012;22(1):1–16.

[12] Kroese DP, Taimre T, Botev ZI. Handbook of Monte Carlo Methods. New York: John Wiley
& Sons; 2011.

[13] Botev ZI. The Generalized Splitting Method for Combinatorial Counting and Static Rare-
Event Probability Estimation. Ph.D. thesis; The Unverisity of Queensland; 2009.

25

[14] Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm opti-
mization, and evolutionary algorithms on numerical benchmark problems. In: IEEE Congress
on Evolutionary Computation (CEC2004); vol. 2. Piscataway, New Jersey; 2004, p. 1980–7.

[15] Price K, Storn RM, Lampinen JA. Differential Evolution: A Practical Approach to Global
Optimization. Berlin: Springer; 2006.

[16] Karaboga D. An idea based on honey bee swarm for numerical optimization. Tech. Rep.;
Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering De-
partment; 2005.

[17] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math
Comput 2009;214(1):108–32.

[18] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl
Soft Comput 2008;8(1):687–97.

[19] Gao W, Liu S. A modified artificial bee colony algorithm. Comput Oper Res 2012;39(3):687–97.

[20] Karaboga D, Gorkemli B. A quick artificial bee colony (qABC) algorithm and its performance
on optimization problems. Appl Soft Comput 2014;23:227–38.

[21] Hedar A, Fukushima M. Evolution strategies learned with automatic termination criteria. In:
SCIS & ISIS 2006. Tokyo, Japan; 2006, p. 1126–34.

26

