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Preface

Statistics provides one of the few principled means to extract information from
random data and has perhaps more interdisciplinary connections than any other
field of science. However, for a beginning student of statistics, the abundance
of mathematical concepts, statistical philosophies, and numerical techniques can
seem overwhelming. The purpose of this book is to provide a comprehensive and
accessible introduction to modern statistics, illuminating its many facets, from both
classical (frequentist) and Bayesian points of view. The book offers an integrated
treatment of mathematical statistics and modern statistical computation.

The book is aimed at beginning students of statistics and practitioners who would
like to fully understand the theory and key numerical techniques of statistics. It
is based on a progression of undergraduate statistics courses at The University
of Queensland and the Australian National University. Parts of the book have
also been successfully tested at the University of New South Wales. Emphasis
is laid on the mathematical and computational aspects of statistics. No prior
knowledge of statistics is required, but we assume that the reader has a basic
knowledge of mathematics, which forms an essential basis for the development
of the statistical theory. Starting from scratch, the book gradually builds up to an
advanced undergraduate level, providing a solid basis for possible postgraduate
research. Throughout the text we illustrate the theory by providing working code
in MATLAB, rather than relying on black-box statistical packages. We make frequent
use of the symbol ☞ in the margin to facilitate cross-referencing between related
pages. The book is accompanied by the web site www.statmodcomp.org from which
the MATLAB code and data files can be downloaded. In addition, we provide an R
equivalent for each MATLAB program.

The book is structured into three parts. In Part I we introduce the fundamentals
of probability theory. We discuss models for random experiments, conditional
probability and independence, random variables, and probability distributions.
Moreover, we explain how to carry out random experiments on a computer.

In Part II we introduce the general framework for statistical modeling and
inference, from both classical and Bayesian perspectives. We discuss a variety of
common models for data, such as independent random samples, linear regression,
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and ANOVA models. Once a model for the data is determined one can carry out a
mathematical analysis of the model on the basis of the available data. We discuss a
wide range of concepts and techniques for statistical inference, including likelihood-
based estimation and hypothesis testing, sufficiency, confidence intervals, and kernel
density estimation. We encompass both classical and Bayesian approaches and also
highlight popular Monte Carlo sampling techniques.

In Part III we address the statistical analysis and computation of a variety of
advanced models, such as generalized linear models, autoregressive and moving
average models, Gaussian models, and state space models. Particular attention
is paid to fast numerical techniques for classical and Bayesian inference on
these models. Throughout the book our leading principle is that the mathematical
formulation of a statistical model goes hand in hand with the specification of its
simulation counterpart.

The book contains a large number of illustrative examples and problem sets (with
solutions). To keep the book fully self-contained, we include the more technical
proofs and mathematical theory in Appendix B. Appendix A features a concise
introduction to MATLAB.

Brisbane, Australia Dirk Kroese
Canberra, Australia Joshua Chan
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Mathematical Notation

Throughout this book we use notation in which different fonts and letter cases
signify different types of mathematical objects. For example, vectors a;b; x; : : : are
written in lowercase boldface font and matrices A, B , X in uppercase normal font.
Sans serif fonts indicate probability distributions, such as N, Exp, and Bin. Probability
and expectation symbols are written in blackboard bold font: P and E. MATLAB code
and functions will always be written in typewriter font.

Traditionally, classical and Bayesian statistics use a different notation system
for random variables and their probability density functions. In classical statistics
and probability theory random variables usually are denoted by uppercase letters
X; Y;Z; : : : and their outcomes by lowercase letters x; y; z; : : :. Bayesian statisti-
cians typically use lowercase letters for both. More importantly, in the Bayesian
notation system, it is common to use the same letter f (orp) for different probability
densities, as in f .x; y/ D f .x/f .y/. Classical statisticians and probabilists would
prefer a different symbol for each function, as in f .x; y/ D fX.x/fY .y/. We will
predominantly use the classical notation, especially in the first part of the book.
However, when dealing with Bayesian models and inference, such as in Chaps. 8
and 11, it will be convenient to switch to the Bayesian notation system. Here is a list
of frequently used symbols:

� Is approximately
/ Is proportional to
1 Infinity
˝ Kronecker product
defD Is defined as

� Is distributed as
iid�, �iid Are independent and identically distributed as
approx:� Is approximately distributed as
7! Maps to
A[ B Union of sets A and B
A\ B Intersection of sets A and B
Ac Complement of set A
A � B A is a subset of B
; Empty set
kxk Euclidean norm of vector x
rf Gradient of f
r2f Hessian of f
A>, x> Transpose of matrix A or vector x
diag.a/ Diagonal matrix with diagonal entries defined by a
tr.A/ Trace of matrix A
det.A/ Determinant of matrix A

xix
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jAj Absolute value of the determinant of matrix A. Also, number of
elements in set A or absolute value of real number A

argmax argmaxf .x/ is a value x� for which f .x�/ � f .x/ for all x
d Differential symbol
E Expectation
e Euler’s constant limn!1.1C 1=n/n D 2:71828 : : :

IA; IfAg Indicator function: equal to 1 if the condition/event A holds and 0
otherwise.

ln (Natural) logarithm
N Set of natural numbers f0; 1; : : :g
' Pdf of the standard normal distribution
˚ Cdf of the standard normal distribution
P Probability measure
O Big-O order symbol: f .x/ D O.g.x// if jf .x/j � ˛g.x/ for some

constant ˛ as x ! a

o Little-o order symbol: f .x/ D o.g.x// if f .x/=g.x/ ! 0 as x ! a

R The real line = one-dimensional Euclidean space
RC Positive real line: Œ0;1/

R
n n-Dimensional Euclidean space

b� Estimate/estimator
x; y Vectors
X;Y Random vectors
Z Set of integers f: : : ;�1; 0; 1; : : :g
Probability Distributions

Ber Bernoulli distribution
Beta Beta distribution
Bin Binomial distribution
Cauchy Cauchy distribution
�2 Chi-squared distribution
Dirichlet Dirichlet distribution
DU Discrete uniform distribution
Exp Exponential distribution
F F distribution
Gamma Gamma distribution
Geom Geometric distribution
InvGamma Inverse-gamma distribution
Mnom Multinomial distribution
N Normal or Gaussian distribution
Poi Poisson distribution
t Student’s t distribution
TN Truncated normal distribution
U Uniform distribution
Weib Weibull distribution



Part I
Fundamentals of Probability

In Part I of the book we consider the probability side of statistics. In particular,
we will consider how random experiments can be modeled mathematically and
how such modeling enables us to compute various properties of interest for those
experiments.



Chapter 1
Probability Models

1.1 Random Experiments

The basic notion in probability is that of a random experiment: an experiment
whose outcome cannot be determined in advance, but which is nevertheless subject
to analysis. Examples of random experiments are:

1. Tossing a die and observing its face value.
2. Measuring the amount of monthly rainfall in a certain location.
3. Counting the number of calls arriving at a telephone exchange during a fixed

time period.
4. Selecting at random fifty people and observing the number of left-handers.
5. Choosing at random ten people and measuring their heights.

The goal of probability is to understand the behavior of random experiments by
analyzing the corresponding mathematical models. Given a mathematical model for
a random experiment one can calculate quantities of interest such as probabilities
and expectations. Moreover, such mathematical models can typically be imple-
mented on a computer, so that it becomes possible to simulate the experiment.
Conversely, any computer implementation of a random experiment implicitly
defines a mathematical model. Mathematical models for random experiments are
also the basis of statistics, where the objective is to infer which of several competing
models best fits the observed data. This often involves the estimation of model
parameters from the data.

Example 1.1 (Coin Tossing). One of the most fundamental random experiments
is the one where a coin is tossed a number of times. Indeed, much of probability
theory can be based on this simple experiment. To better understand how this coin
toss experiment behaves, we can carry it out on a computer, using programs such as
MATLAB. The following simple MATLAB program simulates a sequence of 100 tosses
with a fair coin (i.e., Heads and Tails are equally likely) and plots the results in a bar
chart.

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__1, © The Author(s) 2014
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x = (rand(1,100) < 0.5) % generate the coin tosses
bar(x) % plot the results in a bar chart

The function rand draws uniform random numbers from the interval Œ0; 1�—
in this case a 1 � 100 vector of such numbers. By testing whether the uni-
form numbers are less than 0:5, we obtain a vector x of 1s and 0s, indicating
Heads and Tails, say. Typical outcomes for three such experiments are given in
Fig. 1.1.

1 50 100

Fig. 1.1 Three experiments where a fair coin is tossed 100 times. The dark bars indicate when
“Heads” (D 1) appears

We can also plot the average number of Heads against the number of tosses. In
the same MATLAB program, this is accomplished by adding two lines of code:

y = cumsum(x)./[1:100] % calculate the cumulative sum and
% divide this elementwise by the vector [1:100]

plot(y) % plot the result in a line graph

The result of three such experiments is depicted in Fig. 1.2. Notice that the
average number of Heads seems to converge to 0.5, but there is a lot of random
fluctuation.

Similar results can be obtained for the case where the coin is biased,
with a probability of Heads of p, say. Here are some typical probability
questions.

• What is the probability of x Heads in 100 tosses?
• What is the expected number of Heads?
• How long does one have to wait until the first Head is tossed?
• How fast does the average number of Heads converge to p?
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Fig. 1.2 The average number of Heads in n tosses, where n D 1; : : : ; 100

A statistical analysis would start from observed data of the experiment—for
example, all the outcomes of 100 tosses are known. Suppose the probability of
Heads p is not known. Typical statistics questions are:

• Is the coin fair?
• How can p be best estimated from the data?
• How accurate/reliable would such an estimate be?

The mathematical models that are used to describe random experiments consist
of three building blocks: a sample space, a set of events, and a probability. We will
now describe each of these objects.

1.2 Sample Space

Although we cannot predict the outcome of a random experiment with certainty, we
usually can specify a set of possible outcomes. This gives the first ingredient in our
model for a random experiment.

Definition 1.1. (Sample Space). The sample space ˝ of a random experi-
ment is the set of all possible outcomes of the experiment.

