Splitting Sequential Monte Carlo for Efficient Unreliability Estimation of Highly Reliable Networks

Radislav Vaisman^a, Dirk P. Kroese^a, Ilya B. Gertsbakh^b

^aSchool of Mathematics and Physics, The University of Queensland, Australia ^bDepartment of Mathematics, Ben-Gurion University, Beer-Sheva, 84105, Israel

Abstract

Assessing the reliability of complex technological systems such as communication networks, transportation grids, and bridge networks is a difficult task. From a mathematical point of view, the problem of estimating network reliability belongs to the #P complexity class. As a consequence, no analytical solution for solving this problem in a reasonable time is known to exist and one has to rely on approximation techniques. In this paper we focus on a well-known sequential Monte Carlo algorithm — Lomonosov's turnip method. Despite the fact that this method was shown to be efficient under some mild conditions, it is known to be inadequate for a stable estimation of the network reliability in a rare-event setting. To overcome this obstacle, we suggest a quite general combination of sequential Monte Carlo and multilevel splitting. The proposed method is shown to bring a significant variance reduction as compared to the turnip algorithm, is easy to implement and parallelize, and has a proven performance guarantee for certain network topologies.

Keywords: Terminal Network Reliability, Permutation Monte Carlo, Multilevel Splitting, Rare Events

Email addresses: r.vaisman@uq.edu.au (Radislav Vaisman),

kroese@maths.uq.edu.au (Dirk P. Kroese), elyager@bezeqint.net (Ilya B. Gertsbakh)

1. Introduction

Nowadays it is hard to underestimate the importance of networks in our life and, as a consequence, a natural question of their reliability arises [1– 5]. Many engineering applications, such as computer and transportation networks, water distribution and gas supply systems, can be modelled via a graph structure, whose components (nodes and edges), are subject to failure. Such networks are often used to model a delivery of some resource or commodity, so one will be generally concerned with the reliability of the entire system. Consequentially, we adopt the following definition of the network reliability problem [6]. Let $G = G(V, E, \mathcal{K})$ be an undirected graph, where V and E are the vertex and edge sets, respectively, and $\mathcal{K} \subseteq V$ is a set of "terminal" nodes. We assume that the vertices never fail, but that the edges are subject to failure. In particular, every $e \in E$ has a corresponding failure probability $0 \leq q_e \leq 1$. An edge can be in an up or down state with probabilities $p_e = 1 - q_e$ and q_e , respectively. Under the above framework we wish to assess the network unreliability, defined as the probability that the terminal set \mathcal{K} is disconnected [7].

The exact solution to the \mathcal{K} -terminal network reliability problem is hard to obtain within reasonable computation time, since this problem belongs to the #P complexity class [8, 9]. This complexity class, introduced by Valiant [10], consists of the set of counting problems that are associated with a decision problem in NP (non-deterministic polynomial time). For example, #SAT is the problem of counting the number of feasible solutions to a satisfiability formula (SAT).

For some #P-complete problems there are known efficient approximations. For example, Karp and Luby [11] introduced a fully polynomial randomized approximation scheme (FPRAS) for counting the solutions of satisfiability formulas in disjunctive normal form (DNF). The DNF counting algorithm allows an efficient solution to the \mathcal{K} -terminal network reliability problem, provided that the list of \mathcal{K} -separating cuts is available [12]; however, the latter is generally expensive to obtain. For the *all-terminal* network reliability case ($\mathcal{K} = V$), an FPRAS was developed by Karger [8]. However, to the best of our knowledge, there exists no FPRAS for estimating the general \mathcal{K} -terminal network reliability case. The current state-of-the-art can deal only with specific graph topologies such as series-parallel and directed acyclic networks [13, 14], or with small-sized graphs. We refer to [7] for further details. Due to the problem's importance, various approximation techniques were proposed [7, 15–19]. For more recent advances in cut based, matrix-based, and linear programming methods, we refer to [20, 21], [22] and [23], respectively. In the stochastic simulation area, see the works of Shafieezadeh and Ellingwood [15], the multilevel splitting algorithms of Botev et al. [24, 25], Walter [26], the similar subset simulation approach of Zuev et al. [27], and the sequential Importance Sampling (SIS) method of L'Ecuyer et al. [28]. The latter generates the link states in a sequential manner, while introducing a smart sampling scheme that approximates a corresponding zero-variance importance sampling distribution. In this paper we focus on Lomonosov's turnip (LT) algorithm [17]. This method is an improvement of the Permutation Monte Carlo (PMC) scheme which was shown to be efficient under some mild conditions. In particular, it brings a significant variance reduction as compared to LT, and has a proven performance guarantee for some network topologies.

We give a brief introduction to PMC and LT in Section 2. Despite the fact that PMC and LT are designed to deal with quite hard network instances, it was shown in [24] that these methods can be very inefficient in a rareevent setting. To overcome the rare-event complication, Botev et al. [24] formulated the network reliability problem as a static rare-event probability estimation problem and employed the Generalized Splitting (GS) algorithm [6, Chapter 14].

The multilevel splitting framework was first used by Kahn and Harris [29] to estimate rare-event probabilities. The main idea is to partition the state space in such a way that the problem becomes one of estimating conditional probabilities that are not rare. The GS algorithm of Botev and Kroese [30] generalizes this to a method able to evaluate a wide range of rare-event estimation problems. For a survey of the general methodology we refer to [31, Chapter 4] and [32, 33].

Inspired by the successful approach of Botev et al. [24], we put the LT method into a sequential Monte Carlo (SMC) framework combined with multilevel splitting [30, 32, 33]. In particular, we propose to combine the very general splitting idea of Kahn and Harris [29] with the LT procedure. Unlike Botev's GS, we do not reformulate the reliability problem, but rather equip the LT algorithm with the corresponding splitting mechanism, thus exploiting the strengths of both methods. The resulting algorithm introduces a significant variance reduction as compared to the basic LT method and has a proven performance guarantee for some networks. Namely, we prove that our method is an FPRAS for special families of graphs. See Section 3 for details.

The rest the paper is organized as follows. In Section 2 we give a brief introduction to the PMC and LT algorithms and show a simple family of networks for which LT's performance is inefficient. In Section 3 we put LT into a quite general SMC framework combined with multilevel splitting. We show that the resulting algorithm can be used to deliver highly accurate estimators and provide an explanation for its efficiency. In Section 4 we present various numerical examples to demonstrate the advantage of the proposed method. Finally, in Section 5 we summarize our findings and discuss possible directions for future research.

2. Permutation Monte Carlo

Below we describe the PMC algorithm of Michael Lomonosov, also called the network evolution process. This method was designed to estimate the reliability of networks with independent components having different failure probabilities. For detailed explanations, see [17] and [18, Chapter 9].

Our setting is as follows. Given a network $G = G(V, E, \mathcal{K})$ where V is the node set, E is the edge set and $\mathcal{K} \subseteq V$ is the terminal set. The edges states are binary; that is, edge e can be in the up or down state with probabilities p_e and $q_e = 1 - p_e$, respectively. The network UP state is defined as the presence of connectivity of all terminal nodes.

The basic idea of PMC is to associate with each edge $e \in E$ an exponentially distributed random "birth time" $\mathcal{T}(e)$ with parameter $\lambda(e)$, such that $\mathbb{P}(\mathcal{T}(e) \leq \tau) = 1 - e^{-\lambda(e)\tau} = p_e$ holds for all $e \in E$ and for an arbitrary chosen time value τ . Let us assume that all the edges are in the *down* state at time zero. Then, an edge e is born at time $\mathcal{T}(e)$; that is, at the time $\mathcal{T}(e)$ it enters the up state and stays there "forever". The probability that e will be "alive" at time τ is $\mathbb{P}(\mathcal{T}(e) \leq \tau) = p_e$. The value of τ can be arbitrary, so for simplicity we put $\tau = 1$ and it follows that $\lambda(e) = -\ln q_e$. If we take a "snapshot" of the state of all edges at time instant $\tau = 1$, we will see the network in the state which is stochastically equivalent to the static picture in which edge e is up or *down* with probability p_e or q_e , respectively.

