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ABSTRACT

Spatial statistical models are of considerable practical and theoretical interest. However, there has been
little work on rare-event probability estimation for such models. In this paper we present a conditional
Monte Carlo algorithm for the estimation of the probability that random graphs related to Bernoulli and
continuum percolation are connected. Numerical results are presented showing that the conditional Monte
Carlo estimators significantly outperform the crude simulation estimators.

1 INTRODUCTION

Random graph models are of significant practical importance; see, e.g., Sahini and Sahimi 1994. The
connectivity properties of such models are of considerable interest, for example in network reliability
(Gertsbakh and Shpungin 2010, Colbourn 1987), percolation theory (Bollobás and Riordan 2006) and
material design (Stenzel, Koster, Thiedmann, Oosterhout, Janssen, and Schmidt 2012). In percolation
theory the focus is on infinite random graph models, which are theoretically more tractable. However
physical systems of interest are necessarily finite and this suggests the use of finite random graph models
in applications.

This paper studies the following problem: consider a connected ‘base’ graph G, and retain vertices
independently with probability p. If we use this random vertex subset to construct the induced subgraph,
what is the probability that the induced subgraph is connected? Calculating this probability exactly for
a finite but large random graph model constitutes a difficult counting problem. In the network reliability
setting this problem has been proved to be #P-complete (Colbourn 1987). Given the difficulties with exact
computation we naturally turn to Monte Carlo methods.

However, crude Monte Carlo techniques can be cumbersome because connectivity is often a rare event
and the problem becomes one of rare-event simulation. This is similar to the situation in network reliability,
which also involves rare-event simulation; however in that case disconnection is the rare event, rather
than connection. Typical methods for efficient rare event simulation include splitting (Kahn and Harris
1951, Glasserman, Heidelberger, Shahabuddin, and Zajic 1999, Garvels, van Ommeren, and Kroese 2002,
L’Ecuyer, Demers, and Tuffin 2006, Botev and Kroese 2012), importance sampling (Glynn and Iglehart
1989, Asmussen and Rubinstein 1995) and conditional Monte Carlo (Asmussen and Glynn 2007). See
Rubinstein and Kroese 2008 or Kroese, Taimre, and Botev 2011 for an overview of these techniques.
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Random geometric graphs are the continuous analog of random graph models. The defining property
of these models is that the vertices of the graph are the points of a point process on a bounded sampling
window. Although these models can be viewed as strictly combinatoric, the spatial structure of the model
remains important. Even in the infinite domain case very little has been proved about the connectivity
properties of such models and related critical exponents (Brereton, Hirsch, Kroese, and Schmidt 2014).
This has lead to the widespread use of Monte Carlo methods to estimate unknown percolation thresholds
(Quintanilla and Ziff 2007, Li and Östling 2013, Torquato and Jiao 2012). We show that the Monte Carlo
estimate we propose can be applied to the Gilbert disk model with minimal change.

The rest of this paper is organized as follows. Section 2 describes the Bernoulli site percolation model
on a finite lattice and the Gilbert disk model. Section 3 outlines the conditional Monte Carlo estimator
for the Bernoulli site percolation model. Section 4 describes the adaptation of the conditional Monte
Carlo estimator in Section 3 to the Gilbert disk model. Section 5 gives numerical results showing that the
conditional Monte Carlo estimators perform significantly better than the crude simulation estimators.

2 PRELIMINARIES

Let G = (V,E) be a finite connected graph. For any vertex v the degree of v is the number of edges incident
to v, and we write deg(v). The maximum degree of any vertex in G is denoted by ∆(G). The cardinality
of a finite set S is denoted by |S|. If S is uncountable then |S| denotes instead the Lebesgue measure of the
set.

Take some p ∈ (0,1) and let q = 1− p. Let X = {Xv}v∈V be a collection of independent and identically
distributed (iid) random variables with Xv ∼ Ber (p). A vertex v with Xv = 1 is called activated. Let V (X)
denote the set of activated vertices, that is

V (X) = {v ∈ V | Xv = 1} .

The random subset V (X) induces a random subgraph

G = G(X) = (V (X) ,E (X)) ,

where

E = E (X) = {(v1,v2) ∈ E | v1,v2 ∈V (X)} .

We typically omit the dependence of these random variables on X . We denote the collection of possible
induced subgraphs of G by P (G). We will write the density of G with respect to counting measure on
P (G) as fG (g; p). For g1,g2 ∈P (G) induced by vertex subsets V1,V2 ⊆ V we will write g1∩g2 for the
subgraph induced by the vertex set V1∩V2.