Examples of random experiments with their sample spaces are:

1. Cast two dice consecutively and observe their face values:

˝ D f.1; 1/; .1; 2/; : : : ; .1; 6/; .2; 1/; : : : ; .6; 6/g :
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2. Measure the lifetime of a machine in days:

˝ D RC D f positive real numbers g :

3. Count the number of arriving calls at an exchange during a specified time
interval:

˝ D f0; 1; : : :g :

4. Measure the heights of 10 people:

˝ D f.x1; : : : ; x10/ W xi � 0; i D 1; : : : ; 10g D R
10C :

Here .x1; : : : ; x10/ represents the outcome that the height of the first selected
person is x1, the height of the second person is x2, and so on.

Notice that for modeling purposes it is often easier to take the sample space
larger than is strictly necessary. For example, the actual lifetime of a machine would
in reality not span the entire positive real axis, and the heights of the ten selected
people would not exceed 9 ft.

1.3 Events

Often we are not interested in a single outcome but in whether or not one in a group
of outcomes occurs.

Definition 1.2. (Event). An event is a subset of the sample space˝ to which
a probability can be assigned.

Events will be denoted by capital lettersA;B;C; : : : . We say that eventA occurs
if the outcome of the experiment is one of the elements in A.

Examples of events are:

1. The event that the sum of two dice is 10 or more:

A D f.4; 6/; .5; 5/; .5; 6/; .6; 4/; .6; 5/; .6; 6/g :

2. The event that a machine is functioning for less than 1000 days:

A D Œ0; 1000/ :
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3. The event that out of a group of 50 people 5 are left-handed:

A D f5g :

Example 1.2 (Coin Tossing). Suppose that a coin is tossed 3 times and that we
record either Heads or Tails at every toss. The sample space can then be written as

˝ D fHHH, HHT, HTH, HTT, THH, THT, TTH, TTTg ;

where, for instance, HTH means that the first toss is Heads, the second Tails, and the
third Heads. An alternative (but equivalent) sample space is the set f0; 1g3 of binary
vectors of length 3; for example, HTH corresponds to (1,0,1) and THH to (0,1,1).

The event A that the third toss is Heads is

A D fHHH, HTH, THH, TTHg :

Since events are sets, we can apply the usual set operations to them, as illustrated in
the Venn diagrams in Fig. 1.3.

1. The set A \ B (A intersection B) is the event that A and B both occur.
2. The set A [ B (A union B) is the event that A or B or both occur.
3. The event Ac (A complement) is the event that A does not occur.
4. If B � A (B is a subset of A), then event B is said to imply event A.

A ∩ B A ∪ B B ⊂ AAc

A BAB BA A

Fig. 1.3 Venn diagrams of set operations. Each square represents the sample space ˝

Two events A and B which have no outcomes in common, that is, A \ B D ;
(empty set), are called disjoint events.

Example 1.3 (Casting Two Dice). Suppose we cast two dice consecutively.
The sample space is ˝ D f.1; 1/; .1; 2/; : : : ; .1; 6/; .2; 1/; : : : ; .6; 6/g. Let A D
f.6; 1/; : : : ; .6; 6/g be the event that the first die is 6, and let B D f.1; 6/; : : : ; .6; 6/g
be the event that the second die is 6. ThenA\B D f.6; 1/; : : : ; .6; 6/g\f.1; 6/; : : : ;
.6; 6/g D f.6; 6/g is the event that both dice are 6.
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Example 1.4 (System Reliability). In Fig. 1.4 three systems are depicted, each con-
sisting of three unreliable components. The series system works if all components
work; the parallel system works if at least one of the components works; and the
2-out-of-3 system works if at least 2 out of 3 components work.

Series

Parallel 2-out-of-3

Fig. 1.4 Three unreliable systems

Let Ai be the event that the i th component is functioning, i D 1; 2; 3; and
let Da;Db;Dc be the events that, respectively, the series, parallel, and 2-out-of-3
system are functioning. Then,Da D A1 \A2 \A3 andDb D A1 [A2 [A3. Also,

Dc D .A1 \ A2 \A3/ [ .Ac1 \ A2 \ A3/[ .A1 \Ac2 \ A3/[ .A1 \ A2 \Ac3/
D .A1 \ A2/ [ .A1 \A3/[ .A2 \ A3/ :

Two useful results in the theory of sets are the following, due to De Morgan:

Theorem 1.1. (De Morgan’s Laws). If fAig is a collection of sets, then

 

[

i

Ai

!c

D
\

i

Aci (1.1)

and

 

\

i

Ai

!c

D
[

i

Aci : (1.2)

Proof. If we interpret Ai as the event that component i works in Example 1.4, then
the left-hand side of (1.1) is the event that the parallel system is not working. The
right-hand side of (1.1) is the event that all components are not working. Clearly
these two events are identical. The proof for (1.2) follows from a similar reasoning;
see also Problem 1.2. ut☞ 19
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1.4 Probability

The third ingredient in the model for a random experiment is the specification of
the probability of the events. It tells us how likely it is that a particular event will
occur.

Definition 1.3. (Probability). A probability P is a function which assigns
a number between 0 and 1 to each event and which satisfies the following
rules:

1. 0 � P.A/ � 1.
2. P.˝/ D 1.
3. For any sequence A1;A2; : : : of disjoint events we have

Sum Rule: P
�
[

i

Ai
� D

X

i

P.Ai / : (1.3)

The crucial property (1.3) is called the sum rule of probability. It simply states
that if an event can happen in several distinct ways (expressed as a union of events,
none of which are overlapping), then the probability that at least one of these events
happens (i.e., the probability of the union) is simply the sum of the probabilities of
the individual events. Figure 1.5 illustrates that the probability P has the properties
of a measure. However, instead of measuring lengths, areas, or volumes, P.A/
measures the likelihood or probability of an event A as a number between 0 and 1.

Fig. 1.5 A probability rule P has exactly the same properties as an area measure. For example,
the total area of the union of the nonoverlapping triangles is equal to the sum of the areas of the
individual triangles
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The following theorem lists some important properties of a probability measure.
These properties are direct consequences of the three rules defining a probability
measure.

Theorem 1.2. (Properties of a Probability). Let A and B be events and P a
probability. Then,

1. P.;/ D 0 ,
2. if A � B , then P.A/ � P.B/ ,
3. P.Ac/ D 1� P.A/ ,
4. P.A[ B/ D P.A/C P.B/ � P.A\ B/ .

Proof.

1. Since ˝ D ˝ [ ; and ˝ \ ; D ;, it follows from the sum rule that P.˝/ D
P.˝/ C P.;/. Therefore, by Rule 2 of Definition 1.3, we have 1 D 1 C P.;/,
from which it follows that P.;/ D 0.

2. If A � B , then B D A[ .B \Ac/, where A and B \Ac are disjoint. Hence, by
the sum rule, P.B/ D P.A/C P.B \ Ac/, which (by Rule 1) is greater than or
equal to P.A/.

3. ˝ D A [ Ac , where A and Ac are disjoint. Hence, by the sum rule and Rule 2:
1 D P.˝/ D P.A/C P.Ac/, and thus P.Ac/ D 1 � P.A/.

4. Write A[B as the disjoint union of A and B \Ac . Then, P.A[B/ D P.A/C
P.B\Ac/. Also,B D .A\B/[.B\Ac/, so that P.B/ D P.A\B/CP.B\Ac/.
Combining these two equations gives P.A[B/ D P.A/CP.B/�P.A\B/. ut
We have now completed our general model for a random experiment. Of course

for any specific model we must carefully specify the sample space˝ and probability
P that best describe the random experiment.

Example 1.5 (Casting a Die). Consider the experiment where a fair die is cast.
How should we specify ˝ and P? Obviously, ˝ D f1; 2; : : : ; 6g; and common
sense dictates that we should define P by

P.A/ D jAj
6
; A � ˝ ;

where jAj denotes the number of elements in set A. For example, the probability of
getting an even number is P.f2; 4; 6g/ D 3=6 D 1=2.

In many applications the sample space is countable: ˝ D fa1; a2; : : : ; ang or
˝ D fa1; a2; : : :g. Such a sample space is said to be discrete. The easiest way to
specify a probability P on a discrete sample space is to first assign a probability pi
to each elementary event fai g and then to define

P.A/ D
X

i Wai2A
pi for all A � ˝ :
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A

Ω
Fig. 1.6 A discrete sample
space

This idea is graphically represented in Fig. 1.6. Each element ai in the sample
space is assigned a probability weight pi represented by a black dot. To find the
probability of an event A we have to sum up the weights of all the elements in the
set A.

Again, it is up to the modeler to properly specify these probabilities. Fortunately,
in many applications, all elementary events are equally likely, and thus the probabil-
ity of each elementary event is equal to 1 divided by the total number of elements
in ˝ . In such case the probability of an event A � ˝ is simply

P.A/ D jAj
j˝j D Number of elements in A

Number of elements in ˝
;

provided that the total number of elements in ˝ is finite. The calculation of such
probabilities thus reduces to counting; see Problem 1.6. ☞ 19

When the sample space is not countable, for example, ˝ D RC, it is said to be
continuous.

Example 1.6 (Drawing a Random Point in the Unit Interval). We draw at
random a point in the interval Œ0; 1� such that each point is equally likely to be
drawn. How do we specify the model for this experiment?

The sample space is obviously ˝ D Œ0; 1�, which is a continuous sample space.
We cannot define P via the elementary events fxg, x 2 Œ0; 1� because each of these
events has probability 0. However, we can define P as follows. For each 0 � a �
b � 1, let

P.Œa; b�/ D b � a :
This completely defines P. In particular, the probability that a point will fall into any
(sufficiently nice) set A is equal to the length of that set.

Describing a random experiment by specifying explicitly the sample space and
the probability measure is not always straightforward or necessary. Sometimes it is
useful to model only certain observations on the experiment. This is where random
variables come into play, and we will discuss these in Chap. 2. ☞ 23
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1.5 Conditional Probability and Independence

How do probabilities change when we know that some event B � ˝ has occurred?
Thus, we know that the outcome lies in B . Then A will occur if and only if A \ B

occurs, and the relative chance of A occurring is therefore P.A \ B/=P.B/, which
is called the conditional probability of A given B . The situation is illustrated in
Fig. 1.7.

A ∩ B

A B

Ω

Fig. 1.7 What is the
probability that A occurs
given that the outcome is
known to lie in B?