Suppose that |E| = n and consider the ordering (permutation) of the edges $\boldsymbol{\pi} = (e_1, \ldots, e_n)$, according to their birth times sorted in increasing

order. Since the birth times are exponentially distributed, it holds that

$$\mathbb{P}(\mathbf{\Pi} = \boldsymbol{\pi}) = \prod_{t=1}^{n} \frac{\lambda(e_t)}{\Lambda(E_{t-1})},\tag{1}$$

where $E_t = E \setminus \{e_1, \ldots, e_t\}$ for $1 \leq t \leq n-1$, and $\Lambda(E_t) = \sum_{e \in E_t} \lambda(e)$ [17, 34].

The first index $1 \leq \mathsf{a}(\pi) \leq n$ of the edge permutation π for which the sub-graph of G defined by $G(V, (e_1, \ldots, e_{\mathsf{a}(\pi)}), \mathcal{K})$ is in the UP state, is called an anchor of π . That is, $\mathsf{a}(\pi) = \min\{t : G(V, (e_1, \ldots, e_t), \mathcal{K}) \text{ is } UP\}$. Let $\xi_1 + \cdots + \xi_t$ be the birth time of edge e_t in π for $1 \leq t \leq n$. Then, given the edge permutation $\Pi = \pi$, the probability that the network is in the UP state is given by

$$\mathbb{P}\left(\sum_{t=1}^{\mathsf{a}(\boldsymbol{\pi})} \xi_t \leqslant 1 \,\middle|\, \boldsymbol{\Pi} = \boldsymbol{\pi}\right) = \operatorname{Conv}_{1 \leqslant t \leqslant \mathsf{a}(\boldsymbol{\pi})} \left\{1 - \mathrm{e}^{-\Lambda(E_t)}\right\},\,$$

where Conv stands for exponential convolution. The network DOWN and UP probabilities denoted by \bar{r} and r, respectively, can be expressed as

$$\bar{r} = \sum_{\boldsymbol{\pi}} \mathbb{P}(\boldsymbol{\Pi} = \boldsymbol{\pi}) \cdot \mathbb{P}\left(\sum_{t=1}^{\mathsf{a}(\boldsymbol{\pi})} \xi_t > 1 \mid \boldsymbol{\Pi} = \boldsymbol{\pi}\right),$$
(2)

and

$$r = \sum_{\boldsymbol{\pi}} \mathbb{P}(\boldsymbol{\Pi} = \boldsymbol{\pi}) \cdot \mathbb{P}\left(\sum_{t=1}^{\mathsf{a}(\boldsymbol{\pi})} \xi_t \leqslant 1 \mid \boldsymbol{\Pi} = \boldsymbol{\pi}\right),$$

respectively, where the summation is over all permutations $\boldsymbol{\pi}$. Since the network unreliability and reliability in (2) is expressed as an expectation, it can be estimated without bias as the sample average of conditional probabilities, $\mathbb{P}(\xi_1 + \xi_2 + \cdots + \xi_{\mathsf{a}(\Pi)} > 1 | \boldsymbol{\Pi})$ over an independent sample of trajectories $\{\boldsymbol{\Pi}^{(1)}, \boldsymbol{\Pi}^{(2)}, \ldots, \boldsymbol{\Pi}^{(N)}\}$. This procedure is summarized in Algorithm 2.1.

Algorithm 2.1 (PMC Algorithm For Unreliability Estimation). Given a network $G = G(V, E, \mathcal{K})$, edge failure probabilities $(q_e, e \in E)$, and sample size N, execute the following steps.

1. (Initialization) Set $S \leftarrow 0$. For each edge $e \in E$, set $\lambda(e) \leftarrow -\ln(q_e)$ and $k \leftarrow 0$.

- 2. (Permutation Generation) Set $k \leftarrow k+1$ and sample $\Pi^{(k)} = \left(e_1^{(k)}, \ldots, e_n^{(k)}\right)$ using (1).
- 3. (Find the Anchor) Calculate

$$\mathbf{a}\left(\mathbf{\Pi}^{(k)}\right) = \min\left\{t : G\left(V, \left(e_1^{(k)}, \dots, e_t^{(k)}\right), \mathcal{K}\right) \text{ is } UP\right\}.$$

4. (Calculation of Convolution) Set:

$$\begin{aligned} R^{(k)} &\leftarrow 1 - \operatorname{Conv}_{1 \leq t \leq \mathsf{a}\left(\mathbf{\Pi}^{(k)}\right)} \left\{ 1 - e^{-\Lambda\left(E_{t}^{(k)}\right)} \right\}, \\ where \ E_{t}^{(k)} &= E \setminus \left\{ e_{1}^{(k)}, \dots, e_{t}^{(k)} \right\} \text{ for } 1 \leq t \leq \mathbf{\Pi}^{(k)}, \text{ and } \Lambda\left(E_{t}^{(k)}\right) = \\ \sum_{e \in E_{t}^{(k)}} \lambda(e), \text{ and set } S \leftarrow S + R^{(k)}. \end{aligned}$$

5. (Stopping Condition) If k = N, return S/N as unbiased estimator of \bar{r} ; otherwise, go to Step 2.

The main issue with the PMC algorithm, is its non-uniform trajectory generation with respect to their length. Namely, shorter trajectories, which have a small anchor, have a bigger chance to be generated during the evolution process. However, long trajectories will generally have higher weights in the estimator. This issue causes a considerable increase in PMC estimator variance.

Lomonosov tried to resolve this issue by equipping Algorithm 2.1 with a so-called closure (merging) operation. The closure of a subset $E' \subseteq E$ consists of E' and all edges of G whose vertices lie in the same component of the spanning subgraph G(V, E') [17]. The closure operation is essentially an elimination of edges that do not change the already born connected component during the evolution process [17]. With this addition, the PMC algorithm has a higher chance of generating long trajectories. The corresponding estimator was shown to be unbiased and its relative error ([35, Chapter VI]) is uniformly bounded with respect to the $\lambda(e)$ values.

To implement the merging process, all that needs to be done after each birth of an edge, is to look for those edges whose nodes belong to the already existing component. These edges are joined to this component and excluded from further considerations as irrelevant. This combination of merging and the evolution process causes the reliability estimator to become less variable and is called the LT algorithm [17]. Algorithm 2.2 (Lomonosov's Turnip). The LT algorithm differs from the PMC Algorithm 2.1 only at Step 3. Recall that at each iteration $t = 1, \ldots, N$, we are given an edge permutation Π_t . All we need to do now is to eliminate the redundant edges using the closure operation and find the corresponding anchor. All other steps remain the same.

Despite Lomonosov's theoretical results, Algorithm 2.2 can exhibit a very poor performance in rare-event settings [24]. Under such a setting, a crucial efficiency parameter of the estimator is the coefficient of variation (CV). The CV of an estimator $\hat{z} = N^{-1} \sum_{i=1}^{N} Z_i$ where the $\{Z_i\}$ are independent copies of a random variable Z, is defined by $CV = \sqrt{Var(Z)}/\mathbb{E}(Z)$. A Monte Carlo algorithm is called efficient if the CV is bounded by a polynomial in input size [11]. From the practical point of view, CV controls the number of samples, N, that are required to get a certain relative error (RE), which is defined by $\sqrt{Var(\hat{z})}/\mathbb{E}(\hat{z}) = CV/\sqrt{N}$. We next consider an example for which both the PMC Algorithm 2.1 and the LT Algorithm 2.2 are inefficient.

Example 2.1 (The "bad" example). Consider a simple network $\mathfrak{S}(n)$ with n+2 nodes and 2n+1 edges presented in Figure 1. The terminal set consists of two vertices, u and v. For this particular network topology, the closure operation has no effect, since during the edge birth process no edge can be merged and thus the LT algorithm turns into the regular PMC.

Figure 1: A simple network $\mathfrak{S}(n)$ with n+2 nodes, 2n+1 edges, and $\mathcal{K} = \{u, v\}$.

