
Monte Carlo Methods

Thomas Taimre1 , Dirk P. Kroese1 , and Zdravko I. Botev 2

Keywords: simulation, random variables, numerical integration, MCMC, variance re-

duction, randomized optimization

Abstract

Abstract: Monte Carlo methods are algorithms that employ pseudo-random num-

bers to produce numerical approximations to a range of difficult computational prob-

lems. This article describes the key ideas behind such algorithms and their use in

simulation, estimation, and optimization problems.

Monte Carlo methods rely on carrying out random experiments using a computer [5].

Such methods are often used to sample from a stochastic model or distribution (see simu-

lation) or estimate particular quantities associated with a simulation model. They can also

be used to optimize complicated or noisy functions. In this article, we highlight some of the

fundamental Monte Carlo methods for sampling, estimation, and optimization.

1The University of Queensland, Australia
2The University of New South Wales, Australia

1

1 Sampling

At their core, Monte Carlo methods rely on simulating realizations of random objects: ran-

dom variables, random vectors, stochastic processes, etc.

When designing techniques to generate these random objects, a theoretical assumption

is that one has access to an infinite sequence U1, U2, . . . of independent and identically dis-

tributed (iid) random variables from the uniform distribution on (0, 1), denoted here by

Unif(0, 1). In practice, however, one uses a computer to produce (pseudo-) uniform ran-

dom numbers that have good distributional qualities (that is, their output is difficult to

distinguish statistically from the ideal) and can be generated fast [7]. An additional advan-

tage is that such sequences are repeatable, when using the same initial states (seeds) of the

(pseudo-) random number generators.

The simulation of a random variable X typically involves the following two steps:

1. Simulate U1, . . . , Uk ∼ Unif(0, 1) independently, for some k = 1, 2,

2. Return X = g(U1, . . . , Uk) for an appropriate real-valued function g.

Two of the most fundamental approaches for sampling from a desired distribution are the

inverse-transform method and the rejection sampling (see also Simulation of Stochastic

Processes).

1.1 Inverse-Transform Method

To generate a single random variable X with cdf F (x) = P[X ≤ x], the most direct approach

is via the inverse-transform method: X = F−1(U), where U ∼ Unif(0, 1), and where F−1 is

defined as F−1(u) = inf{x ∈ R |F (x) ≥ u}, which coincides with the usual definition of the

inverse of F , if F is bijective.

Throughout, we will use the notation X ∼ Dist, X ∼ F , or X ∼ f to denote that the random variable X
has distribution Dist, or cumulative distribution function (cdf) F , or probability density function
(pdf) f .

2

Example 1.1 (Exponential Random Variables). The exponential distribution with rate

λ > 0, which we denote by Exp(λ), has cdf F (x) = 1−exp(−λx) for x > 0 and 0 otherwise. To

simulate a random variable X ∼ Exp(λ), we use the fact that F−1(u) = − ln(1−u)/λ, so that

the inverse-transform generator is simply to return X = − ln(1−U)/λ where U ∼ Unif(0, 1).

A small computational saving can be made by instead using X = − ln(U)/λ, which follows

from noting that 1− U and U are both distributed according to Unif(0, 1). �

1.2 Rejection Sampling

Suppose that the objective is to sample from X ∼ f , where the pdf f is difficult to sample

from using the inverse-transform method. Suppose further that we can easily sample from

a pdf g with the property that f(x) ≤ Cg(x) for all x ∈ R for some constant C ≥ 1. The

idea of rejection sampling is to propose a Y according to g (that is, simulate Y ∼ g) and

accept X = Y as a sample from f with probability f(Y)/(Cg(Y)); otherwise, rejecting and

proposing once again. This results in the following algorithm:

Algorithm 1 : Rejection Sampling
repeat

Generate X ∼ g and U ∼ Unif(0, 1), independently.

until U ≤ f(X)/(Cg(X))

return X

This procedure draws samples according to f , with each proposed Y ∼ g accepted with

probability 1/C, which quantifies the efficiency of the procedure. Although described for

the case of a one-dimensional random variable, in principle this approach applies to random

vectors taking values in Rd, although its efficiency tends to decrease as the dimension d

increases.