Definition 1.4. (Conditional Probability). The conditional probability of
A given B (with P.B/ ¤ 0) is defined as:

P.A jB/ D P.A\ B/

P.B/
: (1.4)

Example 1.7 (Casting Two Dice). We cast two fair dice consecutively. Given that
the sum of the dice is 10, what is the probability that one 6 is cast? Let B be the
event that the sum is 10:

B D f.4; 6/; .5; 5/; .6; 4/g :
Let A be the event that one 6 is cast:

A D f.1; 6/; : : : ; .5; 6/; .6; 1/; : : : ; .6; 5/g :

Then,A\B D f.4; 6/; .6; 4/g. And, since for this experiment all elementary events
are equally likely, we have

P.A jB/ D 2=36

3=36
D 2

3
:
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Example 1.8 (Monty Hall Problem). Consider a quiz in which the final contestant
is to choose a prize which is hidden behind one of three curtains (A, B, or C).
Suppose without loss of generality that the contestant chooses curtain A. Now the
quiz master (Monty) always opens one of the other curtains: if the prize is behind B,
Monty opens C; if the prize is behind C, Monty opens B; and if the prize is behind
A, Monty opens B or C with equal probability, e.g., by tossing a coin (of course the
contestant does not see Monty tossing the coin!) (Fig. 1.8).

A B C

Fig. 1.8 Given that Monty opens curtain (B), should the contestant stay with his/her original
choice (A) or switch to the other unopened curtain (C)?

Suppose, again without loss of generality, that Monty opens curtain B. The con-
testant is now offered the opportunity to switch to curtain C. Should the contestant
stay with his/her original choice (A) or switch to the other unopened curtain (C)?

Notice that the sample space here consists of four possible outcomes: Ac, the
prize is behind A and Monty opens C; Ab, the prize is behind A and Monty opens
B; Bc, the prize is behind B and Monty opens C; and Cb, the prize is behind C
and Monty opens B. Let A, B , C be the events that the prize is behind A, B, and C,
respectively. Note that A D fAc;Abg, B D fBcg, and C D fCbg; see Fig. 1.9.

Ab

Cb Bc

1/6 1/6

1/3 1/3

Ac

Fig. 1.9 The sample space
for the Monty Hall problem
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Now, obviously P.A/ D P.B/ D P.C /, and since Ac and Ab are equally likely,
we have P.fAbg/ D P.fAcg/ D 1=6. Monty opening curtain B means that we
have information that event fAb;Cbg has occurred. The probability that the prize is
behind A given this event is therefore

P.A j B is opened/ D P.fAc;Abg \ fAb;Cbg/
P.fAb;Cbg/ D P.fAbg/

P.fAb;Cbg/ D
1
6

1
6

C 1
3

D 1

3
:

This is what is to be expected: the fact that Monty opens a curtain does not give any
extra information that the prize is behind A. Obviously, P.B j B is opened/ D 0. It
follows then that P.C j B is opened/ must be 2/3, since the conditional probabilities
must sum up to 1. Indeed,

P.C j B is opened/ D P.fCbg \ fAb;Cbg/
P.fAb;Cbg/ D P.fCbg/

P.fAb;Cbg/ D
1
3

1
6

C 1
3

D 2

3
:

Hence, given the information that B is opened, it is twice as likely that the prize is
behind C than behind A. Thus, the contestant should switch!

1.5.1 Product Rule

By the definition of conditional probability (1.4) we have

P.A\ B/ D P.A/P.B jA/ :

It is not difficult to generalize this to n intersections A1 \ A2 \ � � � \An, which we
abbreviate as A1A2 � � �An. This gives the product rule of probability. We leave the
proof as an exercise; see Problem 1.11.☞ 20

Theorem 1.3. (Product Rule). Let A1; : : : ; An be a sequence of events with
P.A1 � � �An�1/ > 0. Then,

P.A1 � � �An/ D
P.A1/P.A2 jA1/P.A3 jA1A2/ � � �P.An jA1 � � �An�1/ :

(1.5)

Example 1.9 (Urn Problem). We draw consecutively three balls from an urn with
5 white and 5 black balls, without putting them back. What is the probability that
all drawn balls will be black?
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Let Ai be the event that the i th ball is black. We wish to find the probability of
A1A2A3, which by the product rule (1.5) is

P.A1/P.A2 jA1/P.A3 jA1A2/ D 5

10

4

9

3

8
� 0:083 :

Example 1.10 (Birthday Problem). What is the probability that in a group of n
people all have different birthdays? We can use the product rule. LetAi be the event
that the first i people have different birthdays, i D 1; 2; : : :. Note that � � � � A3 �
A2 � A1. Therefore,An D A1 \ A2 \ � � � \An, and thus by the product rule

P.An/ D P.A1/P.A2 jA1/P.A3 jA2/ � � �P.An jAn�1/ :

Now P.Ak jAk�1/ D .365� k C 1/=365, because given that the first k � 1 people
have different birthdays, there are no duplicate birthdays among the first k people if
and only if the birthday of the kth person is chosen from the 365�.k�1/ remaining
birthdays. Thus, we obtain

P.An/ D 365

365
� 364

365
� 363

365
� � � � � 365� nC 1

365
; n � 1 : (1.6)

A graph of P.An/ against n is given in Fig. 1.10. Note that the probability P.An/

rapidly decreases to zero. For n D 23 the probability of having no duplicate
birthdays is already less than 1/2.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

n

P
(A

n
)

Fig. 1.10 The probability of having no duplicate birthday in a group of n people against n
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1.5.2 Law of Total Probability and Bayes’ Rule

Suppose thatB1;B2; : : : ; Bn is a partition of˝ . That is,B1;B2; : : : ; Bn are disjoint
and their union is ˝; see Fig. 1.11.

Fig. 1.11 A partitionB1; : : : ; B6 of the sample space˝. Event A is partitioned into events A\B1;
. . . , A\ B6

A partitioning of the state space can sometimes make it easier to calculate
probabilities via the following theorem.

Theorem 1.4. (Law of Total Probability). Let A be an event and let
B1;B2; : : : ; Bn be a partition of ˝ . Then,

P.A/ D
n
X

iD1
P.A jBi/P.Bi/ : (1.7)

Proof. The sum rule gives P.A/ D Pn
iD1 P.A \ Bi/, and by the product rule we

have P.A \ Bi/ D P.A jBi/P.Bi /. ut
Combining the law of total probability with the definition of conditional proba-

bility gives Bayes’ Rule:

Theorem 1.5. (Bayes Rule). Let A be an event with P.A/ > 0 and let
B1;B2; : : : ; Bn be a partition of ˝ . Then,

P.Bj jA/ D P.A jBj /P.Bj /
Pn

iD1 P.A jBi/P.Bi/ : (1.8)
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Proof. By definition, P.Bj jA/ D P.A \ Bj /=P.A/ D P.A jBj /P.Bj /=P.A/.
Now apply the law of total probability to P.A/. ut
Example 1.11 (Quality Control Problem). A company has three factories (1, 2,
and 3) that produce the same chip, each producing 15 %, 35 %, and 50 % of the total
production. The probability of a faulty chip at factory 1, 2, and 3 is 0.01, 0.05, and
0.02, respectively. Suppose we select randomly a chip from the total production and
this chip turns out to be faulty. What is the conditional probability that this chip has
been produced in factory 1?

Let Bi denote the event that the chip has been produced in factory i . The fBi g
form a partition of˝ . LetA denote the event that the chip is faulty. We are given the
information that P.B1/ D 0:15;P.B2/ D 0:35;P.B3/ D 0:5 as well as P.A jB1/ D
0:01, P.A jB2/ D 0:05, P.A jB3/ D 0:02.

We wish to find P.B1 jA/, which by Bayes’ rule is given by

P.B1 jA/ D 0:15 � 0:01
0:15 � 0:01C 0:35 � 0:05C 0:5 � 0:02 D 0:052 :

1.5.3 Independence

Independence is a very important concept in probability and statistics. Loosely
speaking it models the lack of information between events. We say events A and
B are independent if the knowledge that B has occurred does not change the
probability that A occurs. More precisely, A and B are said to be independent if
P.A jB/ D P.A/. Since P.A jB/ D P.A \ B/=P.B/, an alternative definition of
independence is:A andB are independent ifP.A\B/ D P.A/P.B/. This definition
covers the case where B D ;.

We can extend the definition to arbitrarily many events [compare with the product
rule (1.5)]:

Definition 1.5. (Independence). The eventsA1;A2; : : : ; are said to be inde-
pendent if for any k and any choice of distinct indices i1; : : : ; ik ,

P.Ai1 \Ai2 \ � � � \Aik / D P.Ai1/P.Ai2/ � � �P.Aik / : (1.9)

Remark 1.1. In most cases independence of events is a model assumption. That is,
P is chosen such that certain events are independent.
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Example 1.12 (Coin Tossing and the Binomial Law). We toss a coin n times.
The sample space can be written as the set of binary n-tuples:

˝ D f.0; : : : ; 0
„ ƒ‚ …

n times

/; : : : ; .1; : : : ; 1/g :

Here, 0 represents Tails and 1 represents Heads. For example, the outcome
.0; 1; 0; 1; : : :/ means that the first time Tails is thrown, the second time Heads, the
third time Tails, the fourth time Heads, etc.

How should we define P? Let Ai denote the event of Heads at the i th throw,
i D 1; : : : ; n. Then, P should be such that the following holds:

• The events A1; : : : ; An should be independent under P.
• P.Ai / should be the same for all i . Call this known or unknown probability p

(0 � p � 1).

