
Splitting Sequential Monte Carlo

for Efficient Unreliability Estimation

of Highly Reliable Networks

Radislav Vaismana, Dirk P. Kroesea, Ilya B. Gertsbakhb

aSchool of Mathematics and Physics, The University of Queensland, Australia
bDepartment of Mathematics, Ben-Gurion University , Beer-Sheva, 84105, Israel

Abstract

Assessing the reliability of complex technological systems such as commu-
nication networks, transportation grids, and bridge networks is a difficult
task. From a mathematical point of view, the problem of estimating network
reliability belongs to the #P complexity class. As a consequence, no analyt-
ical solution for solving this problem in a reasonable time is known to exist
and one has to rely on approximation techniques. In this paper we focus
on a well-known sequential Monte Carlo algorithm — Lomonosov’s turnip
method. Despite the fact that this method was shown to be efficient under
some mild conditions, it is known to be inadequate for a stable estimation
of the network reliability in a rare-event setting. To overcome this obsta-
cle, we suggest a quite general combination of sequential Monte Carlo and
multilevel splitting. The proposed method is shown to bring a significant
variance reduction as compared to the turnip algorithm, is easy to imple-
ment and parallelize, and has a proven performance guarantee for certain
network topologies.

Keywords: Terminal Network Reliability, Permutation Monte Carlo,
Multilevel Splitting, Rare Events

Email addresses: r.vaisman@uq.edu.au (Radislav Vaisman),
kroese@maths.uq.edu.au (Dirk P. Kroese), elyager@bezeqint.net (Ilya B. Gertsbakh)

Preprint submitted to Structural Safety #: STRUCS-D-15-00095R2 July 5, 2016

1. Introduction

Nowadays it is hard to underestimate the importance of networks in our
life and, as a consequence, a natural question of their reliability arises [1–
5]. Many engineering applications, such as computer and transportation
networks, water distribution and gas supply systems, can be modelled via a
graph structure, whose components (nodes and edges), are subject to failure.
Such networks are often used to model a delivery of some resource or com-
modity, so one will be generally concerned with the reliability of the entire
system. Consequentially, we adopt the following definition of the network
reliability problem [6]. Let G = G(V,E,K) be an undirected graph, where
V and E are the vertex and edge sets, respectively, and K ⊆ V is a set
of “terminal” nodes. We assume that the vertices never fail, but that the
edges are subject to failure. In particular, every e ∈ E has a corresponding
failure probability 0 6 qe 6 1. An edge can be in an up or down state with
probabilities pe = 1− qe and qe, respectively. Under the above framework we
wish to assess the network unreliability, defined as the probability that the
terminal set K is disconnected [7].

The exact solution to the K-terminal network reliability problem is hard
to obtain within reasonable computation time, since this problem belongs
to the #P complexity class [8, 9]. This complexity class, introduced by
Valiant [10], consists of the set of counting problems that are associated
with a decision problem in NP (non–deterministic polynomial time). For
example, #SAT is the problem of counting the number of feasible solutions
to a satisfiability formula (SAT).

For some #P-complete problems there are known efficient approxima-
tions. For example, Karp and Luby [11] introduced a fully polynomial ran-
domized approximation scheme (FPRAS) for counting the solutions of sat-
isfiability formulas in disjunctive normal form (DNF). The DNF counting
algorithm allows an efficient solution to the K-terminal network reliability
problem, provided that the list of K-separating cuts is available [12]; how-
ever, the latter is generally expensive to obtain. For the all-terminal network
reliability case (K = V), an FPRAS was developed by Karger [8]. How-
ever, to the best of our knowledge, there exists no FPRAS for estimating
the general K-terminal network reliability case. The current state-of-the-art
can deal only with specific graph topologies such as series-parallel and di-
rected acyclic networks [13, 14], or with small-sized graphs. We refer to [7]
for further details.

2

Due to the problem’s importance, various approximation techniques were
proposed [7, 15–19]. For more recent advances in cut based, matrix-based,
and linear programming methods, we refer to [20, 21], [22] and [23], respec-
tively. In the stochastic simulation area, see the works of Shafieezadeh and
Ellingwood [15], the multilevel splitting algorithms of Botev et al. [24, 25],
Walter [26], the similar subset simulation approach of Zuev et al. [27], and
the sequential Importance Sampling (SIS) method of L’Ecuyer et al. [28].
The latter generates the link states in a sequential manner, while introducing
a smart sampling scheme that approximates a corresponding zero-variance
importance sampling distribution. In this paper we focus on Lomonosov’s
turnip (LT) algorithm [17]. This method is an improvement of the Permuta-
tion Monte Carlo (PMC) scheme which was shown to be efficient under some
mild conditions. In particular, it brings a significant variance reduction as
compared to LT, and has a proven performance guarantee for some network
topologies.

We give a brief introduction to PMC and LT in Section 2. Despite the fact
that PMC and LT are designed to deal with quite hard network instances,
it was shown in [24] that these methods can be very inefficient in a rare-
event setting. To overcome the rare-event complication, Botev et al. [24]
formulated the network reliability problem as a static rare-event probability
estimation problem and employed the Generalized Splitting (GS) algorithm
[6, Chapter 14].

The multilevel splitting framework was first used by Kahn and Harris [29]
to estimate rare-event probabilities. The main idea is to partition the state
space in such a way that the problem becomes one of estimating conditional
probabilities that are not rare. The GS algorithm of Botev and Kroese [30]
generalizes this to a method able to evaluate a wide range of rare-event
estimation problems. For a survey of the general methodology we refer to
[31, Chapter 4] and [32, 33].

Inspired by the successful approach of Botev et al. [24], we put the LT
method into a sequential Monte Carlo (SMC) framework combined with mul-
tilevel splitting [30, 32, 33]. In particular, we propose to combine the very
general splitting idea of Kahn and Harris [29] with the LT procedure. Unlike
Botev’s GS, we do not reformulate the reliability problem, but rather equip
the LT algorithm with the corresponding splitting mechanism, thus exploit-
ing the strengths of both methods. The resulting algorithm introduces a
significant variance reduction as compared to the basic LT method and has
a proven performance guarantee for some networks. Namely, we prove that

3

our method is an FPRAS for special families of graphs. See Section 3 for
details.

The rest the paper is organized as follows. In Section 2 we give a brief
introduction to the PMC and LT algorithms and show a simple family of
networks for which LT’s performance is inefficient. In Section 3 we put LT
into a quite general SMC framework combined with multilevel splitting. We
show that the resulting algorithm can be used to deliver highly accurate esti-
mators and provide an explanation for its efficiency. In Section 4 we present
various numerical examples to demonstrate the advantage of the proposed
method. Finally, in Section 5 we summarize our findings and discuss possible
directions for future research.

2. Permutation Monte Carlo

Below we describe the PMC algorithm of Michael Lomonosov, also called
the network evolution process. This method was designed to estimate the
reliability of networks with independent components having different failure
probabilities. For detailed explanations, see [17] and [18, Chapter 9].