Example 1.2 (Positive Normal Distribution). Suppose we wish to draw from the positive

3

normal distribution, with pdf f(x) =
√

2
π

exp(−x2/2) for x > 0 using an Exp(1) proposal

with pdf g(x) = exp(−x) for x > 0 (see also Half-Normal Distribution). The smallest

constant C such that f(x) ≤ Cg(x) for all x > 0 is C =
√

2e
π

. Thus, the rejection sampling

algorithm reads as follows.

Algorithm 2 : Positive Normal Sampler
repeat

Simulate X ∼ Exp(1) and U ∼ Unif(0, 1), independently.

until U ≤ exp
(
−1

2
(X − 1)2

)
return X

The efficiency of the method is 1/C =
√

π
2e
≈ 0.76. �

We have just described two approaches for exact sampling of a single random variable

from a desired distribution. Next, we outline a well-known general idea for sampling approx-

imately from a desired distribution.

2 Markov Chain Monte Carlo

It is often the case (particularly in Bayesian statistics — see Bayesian Inference) that one

wishes to simulate a random vector X ∼ f taking values in some set X ⊆ Rd, where the pdf

f is of the form f(x) = p(x)/Z such that p : X → R+ is a known function and Z is a finite

normalization constant which may be known or unknown. The fact that Z does not need to

be known explicitly is particularly useful in practice.

The idea of Markov chain Monte Carlo (MCMC) is to construct an ergodic Markov

chain whose limiting distribution has pdf f (see Markov Chains and Markov Processes).

Then, by running the Markov chain for a sufficiently long time (a so-called burn-in period)

so that it is approximately stationary, one has access to (dependent) samples approximately

4

distributed according to f (see also Stationary Distribution).

2.1 Metropolis–Hastings

The template for many MCMC samplers is the Metropolis–Hastings algorithm, which

takes as its ingredients the target pdf f(x) = p(x)/Z, and a proposal transition function

q(y |x), according to which transitions from the current state x to a new state y are simu-

lated. Each proposed transition is accepted with the acceptance probability

α(x,y) = min

{
f(y)q(x |y)

f(x)q(y |x)
, 1

}
, (1)

otherwise the chain remains in the current state. Note that in (1), f can be replaced by p

as the normalization constants Z in the numerator and denominator cancel.

Provided that the proposal transition function q(y |x) is chosen such that the entire state

space X is accessible from any point x ∈ X — that is, the Markov chain never gets “trapped”

and can always traverse the entire state space — this procedure describes an ergodic Markov

chain on X whose stationary pdf is f [9]. The Metropolis–Hastings algorithm is thus as

follows:

Algorithm 3 : Metropolis–Hastings Sampler

Require: Initialize with some state X0 for which f(X0) > 0 and set t← 0

repeat

Propose Y ∼ q(y |X t) and generate U ∼ Unif(0, 1) independently.

X t+1 ←


Y , if U ≤ α(X t,Y)

X t, otherwise

t← t+ 1

until a stopping criterion is met

return X1,X2, . . .

5

There are many flavors of MCMC samplers that can be viewed as particular cases of the

Metropolis–Hastings framework. If q(y |x) = g(y) does not depend on x then we have the

independence sampler, and the acceptance probability (1) simplifies to

α(x,y) = min

{
f(y)g(x)

f(x)g(y)
, 1

}
.

If q(y |x) = q(x |y), so that the proposal is symmetric in its arguments, the algorithm is

known as the random walk sampler (see Random Walk Metropolis Sampler) and the

acceptance probability becomes

α(x,y) = min

{
f(y)

f(x)
, 1

}
.

Example 2.1 (Langevin Metropolis–Hastings Algorithms). An example of a special flavor of

the Metropolis–Hastings algorithm is the Metropolis-Adjusted Langevin Algorithm (MALA),

which is motivated by the Langevin diffusion:

dX t =
σ2

2
∇ ln f(X t) dt+ σ dW t,

where (W t, t ≥ 0) is the d-dimensional Wiener process (see Brownian Motion). The

Langevin diffusion has stationary and limiting density f . Note that ∇ ln f(X t) does not

depend on Z, so we can freely replace f by p. The coefficient σ > 0 is frequently taken equal

to unity. The idea with MALA is to take the one-step Euler–Maruyama approximation

of the Langevin diffusion as a proposal (see also Simulation Methods for Stochastic