Suppose, for example, that each edge fails with same probability q = 1-p. Then, the u - v network unreliability \bar{r} is given by $(1-p)(1-p^2)^n$. We next consider the distribution of the anchor for this particular network structure. Let $T = \mathbf{a}(\mathbf{\Pi})$ be the random variable that stands for the anchor. The LT algorithm returns T = 1 at Step 3 if the edge between u and v is the first one that enters the up state; that is, if $e_{u,v}$ is born first. The probability that the birth process stops after the birth of the t-th edge (T = t), given that it did not stop before is equal to

$$\mathbb{P}(T = t \mid T > t - 1) = \frac{t}{2n + 2 - t}, \quad t = 1, \dots, n + 1.$$

From the above equation we obtain

$$\mathbb{P}(T=t) = \mathbb{P}(T=t \mid T > t-1) \prod_{j=1}^{t-1} (1 - \mathbb{P}(T=j \mid T > j-1))$$
(3)
$$= \frac{t}{2n+2-t} \prod_{j=1}^{t-1} \left(1 - \frac{j}{2n+2-j}\right), \quad t = 1, \dots, n+1.$$

The expression for $\mathbb{P}(T = t)$ in (3) allows us to analyse the performance of LT for our simple graph model. In particular, we consider the conditional probability

$$\mathbb{P}(\xi_1 + \dots + \xi_T > 1 \mid T = t), \tag{4}$$

where ξ_1, ξ_2, \ldots are independent, $\xi_t \sim \mathsf{Exp}(\Lambda(E_t))$ for $t = 1, \ldots, T$, where $\lambda(e) = -\ln q$ for all $e \in E$. Note that since $\Lambda(E_t) = (2n+2-t) \ln q$, the conditional probability (4) only depends on t, so, with a slight abuse of notation, we write this conditional probability as $\mathsf{Conv}(t)$. From the unbiasedness of the LT algorithm it holds that $\mathbb{E}(\mathsf{Conv}(T)) = \sum_{t=1}^{n+1} \mathsf{Conv}(t) \cdot \mathbb{P}(T=t) = \bar{r} = (1-p)(1-p^2)^n$, where \bar{r} is the network unreliability. The second moment of $\mathsf{Conv}(T)$, that is, $\sum_{t=1}^{n+1} \mathsf{Conv}(t)^2 \cdot \mathbb{P}(T=t)$, does not reduce to a simple expression, but can be readily calculated.

We evaluated the values of Conv(t) and $\mathbb{P}(T = t)$ for $t = 1, \ldots, 51$. The left panel of Figure 2 shows the CV for simple $\mathfrak{S}(n)$ graphs of different sizes $(1 \leq n \leq 50)$, and different edge *down* probabilities q, namely, $q = 10^{-1}$ and $q = 10^{-3}$. Note that the CV shows a clear exponential growth as a function of n.

For example, the CV for p = 0.9 and n = 50 is about 10⁶. So, in order to obtain a modest RE of say 10%, the required sample size N in Algorithm 2.2 should satisfy $CV/\sqrt{N} = 0.1 \Rightarrow N \approx 10^{14}$. Such sample size is clearly

Figure 2: Left panel: logarithmically scaled CV of LT as a function of n for $\mathfrak{S}(n)$ networks. Right panel: Conv(t) and $\mathbb{P}(T = t)$ as a function of t for $\mathfrak{S}(50)$ and p = 0.9. The true unreliability of 8.66×10^{-38} is given by the horizontal line in the upper plot.

unmanageable from the computation time point of view thus making the LT algorithm impractical.

To get a more intuitive understanding about the reason of LT's inefficiency, consider the unreliability estimation for the simple graph $\mathfrak{S}(50)$ and p = 0.9. The graph unreliability is given by $\bar{r} = (1-p)(1-p^2)^n = (1-0.9)(1-0.9^2)^{50} \approx 8.66 \times 10^{-38}$. However, when running the LT algorithm, we usually get an estimate of order 10^{-43} , which is a clear underestimation.

We next explain how this phenomenon happens as a result of the rareevent involvement. The right panel of Figure 2 shows the convolution $\operatorname{Conv}(t)$ and the probability $\mathbb{P}(T = t)$ as a function of anchor $1 \leq t \leq 51$. From Figure 2 (right panel), we can see that the long trajectories contribute the most mass to the estimator; but these long trajectories appear with very small probabilities. For example, we found that the average trajectory length is about 11.69. However, the trajectories that contribute most to the estimator are of length greater than 40. These trajectories are generated with a probability of less than 10^{-6} . This issue can be clearly observed in the upper plot of the right panel of Figure 2 by noting that the intersection of the horizontal line (which represents the true unreliability) and the convolution curve, occurs near t = 40. Long trajectories are generated with very small probabilities, as can be verified from Figure 2 (bottom plot of the right panel) and thus the resulting estimator tends to underestimate the true value of interest. To overcome the problem presented in the above example, we propose to combine the LT algorithm with the splitting method, which was proved to be very useful when working in a rare-event setting. To do so, we first give a short introduction to a general SMC algorithm and show how it can be combined with the splitting framework.

3. The Splitting Sequential Monte Carlo

We start by examining a quite generic setting. Consider a random variable (vector) **X** taking values in a set \mathcal{X} . A general objective of Monte Carlo simulation is to calculate $\ell = \mathbb{E}_f(H(\mathbf{X}))$, where $H : \mathcal{X} \to \mathbb{R}$ is a real-valued function. The Crude Monte Carlo (CMC) estimator of ℓ is given by

$$\widehat{\ell} = \frac{1}{N} \sum_{k=1}^{N} H\left(\mathbf{X}^{(k)}\right),$$

where $\mathbf{X}^{(k)}$ for k = 1, ..., N, are independent copies of a random variable \mathbf{X} generated from $f(\mathbf{x})$.

In this paper we consider the SMC framework [36]. Suppose that the vector $\mathbf{X} \in \mathcal{X}$ is decomposable and that it can be of different length $T \in \{1, \ldots, n\}$, where T is a stopping time of \mathbf{X} 's generation process. Thus, \mathbf{X} can be written as $\mathbf{X} = (X_1, X_2, \ldots, X_T)$, where for each $t = 1, \ldots, T, X_t$ can be multidimensional. We assume that \mathbf{X} can be constructed sequentially such that its probability density function (PDF) $f(\mathbf{x})$ constitutes a product of conditional PDFs:

$$f(\mathbf{x}) = f_1(x_1) f_2(x_2 \mid x_1) \cdots f_t(x_t \mid x_1, \dots, x_{t-1}), \text{ when } |\mathbf{x}| = t, \ t = 1, \dots, n,$$

where $|\mathbf{x}|$ is the length of \mathbf{x} .

This setting frequently occurs in practice. For example, consider a coin that is tossed repeatedly until the first "success" (1) appears or until n tosses have been made. The sample space is equal to

$$\mathcal{X} = \{(1), (0,1), (0,0,1), \dots, (\underbrace{0,\dots,0}_{n-1 \text{ times}} 1), (\underbrace{0,\dots,0}_{n \text{ times}})\}.$$

That is, the samples have different lengths: t = 1, 2, 3, ..., n. Let $\mathcal{X}_t = \{\mathbf{x} \in \mathcal{X} : |\mathbf{x}| = t\}$ be the set of all samples of length t = 1, 2, ..., n. Then, the

sets $\mathcal{X}_1, \ldots, \mathcal{X}_n$ define a partition of \mathcal{X} ; that is

$$\mathcal{X} = \bigcup_{t=1}^{n} \mathcal{X}_t, \quad \mathcal{X}_{t_1} \cap \mathcal{X}_{t_2} = \emptyset \quad \text{for } 1 \leq t_1 < t_2 \leq n.$$

Since we are working under the SMC framework, the generation of $\mathbf{X} = (X_1, \ldots, X_T) \in \mathcal{X}_T$, is sequential in the following sense. We start from the "empty" $\mathbf{X} = ()$. Then X_1 is sampled from $f_1(x_1)$ and at each step $t \ge 2$, we sample X_t from $f_t(x_t \mid x_1, \ldots, x_{t-1})$ until the stopping time T that is determined from the generated X_t 's. This procedure terminates at time $1 \le T \le n$ if $\mathbf{X} \in \mathcal{X}_T$. The above process is summarized in Algorithm 3.1.