Our setting is as follows. Given a network G = G(V,E,K) where V is the
node set, E is the edge set and K ⊆ V is the terminal set. The edges states
are binary; that is, edge e can be in the up or down state with probabilities
pe and qe = 1 − pe, respectively. The network UP state is defined as the
presence of connectivity of all terminal nodes.

The basic idea of PMC is to associate with each edge e ∈ E an expo-
nentially distributed random “birth time” T (e) with parameter λ(e), such
that P(T (e) 6 τ) = 1− e−λ(e)τ = pe holds for all e ∈ E and for an arbitrary
chosen time value τ . Let us assume that all the edges are in the down state
at time zero. Then, an edge e is born at time T (e); that is, at the time T (e)
it enters the up state and stays there “forever”. The probability that e will
be “alive” at time τ is P (T (e) 6 τ) = pe. The value of τ can be arbitrary,
so for simplicity we put τ = 1 and it follows that λ(e) = − ln qe. If we take
a “snapshot” of the state of all edges at time instant τ = 1, we will see the
network in the state which is stochastically equivalent to the static picture
in which edge e is up or down with probability pe or qe, respectively.

Suppose that |E| = n and consider the ordering (permutation) of the
edges π = (e1, . . . , en), according to their birth times sorted in increasing

4

order. Since the birth times are exponentially distributed, it holds that

P(Π = π) =
n∏
t=1

λ(et)

Λ(Et−1)
, (1)

where Et = E \ {e1, . . . , et} for 1 6 t 6 n − 1, and Λ(Et) =
∑

e∈Et
λ(e)

[17, 34].
The first index 1 6 a(π) 6 n of the edge permutation π for which the

sub-graph of G defined by G(V, (e1, . . . , ea(π)),K) is in the UP state, is called
an anchor of π. That is, a(π) = min {t : G (V, (e1, . . . , et),K) is UP}. Let
ξ1 + · · · + ξt be the birth time of edge et in π for 1 6 t 6 n. Then, given
the edge permutation Π = π, the probability that the network is in the UP
state is given by

P

a(π)∑
t=1

ξt 6 1

∣∣∣∣Π = π

 = Conv16t6a(π)

{
1− e−Λ(Et)

}
,

where Conv stands for exponential convolution. The network DOWN and
UP probabilities denoted by r̄ and r, respectively, can be expressed as

r̄ =
∑
π

P(Π = π) · P

a(π)∑
t=1

ξt > 1

∣∣∣∣Π = π

 , (2)

and

r =
∑
π

P(Π = π) · P

a(π)∑
t=1

ξt 6 1

∣∣∣∣Π = π

 ,

respectively, where the summation is over all permutations π. Since the net-
work unreliability and reliability in (2) is expressed as an expectation, it can
be estimated without bias as the sample average of conditional probabilities,
P(ξ1 + ξ2 + · · · + ξa(Π) > 1 | Π) over an independent sample of trajectories

{Π(1),Π(2), . . . ,Π(N)}. This procedure is summarized in Algorithm 2.1.

Algorithm 2.1 (PMC Algorithm For Unreliability Estimation). Given
a network G = G(V,E,K), edge failure probabilities (qe, e ∈ E), and sample
size N , execute the following steps.

1. (Initialization) Set S ← 0. For each edge e ∈ E, set λ(e)← − ln(qe)
and k ← 0.

5

2. (Permutation Generation) Set k ← k + 1 and sample Π(k) =(
e

(k)
1 , . . . , e

(k)
n

)
using (1).

3. (Find the Anchor) Calculate

a
(
Π(k)

)
= min

{
t : G

(
V,
(
e

(k)
1 , . . . , e

(k)
t

)
,K
)

is UP
}
.

4. (Calculation of Convolution) Set:

R(k) ← 1− Conv16t6a(Π(k))

{
1− e

−Λ
(
E

(k)
t

)}
,

where E
(k)
t = E \

{
e

(k)
1 , . . . , e

(k)
t

}
for 1 6 t 6 Π(k), and Λ

(
E

(k)
t

)
=∑

e∈E(k)
t
λ(e), and set S ← S +R(k).

5. (Stopping Condition) If k = N , return S/N as unbiased estimator
of r̄; otherwise, go to Step 2.

The main issue with the PMC algorithm, is its non-uniform trajectory
generation with respect to their length. Namely, shorter trajectories, which
have a small anchor, have a bigger chance to be generated during the evolu-
tion process. However, long trajectories will generally have higher weights in
the estimator. This issue causes a considerable increase in PMC estimator
variance.

Lomonosov tried to resolve this issue by equipping Algorithm 2.1 with a
so-called closure (merging) operation. The closure of a subset E ′ ⊆ E con-
sists of E ′ and all edges of G whose vertices lie in the same component of the
spanning subgraph G(V,E ′) [17]. The closure operation is essentially an elim-
ination of edges that do not change the already born connected component
during the evolution process [17]. With this addition, the PMC algorithm
has a higher chance of generating long trajectories. The corresponding esti-
mator was shown to be unbiased and its relative error ([35, Chapter VI]) is
uniformly bounded with respect to the λ(e) values.

To implement the merging process, all that needs to be done after each
birth of an edge, is to look for those edges whose nodes belong to the already
existing component. These edges are joined to this component and excluded
from further considerations as irrelevant. This combination of merging and
the evolution process causes the reliability estimator to become less variable
and is called the LT algorithm [17].

6

Algorithm 2.2 (Lomonosov’s Turnip). The LT algorithm differs from
the PMC Algorithm 2.1 only at Step 3. Recall that at each iteration t =
1, . . . , N , we are given an edge permutation Πt. All we need to do now is
to eliminate the redundant edges using the closure operation and find the
corresponding anchor. All other steps remain the same.

Despite Lomonosov’s theoretical results, Algorithm 2.2 can exhibit a very
poor performance in rare-event settings [24]. Under such a setting, a crucial
efficiency parameter of the estimator is the coefficient of variation (CV). The
CV of an estimator ẑ = N−1

∑N
i=1 Zi where the {Zi} are independent copies

of a random variable Z, is defined by CV =
√

Var (Z)
/
E (Z). A Monte

Carlo algorithm is called efficient if the CV is bounded by a polynomial in
input size [11]. From the practical point of view, CV controls the number
of samples, N , that are required to get a certain relative error (RE), which
is defined by

√
Var (ẑ)

/
E (ẑ) = CV/

√
N . We next consider an example for

which both the PMC Algorithm 2.1 and the LT Algorithm 2.2 are inefficient.

Example 2.1 (The “bad” example). Consider a simple network S(n) with
n+2 nodes and 2n+1 edges presented in Figure 1. The terminal set consists
of two vertices, u and v. For this particular network topology, the closure
operation has no effect, since during the edge birth process no edge can be
merged and thus the LT algorithm turns into the regular PMC.

u v

1

2

...

n

eu,v

eu,1

eu,2

eu,n

ev,1

ev,2

ev,n

Figure 1: A simple network S(n) with n+ 2 nodes, 2n+ 1 edges, and K = {u, v}.