Differential Equations). That is, propose

Y n+1 = Xn +
σ2

2
hn∇ ln p(Xn) + σ

√
hnZn ,

6

where Z0,Z1, . . . are iid d-dimensional standard normal vectors and h0, h1, . . . is a sequence

of step sizes (see also Multivariate Normal Distributions: Theory). For a given x,

the proposal at step n + 1 (that is, Y n+1) is then multivariate normal with mean vector

x+ σ2

2
hn∇ ln p(x) and covariance matrix σ2hnId. �

2.2 Gibbs Sampling

The Gibbs sampler (see Gibbs sampling) can be viewed as a specialization of the Metropolis–

Hastings algorithm to sample a d-dimensional random vector X ∼ f , where the pdf f is such

that it is easy to sample from each (one-dimensional) conditional pdf f(xi |x1, . . . , xi−1, xi+1,

. . . , xd) for i = 1, 2, . . . , d. Essentially, the Gibbs sampler is a Metropolis–Hastings algorithm

with coordinate-wise updates which are always accepted. The coordinates can be updated in

any deterministic order. For example, the systematic Gibbs sampler updates the coordinates

in the order 1→ 2→ · · · → d, as follows:

Algorithm 4 : Systematic Gibbs Sampler

Require: Initialize with some state X0 for which f(X0) > 0 and set t← 0.

repeat

Draw Y1 ∼ f(x1 |Xt,2, . . . , Xt,d)

for i = 2, . . . , d− 1 do

Draw Yi ∼ f(xi |Y1, . . . , Yi−1, Xt,i+1, . . . , Xt,d)

Draw Yd ∼ f(xd |Y1, . . . , Yd−1)

X t+1 ← Y and then t← t+ 1

until a stopping criterion is met

return X1,X2, . . .

We shall write X ∼ N(µ,Σ) to denote a normal random vector with mean vector µ and covariance
matrix Σ. When µ = 0 and Σ = Id (the d × d identity matrix), then we refer to X as a (d-dimensional)
standard normal vector.

7

If instead the coordinates are updated in the order 1 → 2 → · · · → d − 1 → d →

d−1→ · · · → 2→ 1 one obtains the reversible Gibbs sampler, and updating one or multiple

coordinates drawn randomly from a distribution on the coordinate indices — for instance,

updating all coordinates in the order of a random permutation or selecting a single coordinate

according to the uniform distribution — is known as the random scan Gibbs sampler.

In all of the MCMC algorithms discussed so far, the Markov chain takes values in the

same state space as the target distribution. A number of specialized MCMC algorithms

augment the state space by introducing an auxiliary variable u in the Markov chain, in such

a way that
∫
f(x,u) du = f(x); that is, the marginal pdf with respect to x of the limiting

pdf is equal to the target pdf f(x).

Example 2.2 (Hamiltonian Monte Carlo). The idea of Hamiltonian Monte Carlo (HMC)

is to sample from a target pdf f(x) with state space X ⊆ Rd by augmenting each position

vector x ∈ X by a d-dimensional momentum vector u ∈M ⊆ Rd, so that the joint position–

momentum density is of the form f(x,u) = f(x)f(u |x), which ensures that marginalizing

out u yields the desired target pdf f(x). The corresponding Hamiltonian or total energy

function H : X ×M→ R is defined by

H(x,u) = − ln f(x,u) = − ln f(u |x)− ln f(x) = K(u |x) + V (x) ,

where K is referred to as the kinetic energy and V as the potential energy, by analogy to a

physical dynamical system.

Given an initial position–momentum pair (x0,u0) with energy H(x0,u0) = E, Hamil-

ton’s equations (see e.g. [8]), given below, describe the deterministic evolution in continuous

time t > 0 of this position–momentum pair (xt,ut) which maintains energy — that is

8

H(xt,ut) = E for all t > 0. Hamilton’s equations are:

dx

dt
=
∂K

∂u
,

du

dt
= −∂K

∂x
− ∂V

∂x
.

Then, using the chain rule, we can verify that the rate of change of the energy with time is

zero:

dH

dt
=
∂H

∂u

du

dt
+
∂H

∂x

dx

dt
=
∂H

∂u

(
−∂H
∂x

)
+
∂H

∂x

∂H

∂u
= 0 .