Algorithm 3.1 (Crude Sequential Monte Carlo (CSMC)). Given the density $f(\mathbf{x}) = f_1(x_1)f_2(x_2 \mid x_1) \cdots f_t(x_t \mid x_1, \dots, x_{t-1})$, $\mathbf{x} \in \mathcal{X}_t$, $t = 1, \dots, n$, and $H : \mathcal{X} \to \mathbb{R}$, output Z — an unbiased estimator of $\mathbb{E}_f(H(\mathbf{X}))$.

- 1. (Initialization) Set $t \leftarrow 0$ and $\mathbf{X} \leftarrow ()$.
- 2. (Simulate and Update) Set $t \leftarrow t+1$, sample $X_t \sim f_t(x_t \mid X_1, \ldots, X_{t-1})$, and set $\mathbf{X} \leftarrow (X_1, \ldots, X_{t-1}, X_t)$.
- 3. (Stopping Condition) If T = t (the stopping condition which can be determined from $\mathbf{X} = (X_1, \ldots, X_t)$), output $Z \leftarrow H(\mathbf{X})$; otherwise, go to Step 2.

Remark 3.1 (LT Algorithm 2.2 under the SMC Framework). To see that the PMC and the LT Algorithms 2.1 and 2.2 are aligned with the SMC framework described above, let $\mathbf{X} = (\Pi_1, \ldots, \Pi_T)$, with $T = \mathsf{a}(\Pi)$, and

$$H(\mathbf{x}) = 1 - \operatorname{Conv}_{1 \leq t \leq T} \left\{ 1 - e^{-\Lambda(E_i)} \right\}.$$

Moreover, $f(\mathbf{x})$ is distributed according to (1), which is of the product form

$$f(\mathbf{x}) = \prod_{j=1}^{t} f_j, \quad 1 \leqslant t \leqslant n,$$

where f_j is defined by $f_j(\Pi_j = e_j \mid \Pi_1 = e_1, \dots, \Pi_{j-1} = e_{j-1}) = \frac{\lambda(e_j)}{\Lambda(E_{j-1})}$.

For the forthcoming discussion, it will be convenient to define an event

{the SMC generation process did not stop at steps $1, \ldots, t$ } := {T > t}.

Figure 3: SMC process.

The **X** generation stochastic process can be visualized using Figure 3. A random walk starts from the root of the tree $\{T > 0\}$ and ends at one of tree leaves $\{T = 1\}, \ldots, \{T = n\}$.

We next proceed with a brief introduction to multilevel splitting [6, 31, 33] and show how the latter can be combined with the general CSMC Algorithm 3.1 to solve the rare-event problem in Example 2.1. The splitting idea is straightforward. Instead of running a single sampling process, one launches a few processes in parallel. This simple modification is very beneficial as we show in the illustrative Example 3.1.

Example 3.1 (Splitting Example). Consider the SMC process tree in Figure 3 and suppose for simplicity that for t = 1, ..., n - 1,

$$\mathbb{P}(T = t \mid T > t - 1) = 1 - \mathbb{P}(T > t \mid T > t - 1) = 1/2,$$

and $\mathbb{P}(T = n \mid T > n - 1) = 1$. We start a single walk from the tree root which ends at some leaf $\{T = t\}$ for t = 1, ..., n. Note that the probability of reaching the last leaf in the tree is equal to $\mathbb{P}(T = n) = 2^{-(n-1)}$, and that we already encountered the similar setting in Example 2.1, in which we had to deal with long trajectories that are generated with very small probabilities. Consequently, we are interested in a different sampling process that overcomes the tiny $2^{-(n-1)}$ probability and hence the rare-event setting. In other words, we would like to increase the probability of sampling low tree levels.

Let us define some budget $B \in \mathbb{N} \setminus \{0\}$ and launch B parallel walks (trajectories), from the tree root. At each step $t = 1, \ldots, n-1$, we detect the trajectories that "finished" their execution, that is, they are at node $\{T = t\}$. We are interested, at each level t, to keep B trajectories "alive", so we duplicate some of the paths at the $\{T > t\}$ node and continue with B trajectories, abandoning the "finished" ones. The latter is called a trajectory splitting. This simple mechanism allows the process to reach $\{T = n\}$ with reasonably high probability, while using a relatively small budget B which can be logarithmic in the tree height. The mathematics is as follows. Note that the probability that this splitting process reaches the level t given that it reached level t-1 is $\mathbb{P}(T = t \mid T > t-1) = 1-1/2^B$, and as a consequence, the probability to reach $\{T = n\}$ is equal to

 \mathbb{P} (The splitting reaches the $\{T = n\}$ leaf) = $(1 - 1/2^B)^{n-1}$.

We conclude the above discussion with a crucial observation: the choice of $B = \lceil \log_2(n-1) \rceil$ results in

 $\mathbb{P}\left(\text{The process reaches } \{T=n\}\right) \ge (1-1/2^{\log_2(n-1)})^{n-1} \to \mathrm{e}^{-1} \quad \text{as } n \to \infty.$

Example 3.1 implies that the splitting idea can be used to improve the sampling of rare (long) trajectories under the SMC framework. We next proceed with our main contribution — a general algorithm that combines the splitting mechanism and the CSMC Algorithm 3.1. The Splitting Sequential Monte Carlo (SSMC) algorithm is summarized in Algorithm 3.2.

Algorithm 3.2 (Splitting Sequential Monte Carlo (SSMC)). Given the density $f(\mathbf{x}) = f_1(x_1)f_2(x_2 | x_1)\cdots f_t(x_t | x_1,\ldots,x_{t-1})$, for $\mathbf{x} \in \mathcal{X}_t$, $1 \leq t \leq n, H : \mathcal{X} \to \mathbb{R}$, and a budget $B \in \mathbb{N} \setminus \{0\}$, output C — an unbiased estimator of $\mathbb{E}_f(H(\mathbf{X}))$.

1. (Initialization) Set $t \leftarrow 0$, $P_t \leftarrow 1$ — an estimator of $\mathbb{P}(T > t)$, $C \leftarrow 0$, and define

$$\mathcal{W}^{(t)} = \left\{ \mathbf{X}_1^{(t)}, \dots, \mathbf{X}_B^{(t)} \right\},$$

where $\mathbf{X}_{j}^{(t)} \leftarrow ()$ for $j = 1, \ldots, B$, which we call the "working" set, because it contains unfinished trajectories.

2. (Simulate and Update) Set $t \to t+1$. For each $\mathbf{X} = (X_1, \dots, X_{t-1}) \in \mathcal{W}^{(t-1)}$, sample

$$X_t \sim f_t(x_t \mid X_1, \dots, X_{t-1}),$$

and update: $\mathbf{X} \leftarrow (X_1, \ldots, X_t)$. Update the "finished" and "working" sets:

$$\mathcal{F}^{(t)} \leftarrow \left\{ \mathbf{X} \in \mathcal{W}^{(t-1)} : \mathbf{X} \in \mathcal{X}_t \right\}, \quad B_t \leftarrow \left| \mathcal{F}^{(t)} \right|, \\ \mathcal{W}^{(t)} \leftarrow \left\{ \mathbf{X} \in \mathcal{W}^{(t-1)} : \mathbf{X} \notin \mathcal{X}_t \right\}, \quad B'_t \leftarrow \left| \mathcal{W}^{(t)} \right|$$

If $B_t = 0$, go to Step 2; otherwise, set

$$C_t \leftarrow P_{t-1} \frac{1}{B} \sum_{\mathbf{X} \in \mathcal{F}^{(t)}} H(\mathbf{X}), \quad C \leftarrow C + C_t, \quad P_t \leftarrow P_{t-1} \frac{B'_t}{B}.$$

- 3. (Stopping Condition) If $B'_t = 0$, output C as an estimator of $\mathbb{E}_f(H(\mathbf{X}))$.
- 4. (Splitting) Insert K_j copies of each $\mathbf{X}_j \in \mathcal{W}^{(t)}$ into $\mathcal{W}^{(t)}$, where K_j satisfies

$$K_j = \lfloor B/B'_t \rfloor + L_j,$$

and $L_j \sim \text{Ber}(0.5)$ conditional on $\sum_{s=1}^{B'_t} L_s = B \mod B'_t$. Go to Step 2.