These two rules completely specify P. For example, the probability that the first
k throws are Heads and the last n � k are Tails is

P.f.1; 1; : : : ; 1
„ ƒ‚ …

k times

; 0; 0; : : : ; 0
„ ƒ‚ …

n�k times

/g/ D P.A1 \ � � � \ Ak \ AckC1 \ � � � \ Acn/

D P.A1/ � � �P.Ak/P.AckC1/ � � �P.Acn/ D pk.1 � p/n�k:

Note that if Ai and Aj are independent, then so are Ai and Acj ; see Problem 1.12.
Let Bk be the event that k Heads are thrown in total. The probability of this

event is the sum of the probabilities of elementary events f.x1; : : : ; xn/g for which
x1 C � � �Cxn D k. Each of these events has probability pk.1�p/n�k, and there are
�

n
k

�

of these. We thus obtain the binomial law:

P.Bk/ D
 

n

k

!

pk.1 � p/n�k; k D 0; 1; : : : ; n : (1.10)

Example 1.13 (Geometric Law). There is another important law associated with
the coin toss experiment. Let Ck be the event that Heads appears for the first time
at the kth toss, k D 1; 2; : : :. Then, using the same events fAig as in the previous
example, we can write

Ck D Ac1 \Ac2 \ � � � \ Ack�1 \ Ak :

Using the independence of Ac1; : : : ; A
c
k�1; Ak , we obtain the geometric law:

P.Ck/ D P.Ac1/ � � �P.Ack�1/P.Ak/

D .1 � p/ � � � .1 � p/
„ ƒ‚ …

k�1 times

p D .1 � p/k�1 p :
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1.6 Problems

1.1. For each of the five random experiments at the beginning of Sect. 1.1 define a
convenient sample space.

1.2. Interpret De Morgan’s rule (1.2) in terms of an unreliable series system.

1.3. Let P.A/ D 0:9 and P.B/ D 0:8. Show that P.A\ B/ � 0:7.

1.4. Throw two fair dice one after the other.

(a) What is the probability that the second die is 3, given that the sum of the
dice is 6?

(b) What is the probability that the first die is 3 and the second is not 3?

1.5. An “expert” wine taster has to try to match 6 glasses of wine to 6 wine labels.
Each label can only be chosen once.

(a) Formulate a sample space ˝ for this experiment.
(b) Assuming the wine taster is a complete fraud, define an appropriate probability

P on the sample space.
(c) What is the probability that the wine taster guesses 4 labels correctly, assuming

he/she guesses them randomly?

1.6. Many counting problems can be cast into the framework of drawing k balls
from an urn with n balls, numbered 1; : : : ; n; see Fig. 1.12.

Fig. 1.12 Draw k balls from
an urn with n D 10 numbered
balls

The drawing can be done in several ways. Firstly, the k balls could be drawn
one-by-one or all at the same time. In the first case the order in which the balls are
drawn can be noted. In the second case we can still assume that the balls are drawn
one-by-one, but we do not note the order. Secondly, once a ball is drawn, it can
either be put back into the urn or be left out. This is called drawing with and without
replacement, respectively. There are thus four possible random experiments. Prove
that for each of these experiments the total number of possible outcomes is the
following:

1. Ordered, with replacement: nk .

2. Ordered, without replacement: nPk D n.n � 1/ � � � .n � k C 1/.
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3. Unordered, without replacement: nCk D �

n
k

� D nPk
kŠ

D nŠ
.n�k/Š kŠ .

4. Unordered, with replacement:
�

nCk�1
k

�

.

Provide a sample space for each of these experiments. Hint: it is important to use a
notation that clearly shows whether the arrangements of numbers are ordered or not.
Denote ordered arrangements by vectors, e.g., .1; 1; 2/, and unordered arrangements
by sets, e.g., f1; 2; 3g or multisets, e.g., f1; 1; 2g.

1.7. Formulate the birthday problem in terms of an urn experiment, as in Prob-
lem 1.6, and derive the probability (1.6) by counting.

1.8. Three cards are drawn from a full deck of cards, noting the order. The cards
may be numbered from 1 to 52.

(a) Give the sample space. Is each elementary event equally likely?
(b) What is the probability that we draw three Aces?
(c) What is the probability that we draw one Ace, one King, and one Queen (not

necessarily in that order)?
(d) What is the probability that we draw no pictures (no A, K, Q, or J)?

1.9. In a group of 20 people there are three brothers. The group is separated at
random into two groups of 10. What is the probability that the brothers are in the
same group?

1.10. Two fair dice are thrown.

(a) Find the probability that both dice show the same face.
(b) Find the same probability, using the extra information, that the sum of the dice

is not greater than 4.

1.11. Prove the product rule (1.5). Hint: first show it for the case of three events:

P.A \ B \ C/ D P.A/P.B jA/P.C jA\ B/ :

1.12. If A and B are independent events, then A and Bc are also independent.
Prove this.

1.13. Select at random 3 people from a large population. What is the probability
that they all have the same birthday?

1.14. In a large population 40 % votes for A and 60 % for B. Suppose we select at
random 10 people. What is the probability that in this group exactly 4 people will
vote for A?

1.15. A certain AIDS test has a 0.98 probability of giving a positive result when the
blood is infected and a 0.07 probability of giving a positive result when the blood is
not infected (a so-called false-positive). Suppose 1 % of the population carries the
HIV virus.



1.6 Problems 21

1. Using the law of total probability, what is the probability that the test is positive
for a randomly selected person?

2. What is the probability that a person is indeed infected, given that the test yields
a positive result?

1.16. A box has three identical-looking coins. However, the probability of success
(Heads) is different for each coin: coin 1 is fair, coin 2 has a success probability of
0.4, and coin 3 has a success probability of 0.6. We pick one coin at random and
throw it 100 times. Suppose 43 Heads come up. Using this information, assess the
probability that coin 1, 2, or 3 was chosen.

1.17. In a binary communication channel, 0s and 1s are transmitted with equal
probability. The probability that a 0 is correctly received (as a 0) is 0.95. The
probability that a 1 is correctly received (as a 1) is 0.99. Suppose we receive a
0, what is the probability that, in fact, a 1 was sent?

1.18. A fair coin is tossed 20 times.

1. What is the probability of exactly 10 Heads?
2. What is the probability of 15 or more Heads?

1.19. Two fair dice are cast (at the same time) until their sum is 12.

1. What is the probability that we have to wait exactly 10 tosses?
2. What is the probability that we do not have to wait more than 100 tosses?

1.20. Independently throw 10 balls into one of three boxes, numbered 1, 2, and 3,
with probabilities 1/4, 1/2, and 1/4, respectively.

1. What is the probability that box 1 has 2 balls, box 2 has 5 balls, and box 3 has
3 balls?

2. What is the probability that box 1 remains empty?

1.21. Implement a MATLAB program that performs 100 tosses with a fair die. Hint:
use the rand and ceil functions, where ceil(x) returns the smallest integer
larger than or equal to x.

1.22. For each of the four urn experiments in Problem 1.6 implement a MATLAB

program that simulates the experiment. Hint: in addition to the functions rand and
ceil, you may wish to use the sort function.

1.23. Verify your answers for Problem 1.20 with a computer simulation, where the
experiment is repeated many times.



Chapter 2
Random Variables and Probability Distributions

Specifying a model for a random experiment via a complete description of the
sample space ˝ and probability measure P may not always be necessary or
convenient. In practice we are only interested in certain numerical measurements
pertaining to the experiment. Such random measurements can be included into the
model via the notion of a random variable.

2.1 Random Variables

Definition 2.1. (Random Variable). A random variable is a function from
the sample space ˝ to R.

Example 2.1 (Sum of Two Dice). We throw two fair dice and note the sum of their
face values. If we throw the dice consecutively and observe both throws, the sample
space is ˝ D f.1; 1/; : : : ; .6; 6/g. The function X defined by X.i; j / D i C j is
a random variable which maps the outcome .i; j / to the sum i C j , as depicted in
Fig. 2.1.

Note that five outcomes in the sample space are mapped to 8. A natural notation
for the corresponding set of outcomes is fX D 8g. Since all outcomes in ˝ are
equally likely, we have

P.fX D 8g/ D 5

36
:

This notation is very suggestive and convenient. From a nonmathematical viewpoint
we can interpret X as a “random” variable, that is, a variable that can take several
values with certain probabilities. In particular, it is not difficult to check that

P.fX D xg/ D 6 � j7 � xj
36

; x D 2; : : : ; 12 :

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__2, © The Author(s) 2014
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Fig. 2.1 Random variable X represents the sum of two dice

Although random variables are, mathematically speaking, functions, it is often
convenient to view them as observations of a random experiment that has not yet
taken place. In other words, a random variable is considered as a measurement
that becomes available tomorrow, while all the thinking about the measurement can
be carried out today. For example, we can specify today exactly the probabilities
pertaining to the random variables.

We often denote random variables with capital letters from the last part of
the alphabet, e.g., X , X1;X2; : : : ; Y;Z. Random variables allow us to use natural
and intuitive notations for certain events, such as fX D 10g, fX > 1000g, and
fmax.X; Y / � Zg.

Example 2.2 (Coin Tossing). In Example 1.12 we constructed a probability model☞ 18

for the random experiment where a biased coin is tossed n times. Suppose we are
not interested in a specific outcome but only in the total number of Heads, X , say.
In particular, we would like to know the probability that X takes certain values
between 0 and n. Example 1.12 suggests that

P.X D k/ D
 

n

k

!

pk.1 � p/n�k; k D 0; 1; : : : ; n ; (2.1)

providing all the information about X that we could possibly wish to know. To
justify (2.1) mathematically, we can reason as in Example 2.1. First, defineX as the
function that assigns to each outcome ! D .x1; : : : ; xn/ the number x1 C � � � C xn.
Thus,X is a random variable in mathematical terms, that is, a function. Second, the
event Bk that there are exactly k Heads in n throws can be written as

Bk D f! 2 ˝ W X.!/ D kg :
If we write this as fX D kg, and further abbreviate P.fX D kg/ to P.X D k/, then
we obtain (2.1) directly from (1.10).
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We give some more examples of random variables without specifying the sample
space:

1. The number of defective transistors out of 100 inspected ones.
2. The number of bugs in a computer program.
3. The amount of rain in a certain location in June.
4. The amount of time needed for an operation.

The set of all possible values that a random variable X can take is called
the range of X . We further distinguish between discrete and continuous random
variables:

• Discrete random variables can only take countably many values.
• Continuous random variables can take a continuous range of values, for

example, any value on the positive real line RC.

2.2 Probability Distribution

Let X be a random variable. We would like to designate the probabilities of events
such as fX D xg and fa � X � bg. If we can specify all probabilities involving
X , we say that we have determined the probability distribution of X . One way
to specify the probability distribution is to give the probabilities of all events of the
form fX � xg, x 2 R. This leads to the following definition.