The idea of HMC is to (a) start with an initial position vector; (b) augment the position

vector by a sampled momentum vector; (c) deterministically evolve the position–momentum

vector pair according to Hamilton’s equations; (d) “forget” the momentum vector, and repeat

from (a). This gives the following HMC algorithm:

Algorithm 5 : Hamiltonian Monte Carlo Sampler

Require: Initialize with X0 such that f(X0) > 0 and set n← 0.

repeat

Augment position vector Xn with sampled momentum vector Un ∼ f(u |Xn).

Evolve Hamilton’s equations for some fixed time t > 0 with initial condition

(Xn(0),Un(0))← (Xn,Un) to obtain (Xn(t),Un(t)).

Set Xn+1 ←Xn(t) and then set n← n+ 1.

until a stopping criterion is met

return X1,X2, . . .

In this idealized presentation of HMC, one has freedom to choose the kinetic energyK and

the integration time. Note that exp(−K(u |x)) ∝ f(u |x) describes how momentum vectors

are sampled given position vectors. A common choice for f(u |x) is the pdf of a N(0,Σ(x))

distribution, known as the Riemannian–Gaussian kinetic energy (or the Euclidean–Gaussian

kinetic energy in the case that Σ(x) = Σ does not depend on the position x). A well-known

9

heuristic for determining an appropriate integration time t in a dynamic/on-line fashion

is the No-U-Turn criterion [4]. In practice Hamilton’s equations are usually solved only

approximately, not exactly. �

3 Estimation

A simple example of an estimation problem is to determine the quantity ` = EH(X), where

X is a random object taking value in some set X , H : X → R is a real-valued performance

function, and E denotes the expectation operator. If X is a d-dimensional random vector

taking values in Rd with a probability density function f , then ` =
∫
Rd H(x)f(x)dx. Thus

determining ` can be viewed as a numerical integration problem.

3.1 Crude Monte Carlo

If X is easy to simulate on a computer and the performance function is computationally

inexpensive to evaluate, then the easiest way to estimate ` is by Crude Monte Carlo: generate

N iid vectors X1,X2, . . . ,XN distributed according to f and, setting Yi = H(X i) for

i = 1, . . . , N , approximate ` by the unbiased estimator

̂̀=
1

N

N∑
i=1

Yi ≡ Y .

By the law of large numbers, ̂̀ converges almost surely to `, provided the expectation

exists (see Convergence of Sequences of Random Variables). Moreover, if EH(X)2 <

∞, the rate of convergence is of the order N−1/2, independent of the dimensionality of the

random objectX (a consequence of the Central Limit Theorem — see also Convergence

in Distribution and in Probability). An approximate 1− α confidence interval for `

10

can then be constructed as

ˆ̀± z1−α/2
S√
N
,

where zγ denotes the γ-quantile (see also Quantiles) of the N(0, 1) distribution, and

S2 =
1

N − 1

N∑
i=1

(
Yi − Y

)2
(2)

is the sample variance of Y1, . . . , YN .

Example 3.1 (Hypothesis Testing). In the context of hypothesis testing, simulation of

a test statistic T under the null hypothesis can be used to estimate quantiles or P -values,

for example when it is simple to sample T under the null hypothesis but it is difficult to

analytically determine the critical region or P -value associated with T .

For the sake of illustration, suppose that we have a one-sided test (see alternative

hypothesis) and the critical region is of the form [t1−α,∞), where t1−α is the (1−α)-quantile

of the test statistic T ; hence, the null hypothesis is rejected if T ≥ t1−α. If t1−α is unknown,

a simple application of crude Monte Carlo is to sample T1, . . . , TN ∼ DistH0 independently

and to estimate t1−α by the sample quantile t̂1−α = min{Ti |N−1
∑N

k=1 I{Tk ≤ Ti} ≥ 1−α},

where I{A} = 1 if event A occurs and 0 otherwise. Similarly, given an observed test statistic

t, the crude Monte Carlo estimate of the P -value is N−1
∑N

k=1 I{Tk ≥ t}. �

Example 3.2 (Bootstrap). In the previous example, we relied explicitly on the ability to

generate realizations of a random object X. However, when X represents the outcome of

a natural or physical system, in practice one may not have a sensible generative model,

preferring instead for observed data to “speak for itself”. Herein lies the idea of the boot-

strap (see also Bootstrap: Theory): use the empirical distribution of an observed

sample {x1, . . . ,xm} as the model for X, implicitly assuming that the sample are iid from

some unknown distribution. Then sampling from the empirical distribution (in other words,