Suppose, for example, that each edge fails with same probability q = 1−p.
Then, the u – v network unreliability r̄ is given by (1− p)(1− p2)n. We next

7

consider the distribution of the anchor for this particular network structure.
Let T = a(Π) be the random variable that stands for the anchor. The LT
algorithm returns T = 1 at Step 3 if the edge between u and v is the first
one that enters the up state; that is, if eu,v is born first. The probability that
the birth process stops after the birth of the t-th edge (T = t), given that it
did not stop before is equal to

P(T = t | T > t− 1) =
t

2n+ 2− t , t = 1, . . . , n+ 1.

From the above equation we obtain

P(T = t) = P(T = t | T > t− 1)
t−1∏
j=1

(1− P(T = j | T > j − 1)) (3)

=
t

2n+ 2− t
t−1∏
j=1

(
1− j

2n+ 2− j

)
, t = 1, . . . , n+ 1.

The expression for P(T = t) in (3) allows us to analyse the performance
of LT for our simple graph model. In particular, we consider the conditional
probability

P(ξ1 + · · ·+ ξT > 1 | T = t), (4)

where ξ1, ξ2, . . . are independent, ξt ∼ Exp(Λ(Et)) for t = 1, . . . , T , where
λ(e) = − ln q for all e ∈ E. Note that since Λ(Et) = (2n+2− t) ln q, the con-
ditional probability (4) only depends on t, so, with a slight abuse of notation,
we write this conditional probability as Conv(t). From the unbiasedness of
the LT algorithm it holds that E(Conv(T)) =

∑n+1
t=1 Conv(t) ·P(T = t) = r̄ =

(1 − p)(1 − p2)n, where r̄ is the network unreliability. The second moment
of Conv(T), that is,

∑n+1
t=1 Conv(t)2 · P(T = t), does not reduce to a simple

expression, but can be readily calculated.
We evaluated the values of Conv(t) and P(T = t) for t = 1, . . . , 51. The

left panel of Figure 2 shows the CV for simple S(n) graphs of different sizes
(1 6 n 6 50), and different edge down probabilities q, namely, q = 10−1 and
q = 10−3. Note that the CV shows a clear exponential growth as a function
of n.

For example, the CV for p = 0.9 and n = 50 is about 106. So, in order
to obtain a modest RE of say 10%, the required sample size N in Algorithm
2.2 should satisfy CV/

√
N = 0.1 ⇒ N ≈ 1014. Such sample size is clearly

8

0 10 20 30 40 50

100

102

104

106

n

C
V

q = 10−3

q = 10−1

0 10 20 30 40 50

10−100

10−50

t

C
on

v
(t
) r̄

0 10 20 30 40 50
10−15

10−8

10−1

t

P(
T
=

t)

Figure 2: Left panel: logarithmically scaled CV of LT as a function of n for S(n) networks.
Right panel: Conv(t) and P(T = t) as a function of t for S(50) and p = 0.9. The true
unreliability of 8.66× 10−38 is given by the horizontal line in the upper plot.

unmanageable from the computation time point of view thus making the LT
algorithm impractical.

To get a more intuitive understanding about the reason of LT’s inef-
ficiency, consider the unreliability estimation for the simple graph S(50)
and p = 0.9. The graph unreliability is given by r̄ = (1 − p)(1 − p2)n =
(1 − 0.9)(1 − 0.92)50 ≈ 8.66× 10−38. However, when running the LT algo-
rithm, we usually get an estimate of order 10−43, which is a clear underesti-
mation.

We next explain how this phenomenon happens as a result of the rare-
event involvement. The right panel of Figure 2 shows the convolution Conv(t)
and the probability P(T = t) as a function of anchor 1 6 t 6 51. From Figure
2 (right panel), we can see that the long trajectories contribute the most mass
to the estimator; but these long trajectories appear with very small proba-
bilities. For example, we found that the average trajectory length is about
11.69. However, the trajectories that contribute most to the estimator are of
length greater than 40. These trajectories are generated with a probability
of less than 10−6. This issue can be clearly observed in the upper plot of the
right panel of Figure 2 by noting that the intersection of the horizontal line
(which represents the true unreliability) and the convolution curve, occurs
near t = 40. Long trajectories are generated with very small probabilities,
as can be verified from Figure 2 (bottom plot of the right panel) and thus
the resulting estimator tends to underestimate the true value of interest.

9

To overcome the problem presented in the above example, we propose to
combine the LT algorithm with the splitting method, which was proved to
be very useful when working in a rare-event setting. To do so, we first give
a short introduction to a general SMC algorithm and show how it can be
combined with the splitting framework.

3. The Splitting Sequential Monte Carlo

We start by examining a quite generic setting. Consider a random variable
(vector) X taking values in a set X . A general objective of Monte Carlo
simulation is to calculate ` = Ef (H (X)) , where H : X → R is a real-valued
function. The Crude Monte Carlo (CMC) estimator of ` is given by

̂̀=
1

N

N∑
k=1

H
(
X(k)

)
,

where X(k) for k = 1, . . . , N , are independent copies of a random variable X
generated from f(x).

In this paper we consider the SMC framework [36]. Suppose that the
vector X ∈ X is decomposable and that it can be of different length T ∈
{1, . . . , n}, where T is a stopping time of X’s generation process. Thus, X
can be written as X = (X1, X2, . . . , XT), where for each t = 1, . . . , T , Xt

can be multidimensional. We assume that X can be constructed sequentially
such that its probability density function (PDF) f(x) constitutes a product
of conditional PDFs:

f(x) = f1(x1)f2(x2 | x1) · · · ft(xt | x1, . . . , xt−1), when |x| = t, t = 1, . . . , n,

where |x| is the length of x.
This setting frequently occurs in practice. For example, consider a coin

that is tossed repeatedly until the first “success” (1) appears or until n tosses
have been made. The sample space is equal to

X = {(1), (0, 1), (0, 0, 1), . . . , (0, . . . , 0,︸ ︷︷ ︸
n−1 times

1), (0, . . . , 0︸ ︷︷ ︸
n times

)}.

That is, the samples have different lengths: t = 1, 2, 3, . . . , n. Let Xt = {x ∈
X : |x| = t} be the set of all samples of length t = 1, 2, . . . , n. Then, the

10

sets X1, . . . ,Xn define a partition of X ; that is

X =
n⋃
t=1

Xt, Xt1 ∩ Xt2 = ∅ for 1 6 t1 < t2 6 n.

Since we are working under the SMC framework, the generation of X =
(X1, . . . , XT) ∈ XT , is sequential in the following sense. We start from the
“empty” X = (). Then X1 is sampled from f1(x1) and at each step t > 2,
we sample Xt from ft(xt | x1, . . . , xt−1) until the stopping time T that is
determined from the generated Xt’s. This procedure terminates at time
1 6 T 6 n if X ∈ XT . The above process is summarized in Algorithm 3.1.