Models of this form for G are commonly known as discrete site percolation models, although G is
often implicitly assumed to be infinite. We will also refer to the case where G is an arbitrary finite graph
as being a discrete site percolation model. As vertices are retained independently with some probability p
these models are said to be Bernoulli site percolation models.

Let C⊆ V be a subset of vertices such that the subgraph induced by the subset is connected. Define
∂C to be the boundary vertices of C in G. That is,

∂C = {v1 ∈ V | v1 /∈ C,{v1,v2} ∈ E for some v2 ∈ C} .

Define the connectivity probability

`(G, p) = P(G is connected ) .

If we add vertices to G while maintaining a bound on the maximum vertex degree ∆(G), then `(G, p)
will decay exponentially fast in the number of vertices. See Weichenberg, Chan, and Medard 2004 for
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results bounding the connectivity probability in the related network reliability setting. The idea of prime
failure events used in Weichenberg, Chan, and Medard 2004 applies equally to our site-percolation model.
Exponential decay means in particular that `(G, p) will be small for large base graphs G when ∆(G) is
small.

The defining property of random geometric graphs is that their vertices are the points of a spatial
point process on some bounded Borel set R ⊆ Rd . Edges are added between vertices according to some
probabilistic or deterministic rule. One possibility is to connect each vertex to the k closest other vertices;
another is to connect a pair of vertices with some probability that depends on the Euclidean distance
between them.

We focus on the standard Gilbert disk model, a special case of the Boolean model (Chiu, Stoyan,
Kendall, and Mecke 2013). In this model the point process ξ that generates the vertices of the graph is
a homogeneous Poisson point process on R with some intensity λ > 0, and any pair of vertices that are
closer than some fixed distance r are connected by an edge. We will denote this model by Ggeo (R,λ ,r),
generally abbreviated to Ggeo. The open ball of radius r around a point x ∈Rd will be denoted by B(x,r).

3 CONDITIONAL MONTE CARLO FOR DISCRETE PERCOLATION

If
{

X (i)
}∞

i=1 are iid copies of X then the crude simulation estimator is

̂̀crude (G, p) =
1
n

n

∑
i=1

I
{

G
(

X (i)
)

is connected
}

, (1)

where n≥ 1 is an arbitrary fixed integer and I{A} denotes the indicator function of an event A. Our aim is
to find an estimator that has better asymptotic properties than the crude simulation estimator, as the number
of vertices in G is allowed to increase.

We can construct a simple conditional Monte Carlo estimator based on knowledge of a single connected
component. After this connected component has been generated it is no longer necessary to simulate the
states of the remaining vertices, as the connectivity probability can be computed exactly; it is the probability
that the vertices not already simulated are all deactivated. By the total variance formula this gives an estimate
with smaller variance than the crude estimator given in Equation (1). See Billingsley 1995, p. 275,445 for
further details.

The idea of the algorithm is as follows. Select vertices randomly without replacement and generate
their activation state according to a Ber (p)-distributed random variable. Continue this process until some
activated vertex is selected. The set of deactivated vertices is denoted by Vdeact, with both Vdeact = /0 and
Vdeact = V being possible.

If an activated vertex is generated denote it by ω . We can then simulate the entire connected component
Cact for ω by performing a depth-first search of V\Vdeact. For every visited vertex v the activation state is
generated according to a Ber (p)-distributed random variable, and if v is activated the search continues to
the neighbors of v. If no activated vertex was originally found, set Cact = /0. The random object we will
condition on is ZBer = (Vdeact,Cact). It will be convenient to define Ndeact = |Vdeact|. Note that the random
variables defined in this section are not just functions of the binary vector X .

The process of generating ZBer is illustrated in Figure 1. In this case Vdeact contains the first three
vertices selected, all of which were generated to be deactivated. The fourth vertex picked is marked as ω ,
and was determined to be activated. The connected component for ω was then generated, and contains
3 vertices. Note that v1 was already determined to be deactivated when we started to generate Cact. The
activation state has only been generated for the marked vertices; the activation states of the unmarked
vertices is unknown.

