using Distributions, Random, Statistics mu = 3; sig = 0.5 # true parameters alpha = 0.05; n = 10; mu_count = 0; sig_count = 0 for k in 1:100 x = randn(n)*sig .+ mu # draw the iid sample mu_est = mean(x) # estimate mu sig_est = std(x) # estimate sigma tq = quantile(TDist(n-1),1-alpha/2) mu_lo = mu_est - tq*sig_est/sqrt(n) # low bound CI for mu mu_hi = mu_est + tq*sig_est/sqrt(n) # upper bound cq1 = quantile(Chisq(n-1),1-alpha/2) cq2 = quantile(Chisq(n-1),alpha/2) sig_lo = (n-1)*sig_est^2/cq1; # lower bound CI for sigma sig_hi = (n-1)*sig_est^2/cq2; # upper bound global mu_count = mu_count + (mu_lo < mu < mu_hi) global sig_count = sig_count + (sig_lo < sig^2 < sig_hi) end println(mu_count, " ", sig_count)