Algorithm 3.1 (Crude Sequential Monte Carlo (CSMC)). Given the
density f(x) = f1(x1)f2(x2 | x1) · · · ft(xt | x1, . . . , xt−1), x ∈ Xt, t = 1, . . . , n,
and H : X → R, output Z — an unbiased estimator of Ef (H (X)).

1. (Initialization) Set t← 0 and X← ().

2. (Simulate and Update) Set t← t+1, sample Xt ∼ ft(xt | X1, . . . , Xt−1),
and set X← (X1, . . . , Xt−1, Xt).

3. (Stopping Condition) If T = t (the stopping condition which can be
determined from X = (X1, . . . , Xt)), output Z ← H(X); otherwise, go
to Step 2.

Remark 3.1 (LT Algorithm 2.2 under the SMC Framework). To see
that the PMC and the LT Algorithms 2.1 and 2.2 are aligned with the SMC
framework described above, let X = (Π1, . . . ,ΠT), with T = a(Π), and

H(x) = 1− Conv16t6T

{
1− e−Λ(Ei)

}
.

Moreover, f(x) is distributed according to (1), which is of the product form

f(x) =
t∏

j=1

fj, 1 6 t 6 n,

where fj is defined by fj(Πj = ej | Π1 = e1, . . . ,Πj−1 = ej−1) =
λ(ej)

Λ(Ej−1)
.

For the forthcoming discussion, it will be convenient to define an event

{the SMC generation process did not stop at steps 1, . . . , t} := {T > t}.

11

T > 0

T = 1 T > 1

T = 2 T > 2

T = 3
T > n− 2

T = n− 1 T > n− 1

T = n

P(T = 1 | T > 0) P(T > 1 | T > 0)

P(T = 2 | T > 1) P(T > 2 | T > 1)

P(T = 3 | T > 2)

P(T = n− 1 | T > n− 2) P(T > n− 1 | T > n− 2)

P(T = n | T > n− 1)

Figure 3: SMC process.

The X generation stochastic process can be visualized using Figure 3. A
random walk starts from the root of the tree {T > 0} and ends at one of tree
leaves {T = 1}, . . . , {T = n}.

We next proceed with a brief introduction to multilevel splitting [6, 31, 33]
and show how the latter can be combined with the general CSMC Algo-
rithm 3.1 to solve the rare-event problem in Example 2.1. The splitting idea
is straightforward. Instead of running a single sampling process, one launches
a few processes in parallel. This simple modification is very beneficial as we
show in the illustrative Example 3.1.

Example 3.1 (Splitting Example). Consider the SMC process tree in Fig-
ure 3 and suppose for simplicity that for t = 1, . . . , n− 1,

P (T = t | T > t− 1) = 1− P (T > t | T > t− 1) = 1/2,

and P(T = n | T > n − 1) = 1. We start a single walk from the tree root
which ends at some leaf {T = t} for t = 1, . . . , n. Note that the probability
of reaching the last leaf in the tree is equal to P (T = n) = 2−(n−1), and
that we already encountered the similar setting in Example 2.1, in which

12

we had to deal with long trajectories that are generated with very small
probabilities. Consequently, we are interested in a different sampling process
that overcomes the tiny 2−(n−1) probability and hence the rare-event setting.
In other words, we would like to increase the probability of sampling low tree
levels.

Let us define some budget B ∈ N \ {0} and launch B parallel walks
(trajectories), from the tree root. At each step t = 1, . . . , n − 1, we detect
the trajectories that “finished” their execution, that is, they are at node
{T = t}. We are interested, at each level t, to keep B trajectories “alive”,
so we duplicate some of the paths at the {T > t} node and continue with B
trajectories, abandoning the “finished” ones. The latter is called a trajectory
splitting. This simple mechanism allows the process to reach {T = n} with
reasonably high probability, while using a relatively small budget B which
can be logarithmic in the tree height. The mathematics is as follows. Note
that the probability that this splitting process reaches the level t given that
it reached level t−1 is P(T = t | T > t−1) = 1−1/2B, and as a consequence,
the probability to reach {T = n} is equal to

P (The splitting reaches the {T = n} leaf) =
(
1− 1/2B

)n−1
.

We conclude the above discussion with a crucial observation: the choice of
B = dlog2(n− 1)e results in

P (The process reaches {T = n}) > (1− 1/2log2(n−1))n−1 → e−1 as n→∞.

Example 3.1 implies that the splitting idea can be used to improve the sam-
pling of rare (long) trajectories under the SMC framework. We next proceed
with our main contribution — a general algorithm that combines the splitting
mechanism and the CSMC Algorithm 3.1. The Splitting Sequential Monte
Carlo (SSMC) algorithm is summarized in Algorithm 3.2.

Algorithm 3.2 (Splitting Sequential Monte Carlo (SSMC)). Given
the density f(x) = f1(x1)f2(x2 | x1) · · · ft(xt | x1, . . . , xt−1), for x ∈ Xt,
1 6 t 6 n, H : X → R, and a budget B ∈ N \ {0}, output C — an unbiased
estimator of Ef (H (X)).

1. (Initialization) Set t ← 0, Pt ← 1 — an estimator of P (T > t),
C ← 0, and define

W(t) =
{

X
(t)
1 , . . . ,X

(t)
B

}
,

13

where X
(t)
j ← () for j = 1, . . . , B, which we call the “working” set,

because it contains unfinished trajectories.
2. (Simulate and Update) Set t→ t+1. For each X = (X1, . . . , Xt−1) ∈
W(t−1), sample

Xt ∼ ft(xt | X1, . . . , Xt−1),

and update: X ← (X1, . . . , Xt). Update the “finished” and “working”
sets:

F (t) ←
{
X ∈ W(t−1) : X ∈ Xt

}
, Bt ←

∣∣F (t)
∣∣ ,

W(t) ←
{
X ∈ W(t−1) : X /∈ Xt

}
, B′t ←

∣∣W(t)
∣∣ .

If Bt = 0, go to Step 2; otherwise, set

Ct ← Pt−1
1

B

∑
X∈F(t)

H(X), C ← C + Ct, Pt ← Pt−1
B′t
B
.

3. (Stopping Condition) If B′t = 0, output C as an estimator of Ef (H (X)).
4. (Splitting) Insert Kj copies of each Xj ∈ W(t) into W(t), where Kj

satisfies
Kj = bB/B′tc+ Lj,

and Lj ∼ Ber(0.5) conditional on
∑B′t

s=1 Ls = BmodB′t. Go to Step 2.

The use of SSMC Algorithm 3.2 for network reliability estimation is as fol-
lows.

Algorithm 3.3 (The Split-Turnip (ST)). Given a network G = G(V,
E,K), edge failure probabilities (qe, e ∈ E), a budget B ∈ N \ {0}, and
a sample size N , execute the following steps.