The use of SSMC Algorithm 3.2 for network reliability estimation is as follows.

Algorithm 3.3 (The Split-Turnip (ST)). Given a network $G = G(V, E, \mathcal{K})$, edge failure probabilities $(q_e, e \in E)$, a budget $B \in \mathbb{N} \setminus \{0\}$, and a sample size N, execute the following steps.

- 1. (Initialization) Define the sample space \mathcal{X} , its partition $\mathcal{X}_1, \ldots, \mathcal{X}_n$, the function $H(\mathbf{x})$ and the PDF $f(\mathbf{x})$ according to Remark 3.1. Set $k \leftarrow 0$ and $S \leftarrow 0$.
- 2. (Apply SSMC Algorithm) Set $k \leftarrow k+1$ and apply Algorithm 3.2 with parameters f, H and B, to obtain an estimator $C^{(k)}$ of the unreliability and set $S \leftarrow S + C^{(k)}$.
- 3. (Stopping Condition) If k = N, return S/N as unbiased estimator of \bar{r} ; otherwise, go to step 2.

Remark 3.2 (Computational Complexity). Suppose that the complexity of calculating the exponential convolution is given by $\mathcal{O}(\text{Cnv})$. Note that the LT method requires $\mathcal{O}(|E|)$ time to produce a random permutation and find its anchor, so its overall complexity is $\mathcal{O}(N|E|\text{Cnv})$. On the other hand, the ST method calculates the convolution at most B|E| times during a single run. Consequently, the ST algorithm complexity is equal to $\mathcal{O}(NB|E|\text{Cnv})$, that is, ST is more expensive than LT in the order of the budget B. In this paper, we use the matrix exponential algorithm, the so-called scaling and squaring of Higham [37], which runs in $\mathcal{O}(n^3)$ time. There are many ways to calculate the convolution of exponential random variables [38], however, we use Higham's algorithm because of its stability [24].

We next proceed with the analysis of the SSMC Algorithm 3.2.

3.1. The Analysis

Theorem 3.1 (Unbiased estimator). The SSMC Algorithm 3.2 outputs an unbiased estimator; that is, it holds that

$$\mathbb{E}(C) = \mathbb{E}_f\left(H(\mathbf{X})\right).$$

Proof: To start with, recall that $\mathcal{X}_1, \ldots, \mathcal{X}_n$ is a partition of the entire sample space \mathcal{X} , so by conditioning on T we arrive at

$$\mathbb{E}_{f}\left(H\left(\mathbf{X}\right)\right) = \sum_{t=1}^{n} \mathbb{E}_{f}\left(H\left(\mathbf{X}\right) \mid T=t\right) \mathbb{P}(T=t).$$

With the above equation in mind, it will be enough to prove that for all t = 1, ..., n it holds that

$$\mathbb{E}(C_t) = \mathbb{E}\left(P_{t-1}\frac{1}{B}\sum_{\mathbf{X}\in\mathcal{F}^{(t)}}H(\mathbf{X})\right) = \mathbb{E}_f(H(\mathbf{X}) \mid T=t)\mathbb{P}(T=t).$$

To prove this, we will need the following.

1. Note that the samples in the $\mathcal{F}^{(t)}$ set are clearly dependent, but have the same distribution. Hence, it holds that

$$\mathbb{E}\left(\sum_{\mathbf{X}\in\mathcal{F}^{(t)}}H(\mathbf{X})\right) \underbrace{=}_{\left|\mathcal{F}^{(t)}\right|=B_{t}}B_{t}\mathbb{E}_{f}\left(H(\mathbf{X})\mid T=t\right).$$

2. From the well-known result of unbiasedness of basic multilevel splitting estimator [6, 30], it holds that

$$\mathbb{E}\left(P_{t-1}\frac{B_t}{B}\right) = \mathbb{E}\left(\frac{B_t}{B}\prod_{j=1}^{t-1}\frac{|\mathcal{W}^{(j)}|}{B}\right) = \mathbb{E}\left(\frac{B_t}{B}\prod_{j=1}^{t-1}\frac{B'_j}{B}\right) = \mathbb{P}(T=t).$$
 (5)

We conclude the proof by noting that

(5)

$$\mathbb{E}(C_t) = \mathbb{E}\left(P_{t-1}\frac{1}{B}\sum_{\mathbf{X}\in\mathcal{F}^{(t)}}H(\mathbf{X})\right) = \mathbb{E}\left[\frac{1}{B}\mathbb{E}\left(P_{t-1}\sum_{\mathbf{X}\in\mathcal{F}^{(t)}}H(\mathbf{X}) \mid B_1,\dots,B_t\right)\right]$$
$$\underset{P_{t-1}=\prod_{j=1}^{t-1}\frac{B_j}{B}}{=}\mathbb{E}\left[P_{t-1}\frac{1}{B}\mathbb{E}\left(\sum_{\mathbf{X}\in\mathcal{F}^{(t)}}H(\mathbf{X}) \mid B_1,\dots,B_t\right)\right]$$
$$\underset{(5)}{=}\mathbb{E}\left[P_{t-1}\frac{B_t}{B}\mathbb{E}_f\left(H(\mathbf{X}) \mid T=t\right)\right] = \mathbb{E}_f\left(H(\mathbf{X}) \mid T=t\right)\mathbb{E}\left[P_{t-1}\frac{B_t}{B}\right]$$
$$\underset{=}{=}\mathbb{E}_f\left(H\left(\mathbf{X}\right) \mid T=t\right)\mathbb{P}(T=t).$$

Although it is generally hard to analyse the efficiency of SSMC for a given problem in terms of RE, Theorem 3.2 provides performance guaranties under some simplified assumptions. However, it is important to note that Theorem 3.1 holds for general SMC procedures which can be presented in the form of CSMC Algorithm 3.1.

Theorem 3.2 (Efficiency of SSMC Algorithm 3.2). Suppose that the following holds for all t = 1, ..., n.

- 1. For t = 1, ..., n, $f_t(x_t \mid x_1, ..., x_{t-1}) = p_t$ (constant) for all $\mathbf{x} = (x_1, ..., x_{t-1}) \in \mathcal{X}_{t-1}$, and $p_t = \mathcal{O}(1/\mathcal{P}_n)$, where \mathcal{P}_n is a polynomial in n.
- 2. $H(\mathbf{x}) = H_t$ (constant) for all $\mathbf{x} \in \mathcal{X}_t$, t = 1, ..., n.

Then, under above assumptions, the SSMC Algorithm 3.2 is efficient [11]; that is, it holds that $CV = \sqrt{Var(C)}/\mathbb{E}(C)$ is upper-bounded by a polynomial in n.

Proof: The analysis is by obtaining the lower and the upper bounds for the first and the second moments of C, respectively.