11

resampling from the observed data — see Sampling with and without replacement)

gives us a means to simulate approximately from the “true” generative distribution and to

estimate quantities of interest (statistics) associated with it [3]. �

Despite the guarantee of convergence, the crude Monte Carlo approach can require a large

number of samples N to achieve a desired level of accuracy (as measured by the standard

error

√
Var(ˆ̀) or relative error

√
Var(ˆ̀)/` of the estimator ̂̀— estimated via S/

√
N and

S/(ˆ̀
√
N), respectively). This is particularly evident in rare-event estimation problems (see

Stochastic Simulation of Rare Events), for instance when the performance function is

of the form H(X) = I{S(X) > γ}, for some real-valued function S : X → R and (large)

constant γ. Here, the relative error of ̂̀ is given by

√
`(1− `)/N

`
=

1√
N

√
1

`
− 1 ≈

√
1

N`
,

for small `. If ` = 10−6 then to achieve a relative error of 1% would require approximately

N = 1010 samples!

As this simple example indicates, techniques to construct Monte Carlo estimators with

smaller variance can sometimes be essential in practice.

3.2 Variance Reduction Techniques

Variance reduction techniques such as importance sampling, conditional Monte

Carlo, as well as the use of control variates, splitting methods, and quasi Monte Carlo

(see also Quasi-Random Sequences) are commonly used to increase the efficiency over

the crude Monte Carlo approach.

We highlight the use of importance sampling and control variates below.

Example 3.3 (Importance Sampling). Importance sampling (IS) relies on determining

12

a pdf g which is easy to sample from and for which, for every x ∈ X , g(x) = 0 implies

H(x)f(x) = 0. For such a pdf g, it is clear that

` = EfH(X) =

∫
H(x)f(x) dx =

∫
H(x)

f(x)

g(x)
g(x) dx = Eg

[
H(X)

f(X)

g(X)

]
,

so that one can estimate ` unbiasedly via the IS estimator

ˆ̀
IS =

1

N

N∑
i=1

H(X i)
f(X i)

g(X i)
,

where X1, . . . ,XN ∼ g independently. Setting Yi = H(X i)f(X i)/g(X i), approximate

confidence intervals can be constructed in the same way as for crude Monte Carlo.

The quality of an IS pdf g is typically measured by the common variance of the {Yi}.

One can show that the minimum variance IS pdf is given by g∗ ∝ |H|f . In particular, if

H > 0 or H < 0 then g∗ = Hf/`, and the common variance is equal to zero. This theoretical

ideal gives one a clear idea of the desired structure of a “good” IS pdf — note that if one

actually had access to g∗ in the case that H < 0 or H > 0, then the problem of estimation

would be rendered moot since the desired quantity ` would already be known.

The variance minimization approach and the cross-entropy method are two common

techniques used to approximately determine the optimal reference parameter η∗ for a given

parametric family g(·;η) of IS densities [10, 11]. �

Example 3.4 (Control Variates). When estimating an unknown quantity ` = EY , a control

variate is another variable Ỹ whose expectation ˜̀= EỸ is known and for which Y and Ỹ

are correlated.

Given simulated values Y1, . . . , YN and control variates Ỹ1, . . . , ỸN computed from the

13

same simulation run, any estimator of the form

̂̀=
1

N

N∑
i=1

(
Yi − β(Ỹi − ˜̀))

for β ∈ R is unbiased, and the constant β which minimizes the variance of this estimator

can be determined as β∗ = Cov(Y, Ỹ)/Var(Ỹ). Usually β∗ is unknown but can be straight-

forwardly estimated using the sample covariance matrix of the {(Yi, Ỹi)}. �

4 Optimization

Monte Carlo methods are also found in stochastic optimization algorithms [12]. Here we

highlight two well-known approaches, stochastic approximation and simulated annealing.

Other useful techniques include the cross-entropy [1] and splitting [2] methods.