1. (Initialization) Define the sample space X , its partition X1, . . . ,Xn,
the function H(x) and the PDF f(x) according to Remark 3.1. Set
k ← 0 and S ← 0.

2. (Apply SSMC Algorithm) Set k ← k + 1 and apply Algorithm
3.2 with parameters f,H and B, to obtain an estimator C(k) of the
unreliability and set S ← S + C(k).

3. (Stopping Condition) If k = N , return S/N as unbiased estimator
of r̄; otherwise, go to step 2.

14

Remark 3.2 (Computational Complexity). Suppose that the complex-
ity of calculating the exponential convolution is given by O(Cnv). Note that
the LT method requires O(|E|) time to produce a random permutation and
find its anchor, so its overall complexity is O(N |E|Cnv). On the other hand,
the ST method calculates the convolution at most B|E| times during a single
run. Consequently, the ST algorithm complexity is equal to O(NB|E|Cnv),
that is, ST is more expensive than LT in the order of the budget B. In this
paper, we use the matrix exponential algorithm, the so-called scaling and
squaring of Higham [37], which runs in O(n3) time. There are many ways to
calculate the convolution of exponential random variables [38], however, we
use Higham’s algorithm because of its stability [24].

We next proceed with the analysis of the SSMC Algorithm 3.2.

3.1. The Analysis

Theorem 3.1 (Unbiased estimator). The SSMC Algorithm 3.2 outputs
an unbiased estimator; that is, it holds that

E(C) = Ef (H(X)) .

Proof: To start with, recall that X1, . . . ,Xn is a partition of the entire sample
space X , so by conditioning on T we arrive at

Ef (H (X)) =
n∑
t=1

Ef (H (X) | T = t)P(T = t).

With the above equation in mind, it will be enough to prove that for all
t = 1, . . . , n it holds that

E (Ct) = E

Pt−1
1

B

∑
X∈F(t)

H(X)

 = Ef (H (X) | T = t)P(T = t).

To prove this, we will need the following.

1. Note that the samples in the F (t) set are clearly dependent, but have the
same distribution. Hence, it holds that

E

 ∑
X∈F(t)

H(X)

 =︸︷︷︸
|F(t)|=Bt

Bt Ef (H(X) | T = t) .

15

2. From the well-known result of unbiasedness of basic multilevel splitting
estimator [6, 30], it holds that

E
(
Pt−1

Bt

B

)
= E

(
Bt

B

t−1∏
j=1

∣∣W(j)
∣∣

B

)
= E

(
Bt

B

t−1∏
j=1

B′j
B

)
= P(T = t). (5)

We conclude the proof by noting that

E (Ct) = E

Pt−1
1

B

∑
X∈F(t)

H(X)

 = E

 1

B
E

Pt−1

∑
X∈F(t)

H(X)

∣∣∣∣∣∣ B1, . . . , Bt


=︸︷︷︸

Pt−1=
∏t−1

j=1

Bj
B

E

Pt−1
1

B
E

 ∑
X∈F(t)

H(X)

∣∣∣∣∣∣ B1, . . . , Bt



=︸︷︷︸
(5)

E
[
Pt−1

Bt

B
Ef (H(X) | T = t)

]
= Ef (H(X) | T = t)E

[
Pt−1

Bt

B

]
=︸︷︷︸
(5)

Ef (H (X) | T = t)P(T = t).

Although it is generally hard to analyse the efficiency of SSMC for a given
problem in terms of RE, Theorem 3.2 provides performance guaranties under
some simplified assumptions. However, it is important to note that Theorem
3.1 holds for general SMC procedures which can be presented in the form of
CSMC Algorithm 3.1.

Theorem 3.2 (Efficiency of SSMC Algorithm 3.2). Suppose that the
following holds for all t = 1, . . . , n.

1. For t = 1, . . . , n, ft(xt | x1, . . . , xt−1) = pt (constant) for all x = (x1,
. . . , xt−1) ∈ Xt−1, and pt = O(1/Pn), where Pn is a polynomial in n.

2. H(x) = Ht (constant) for all x ∈ Xt, t = 1, . . . , n.

Then, under above assumptions, the SSMC Algorithm 3.2 is efficient [11];
that is, it holds that CV =

√
Var (C)/E (C) is upper-bounded by a polynomial

in n.

16

Proof: The analysis is by obtaining the lower and the upper bounds for the
first and the second moments of C, respectively.

1. First moment. Since H(x) = Ht for x ∈ Xt, it holds that

Ef (H(X) | T = t) = Ht, t = 1, . . . , n.

Combining this with Theorem 3.1 yields

E(C) =
n∑
t=1

Ef (H(X) | T = t)P(T = t) =
n∑
t=1

Ht(1− pt)
t−1∏
j=1

pj.

Hence,

[E(C)]2 =

(
n∑
t=1

Ht(1− pt)
t−1∏
j=1

pj

)2

>
n∑
t=1

H2
t (1− pt)2

t−1∏
j=1

p2
j . (6)

2. Second moment. Since the “entrance” states
{
X

(t)
1 , . . . , X

(t)
B

}
are in-

dependent for t = 1, . . . , n, the random variables Bt and B′t are binomi-
ally distributed according to Bin(B, pt) and Bin(B, 1−pt), respectively.
Hence, the second moments of Bt/B and B′t/B are given by

E (Bt/B)2 =
(
pt(1− pt)/B + p2

t

)
, (7)

and
E (B′t/B)

2
=
(
pt(1− pt)/B + (1− pt)2

)
, (8)

respectively. Let pmin = min16t6n{pt}, and note that

E
(
C2
)

= E

(
n∑
t=1

Ht(1− Pt)
t−1∏
j=1

Pj

)2

6︸︷︷︸
Jensen inequality [34]

(9)

6 n

n∑
t=1

H2
t E

(
(1− Pt)

t−1∏
j=1

Pt

)2

=
n∑
t=1

H2
t E

(
Bt

B

t−1∏
j=1

Bj

B

)2

=︸︷︷︸
(7, 8)

n
n∑
t=1

H2
t

(
pt(1− pt)

B
+ (1− pt)2

) t−1∏
j=1

(
pj(1− pj)

B
+ p2

j

)

17

= n
n∑
t=1

H2
t (1− pt)2

(
1 +

pt
B(1− pt)

) t−1∏
j=1

(
p2
j

(
1 +

1− pj
Bpj

))

6n

(
1 +

1

B

) n∑
t=1

H2
t (1− pt)2

t−1∏
j=1

p2
j

t−1∏
j=1

(
1 +

1

Bpmin

)

6 2n

(
1 +

1

Bpmin

)n n∑
t=1

H2
t (1− pt)2

t−1∏
j=1

p2
j

6︸︷︷︸
B>dn/pmine

2ne
n∑
t=1

H2
t (1− pt)2

t−1∏
j=1

p2
j ,

where the last inequality follows from the well-known identity:

(1 + 1/n)n 6 e, n > 0.