Definition 2.2. (Cumulative Distribution Function). The cumulative
distribution function (cdf) of a random variable X is the function F W R !
Œ0; 1� defined by

F.x/ D P.X � x/; x 2 R :

1

0

F(x)

x

Fig. 2.2 A cumulative distribution function (cdf )
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Note that we have used P.X � x/ as a shorthand notation for P.fX � xg/.
From now on we will use this type of abbreviation throughout the book. In Fig. 2.2
the graph of a general cdf is depicted.

Theorem 2.1. (Properties of Cdf). Let F be the cdf of a random variableX .
Then,

1. F is bounded between 0 and 1: 0 � F.x/ � 1,

2. F is increasing: if x � y, then F.x/ � F.y/,

3. F is right-continuous: limh#0 F.x C h/ D F.x/.

Proof.

1. Let A D fX � xg. By Rule 1 in Definition 1.3, 0 � P.A/ � 1.☞ 9

2. Suppose x � y. Define A D fX � xg and B D fX � yg. Then, A � B and, by
Theorem 1.2, P.A/ � P.B/.☞ 10

3. Take any sequence x1; x2; : : : decreasing to x. We have to show that
limn!1 P.X � xn/ D P.X � x/ or, equivalently, limn!1 P.An/ D P.A/,
where An D fX > xng and A D fX > xg. Let Bn D fxn�1 � X > xng,
n D 1; 2; : : : ; with x0 defined as 1. Then, An D [n

iD1Bi and A D [1
iD1Bi .

Since the fBi g are disjoint, we have by the sum rule:

P.A/ D
1
X

iD1
P.Bi /

defD lim
n!1

n
X

iD1
P.Bi/ D lim

n!1P.An/ ;

as had to be shown. ut
Conversely, any function F with the above properties can be used to specify the

distribution of a random variable X .
If X has cdf F , then the probability that X takes a value in the interval .a; b�

(excluding a, including b) is given by

P.a < X � b/ D F.b/� F.a/ :

To see this, note that P.X � b/ D P.fX � ag [ fa < X � bg/, where the
events fX � ag and fa < X � bg are disjoint. Thus, by the sum rule, F.b/ D
F.a/C P.a < X � b/, which leads to the result above. Note however that

P.a � X � b/ D F.b/� F.a/C P.X D a/

D F.b/� F.a/C F.a/� F.a�/
D F.b/� F.a�/ ;

where F.a�/ denotes the limit from below: limx"a F.x/.
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2.2.1 Discrete Distributions

Definition 2.3. (Discrete Distribution). A random variableX is said to have
a discrete distribution if P.X D xi / > 0, i D 1; 2; : : : for some finite
or countable set of values x1; x2; : : :, such that

P

i P.X D xi / D 1. The
discrete probability density function (pdf) of X is the function f defined
by f .x/ D P.X D x/.

We sometimes write fX instead of f to stress that the discrete probability density
function refers to the discrete random variable X . The easiest way to specify the
distribution of a discrete random variable is to specify its pdf. Indeed, by the sum
rule, if we know f .x/ for all x, then we can calculate all possible probabilities ☞ 9

involvingX . Namely,

P.X 2 B/ D
X

x2B
f .x/ (2.2)

for any subset B in the range of X , as illustrated in Fig. 2.3.

f(x)

x

B

Fig. 2.3 Discrete probability density function

Example 2.3 (Sum of Two Dice, Continued). Toss two fair dice and let X be
the sum of their face values. The discrete pdf is given in Table 2.1, which follows
directly from Example 2.1.

Table 2.1 Discrete pdf of the sum of two fair dice

x 2 3 4 5 6 7 8 9 10 11 12

f .x/ 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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2.2.2 Continuous Distributions

Definition 2.4. (Continuous Distribution). A random variable X with cdf
F is said to have a continuous distribution if there exists a positive function
f with total integral 1 such that for all a < b,

P.a < X � b/ D F.b/� F.a/ D
Z b

a

f .u/ du : (2.3)

Function f is called the probability density function (pdf) of X .

Remark 2.1. Note that we use the same notation f for both the discrete and the
continuous pdf, to stress the similarities between the discrete and continuous case.
We will even drop the qualifier “discrete” or “continuous” when it is clear from the
context with which case we are dealing. Henceforth we will use the notationX � f

and X � F to indicate that X is distributed according to pdf f or cdf F .

In analogy to the discrete case (2.2), once we know the pdf, we can calculate any
probability of interest by means of integration:

P.X 2 B/ D
Z

B

f .x/ dx ; (2.4)

as illustrated in Fig. 2.4.

x

B

f(x)

Fig. 2.4 Probability density function (pdf )

Suppose that f and F are the pdf and cdf of a continuous random variableX , as
in Definition 2.4. Then F is simply a primitive (also called antiderivative) of f :

F.x/ D P.X � x/ D
Z x

�1
f .u/ du :
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Conversely, f is the derivative of the cdf F :

f .x/ D d

dx
F.x/ D F 0.x/ :

It is important to understand that in the continuous case f .x/ is not equal to the
probability P.X D x/, because the latter is 0 for all x. Instead, we interpret f .x/ as
the density of the probability distribution at x, in the sense that for any small h,

P.x � X � x C h/ D
Z xCh

x

f .u/ du � h f .x/ : (2.5)

Note that P.x � X � x C h/ is equal to P.x < X � x C h/ in this case.

Example 2.4 (Random Point in an Interval). Draw a random numberX from the
interval of real numbers Œ0; 2�, where each number is equally likely to be drawn.
What are the pdf f and cdf F of X? Using the same reasoning as in Example 1.6, ☞ 11

we see that

P.X � x/ D F.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x < 0;

x=2 if 0 � x � 2;

1 if x > 2:

By differentiating F we find

f .x/ D
(

1=2 if 0 � x � 2;

0 otherwise.

Note that this density is constant on the interval Œ0; 2� (and zero elsewhere),
reflecting the fact that each point in Œ0; 2� is equally likely to be drawn.

2.3 Expectation

Although all probability information about a random variable is contained in its cdf
or pdf, it is often useful to consider various numerical characteristics of a random
variable. One such number is the expectation of a random variable, which is a
“weighted average” of the values thatX can take. Here is a more precise definition.

Definition 2.5. (Expectation of a Discrete Random Variable). Let X be a
discrete random variable with pdf f . The expectation (or expected value) of
X , denoted as EX , is defined as

EX D
X

x

x P.X D x/ D
X

x

x f .x/ : (2.6)
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The expectation of X is sometimes written as �X . It is assumed that the sum
in (2.6) is well defined—possibly 1 or �1. One way to interpret the expectation
is as a long-run average payout. Suppose in a game of dice the payout X (dollars)
is the largest of the face values of two dice. To play the game a fee of d dollars must
be paid. What would be a fair amount for d? The answer is

d D EX D 1 � P.X D 1/C 2 � P.X D 2/C � � � C 6 � P.X D 6/

D 1 � 1

36
C 2 � 3

36
C 3 � 5

36
C 4 � 7

36
C 5 � 9

36
C 6 � 11

36
D 161

36
� 4:47 :

Namely, if the game is played many times, the long-run fraction of tosses in which
the maximum face value is 1, 2,. . . , 6, is 1

36
; 3
36
; : : : ; 11

36
, respectively. Hence, the

long-run average payout of the game is the weighted sum of 1; 2; : : : ; 6, where the
weights are the long-run fractions (probabilities). The game is “fair” if the long-run
average profit EX � d is zero.

The expectation can also be interpreted as a center of mass. Imagine that point
masses with weights p1; p2; : : : ; pn are placed at positions x1; x2; : : : ; xn on the real
line; see Fig. 2.5.

Fig. 2.5 The expectation as a center of mass

The center of mass—the place where the weights are balanced—is

center of mass D x1 p1 C � � � C xn pn ;

which is exactly the expectation of the discrete variable X that takes values
x1; : : : ; xn with probabilities p1; : : : ; pn. An obvious consequence of this interpre-
tation is that for a symmetric pdf the expectation is equal to the symmetry point
(provided that the expectation exists). In particular, suppose that f .c C y/ D
f .c � y/ for all y. Then,

EX D c f .c/C
X

x>c

xf .x/C
X

x<c

xf .x/

D c f .c/C
X

y>0

.c C y/f .c C y/C
X

y>0

.c � y/f .c � y/

D c f .c/C
X

y>0

c f .c C y/C c
X

y>0

f .c � y/ D c
X

x

f .x/ D c :
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For continuous random variables we can define the expectation in a similar way,
replacing the sum with an integral.

Definition 2.6. (Expectation of a Continuous Random Variable). Let X
be a continuous random variable with pdf f . The expectation (or expected
value) of X , denoted as EX , is defined as

EX D
Z 1

�1
x f .x/ dx : (2.7)

If X is a random variable, then a function of X , such as X2 or sin.X/, is also a
random variable. The following theorem simply states that the expected value of a
function of X is the weighted average of the values that this function can take.

Theorem 2.2. (Expectation of a Function of a Random Variable). If X is
discrete with pdf f , then for any real-valued function g

Eg.X/ D
X

x

g.x/ f .x/ :

Similarly, if X is continuous with pdf f , then

Eg.X/ D
Z 1

�1
g.x/ f .x/ dx :

Proof. The proof is given for the discrete case only, as the continuous case can be
proven in a similar way. Let Y D g.X/, whereX is a discrete random variable with
pdf fX and g is a function. Let fY be the (discrete) pdf of the random variable Y . It
can be expressed in terms of fX in the following way:

fY .y/ D P.Y D y/ D P.g.X/ D y/ D
X

xWg.x/Dy
P.X D x/ D

X

xWg.x/Dy
fX.x/ :

Thus, the expectation of Y is

EY D
X

y

y fY .y/ D
X

y

y
X

xWg.x/Dy
fX.x/ D

X

y

X

xWg.x/Dy
yfX .x/

D
X

x

g.x/ fX.x/ : ut
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Example 2.5 (Die Experiment and Expectation). Find EX2 if X is the outcome
of the toss of a fair die. We have

EX2 D 12 � 1

6
C 22 � 1

6
C 32 � 1

6
C � � � C 62 � 1

6
D 91

6
:

An important consequence of Theorem 2.2 is that the expectation is “linear”.