The density of G|ZBer is

fG|ZBer (g|(vdeact,cact) ; p) =
(
|V|− |k|
|g|− |cact|

)
p|g|−|cact|q(|V|−|k|)−(|g|−|cact|), (2)
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Figure 1: An example showing the process of generating ZBer where G is the 6× 6 grid graph which does
not include diagonal edges. Cact contains three vertices. Vdeact also contains three vertices, labeled v1, v2 and
v3. Activated vertices are marked by filled circles and deactivated vertices by empty circles. If a vertex is
not shown then its state is still unknown.

where k = vdeact ∪ ∂cact ∪ cact. If fN (x;n, p) denotes the density of a Binomial(n, p)-distributed random
variable then we can rewrite (2) as

fG|ZBer (g | (vdeact,cact) ; p) = fN (|g|− |cact| ; |V|− |k| , p) .

Conditional on ZBer, the only way for G to be connected is if all vertices outside the set K =Vdeact∪∂Cact∪Cact
are deactivated. This has probability

P(G is connected | ZBer = zBer) = P(V\ (cact∪∂cact∪ vdeact) are deactivated )

= q|V|−|cact∪∂cact∪vdeact|. (3)

Note that if Vdeact = V then G is the empty graph which is considered connected. The conditional probability
is simple to calculate, and ZBer is simple to simulate. We can use the expression

`(G, p) = E [P(G is connected | ZBer)] (4)

to construct the following conditional Monte Carlo estimator for the Bernoulli site percolation model.
Proposition 1 (Conditional Monte Carlo estimator for the Bernoulli site percolation model)

Let
{

Z(i)
Ber

}∞

i=1
be iid copies of ZBer and

{
X (i)
}∞

i=1 be iid copies of X , where each of the Z(i)
Ber depends

only on G
(
X (i)
)
. Define

P(i) = P
(

G
(

X (i)
)

is connected
∣∣∣ Z(i)

Ber

)
.

Then for any fixed n≥ 1, the Rao–Blackwell estimator

̂̀rao (G, p) =
1
n

n

∑
i=1

P(i)

is unbiased for `(G, p) and has smaller variance than the crude simulation estimator introduced in (1).
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Proof. This proposition follows from standard properties of conditional expectation and the total variance
formula. See Billingsley 1995 for further details.

Proposition 1 leads to the following algorithm for estimating `(G, p).
Algorithm 1 (Conditional Monte Carlo algorithm for the Bernoulli site percolation model)

1. Set i = 1.
2. Generate N(i)

deact = min
(
|V| ,N(i)

geom

)
, where N(i)

geom has a Geometric(q) distribution on the non-negative
integers.

3. If N(i)
deact = |V|, set P(i) = 1, set i = i+1 and go to Step 2.

4. Select N(i)
deact vertices uniformly at random from V without replacement, and denote the chosen ver-

tices by V (i)
deact. These vertices will be deactivated.

5. Select a vertex ω(i) uniformly at random from V\V (i)
deact. This vertex will be activated.

6. Generate the connected component C(i)
act of G(i) containing ω(i), conditional on the vertices in V (i)

deact
being deactivated and ω(i) being activated.

7. Calculate P(i) = P
(

G(i) is connected
∣∣∣ Z(i)

Ber =
(

V (i)
deact,C

(i)
act

))
according to (3).

8. If i < n set i = i+1 and repeat Step 2. Otherwise return 1
n ∑

n
i=1 P(i).

Note that our construction of ZBer does not depend on an ordering of the vertices. Another possibility
is to take some total ordering of V and let ZBer be the connected component of the first activated vertex
of G. Here ‘first’ is with respect to the ordering of V. Although we do not pursue this idea further in the
discrete case, it leads to a very similar conditional Monte Carlo algorithm to the one described here. We
continue this ordering-based approach with reference to random geometric graphs in Section 4.

4 CONDITIONAL MONTE CARLO FOR THE GILBERT DISK MODEL

Recall from Section 2 that for the Gilbert disk model the point process ξ is a homogeneous Poisson process
with intensity λ in a bounded Borel set R of Rd . The random graph Ggeo = Ggeo (R,λ ,r) is then generated
by taking ξ to be the vertices of the graph, and connecting any pair of vertices closer than r in the Euclidean
distance by an edge. The probability to be estimated is

`(R,λ ,r) = P
(
Ggeo (R,λ ,r) is connected

)
.

Similar to Section 3, we can define the crude simulation estimator as

̂̀crude (R,λ ,r) =
1
n

n

∑
i=1

I
{

G(i)
geo is connected

}
,

where n≥ 1 is an arbitrary fixed integer and
{

G(i)
geo

}∞

i=1
are iid copies of Ggeo (R,λ ,r).