Note that B = dn/pmine is a polynomial in n. We complete the proof of the
theorem by combining (6) and (9) and arriving at

CV 6
2ne

∑n
t=1H

2
t (1− pt)2

∏t−1
j=1 p

2
j∑n

t=1 H
2
t (1− pt)2

∏t−1
j=1 p

2
j

= 2ne.

Remark 3.3 (Practical Considerations). From practical point of view,
Theorem 3.2 means the following. In order to satisfy the first condition,
the ST algorithm user needs to ensure that her network meets a special
structural requirement. In particular, for any edge permutation (birth times),
the network should satisfy the condition that the probability to enter the UP
state at next edge birth is not very small. For example, the parallel system
S(n) from Example 2.1 or a cycle graph with two adjacent terminals satisfies
this condition. The second condition is simple and is satisfied by equal edge
failure probabilities.

We already saw that both PMC Algorithm 2.1 and the LT Algorithm 2.2
can be viewed as CSMC Algorithm 3.1. To see the merit of using SSMC
for network reliability estimation, consider an immediate efficiency result for
S(n) networks which is presented in Corollary 3.1.

18

Corollary 3.1 (Efficiency of SSMC for S(n) networks). The PMC Al-
gorithm 2.1 combined with SSMC Algorithm 3.2, is an FPRAS for networks
S(n), n > 0.

Proof: The proof is an immediate consequence of Theorem 3.2. Recall the
Example 2.1 and note that

P(a(Π) = t | a(Π) > t− 1) = P(T = t | T > t− 1)

=
t

2n+ 2− t = O
(

1

2n+ 1

)
,

for each t = 1, . . . , n + 1. Moreover, since for the S(n) network pe = p
for all e ∈ E, the function H(x) = Ht = Conv(t) is constant in Xt. We
conclude that the first and the second conditions of Theorem 3.2 holds, thus
completing the proof.

It is important to note that ST is an FPRAS for any family of graphs
that satisfies the conditions of Theorem 3.2. Although these families are
not “very interesting” from a practical point of view, our numerical results
indicate that ST introduces an excellent performance for quite general graph
topologies. We next proceed with demonstrative numerical examples.

4. Numerical Results

In this section we introduce some typical example cases in order to demon-
strate the efficacy of the proposed ST method. In the first test case we verify
numerically the theoretical result of Corollary 3.1 using the S(50) network.
For the second model we take the dodecahedron graph with 20 vertices and
30 edges. This graph is widely considered to be a good benchmark for net-
work reliability. In our third example, we consider a bigger model of a size
for which simulation is typically required. In particular, similar to [28], we
consider three merged copies of the dodecahedron graph. Finally, our last
example concerns an epidemic SIR model [39] in which population members
are modelled by graph nodes.

We performed many experiments with the LT and ST algorithms dis-
cussed above. In particular, all the tests were executed on a desktop quad-
core 3.4Ghz processor. To report our findings, we developed a software pack-
age named RelSplit. This software and some example models are freely

19

available for download1. The results should be interpreted as follows.

• R is the estimator of network unreliability.

• R̂E is the estimated relative error.

• The relative experimental error (REE) is given by REE =
∣∣R− r̄∣∣/r̄,

where r̄ is the exact network unreliability.

• B and N are the budget and the sample size parameters, respectively.
The budget B is used in ST algorithm while the sample size N stands
for the number of independent repetitions to perform prior to averaging
and delivering the final result R.

To ensure a fair comparison, we set the sample size of LT to be equal to the
sample size of ST multiplied by the budget B, see Remark 3.2. Next, we
proceed with the models.

4.1. Model 1 — the graph S(n)

We consider the performance of LT and ST on the S(50) network with p =
0.9. For the ST algorithm, we set B = 1000 and N = 100. Consequentially,
we use N = 105 sample size for the LT algorithm. Table 1 summarizes the
average performance of LT and ST for the S(50) network using the above
parameters. The bad performance of LT is not very surprising, since we know
that for S(50), the CV is of order 106.

Algorithm R R̂E REE

LT 1.93× 10−41 76.5% 99.7%

ST 8.67× 10−38 2.48% 2.41%

Table 1: The performance obtained for the S(50) network with p = 0.9 using the LT and
the ST algorithms. The true unreliability is 8.66× 10−38, see Example 2.1.

4.2. Model 2 — the dodecahedron graph

In this model we consider the dodecahedron graph with 20 vertices and
30 edges, see Figure 4. Both LT and GS were reported to deliver an excellent

1http://www.smp.uq.edu.au/people/RadislavVaisman/#software

20

20

19

14 13

18

17

15

8 7

12

16

9

3

6

11

10

4

1

2

5

Figure 4: The dodecahedron graph with 20 vertices, 30 edges, and K = {1, 3}.

results in Botev et al. [24]. Indeed, this network is relatively small and in case
of all edges having the same failure probability, the rare-event phenomenon
does not apply. However, we show next that even for such a small network it
is possible to assign the failure probabilities in a “bad” way. Our experiment
is as follows. We set the terminal nodes to be K = {1, 3}. All the edge
failure probabilities are equal to 0.5 except of the following component. The
edges (1, 2), (2, 6), (6, 7), (3, 7) and (1, 3) failure probabilities are all set to be
q = 10−j, for j = 1, . . . , 15.

In particular, for very small values of q, we expect that the vertex com-
ponent {1, 2, 3, 6, 7} will be born at early stages of the evolution process with
high probability, and thus, a rare event is created since long trajectories will
appear more rarely. As a consequence of this early birth of the {1, 2, 3, 6, 7}
component, we expect LT to perform worse than the ST algorithm for small
values of q, since the ST algorithm is capable of generating long trajectories.
For the ST algorithm, we set B = 10 and N = 6× 104. The sample size of
LT is N = 6× 105. Table 2 summarizes the average performance of LT and
ST for the dodecahedron network using the above parameters.

Table 2 clearly shows the superiority of ST for this model. In particular,
the ST methods shows better RE as compared to LT. Moreover, a crucial
observation is that the LT algorithm provides an order of magnitude under-
estimation. We next continue with the larger merged dodecahedron model.

21

LT ST

q R R̂E R R̂E

10−15 6.35× 10−31 58.1% 3.24× 10−30 5.04%

10−14 8.80× 10−29 56.9% 3.25× 10−28 4.77%

10−13 1.49× 10−26 55.3% 3.25× 10−26 4.18%

10−12 6.85× 10−25 50.7% 3.24× 10−24 3.78%

10−11 1.39× 10−22 50.7% 3.23× 10−22 3.45%

10−10 1.01× 10−20 49.9% 3.22× 10−20 3.00%

10−9 4.94× 10−18 48.2% 3.24× 10−18 2.81%

10−8 2.14× 10−16 47.8% 3.23× 10−16 2.50%

10−7 2.50× 10−14 43.8% 3.23× 10−14 2.22%

10−6 4.30× 10−12 42.5% 3.24× 10−12 1.96%

10−5 3.46× 10−10 32.8% 3.24× 10−10 1.66%

10−4 3.18× 10−8 17.9% 3.24× 10−8 1.36%

10−3 3.24× 10−6 6.68% 3.24× 10−6 1.23%

10−2 3.20× 10−4 1.85% 3.20× 10−4 0.75%

10−1 2.82× 10−2 0.43% 2.82× 10−2 0.42%

Table 2: A summary of average performance obtained for the dodecahedron network using
the LT and ST algorithms.