Theorem 2.3. (Properties of the Expectation). For any real numbers a and
b, and functions g and h,

1. EŒa X C b� D aEX C b ,
2. EŒg.X/C h.X/� D Eg.X/C Eh.X/ .

Proof. SupposeX has pdf f . The first statement follows (in the discrete case) from

E.aX C b/ D
X

x

.ax C b/f .x/ D a
X

x

x f .x/C b
X

x

f .x/ D aEX C b :

Similarly, the second statement follows from

E.g.X/C h.X// D
X

x

.g.x/C h.x//f .x/ D
X

x

g.x/f .x/C
X

x

h.x/f .x/

D Eg.X/C Eh.X/ :

The continuous case is proven analogously, simply by replacing sums with integrals.
ut

Another useful numerical characteristic of the distribution of X is the variance
of X . This number, sometimes written as �2X , measures the spread or dispersion of
the distribution of X .

Definition 2.7. (Variance and Standard Deviation). The variance of a
random variable X , denoted as Var.X/, is defined as

Var.X/ D E.X � EX/2 : (2.8)

The square root of the variance is called the standard deviation. The number
EXr is called the r th moment of X .
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Theorem 2.4. (Properties of the Variance). For any random variable X the
following properties hold for the variance:

1. Var.X/ D EX2 � .EX/2 .
2. Var.a C bX/ D b2 Var.X/ .

Proof. Write EX D �, so that Var.X/ D E.X ��/2 D E.X2�2�XC�2/. By the
linearity of the expectation, the last expectation is equal to the sum EX2�2�EXC
�2 D EX2 � �2, which proves the first statement. To prove the second statement,
note that the expectation of a C bX is equal to aC b�. Consequently,

Var.a C bX/ D E.a C bX � .aC b�//2 D E.b2.X � �/2/ D b2Var.X/ :

ut
Note that Property 1 in Theorem 2.4 implies that EX2 � .EX/2, because

Var.X/ � 0. This is a special case of a much more general result, regarding the
expectation of convex functions. A real-valued function h.x/ is said to be convex if
for each x0, there exist constants a and b such that (1) h.x/ � ax C b for all x and
(2) h.x0/ D ax0Cb. Examples are the functions x 7! x2, x 7! ex, and x 7! � lnx.

Theorem 2.5. (Jensen’s Inequality). Let h.x/ be a convex function and X a
random variable. Then,

Eh.X/ � h.EX/ : (2.9)

Proof. Let x0 D EX . Because h is convex, there exist constants a and b such that
h.X/ � aX C b and h.x0/ D ax0 C b. Hence, Eh.X/ � E.aX C b/ D ax0 C b D
h.x0/ D h.EX/. ut

2.4 Transforms

Many probability calculations—such as the evaluation of expectations and
variances—are facilitated by the use of transforms. We discuss here a number
of such transforms.
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Definition 2.8. (Probability Generating Function). LetX be a nonnegative
and integer-valued random variable with discrete pdf f . The probability
generating function (PGF) of X is the functionG defined by

G.z/ D E zX D
1
X

xD0
zx f .x/ ; jzj < R ;

where R � 1 is the radius of convergence.

Example 2.6 (Poisson Distribution). Let X have a discrete pdf f given by

f .x/ D e�� �x

xŠ
; x D 0; 1; 2; : : : :

X is said to have a Poisson distribution. The PGF of X is given by

G.z/ D
1
X

xD0
zx e�� �x

xŠ

D e��
1
X

xD0

.z�/x

xŠ

D e��ez� D e��.1�z/ :

As this is finite for every z, the radius of convergence is here R D 1.

Theorem 2.6. (Derivatives of a PGF). The kth derivative of a PGF EzX can
be obtained by differentiation under the expectation sign:

dk

dzk
EzX D E

dk

dzk
zX

D E
�

X.X � 1/ � � � .X � k C 1/zX�k� for jzj < R ;

where R � 1 is the radius of convergence of the PGF.

Proof. The proof is deferred to Appendix B.2. ut☞ 369

Let G.z/ be the PGF of a random variable X . Thus, G.z/ D z0 P.X D 0/ C
z1 P.X D 1/C z2 P.X D 2/C � � � . Substituting z D 0 givesG.0/ D P.X D 0/. By
Theorem 2.6 the derivative of G is

G0.z/ D P.X D 1/C 2zP.X D 2/C 3z2 P.X D 3/C � � � :



2.4 Transforms 35

In particular, G0.0/ D P.X D 1/. By differentiating G0.z/, we see that the second
derivative of G at 0 is G00.0/ D 2P.X D 2/. Repeating this procedure gives the
following corollary to Theorem 2.6.

Corollary 2.1. (Probabilities from PGFs). Let X be a nonnegative integer-
valued random variable with PGF G.z/. Then,

P.X D k/ D 1

kŠ

dk

dzk
G.0/ :

The PGF thus uniquely determines the discrete pdf. Another consequence of
Theorem 2.6 is that expectations, variances, and moments can be easily found from
the PGF.

Corollary 2.2. (Moments from PGFs). Let X be a nonnegative integer-
valued random variable with PGF G.z/ and kth derivative G.k/.z/. Then,

lim
z!1
jzj<1

dk

dzk
G.z/ D E ŒX.X � 1/ � � � .X � k C 1/� : (2.10)

In particular, if the expectation and variance ofX are finite, then EX D G0.1/
and Var.X/ D G00.1/CG0.1/� .G0.1//2.

Proof. The proof is deferred to Appendix B.2. ut ☞ 369

Definition 2.9. (Moment Generating Function). The moment generating
function (MGF) of a random variable X is the function M W R ! Œ0;1�

given by

M.s/ D E esX :

In particular, for a discrete random variable with pdf f ,

M.s/ D
X

x

esx f .x/ ;

and for a continuous random variable with pdf f ,

M.s/ D
Z 1

�1
esx f .x/ dx :
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Note that M.s/ can be infinite for certain values of s. We sometimes write MX to
stress the role of X .

Similar to the PGF, the MGF has the uniqueness property: two MGFs are the
same if and only if their corresponding cdfs are the same. In addition, the integer
moments of X can be computed from the derivatives of M , as summarized in the
next theorem. The proof is similar to that of Theorem 2.6 and Corollary 2.2 and is
given in Appendix B.3.☞ 370

Theorem 2.7. (Moments from MGFs). If the MGF is finite in an open
interval containing 0, then all moments EXn, n D 0; 1; : : : are finite and
satisfy

EXn D M.n/.0/ ;

where M.n/.0/ is the nth derivative of M evaluated at 0.

Note that under the conditions of Theorem 2.7, the variance ofX can be obtained
from the MGF as

Var.X/ D M 00.0/� .M 0.0//2 :

2.5 Common Discrete Distributions

In this section we give a number of common discrete distributions and list some of
their properties. Note that the discrete pdf of each of these distributions, denoted
f , depends on one or more parameters; so in fact we are dealing with families of
distributions.

2.5.1 Bernoulli Distribution

Definition 2.10. (Bernoulli Distribution). A random variable X is said to
have a Bernoulli distribution with success probability p ifX can only assume
the values 0 and 1, with probabilities

f .0/ D P.X D 0/ D 1 � p and f .1/ D P.X D 1/ D p :

We write X � Ber.p/.
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The Bernoulli distribution is the most fundamental of all probability distributions.
It models a single coin toss experiment. Three important properties of the Bernoulli
are summarized in the following theorem.

Theorem 2.8. (Properties of the Bernoulli Distribution). Let X � Ber.p/.
Then,

1. EX D p ,
2. Var.X/ D p.1 � p/ ,
3. the PGF is G.z/ D 1 � p C zp .

Proof. The expectation and the variance of X can be obtained by direct computa-
tion:

EX D 0 � P.X D 0/C 1 � P.X D 1/ D 0 � .1 � p/C 1 � p D p

and

Var.X/ D EX2 � .EX/2 D EX � .EX/2 D p � p2 D p.1 � p/ ;

where we have used the fact that in this case X2 D X . Finally, the PGF is given by
G.z/ D z0.1 � p/C z1p D 1 � p C zp. ut

2.5.2 Binomial Distribution

Definition 2.11. (Binomial Distribution). A random variable X is said to
have a binomial distribution with parameters n and p if X has pdf

f .x/ D P.X D x/ D
 

n

x

!

px.1 � p/n�x; x D 0; 1; : : : ; n : (2.11)

We write X � Bin.n; p/.

From Example 2.2 we see that X can be interpreted as the total number of ☞ 18

Heads in n successive coin flip experiments, with probability of Heads equal to
p. An example of the graph of the pdf is given in Fig. 2.6. Theorem 2.9 lists some
important properties of the binomial distribution.
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Fig. 2.6 The pdf of the
Bin.10; 0:7/ distribution

Theorem 2.9. (Properties of the Binomial Distribution). Let X �
Bin.n; p/. Then,

1. EX D np ,
2. Var.X/ D np.1 � p/ ,
3. the PGF is G.z/ D .1 � p C zp/n .

Proof. Using Newton’s binomial formula:

.a C b/n D
n
X

kD0

 

n

k

!

ak bn�k ;

we see that

G.z/ D
n
X

kD0
zk
 

n

k

!

pk .1 � p/n�k D
n
X

kD0

 

n

k

!