For simplicity we will assume that d = 2 and that R is a rectangular region with width w and height
h, with bottom left corner at the origin. We will also assume that we have some total ordering of the
points of R. Although this ordering can be arbitrary, one natural choice is the lexicographic ordering. For
x = (x1,x2) ,y = (y1,y2) ∈ R2, the lexicographic ordering is defined by

(x1,x2) <l (y1,y2) if and only if x1 < y1 or (x1 = y1 and x2 < y2) .

Another choice is the distance ordering, where for some fixed point z ∈ R the ordering is

x <d y if and only if ‖x− z‖< ‖y− z‖ .
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Note that we do not define the ordering among points which are equally distant from z. This is acceptable
because we will only apply the ordering to the points of a Poisson process, and with probability 1 there
will be no pair of points equally distant from the nonrandom point z.

Let η = (η1,η2) be the first point of ξ with respect to the ordering of R. Let Zgeo be the vertices of
the connected component of Ggeo that contains η . Then conditional on Zgeo there must be no vertices in
the region

Rempty = {r ∈ R | r < η} ⊆ R.

The set Zgeo is equal to ξ ∩Rknown, where

Rknown = R∩
(
∪v∈ZgeoB(v,2r)

)
.

On the remainder of R the points of ξ are unknown. That is, conditional on Zgeo the distribution of ξ on
the region

Runknown = R\
(
Rempty∪Rknown

)
is that of a homogeneous Poisson point process with intensity λ . The random graph Ggeo can be connected
only if there are no points of ξ in Runknown. Therefore we have

P
(
Ggeo is connected

∣∣ Zgeo
)

= exp(−λ |Runknown|) .

The difficulty with applying this formula as part of a conditional Monte Carlo algorithm is determining the
area of Runknown, or equivalently Rempty∪Rknown. However in some cases this can be relatively straightforward.
The following two propositions calculate these areas for the lexicographic ordering and distance ordering.
Proposition 2 (Lexicographic ordering) Consider the lexicographic ordering of R. Then

Rempty = [0,η1)× [0,h],

and therefore

|Runknown|= h(w−η1)−
∣∣(∪v∈ZgeoB(v,2r)

)
∩ ([η1,w]× [0,h])

∣∣ .
Proposition 3 (Distance ordering) Consider the distance ordering of R with respect to a fixed point z ∈ R.
Then

Rempty = B(z,‖z−η‖) ,

and therefore

|Runknown|= hw−
∣∣(∪v∈ZgeoB(v,2r)∪B(z,‖z−η‖)

)
∩R
∣∣ .

Propositions 2 and 3 are easy to prove. The key observation is that we have observed the first point
of ξ with respect to the ordering, and this excludes the possibility of observing any other points occurring
in a region whose shape depends on the ordering chosen. See Figure 2 for an illustration of the regions
Rknown, Runknown and Rempty in the case of the lexicographic ordering.

Applying Propositions 2 and 3, the problem reduces to determining the area of a union of closed balls
contained within a rectangular region. In the distance ordering case these balls are of unequal radius. It is
well-known (Avis, Bhattacharya, and Imai 1988, Edelsbrunner 1993) that this problem can be solved by
constructing the Laguerre tessellation, also known as the power Voronoi diagram. This diagram can be used
to decompose the union of closed balls into a union of simpler regions, each of which is the intersection
of a single closed ball with finitely many half-planes. If d = 2 the diagram can be constructed for n points
in O(n logn) time (Imai, Iri, and Murota 1985). For d > 2 the complexity is O

(
nb

d+1
2 c
)

(Aurenhammer
1987).

This leads to the following conditional Monte Carlo estimator for the Gilbert disk model.
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η

Rempty

Rknown

Runknown

w

h

0

Figure 2: Illustration of the regions Rknown,Runknown and Rempty for the lexicographic ordering on a square
region of R2. The region Rempty is the rectangular region on the left. The region Rknown is the region at the
bottom left shaded in gray. The region Runknown is the remaining region of R. Crosshatched regions represent
other points of ξ that are not in the connected component of η . These regions are included in Runknown.

Proposition 4 (Conditional Monte Carlo estimator for the Gilbert disk model)
Let
{

Z(i)
geo

}∞

i=1
be iid copies of Zgeo and

{
G(i)

geo

}∞

i=1
be iid copies of Ggeo (R,λ ,r), where each of the Z(i)

geo

depend only on G
(
X (i)
)
. Define

P(i)
geom = P

(
G(i)

geo is connected
∣∣∣ Z(i)

geo

)
.