4.3. Model 3 — Series of three dodecahedrons

We consider three merged copies of the dodecahedron graph from the
previous model. These graphs are connected in series as in [28, Example
10]. Let the nodes numbered 1 and 20 be the source and the destination of
each dodecahedron, respectively. We define the terminal set of the merged
graph to be the source of the first dodecahedron and the destination of the
third dodecahedron, respectively. To connect the dodecahedron copies we do
the following. The destination of the first (respectively second) copy is the
source of the second (respectively third) [28]. The resulting merged graph
has 90 edges.

Next, we set the failure probability of every edge to be 0.4 and run LT
to obtain the unreliability. Using N = 106 sample size, we estimated the
network unreliability to be approximately equal to 0.812 with confidence
interval of width 0.03%. Next, we add a new edge e between the merged

22

graph terminal nodes (u and v), see Figure 5, and consider the performance
of LT and ST for this network and for different failure probabilities q of e.

u vdodec. 1 dodec. 2 dodec. 3

q

Figure 5: The merged dodecahedron graph with K = {u, v}.

10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100

100

101

102

q

E
x
p
ec
te
d
R
E
E

%

LT
ST

10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100

100

101

102

q

R̂
E

%

LT
ST

Figure 6: Expected REE % and R̂E % of LT and ST as a function of q.

In particular, we consider q = 10−1, 10−2, . . . , 10−15. For each such failure
rate q, the unreliability of the system is equal to q times the unreliability
of the series system of three dodecahedrons, so approximately 0.812 · q. For

23

the ST method we set B = 30 and N = 2000. For the LT algorithm we set
N = 6× 104 sample size, respectively. Figure 6 summarizes the algorithm’s
expected REEs (with respect to the estimated unreliability 0.812·q) and REs
for different values of q. We can observe from Figure 6 that the LT algorithm
becomes very inaccurate for q 6 10−9.

For our final model, we consider an application of a major interest to
an engineering and health-care communities. In particular, we consider the
susceptible–infected–recovered (SIR) disease spreading model [39].

4.4. The epidemic SIR model

s

t

Figure 7: The portion of real World-Wide-Web network.

In the epidemic SIR model [39], population members are modelled by
graph nodes. Each node and edge has an associated recovery and infection
rate, respectively. In this example, we consider a scenario in which an out-
break of a disease happens in a specific individual and we ask for a probability
that some fixed target individual gets infected [14]. This SIR setting can be
expressed by a classical reliability model [40], and in particular by the s-t

24

network reliability. Namely, the infection start at node “s”, the target indi-
vidual is expressed by the “t” node, and this s-t unreliability corresponds to
the probability that “t” gets infected. For additional information about the
SIR problem and the reliability mapping, we refer to [40–43].

Figure 7 shows a portion of World-Wide-Web network from http://

www3.nd.edu/~networks/resources/www/www.dat.gz, from a seminal pa-
per of Albert, Jeong and Barabasi [44]. We take the first 25 vertices and
consider the terminal reliability for T = {1, 25}. Under this SIR setting, we
suppose that node 1 is infected (say by computer virus), and we ask for the
probability that node 25 gets infected, too.

We next analyse the RE of LT and ST. With the view that the “s” node is
infected and we would like to protect “t”, a reasonable approach is to increase
the reliability of all edges that are incident to “t”. For this experiment,
we set the “t”-incident edge unreliabilities to q, while the unreliabilities of
the other edges are fixed to 0.7. The network unreliability is estimated for
q = 10−1, 10−2, . . . , 10−15.

For the ST method we set B = 30 and N = 104. For the LT algorithm we
set N = 3× 105 sample size. Figure 8 summarizes the algorithm’s expected
REs for different values of q. Similar to the previous model, the ST algorithm
demonstrates a better behavior in the sense of the RE.

10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100

100

101

102

q

R̂
E

%

LT
ST

Figure 8: Expected R̂E % of LT and ST as a function of q.

25

5. Concluding Remarks

In this paper we developed a general scheme that combines sequential
Monte Carlo and multilevel splitting. In particular, we used our method
to improve the performance of Lomonosov’s turnip by developing the Split-
Turnip algorithm. We showed that the Split-Turnip method is efficient in
the sense of the existence of theoretically provable performance guarantees
for specific networks and demonstrated numerically that it generally outper-
forms the turnip. Of interest for future research is the application of our
method to different problems which are currently been solved under the se-
quential Monte Carlo framework. Even though the efficiency conditions of
the Split-Turnip algorithm require a certain network structure, Theorem 3.1
ensures that the estimator is unbiased. Moreover, it implies that Split-Turnip
can be used for more general reliability problems related to different types of
infrastructures. For example, our algorithm can be easily adapted for the es-
timation of the reliability of stochastic flow networks, which is generally used
for the modelling of communication, transportation, and power distribution
systems. This problem concerns the estimation of the probability that the
maximal flow in such a network is above some fixed level [45]. Additionally,
it will be interesting to rigorously analyse these problems in the spirit of
Theorem 3.2.

Acknowledgement

We are thoroughly grateful to the anonymous reviewers for their valu-
able and constructive remarks and suggestions. This work was supported by
the Australian Research Council Centre of Excellence for Mathematical &
Statistical Frontiers, under grant number CE140100049.

References

[1] R. Skjong, C. G. Soares, Safety of maritime transportation, Rel. Eng.
& Sys. Safety 93 (9) (2008) 1289–1291.

[2] E. OBrien, F. Schmidt, D. Hajializadeh, X.-Y. Zhou, B. Enright,
C. Caprani, S. Wilson, E. Sheils, A review of probabilistic methods of
assessment of load effects in bridges, Structural Safety 53 (2015) 44–56.

26

[3] K. Xie, R. Billinton, Tracing the unreliability and recognizing the ma-
jor unreliability contribution of network components, Rel. Eng. & Sys.
Safety 94 (5) (2009) 927–931.

[4] U. J. Na, M. Shinozuka, Simulation-based seismic loss estimation of
seaport transportation system, Rel. Eng. & Sys. Safety 94 (3) (2009)
722–731.

[5] E. Zio, Reliability engineering: Old problems and new challenges, Rel.
Eng. & Sys. Safety 94 (2) (2009) 125–141.

[6] D. P. Kroese, T. Taimre, Z. I. Botev, Handbook of Monte Carlo methods,
John Wiley & Sons, New York, 2011.