1. First moment. Since $H(\mathbf{x}) = H_t$ for $\mathbf{x} \in \mathcal{X}_t$, it holds that

$$\mathbb{E}_f(H(\mathbf{X}) \mid T = t) = H_t, \quad t = 1, \dots, n.$$

Combining this with Theorem 3.1 yields

$$\mathbb{E}(C) = \sum_{t=1}^{n} \mathbb{E}_f(H(\mathbf{X}) \mid T=t) \mathbb{P}(T=t) = \sum_{t=1}^{n} H_t(1-p_t) \prod_{j=1}^{t-1} p_j.$$

Hence,

$$\left[\mathbb{E}(C)\right]^{2} = \left(\sum_{t=1}^{n} H_{t}(1-p_{t}) \prod_{j=1}^{t-1} p_{j}\right)^{2} \geqslant \sum_{t=1}^{n} H_{t}^{2}(1-p_{t})^{2} \prod_{j=1}^{t-1} p_{j}^{2}.$$
 (6)

2. Second moment. Since the "entrance" states $\{X_1^{(t)}, \ldots, X_B^{(t)}\}$ are independent for $t = 1, \ldots, n$, the random variables B_t and B'_t are binomially distributed according to $Bin(B, p_t)$ and $Bin(B, 1-p_t)$, respectively. Hence, the second moments of B_t/B and B'_t/B are given by

$$\mathbb{E} \left(B_t / B \right)^2 = \left(p_t (1 - p_t) / B + p_t^2 \right), \tag{7}$$

and

$$\mathbb{E} \left(B'_t / B \right)^2 = \left(p_t (1 - p_t) / B + (1 - p_t)^2 \right), \tag{8}$$

respectively. Let $p_{\min} = \min_{1 \le t \le n} \{p_t\}$, and note that

$$\mathbb{E}(C^{2}) = \mathbb{E}\left(\sum_{t=1}^{n} H_{t}(1-P_{t})\prod_{j=1}^{t-1}P_{j}\right)^{2} \underbrace{\leqslant}_{\text{Jensen inequality [34]}}$$
(9)
$$\leqslant n \sum_{t=1}^{n} H_{t}^{2} \mathbb{E}\left((1-P_{t})\prod_{j=1}^{t-1}P_{t}\right)^{2} = \sum_{t=1}^{n} H_{t}^{2} \mathbb{E}\left(\frac{B_{t}}{B}\prod_{j=1}^{t-1}\frac{B_{j}}{B}\right)^{2}$$
$$\underbrace{=}_{(7, 8)} n \sum_{t=1}^{n} H_{t}^{2} \left(\frac{p_{t}(1-p_{t})}{B} + (1-p_{t})^{2}\right)\prod_{j=1}^{t-1} \left(\frac{p_{j}(1-p_{j})}{B} + p_{j}^{2}\right)$$

$$\begin{split} &= n \sum_{t=1}^{n} H_{t}^{2} (1-p_{t})^{2} \left(1 + \frac{p_{t}}{B(1-p_{t})}\right) \prod_{j=1}^{t-1} \left(p_{j}^{2} \left(1 + \frac{1-p_{j}}{Bp_{j}}\right)\right) \\ &\leqslant n \left(1 + \frac{1}{B}\right) \sum_{t=1}^{n} H_{t}^{2} (1-p_{t})^{2} \prod_{j=1}^{t-1} p_{j}^{2} \prod_{j=1}^{t-1} \left(1 + \frac{1}{Bp_{\min}}\right) \\ &\leqslant 2n \left(1 + \frac{1}{Bp_{\min}}\right)^{n} \sum_{t=1}^{n} H_{t}^{2} (1-p_{t})^{2} \prod_{j=1}^{t-1} p_{j}^{2} \\ &\underset{B \geqslant \lceil n/p_{\min} \rceil}{\leqslant} 2ne \sum_{t=1}^{n} H_{t}^{2} (1-p_{t})^{2} \prod_{j=1}^{t-1} p_{j}^{2}, \end{split}$$

where the last inequality follows from the well-known identity:

$$(1+1/n)^n \leqslant \mathbf{e}, \quad n > 0.$$

Note that $B = \lceil n/p_{\min} \rceil$ is a polynomial in *n*. We complete the proof of the theorem by combining (6) and (9) and arriving at

$$CV \leqslant \frac{2ne\sum_{t=1}^{n} H_t^2 (1-p_t)^2 \prod_{j=1}^{t-1} p_j^2}{\sum_{t=1}^{n} H_t^2 (1-p_t)^2 \prod_{j=1}^{t-1} p_j^2} = 2ne.$$

Remark 3.3 (Practical Considerations). From practical point of view, Theorem 3.2 means the following. In order to satisfy the first condition, the ST algorithm user needs to ensure that her network meets a special structural requirement. In particular, for any edge permutation (birth times), the network should satisfy the condition that the probability to enter the UPstate at next edge birth is not very small. For example, the parallel system $\mathfrak{S}(n)$ from Example 2.1 or a cycle graph with two adjacent terminals satisfies this condition. The second condition is simple and is satisfied by equal edge failure probabilities.

We already saw that both PMC Algorithm 2.1 and the LT Algorithm 2.2 can be viewed as CSMC Algorithm 3.1. To see the merit of using SSMC for network reliability estimation, consider an immediate efficiency result for $\mathfrak{S}(n)$ networks which is presented in Corollary 3.1.

Corollary 3.1 (Efficiency of SSMC for $\mathfrak{S}(n)$ networks). The PMC Algorithm 2.1 combined with SSMC Algorithm 3.2, is an FPRAS for networks $\mathfrak{S}(n), n > 0$.

Proof: The proof is an immediate consequence of Theorem 3.2. Recall the Example 2.1 and note that

$$\begin{split} \mathbb{P}(\mathbf{a}(\mathbf{\Pi}) &= t \mid \mathbf{a}(\mathbf{\Pi}) > t - 1) = \mathbb{P}(T = t \mid T > t - 1) \\ &= \frac{t}{2n + 2 - t} = \mathcal{O}\left(\frac{1}{2n + 1}\right), \end{split}$$

for each t = 1, ..., n + 1. Moreover, since for the $\mathfrak{S}(n)$ network $p_e = p$ for all $e \in E$, the function $H(\mathbf{x}) = H_t = \text{Conv}(t)$ is constant in \mathcal{X}_t . We conclude that the first and the second conditions of Theorem 3.2 holds, thus completing the proof.

It is important to note that ST is an FPRAS for any family of graphs that satisfies the conditions of Theorem 3.2. Although these families are not "very interesting" from a practical point of view, our numerical results indicate that ST introduces an excellent performance for quite general graph topologies. We next proceed with demonstrative numerical examples.

4. Numerical Results

In this section we introduce some typical example cases in order to demonstrate the efficacy of the proposed ST method. In the first test case we verify numerically the theoretical result of Corollary 3.1 using the $\mathfrak{S}(50)$ network. For the second model we take the dodecahedron graph with 20 vertices and 30 edges. This graph is widely considered to be a good benchmark for network reliability. In our third example, we consider a bigger model of a size for which simulation is typically required. In particular, similar to [28], we consider three merged copies of the dodecahedron graph. Finally, our last example concerns an epidemic SIR model [39] in which population members are modelled by graph nodes.

We performed many experiments with the LT and ST algorithms discussed above. In particular, all the tests were executed on a desktop quadcore 3.4Ghz processor. To report our findings, we developed a software package named RelSplit. This software and some example models are freely available for download¹. The results should be interpreted as follows.

- \overline{R} is the estimator of network unreliability.
- $\widehat{\operatorname{RE}}$ is the estimated relative error.
- The relative experimental error (REE) is given by REE = $|\overline{R} \overline{r}|/\bar{r}$, where \overline{r} is the exact network unreliability.
- B and N are the budget and the sample size parameters, respectively. The budget B is used in ST algorithm while the sample size N stands for the number of independent repetitions to perform prior to averaging and delivering the final result \overline{R} .

To ensure a fair comparison, we set the sample size of LT to be equal to the sample size of ST multiplied by the budget B, see Remark 3.2. Next, we proceed with the models.

4.1. Model 1 — the graph $\mathfrak{S}(n)$

We consider the performance of LT and ST on the $\mathfrak{S}(50)$ network with p = 0.9. For the ST algorithm, we set B = 1000 and N = 100. Consequentially, we use $N = 10^5$ sample size for the LT algorithm. Table 1 summarizes the average performance of LT and ST for the $\mathfrak{S}(50)$ network using the above parameters. The bad performance of LT is not very surprising, since we know that for $\mathfrak{S}(50)$, the CV is of order 10^6 .