Consider first the noisy optimization setting, for which we wish to solve the minimization

problem minx∈X S(x) for some X ⊆ Rd where S : X → R is an (unknown) objective function

of the form S(x) = ES̃(x, ξ) for some random vector ξ and S̃ is a known real-valued function.

In this setting, S cannot be directly observed, and instead only “noisy” observations S̃ are

available. Classical techniques such as gradient descent are therefore not directly applicable

since ∇S is not available. However, one can still apply the same idea by constructing an

estimator ∇̂S of the gradient. Such methods include finite difference methods, infinitesimal

perturbation analysis, and the score function method; see e.g., [11].

Given a gradient estimator, the stochastic approximation method is the direct analogue

of classical gradient descent to the noisy optimization setting. For each iteration t = 0, 1, . . . ,

steps are taken according to a strictly positive step size sequence β0, β1, . . . in the direction

opposite to the estimated gradient, with the resulting point projected back into the feasible

set X via a projection operator ΠX : Rd → X — typically, y = ΠX (x) is the closest point

14

in X to x according to the Euclidean distance (i.e., y ∈ argminz∈X‖x − z‖2). Thus, the

updating step is captured in the following expression:

xt+1 = ΠX

(
xt − βt∇̂S(xt)

)
.

If the step size sequence satisfies
∑∞

k=1 βk = ∞ and
∑∞

k=1 β
2
k < ∞, then the stochastic

approximation algorithm is guaranteed to converge to a minimizer x∗ of S in the mean-

squared sense provided certain (mild) regularity conditions hold [6].

For stochastic approximation, the objective function S is not directly observable, and

randomness is inherent to the problem. Even when S is directly observable, it can be

beneficial to view the optimization problem as a problem of sampling from a distribution

that is degenerate at the set of minimizers if S. Thinking along these lines, it is natural to

try to construct a sequence of pdfs f1, f2, . . . which degenerates to the uniform distribution

on the set of minimizers of S as t → ∞. If one could sample a corresponding sequence of

points X1,X2, . . . exactly from f1, f2, . . . then the sequence would converge to a solution

to the original problem! This ideal is not realistic, and instead one settles for sampling

approximately from such a sequence, for instance via MCMC.

The well-known example is to take ft(x) ∝ exp(−S(x)/Tt), where T1, T2, . . . is a se-

quence of positive numbers — “temperatures” — decreasing to zero. This is the basis of

simulated annealing. The most common choice for the sequence Tt is to apply a so-called

geometric cooling schedule, for which Tt+1 = βTt for some cooling factor β ∈ (0, 1) and initial

temperature T0 > 0.

The simulated annealing approach can be viewed as a special case of sampling from the

set global maxima of the Boltzmann pdf f(x) ∝ exp(−S(x)). Taking ft ∝ f 1/Tt generalizes

the idea to produce a method for sampling from the set of global maxima of an arbitrary

pdf f .

15

5 Related Articles

See also Stochastic Simulation; Monte Carlo simulation; Monte Carlo Methods;

Monte Carlo Methods, Sequential; Markov Chain Monte Carlo Algorithms; Vari-

ance reduction; Importance sampling including the bootstrap; Bootstrap Infer-

ence; Numerical integration; Monte Carlo Goodness of Fit Tests; Generation of

Random Variables, Computer; Adaptive Monte Carlo Integration.

References

[1] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer. The cross-entropy method

for optimization. In V. Govindaraju and C.R. Rao, editors, Handbook of Statistics,

volume 31:Machine Learning. North Holland, 2011.

[2] Q. Duan and D. P Kroese. Splitting for optimization. Computers & Operations Research,

73:119–131, 2016.

[3] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New

York, 1994.

[4] M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: adaptively setting

path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,

15(1):1593–1623, 2014.

[5] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John

Wiley & Sons, New York, 2011.

[6] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and

Unconstrained Systems. Springer-Verlag, New York, 1978.

16

[7] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random

number generators. ACM Transactions on Mathematical Software, 33(4), 2007. Article

22.

[8] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge University

Press, Cambridge, 2004.

[9] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New

York, second edition, 2004.

[10] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-

proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning.

Springer-Verlag, New York, 2004.

[11] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John

Wiley & Sons, New York, third edition, 2017.

[12] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation,

and Control. John Wiley & Sons, New York, 2003.

17