Then for any fixed n≥ 1, the Rao–Blackwell estimator

̂̀rao (R,λ ,r) =
1
n

n

∑
i=1

P(i)
geo

is unbiased and has smaller variance than the crude simulation estimator ̂̀crude (R,λ ,r).
For the lexicographic ordering, this leads to the following algorithm. The algorithm for the distance

ordering is similar.
Algorithm 2 (Conditional Monte Carlo algorithm for the Gilbert disk model using lexicographic ordering)

1. Set i = 1.
2. Generate Z(i)

geo and determine the first point η(i) =
(

η
(i)
1 ,η

(i)
2

)
with respect to the lexicographic

ordering.
3. Construct the power Voronoi diagram V (i) of the points in Z(i)

geo, with all points having weight 4r2.

4. Use V (i) to calculate
∣∣∣R(i)

known

∣∣∣.
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5. Set P(i)
geo = exp

(
−λ

(
h
(

w−η
(i)
1

)
−
∣∣∣R(i)

known

∣∣∣)).

6. If i < n set i = i+1 and repeat Step 2. Otherwise return 1
n ∑

n
i=1 P(i)

geo.

5 NUMERICAL RESULTS

Example 1 Let G be the 6× 6 grid graph without diagonal edges. This graph is small enough to allow
complete enumeration of the 236 subgraphs. We can therefore compute the probability of observing a con-
nected subgraph exactly, for any parameter value p. A numerical search for the parameter value which
minimized the probability of connectivity gave a value of p = 0.285. Note that the whole of G, any single-
vertex subgraph and the empty graph are all connected, so the connectivity probability must approach 1 as
p approaches 0 or 1. The probability of connectivity for p = 0.285 was calculated to be 0.00125143. For
crude Monte Carlo this would result in a relative error of 8.93%.

Conditional Monte Carlo was applied with n = 100,000 samples, and this was repeated 1,000 times.
The average estimate obtained was 1.25×10−03 and the estimated relative error was 2.48%.
Example 2 We started with a 20× 20 grid graph which included diagonal edges and generated a random
subgraph by retaining at random 340 of the 400 vertices. The base graph that was generated is shown
in Figure 3. In this case exact computation is difficult, and we actually simulate the crude Monte Carlo
method. Both crude Monte Carlo and conditional Monte Carlo were applied for 20 different parameter
values between p = 0.05 and p = 0.99. For values of p between 0.1 and 0.33 inclusive the crude method
did not identify any connected subgraphs and therefore estimated a probability of 0. A sample of the results
where both methods estimated non-zero probabilities is shown in Table 1. An up to five-fold improvement
in relative error is observed when using the Rao–Blackwell estimator as compared to the crude estimator.

Table 1: Simulation results for a randomly generated subgraph of the 20×20 grid graph.

Method p Estimate Relative Error %
Crude 0.05 5.98×10−07 130
Crude 0.43 1.56×10−07 251
Crude 0.47 1.17×10−05 30
Crude 0.52 2.99×10−04 5.8
Crude 0.57 3.33×10−03 1.7
Conditional 0.05 5.72×10−07 25
Conditional 0.43 1.75×10−07 68
Conditional 0.47 1.16×10−05 11.2
Conditional 0.52 3.00×10−04 3.1
Conditional 0.57 3.34×10−03 1.0

Example 3 We considered the Gilbert disk model on a 6 by 6 square region of R2. The homogeneous
Poisson point process generating the vertices of the graph had intensity 10, and the distance r at which
points are connected was allowed to be 0.20 or 0.21. Both the distance and lexicographic orderings were
considered. In the case of the distance ordering the fixed point z was taken to be the center of R. We used
n = 10,000 samples for all three estimators, and this was repeated 1,000 times to estimate the relative error.
The simulation results are shown in Table 2. The distance ordering appears to outperform the lexicographic
ordering, and gives an up to 7-fold improvement in the relative error compared to the crude simulation
estimator.
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Figure 3: Subgraph of the 20×20 grid graph used as the base graph in Example 2.

Table 2: Simulation results for the Gilbert disk model on a 6×6 region with intensity 10.

Method r Estimate Relative Error %
Crude 0.20 4.90×10−05 463
Crude 0.21 1.34×10−03 86
Lexicographic 0.20 5.11×10−05 52
Lexicographic 0.21 1.34×10−03 12
Distance 0.20 4.90×10−05 46
Distance 0.21 1.34×10−03 12
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