[7] I. B. Gertsbakh, Y. Shpungin, Network Reliability and Resilience,
Springer Briefs in Electrical and Computer Engineering, Springer, New
York, 2011.

[8] D. R. Karger, A randomized fully polynomial time approximation
scheme for the all terminal network reliability problem, in: Proceedings
of the Twenty-seventh Annual ACM Symposium on Theory of Comput-
ing, STOC ’95, ACM, New York, NY, USA, 1995, pp. 11–17.

[9] J. S. Provan, M. O. Ball, The complexity of counting cuts and of com-
puting the probability that a graph is connected, SIAM Journal on Com-
puting 12 (4) (1983) 777–788.

[10] L. G. Valiant, The complexity of enumeration and reliability problems,
SIAM Journal on Computing 8 (3) (1979) 410–421.

[11] R. M. Karp, M. Luby, Monte-Carlo algorithms for enumeration and
reliability problems, in: Proceedings of the 24th Annual Symposium on
Foundations of Computer Science, SFCS ’83, IEEE Computer Society,
Washington, DC, USA, 1983, pp. 56–64.

[12] R. M. Karp, M. Luby, Monte-Carlo algorithms for the planar multiter-
minal network reliability problem, Journal of Complexity 1 (1) (1985)
45–64.

[13] A. Satyanarayana, R. K. Wood, A linear-time algorithm for comput-
ing k-terminal reliability in series-parallel networks, SIAM Journal on
Computing 14 (4) (1985) 818–832.

27

[14] R. Zenklusen, M. Laumanns, High-confidence estimation of small s-t
reliabilities in directed acyclic networks, Networks 57 (4) (2011) 376–
388.

[15] A. Shafieezadeh, B. R. Ellingwood, Confidence intervals for reliability
indices using likelihood ratio statistics, Structural Safety 38 (2012) 48–
55.

[16] R. E. Barlow, F. Proschan, L. C. Hunter, Mathematical Theory of Re-
liability, Classics in Applied Mathematics, Society for Industrial and
Applied Mathematics, Philadelphia, 1996.

[17] T. Elperin, I. B. Gertsbakh, M. Lomonosov, Estimation of network reli-
ability using graph evolution models, IEEE Transactions on Reliability
40 (5) (1991) 572–581.

[18] I. B. Gertsbakh, Y. Shpungin, Models of network reliability: analysis,
combinatorics, and Monte Carlo, CRC Press, New York, 2009.

[19] F. J. Samaniego, On closure of the IFR class under formation of coherent
systems, IEEE Transactions on Reliability 34 (1985) 69–72.

[20] W. Liu, J. Li, An improved cut-based recursive decomposition algo-
rithm for reliability analysis of networks, Earthquake Engineering and
Engineering Vibration 11 (1) (2012) 1–10.

[21] W.-C. Yeh, C. Bae, C.-L. Huang, A new cut-based algorithm for the
multi-state flow network reliability problem, Reliability Engineering &
System Safety 136 (2015) 1–7.

[22] A study on the relaxed linear programming bounds method for system
reliability, Structural Safety 41 (2013) 64–72.

[23] J. Song, W.-H. Kang, System reliability and sensitivity under statisti-
cal dependence by matrix-based system reliability method, Structural
Safety 31 (2) (2009) 148–156.

[24] Z. I. Botev, P. L’Ecuyer, G. Rubino, R. Simard, B. Tuffin, Static network
reliability estimation via generalized splitting, INFORMS Journal on
Computing 25 (1) (2013) 56–71.

28

[25] Z. I. Botev, P. L’Ecuyer, B. Tuffin, Modeling and estimating small unre-
liabilities for static networks with dependent components, in: Proceed-
ings of SNA&MC 2013: Supercomputing in Nuclear Applications and
Monte Carlo, 2013.

[26] C. Walter, Moving particles: A parallel optimal multilevel splitting
method with application in quantiles estimation and meta-model based
algorithms, Structural Safety 55 (0) (2015) 10–25.

[27] K. M. Zuev, S. Wu, J. L. Beck, General network reliability problem
and its efficient solution by subset simulation, Probabilistic Engineering
Mechanics 40 (2015) 25–35.

[28] P. L’Ecuyer, G. Rubino, S. Saggadi, B. Tuffin, Approximate zero-
variance importance sampling for static network reliability estimation,
IEEE Transactions on Reliability 8 (4) (2011) 590–604.

[29] H. Kahn, T. E. Harris, Estimation of particle transmission by random
sampling, National Bureau of Standards Applied Mathematics Series 12
(1951) 27–30.

[30] Z. I. Botev, D. P. Kroese, Efficient Monte Carlo simulation via the gen-
eralized splitting method, Statistics and Computing 22 (2012) 1–16.

[31] R. Y. Rubinstein, A. Ridder, R. Vaisman, Fast Sequential Monte Carlo
Methods for Counting and Optimization, John Wiley & Sons, New York,
2013.

[32] M. J. J. Garvels, The splitting method in rare event simulation, Ph.D.
thesis, Universiteit Twente, Enschede (October 2000).

[33] P. Glasserman, P. Heidelberger, P. Shahabuddin, T. Zajic, Splitting for
rare event simulation: Analysis of simple cases., in: Winter Simulation
Conference, 1996, pp. 302–308.

[34] W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. 1 of Wiley mathematical statistics series, John Wiley & Sons, New
York, 1968.

[35] S. Asmussen, P. W. Glynn, Stochastic Simulation: Algorithms and Anal-
ysis, Applications of Mathematics, Springer Science and Business Media,
LLC, 2007.

29

[36] J. S. Liu, Monte Carlo strategies in scientific computing, Springer, New
York, Berlin, Heidelberg, 2008.

[37] N. J. Higham, The scaling and squaring method for the matrix expo-
nential revisited, SIAM Review 51 (4) (2009) 747–764.

[38] C. Moler, C. Van Loan, Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later, SIAM Review 45 (1) (2003)
3–000.

[39] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical
theory of epidemics, Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 115 (772) (1927) 700–
721.

[40] P. Grassberger, On the critical behavior of the general epidemic process
and dynamical percolation, Mathematical Biosciences 63 (2) (1983) 157–
172.

[41] M. E. J. Newman, Spread of epidemic disease on networks, Physical
Review E 66 (1) (2002) 016128.

[42] M. Newman, The structure and function of complex networks, SIAM
Review 45 (2) (2003) 167–256.

[43] L. M. Sander, C. P. Warren, I. M. Sokolov, C. Simon, J. Koopman,
Percolation on heterogeneous networks as a model for epidemics, Math-
ematical Biosciences 180 (1-2).

[44] R. Albert, H. Jeong, A. L. Barabasi, The diameter of the world wide
web, Nature 401 (1999) 130–131.

[45] I. Gertsbakh, R. Rubinstein, Y. Shpungin, R. Vaisman, Permutational
methods for performance analysis of stochastic flow networks, Probabil-
ity in the Engineering and Informational Sciences 28 (2014) 21–38.

30