.zp/k.1 � p/n�k D .1 � p C zp/n :

From Corollary 2.2 we obtain the expectation and variance via G0.1/ D np and☞ 35

G00.1/CG0.1/� .G0.1//2 D .n � 1/np2 C np � n2p2 D np.1 � p/. ut

2.5.3 Geometric Distribution

Definition 2.12. (Geometric Distribution). A random variable X is said to
have a geometric distribution with parameter p if X has pdf

f .x/ D P.X D x/ D .1 � p/x�1p; x D 1; 2; 3; : : : : (2.12)

We write X � Geom.p/.
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From Example 1.13 we see that X can be interpreted as the number of tosses ☞ 18

needed until the first Heads occurs in a sequence of coin tosses, with the probability
of Heads equal to p. An example of the graph of the pdf is given in Fig. 2.7.
Theorem 2.10 summarizes some properties of the geometric distribution.
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Fig. 2.7 The pdf of the Geom.0:3/ distribution

Theorem 2.10. (Properties of the Geometric Distribution). Let X �
Geom.p/. Then,

1. EX D 1=p ,
2. Var.X/ D .1 � p/=p2 ,
3. the PGF is

G.z/ D zp

1 � z .1 � p/ ; jzj < 1

1 � p
: (2.13)

Proof. The PGF of X follows from

G.z/ D
1
X

xD1
zxp.1 � p/x�1 D zp

1
X

kD0
.z.1 � p//k D zp

1 � z .1 � p/ ;

using the well-known result for geometric sums: 1C aC a2 C � � � D .1� a/�1, for
jaj < 1. By Corollary 2.2 the expectation is therefore ☞ 35
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EX D G0.1/ D 1

p
:

By differentiating the PGF twice we find the variance:

Var.X/ D G00.1/CG0.1/� .G00.1//2 D 2.1� p/

p2
C 1

p
� 1

p2
D 1 � p

p2
: ut

One property of the geometric distribution that deserves extra attention is the
memoryless property. Consider again the coin toss experiment. Suppose we have
tossed the coin k times without a success (Heads). What is the probability that
we need more than x additional tosses before getting a success? The answer is,
obviously, the same as the probability that we require more than x tosses if we start
from scratch, that is, P.X > x/ D .1 � p/x , irrespective of k. The fact that we
have already had k failures does not make the event of getting a success in the next
trial(s) any more likely. In other words, the coin does not have a memory of what
happened—hence the name memoryless property.

Theorem 2.11. (Memoryless Property). Let X � Geom.p/. Then for any
x; k D 1; 2; : : :,

P.X > k C x jX > k/ D P.X > x/ :

Proof. By the definition of conditional probability,☞ 12

P.X > k C x jX > k/ D P.fX > k C xg \ fX > kg/
P.X > k/

:

The event fX > k C xg is a subset of fX > kg; hence their intersection is fX >

k C xg. Moreover, the probabilities of the events fX > k C xg and fX > kg are
.1 � p/kCx and .1 � p/k , respectively. Therefore,

P.X > k C x jX > k/ D .1 � p/kCx

.1 � p/k D .1� p/x D P.X > x/ ;

as required. ut

2.5.4 Poisson Distribution

Definition 2.13. (Poisson Distribution). A random variableX is said to have
a Poisson distribution with parameter � > 0 if X has pdf

(continued)
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(continued)

f .x/ D P.X D x/ D �x

xŠ
e��; x D 0; 1; 2; : : : : (2.14)

We write X � Poi.�/.

The Poisson distribution may be viewed as the limit of the Bin.n; �=n/ distribu-
tion. Namely, if Xn � Bin.n; �=n/, then

P.Xn D x/ D
 

n

x

!

�

�

n

�x �

1 � �

n

�n�x

D �x

xŠ

n � .n � 1/ � � � � � .n � x C 1/

n � n � � � � � n
�

1 � �

n

�n �

1 � �

n

��x
:

As n ! 1 the second and fourth factors converge to 1 and the third factor to
e�� (this is one of the defining properties of the exponential function). Hence, we
have

lim
n!1P.Xn D x/ D �x

xŠ
e��:

An example of the graph of the Poisson pdf is given in Fig. 2.8. Theorem 2.12
summarizes some properties of the Poisson distribution.
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Fig. 2.8 The pdf of the Poi.10/ distribution
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Theorem 2.12. (Properties of the Poisson Distribution). Let X � Poi.�/.
Then,

1. EX D � ,
2. Var.X/ D � ,
3. the PGF is G.z/ D e��.1�z/ .

Proof. The PGF was derived in Example 2.6. It follows from Corollary 2.2 that☞ 34

EX D G0.1/ D � and

Var.X/ D G00.1/CG0.1/� .G0.1//2 D �2 C � � �2 D � :

Thus, the parameter � can be interpreted as both the expectation and variance of X .
ut

2.6 Common Continuous Distributions

In this section we give a number of common continuous distributions and list some
of their properties. Note that the pdf of each of these distributions depends on one
or more parameters; so, as in the previous section, we are dealing with families of
distributions.

2.6.1 Uniform Distribution

Definition 2.14. (Uniform Distribution). A random variable X is said to
have a uniform distribution on the interval Œa; b� if its pdf is given by

f .x/ D 1

b � a
; a � x � b :

We write X � UŒa; b� (and X � U.a; b/ for a uniform random variable on an
open interval .a; b/).
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ba

1
b − a

x

Fig. 2.9 The pdf of the
uniform distribution on Œa; b�

The random variable X � UŒa; b� can model a randomly chosen point from the
interval Œa; b�, where each choice is equally likely. A graph of the pdf is given in
Fig. 2.9.

Theorem 2.13. (Properties of the Uniform Distribution). Let X � UŒa; b�.
Then,

1. EX D .aC b/=2 ,
2. Var.X/ D .b � a/2=12 .

Proof. We have

EX D
Z b

a

x

b � a dx D 1

b � a
�

b2 � a2
2

	

D a C b

2

and

Var.X/ D EX2 � .EX/2 D
Z b

a

x2

b � a
dx �

�

aC b

2

�2

D b3 � a3
3.b � a/ �

�

a C b

2

�2

D .b � a/2
12

:

ut

2.6.2 Exponential Distribution

Definition 2.15. (Exponential Distribution). A random variable X is said
to have an exponential distribution with parameter � if its pdf is given by

f .x/ D � e��x; x � 0 : (2.15)

We write X � Exp.�/.
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The exponential distribution can be viewed as a continuous version of the
geometric distribution. Graphs of the pdf for various values of � are given in
Fig. 2.10. Theorem 2.14 summarizes some properties of the exponential distribution.
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Fig. 2.10 The pdf of the Exp.�/ distribution for various �

Theorem 2.14. (Properties of the Exponential Distribution). Let X �
Exp.�/. Then,

1. EX D 1=� ,
2. Var.X/ D 1=�2 ,
3. the MGF of X is M.s/ D �=.� � s/; s < � ,
4. the cdf of X is F.x/ D 1 � e��x; x � 0 ,
5. the memoryless property holds: for any s; t > 0,

P.X > s C t jX > s/ D P.X > t/ : (2.16)

Proof.

3. The MGF is given by

M.s/ D
Z 1

0

esx�e��xdx D �

Z 1

0

e�.��s/x dx D �

��e�.��s/x

� � s

	1

0

D �

� � s
; s < � (andM.s/ D 1 for s � �):

1. From Theorem 2.7, we obtain☞ 36

EX D M 0.0/ D �

.� � s/2

ˇ

ˇ

ˇ

ˇ

sD0
D 1

�
:
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2. Similarly, the second moment is EX2 D M 00.0/ D 2�
.��s/3

ˇ

ˇ

sD0 D 2=�2, so that
the variance is

Var.X/ D EX2 � .EX/2 D 2

�2
� 1

�2
D 1

�2
:

4. The cdf of X is given by

F.x/ D P.X � x/ D
Z x

0

�e��udu D ��e��u
�x

0
D 1 � e��x; x � 0 :

Note that the tail probability P.X > x/ is exponentially decaying:

P.X > x/ D e��x; x � 0 :

5. Similar to the proof of the memoryless property for the geometric distribution
(Theorem 2.11), we have ☞ 40

P.X > s C t jX > s/ D P.X > s C t; X > s/

P.X > s/
D P.X > s C t/

P.X > s/

D e��.tCs/

e��s D e��t D P.X > t/ : ut
The memoryless property can be interpreted as a “non-aging” property. For

example, when X denotes the lifetime of a machine, then, given the fact that the
machine is alive at time s, the remaining lifetime of the machine, X � s, has the
same exponential distribution as a completely new machine. In other words, the
machine has no memory of its age and does not deteriorate (although it will break
down eventually).

2.6.3 Normal (Gaussian) Distribution

In this section we introduce the most important distribution in the study of statistics:
the normal (or Gaussian) distribution. Additional properties of this distribution will
be given in Sect. 3.6. ☞ 82

Definition 2.16. (Normal Distribution). A random variable X is said to
have a normal distribution with parameters � and �2 if its pdf is given by

f .x/ D 1

�
p
2�

e� 1
2 .

x��
� /

2

; x 2 R : (2.17)

We write X � N.�; �2/.
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The parameters � and �2 turn out to be the expectation and variance of the
distribution, respectively. If � D 0 and � D 1, then

f .x/ D 1p
2�

e�x2=2;

and the distribution is known as the standard normal distribution. The cdf of the
standard normal distribution is often denoted by ˚ and its pdf by '. In Fig. 2.11 the
pdf of the N.�; �2/ distribution is plotted for various � and �2.
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Fig. 2.11 The pdf of the N.�; �2/ distribution for various � and �2

We next consider some important properties of the normal distribution.

Theorem 2.15. (Standardization). Let X � N.�; �2/ and defineZ D .X �
�/=� . Then Z has a standard normal distribution.

Proof. The cdf of Z is given by

P.Z � z/ D P..X � �/=� � z/ D P.X � �C �z/

D
Z �C�z

�1
1

�
p
2�

e� 1
2 .

x��
� /

2

dx D
Z z

�1
1p
2�

e�y2=2dy D ˚.z/ ;

where we make a change of variable y D .x ��/=� in the fourth equation. Hence,
Z � N.0; 1/. ut

The rescaling procedure in Theorem 2.15 is called standardization. It follows
from Theorem 2.15 that any X � N.�; �2/ can be written as
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X D �C �Z; where Z � N.0; 1/ :

In other words, any normal random variable can be viewed as an affine transforma-
tion—that is, a linear transformation plus a constant—of a standard normal random
variable.

Next we prove the earlier claim that the parameters � and �2 are, respectively,
the expectation and variance of the distribution.

Theorem 2.16. (Expectation and Variance for the Normal Distribution).
If X � N.�; �2/, then EX D � and Var.X/ D �2.