Algorithm	\overline{R}	RÊ	REE
LT	1.93×10^{-41}	76.5%	99.7%
ST	8.67×10^{-38}	2.48%	2.41%

Table 1: The performance obtained for the $\mathfrak{S}(50)$ network with p = 0.9 using the LT and the ST algorithms. The true unreliability is 8.66×10^{-38} , see Example 2.1.

4.2. Model 2 — the dodecahedron graph

In this model we consider the dodecahedron graph with 20 vertices and 30 edges, see Figure 4. Both LT and GS were reported to deliver an excellent

¹http://www.smp.uq.edu.au/people/RadislavVaisman/#software

Figure 4: The dodecahedron graph with 20 vertices, 30 edges, and $\mathcal{K} = \{1, 3\}$.

results in Botev et al. [24]. Indeed, this network is relatively small and in case of all edges having the same failure probability, the rare-event phenomenon does not apply. However, we show next that even for such a small network it is possible to assign the failure probabilities in a "bad" way. Our experiment is as follows. We set the terminal nodes to be $\mathcal{K} = \{1,3\}$. All the edge failure probabilities are equal to 0.5 except of the following component. The edges (1,2), (2,6), (6,7), (3,7) and (1,3) failure probabilities are all set to be $q = 10^{-j}$, for $j = 1, \ldots, 15$.

In particular, for very small values of q, we expect that the vertex component $\{1, 2, 3, 6, 7\}$ will be born at early stages of the evolution process with high probability, and thus, a rare event is created since long trajectories will appear more rarely. As a consequence of this early birth of the $\{1, 2, 3, 6, 7\}$ component, we expect LT to perform worse than the ST algorithm for small values of q, since the ST algorithm is capable of generating long trajectories. For the ST algorithm, we set B = 10 and $N = 6 \times 10^4$. The sample size of LT is $N = 6 \times 10^5$. Table 2 summarizes the average performance of LT and ST for the dodecahedron network using the above parameters.

Table 2 clearly shows the superiority of ST for this model. In particular, the ST methods shows better RE as compared to LT. Moreover, a crucial observation is that the LT algorithm provides an order of magnitude underestimation. We next continue with the larger merged dodecahedron model.

	LT		ST	
q	\overline{R}	\widehat{RE}	\overline{R}	$\widehat{\text{RE}}$
10^{-15}	6.35×10^{-31}	58.1%	3.24×10^{-30}	5.04%
10^{-14}	8.80×10^{-29}	56.9%	3.25×10^{-28}	4.77%
10^{-13}	1.49×10^{-26}	55.3%	3.25×10^{-26}	4.18%
10^{-12}	6.85×10^{-25}	50.7%	3.24×10^{-24}	3.78%
10^{-11}	1.39×10^{-22}	50.7%	3.23×10^{-22}	3.45%
10^{-10}	1.01×10^{-20}	49.9%	3.22×10^{-20}	3.00%
10^{-9}	4.94×10^{-18}	48.2%	3.24×10^{-18}	2.81%
10^{-8}	2.14×10^{-16}	47.8%	3.23×10^{-16}	2.50%
10^{-7}	2.50×10^{-14}	43.8%	3.23×10^{-14}	2.22%
10^{-6}	4.30×10^{-12}	42.5%	3.24×10^{-12}	1.96%
10^{-5}	3.46×10^{-10}	32.8%	3.24×10^{-10}	1.66%
10^{-4}	3.18×10^{-8}	17.9%	$3.24 imes 10^{-8}$	1.36%
10^{-3}	3.24×10^{-6}	6.68%	3.24×10^{-6}	1.23%
10^{-2}	3.20×10^{-4}	1.85%	$3.20 imes 10^{-4}$	0.75%
10^{-1}	2.82×10^{-2}	0.43%	2.82×10^{-2}	0.42%

Table 2: A summary of average performance obtained for the dodecahedron network using the LT and ST algorithms.

4.3. Model 3 — Series of three dodecahedrons

We consider three merged copies of the dodecahedron graph from the previous model. These graphs are connected in series as in [28, Example 10]. Let the nodes numbered 1 and 20 be the source and the destination of each dodecahedron, respectively. We define the terminal set of the merged graph to be the source of the first dodecahedron and the destination of the third dodecahedron, respectively. To connect the dodecahedron copies we do the following. The destination of the first (respectively second) copy is the source of the second (respectively third) [28]. The resulting merged graph has 90 edges.

Next, we set the failure probability of every edge to be 0.4 and run LT to obtain the unreliability. Using $N = 10^6$ sample size, we estimated the network unreliability to be approximately equal to 0.812 with confidence interval of width 0.03%. Next, we add a new edge e between the merged

graph terminal nodes (u and v), see Figure 5, and consider the performance of LT and ST for this network and for different failure probabilities q of e.

Figure 5: The merged dodecahedron graph with $\mathcal{K} = \{u, v\}$.

Figure 6: Expected REE % and $\widehat{\text{RE}}$ % of LT and ST as a function of q.

In particular, we consider $q = 10^{-1}, 10^{-2}, \ldots, 10^{-15}$. For each such failure rate q, the unreliability of the system is equal to q times the unreliability of the series system of three dodecahedrons, so approximately $0.812 \cdot q$. For

the ST method we set B = 30 and N = 2000. For the LT algorithm we set $N = 6 \times 10^4$ sample size, respectively. Figure 6 summarizes the algorithm's expected REEs (with respect to the estimated unreliability $0.812 \cdot q$) and REs for different values of q. We can observe from Figure 6 that the LT algorithm becomes very inaccurate for $q \leq 10^{-9}$.

For our final model, we consider an application of a major interest to an engineering and health-care communities. In particular, we consider the susceptible–infected–recovered (SIR) disease spreading model [39].

4.4. The epidemic SIR model

Figure 7: The portion of real World-Wide-Web network.

In the epidemic SIR model [39], population members are modelled by graph nodes. Each node and edge has an associated recovery and infection rate, respectively. In this example, we consider a scenario in which an outbreak of a disease happens in a specific individual and we ask for a probability that some fixed target individual gets infected [14]. This SIR setting can be expressed by a classical reliability model [40], and in particular by the s-t network reliability. Namely, the infection start at node "s", the target individual is expressed by the "t" node, and this s-t unreliability corresponds to the probability that "t" gets infected. For additional information about the SIR problem and the reliability mapping, we refer to [40–43].

Figure 7 shows a portion of World-Wide-Web network from http://www3.nd.edu/~networks/resources/www/www.dat.gz, from a seminal paper of Albert, Jeong and Barabasi [44]. We take the first 25 vertices and consider the terminal reliability for $T = \{1, 25\}$. Under this SIR setting, we suppose that node 1 is infected (say by computer virus), and we ask for the probability that node 25 gets infected, too.

We next analyse the RE of LT and ST. With the view that the "s" node is infected and we would like to protect "t", a reasonable approach is to increase the reliability of all edges that are incident to "t". For this experiment, we set the "t"-incident edge unreliabilities to q, while the unreliabilities of the other edges are fixed to 0.7. The network unreliability is estimated for $q = 10^{-1}, 10^{-2}, \ldots, 10^{-15}$.

For the ST method we set B = 30 and $N = 10^4$. For the LT algorithm we set $N = 3 \times 10^5$ sample size. Figure 8 summarizes the algorithm's expected REs for different values of q. Similar to the previous model, the ST algorithm demonstrates a better behavior in the sense of the RE.

Figure 8: Expected $\widehat{\text{RE}}$ % of LT and ST as a function of q.

5. Concluding Remarks

In this paper we developed a general scheme that combines sequential Monte Carlo and multilevel splitting. In particular, we used our method to improve the performance of Lomonosov's turnip by developing the Split-Turnip algorithm. We showed that the Split-Turnip method is efficient in the sense of the existence of theoretically provable performance guarantees for specific networks and demonstrated numerically that it generally outperforms the turnip. Of interest for future research is the application of our method to different problems which are currently been solved under the sequential Monte Carlo framework. Even though the efficiency conditions of the Split-Turnip algorithm require a certain network structure, Theorem 3.1 ensures that the estimator is unbiased. Moreover, it implies that Split-Turnip can be used for more general reliability problems related to different types of infrastructures. For example, our algorithm can be easily adapted for the estimation of the reliability of stochastic flow networks, which is generally used for the modelling of communication, transportation, and power distribution systems. This problem concerns the estimation of the probability that the maximal flow in such a network is above some fixed level [45]. Additionally, it will be interesting to rigorously analyse these problems in the spirit of Theorem 3.2.

Acknowledgement

We are thoroughly grateful to the anonymous reviewers for their valuable and constructive remarks and suggestions. This work was supported by the Australian Research Council Centre of Excellence for Mathematical & Statistical Frontiers, under grant number CE140100049.

References

- R. Skjong, C. G. Soares, Safety of maritime transportation, Rel. Eng. & Sys. Safety 93 (9) (2008) 1289–1291.
- [2] E. OBrien, F. Schmidt, D. Hajializadeh, X.-Y. Zhou, B. Enright, C. Caprani, S. Wilson, E. Sheils, A review of probabilistic methods of assessment of load effects in bridges, Structural Safety 53 (2015) 44–56.

- [3] K. Xie, R. Billinton, Tracing the unreliability and recognizing the major unreliability contribution of network components, Rel. Eng. & Sys. Safety 94 (5) (2009) 927–931.
- [4] U. J. Na, M. Shinozuka, Simulation-based seismic loss estimation of seaport transportation system, Rel. Eng. & Sys. Safety 94 (3) (2009) 722-731.
- [5] E. Zio, Reliability engineering: Old problems and new challenges, Rel. Eng. & Sys. Safety 94 (2) (2009) 125–141.
- [6] D. P. Kroese, T. Taimre, Z. I. Botev, Handbook of Monte Carlo methods, John Wiley & Sons, New York, 2011.
- [7] I. B. Gertsbakh, Y. Shpungin, Network Reliability and Resilience, Springer Briefs in Electrical and Computer Engineering, Springer, New York, 2011.
- [8] D. R. Karger, A randomized fully polynomial time approximation scheme for the all terminal network reliability problem, in: Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC '95, ACM, New York, NY, USA, 1995, pp. 11–17.
- [9] J. S. Provan, M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM Journal on Computing 12 (4) (1983) 777–788.
- [10] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM Journal on Computing 8 (3) (1979) 410–421.
- [11] R. M. Karp, M. Luby, Monte-Carlo algorithms for enumeration and reliability problems, in: Proceedings of the 24th Annual Symposium on Foundations of Computer Science, SFCS '83, IEEE Computer Society, Washington, DC, USA, 1983, pp. 56–64.
- [12] R. M. Karp, M. Luby, Monte-Carlo algorithms for the planar multiterminal network reliability problem, Journal of Complexity 1 (1) (1985) 45–64.
- [13] A. Satyanarayana, R. K. Wood, A linear-time algorithm for computing k-terminal reliability in series-parallel networks, SIAM Journal on Computing 14 (4) (1985) 818–832.

- [14] R. Zenklusen, M. Laumanns, High-confidence estimation of small s-t reliabilities in directed acyclic networks, Networks 57 (4) (2011) 376– 388.
- [15] A. Shafieezadeh, B. R. Ellingwood, Confidence intervals for reliability indices using likelihood ratio statistics, Structural Safety 38 (2012) 48– 55.
- [16] R. E. Barlow, F. Proschan, L. C. Hunter, Mathematical Theory of Reliability, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1996.
- [17] T. Elperin, I. B. Gertsbakh, M. Lomonosov, Estimation of network reliability using graph evolution models, IEEE Transactions on Reliability 40 (5) (1991) 572–581.
- [18] I. B. Gertsbakh, Y. Shpungin, Models of network reliability: analysis, combinatorics, and Monte Carlo, CRC Press, New York, 2009.
- [19] F. J. Samaniego, On closure of the IFR class under formation of coherent systems, IEEE Transactions on Reliability 34 (1985) 69–72.
- [20] W. Liu, J. Li, An improved cut-based recursive decomposition algorithm for reliability analysis of networks, Earthquake Engineering and Engineering Vibration 11 (1) (2012) 1–10.
- [21] W.-C. Yeh, C. Bae, C.-L. Huang, A new cut-based algorithm for the multi-state flow network reliability problem, Reliability Engineering & System Safety 136 (2015) 1–7.
- [22] A study on the relaxed linear programming bounds method for system reliability, Structural Safety 41 (2013) 64–72.
- [23] J. Song, W.-H. Kang, System reliability and sensitivity under statistical dependence by matrix-based system reliability method, Structural Safety 31 (2) (2009) 148–156.
- [24] Z. I. Botev, P. L'Ecuyer, G. Rubino, R. Simard, B. Tuffin, Static network reliability estimation via generalized splitting, INFORMS Journal on Computing 25 (1) (2013) 56–71.

- [25] Z. I. Botev, P. L'Ecuyer, B. Tuffin, Modeling and estimating small unreliabilities for static networks with dependent components, in: Proceedings of SNA&MC 2013: Supercomputing in Nuclear Applications and Monte Carlo, 2013.
- [26] C. Walter, Moving particles: A parallel optimal multilevel splitting method with application in quantiles estimation and meta-model based algorithms, Structural Safety 55 (0) (2015) 10–25.
- [27] K. M. Zuev, S. Wu, J. L. Beck, General network reliability problem and its efficient solution by subset simulation, Probabilistic Engineering Mechanics 40 (2015) 25–35.
- [28] P. L'Ecuyer, G. Rubino, S. Saggadi, B. Tuffin, Approximate zerovariance importance sampling for static network reliability estimation, IEEE Transactions on Reliability 8 (4) (2011) 590–604.
- [29] H. Kahn, T. E. Harris, Estimation of particle transmission by random sampling, National Bureau of Standards Applied Mathematics Series 12 (1951) 27–30.
- [30] Z. I. Botev, D. P. Kroese, Efficient Monte Carlo simulation via the generalized splitting method, Statistics and Computing 22 (2012) 1–16.
- [31] R. Y. Rubinstein, A. Ridder, R. Vaisman, Fast Sequential Monte Carlo Methods for Counting and Optimization, John Wiley & Sons, New York, 2013.
- [32] M. J. J. Garvels, The splitting method in rare event simulation, Ph.D. thesis, Universiteit Twente, Enschede (October 2000).
- [33] P. Glasserman, P. Heidelberger, P. Shahabuddin, T. Zajic, Splitting for rare event simulation: Analysis of simple cases., in: Winter Simulation Conference, 1996, pp. 302–308.
- [34] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1 of Wiley mathematical statistics series, John Wiley & Sons, New York, 1968.
- [35] S. Asmussen, P. W. Glynn, Stochastic Simulation: Algorithms and Analysis, Applications of Mathematics, Springer Science and Business Media, LLC, 2007.

- [36] J. S. Liu, Monte Carlo strategies in scientific computing, Springer, New York, Berlin, Heidelberg, 2008.
- [37] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM Review 51 (4) (2009) 747–764.
- [38] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review 45 (1) (2003) 3–000.
- [39] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 115 (772) (1927) 700– 721.
- [40] P. Grassberger, On the critical behavior of the general epidemic process and dynamical percolation, Mathematical Biosciences 63 (2) (1983) 157– 172.
- [41] M. E. J. Newman, Spread of epidemic disease on networks, Physical Review E 66 (1) (2002) 016128.
- [42] M. Newman, The structure and function of complex networks, SIAM Review 45 (2) (2003) 167–256.
- [43] L. M. Sander, C. P. Warren, I. M. Sokolov, C. Simon, J. Koopman, Percolation on heterogeneous networks as a model for epidemics, Mathematical Biosciences 180 (1-2).
- [44] R. Albert, H. Jeong, A. L. Barabasi, The diameter of the world wide web, Nature 401 (1999) 130–131.
- [45] I. Gertsbakh, R. Rubinstein, Y. Shpungin, R. Vaisman, Permutational methods for performance analysis of stochastic flow networks, Probability in the Engineering and Informational Sciences 28 (2014) 21–38.