Proof. Since the pdf is symmetric around � and EX < 1, it follows that EX D �.
To show that the variance of X is �2, we first write X D � C �Z, where Z �
N.0; 1/. Then, Var.X/ D Var.�C�Z/ D �2Var.Z/. Hence, it suffices to show that
Var.Z/ D 1. Now, since the expectation of Z is 0, we have

Var.Z/ D EZ2 D
Z 1

�1
z2

1p
2�

e�z2=2 dz D
Z 1

�1
z � zp

2�
e�z2=2 dz :

We apply integration by parts to the last integral to find

EZ2 D
�

� zp
2�

e�z2=2

	1

�1
C
Z 1

�1
1p
2�

e�z2=2 dz D 1 ;

since the last integrand is the pdf of the standard normal distribution. ut

Theorem 2.17. (MGF for the Normal Distribution). The MGF of X �
N.�; �2/ is

EesX D es�Cs2�2=2; s 2 R : (2.18)

Proof. Write X D �C �Z, where Z � N.0; 1/. We have

EesZ D
Z 1

�1
esz

1p
2�

e�z2=2 dz D es
2=2

Z 1

�1
1p
2�

e�.z�s/2=2

„ ƒ‚ …

pdf of N.s;1/

dz D es
2=2 ;

so that EesX D Ees.�C�Z/ D es� Ees�Z D es�e�
2s2=2 D es�C�2s2=2. ut
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2.6.4 Gamma and �2 Distribution

Definition 2.17. (Gamma Distribution). A random variable X is said to
have a gamma distribution with shape parameter ˛ > 0 and scale parameter
� > 0 if its pdf is given by

f .x/ D �˛x˛�1e��x

� .˛/
; x � 0 ; (2.19)

where � is the gamma function. We write X � Gamma.˛; �/.

The gamma function � .˛/ is an important special function in mathematics,
defined by

� .˛/ D
Z 1

0

u˛�1 e�u du : (2.20)

We mention a few properties of the � function:

1. � .˛ C 1/ D ˛ � .˛/ for ˛ 2 RC.
2. � .n/ D .n � 1/Š for n D 1; 2; : : : :.
3. � .1=2/ D p

� .

Two special cases of the Gamma.˛; �/ distribution are worth mentioning. Firstly,
the Gamma.1; �/ distribution is simply the Exp.�/ distribution. Secondly, the
Gamma.n=2; 1=2/ distribution, where n 2 f1; 2; : : :g, is called the chi-squared
distribution with n degrees of freedom. We write X � �2n. A graph of the pdf of
the �2n distribution for various n is given in Fig. 2.12.
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Fig. 2.12 The pdf of the �2n distribution for various degrees of freedom n
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The following theorem summarizes some properties of the gamma distribution.

Theorem 2.18. (Properties of the Gamma Distribution). Let X �
Gamma.˛; �/. Then,

1. EX D ˛=� ,
2. Var.X/ D ˛=�2 ,
3. the MGF is M.s/ D Œ�=.� � s/�˛; s < � (and 1 otherwise).

Proof.

3. For s < �, the MGF of X at s is given by

M.s/ D E esX D
Z 1

0

e��x �˛ x˛�1

� .˛/
esx dx

D
�

�

� � s

�˛ Z 1

0

e�.��s/x .� � s/˛ x˛�1

� .˛/
„ ƒ‚ …

pdf of Gamma.˛;��s/

dx

D
�

�

� � s

�˛

: (2.21)

1. Consequently, by Theorem 2.7, ☞ 36

EX D M 0.0/ D ˛

�

�

�

� � s

�˛C1 ˇ
ˇ

ˇ

ˇ

sD0
D ˛

�
:

2. Similarly, Var.X/ D M 00.0/� .M 0.0//2 D .˛C 1/˛=�2 � .˛=�/2 D ˛=�2: ut

2.6.5 F Distribution

Definition 2.18. (F Distribution). Letm and n be strictly positive integers. A
random variable X is said to have an F distribution with degrees of freedom
m and n if its pdf is given by

f .x/ D � .mCn
2
/ .m=n/m=2x.m�2/=2

� .m
2
/ � .n

2
/ Œ1C .m=n/x�.mCn/=2 ; x � 0 ; (2.22)

where � denotes the gamma function. We write X � F.m; n/.
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The F distribution plays an important role in classical statistics, through
Theorem 3.11. A graph of the pdf of the F.m; n/ distribution for various m and☞ 88

n is given in Fig. 2.13.
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Fig. 2.13 The pdf of the F.m; n/ distribution for various degrees of freedom m and n

2.6.6 Student’s t Distribution

Definition 2.19. (Student’s t Distribution). A random variable X is said to
have a Student’s t distribution with parameter 	 > 0 if its pdf is given by

f .x/ D � .	C1
2
/p

	� � .	
2
/

�

1C x2

	

��.	C1/=2
; x 2 R ; (2.23)

where � denotes the gamma function. We write X � t	 . For integer values
the parameter 	 is referred to as the degrees of freedom of the distribution.

A graph of the pdf of the t	 distribution for various 	 is given in Fig. 2.14. Note that
the pdf is symmetric. Moreover, it can be shown that the pdf of the t	 distribution
converges to the pdf of the N.0; 1/ distribution as 	 ! 1. The t1 distribution is
called the Cauchy distribution.

For completeness we mention that if X � t	 , then

EX D 0 .	 > 1/ and Var.X/ D 	

	 � 2
; .	 > 2/ :
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Fig. 2.14 The pdfs of t1 (Cauchy), t2, t10, and t
1

.N.0; 1// distributions

The t and F distributions are related in the following way.

Theorem 2.19. (Relationship Between the t and F Distribution). For
integer n � 1, if X � tn, then X2 � F.1; n/.

Proof. Let Z D X2. We can express the cdf of Z in terms of the cdf of X . Namely,
for every z > 0, we have

FZ.z/ D P.X2 � z/ D P.�p
z � X �

p
z/ D FX.

p
z/� FX.�p

z/ :

Differentiating with respect to z gives the following relation between the two pdfs:

fZ.z/ D fX.
p

z/
1

2
p

z
C fX.�p

z/
1

2
p

z
D fX.

p
z/
1p

z
;

using the symmetry of the t distribution. Substituting (2.23) into the last equation
yields

fZ.z/ D c.n/
z�1=2

.1C z=n/.nC1/=2 ; z > 0

for some constant c.n/. The only pdf of this form is that of the F.1; n/ distribution.
ut

2.7 Generating Random Variables

This section shows how to generate random variables on a computer. We first discuss
a modern uniform random generator and then introduce two general methods
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for drawing from an arbitrary one-dimensional distribution: the inverse-transform
method and the acceptance–rejection method.

2.7.1 Generating Uniform Random Variables

The MATLAB rand function simulates the drawing of a uniform random number
on the interval .0; 1/ by generating pseudorandom numbers, that is, numbers
that, although not actually random (because the computer is a deterministic
device), behave for all intended purposes as truly random. The following algorithm
(L’Ecuyer 1999) uses simple recurrences to produce high-quality pseudorandom
numbers, in the sense that the numbers pass all currently known statistical tests for
randomness and uniformity.

Algorithm 2.1. (Combined Multiple-Recursive Generator).

1. Suppose N random numbers are required. Define m1 D 232 � 209 and
m2 D 232 � 22853.

2. Initialize a vector .X�2; X�1; X0/ D .12345; 12345; 12345/ and a vector
.Y�2; Y�1; Y0/ D .12345; 12345; 12345/.

3. For t D 1 to N let

Xt D .1403580Xt�2 � 810728Xt�3/ mod m1 ;

Yt D .527612 Yt�1 � 1370589 Yt�3/ mod m2 ;

and output the t th random number as

Ut D

8

ˆ

ˆ

<

ˆ

ˆ

:

Xt � Yt Cm1

m1 C 1
if Xt � Yt ;

Xt � Yt

m1 C 1
if Xt > Yt :

Here, x mod m means the remainder of x when divided bym. The initialization
in Step 2 determines the initial state—the so-called seed—of the random number
stream. Restarting the stream from the same seed produces the same sequence.

Algorithm 2.1 is implemented as a core MATLAB uniform random number
generator from Version 7. Currently the default generator in MATLAB is the Mersenne
twister, which also passes (most) statistical tests and tends to be a little faster.
However, it is considerably more difficult to implement. A typical usage of
MATLAB’s uniform random number generator is as follows.
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>>rng(1,’combRecursive’) % use the CMRG with seed 1
>>rand(1,5) % draw 5 random numbers

ans =
0.4957 0.2243 0.2073 0.6823 0.6799

>>rng(1234) % set the seed to 1234
>>rand(1,5)

ans =
0.2830 0.2493 0.3600 0.9499 0.8071

>>rng(1234) % reset the seed to 1234

>>rand(1,5)

ans =
0.2830 0.2493 0.3600 0.9499 0.8071

2.7.2 Inverse-Transform Method

Once we have a method for drawing a uniform random number, we can, in principle,
simulate a random variable X from any cdf F by using the following algorithm.

Algorithm 2.2. (Inverse-Transform Method).

1. Generate U from U.0; 1/:
2. Return X D F �1.U /, where F�1 is the inverse function of F .

x
X

1

0

U

F (x)

Fig. 2.15 The
inverse-transform method
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Figure 2.15 illustrates the inverse-transform method. We see that the random
variable X D F �1.U / has cdf F , since

P.X � x/ D P.F�1.U / � x/ D P.U � F.x// D F.x/ : (2.24)

Example 2.7 (Generating Uniformly on a Unit Disk). Suppose we wish to draw a
random point .X; Y / uniformly on the unit disk; see Fig. 2.16. In polar coordinates
we have X D R cos
 and Y D R sin
, where 
 has a U.0; 2�/ distribution. The
cdf of R is given by

F.r/ D P.R � r/ D �r2

�
D r2; 0 < r < 1 :

Its inverse is F �1.u/ D p
u; 0 < u < 1. We can thus generate R via the inverse-

transform method as R D p
U1, where U1 � U.0; 1/. In addition, we can simulate


 as 
 D 2�U2, where U2 � U.0; 1/. Note that U1 and U2 should be independent
draws from U.0; 1/.

Fig. 2.16 Draw a point
.X; Y / uniformly on the unit
disk

The inverse-transform method holds for general cdfs F . Note that F for discrete
random variables is a step function, as illustrated in Fig. 2.17. The algorithm for
generating a random variable X from a discrete distribution that takes values
x1; x2; : : : with probabilities p1; p2; : : : is thus as follows.

Algorithm 2.3. (Discrete Inverse-Transform Method).

1. Generate U � U.0; 1/.
2. Find the smallest positive integer k such thatF.xk/�U and returnXDxk .



2.7 Generating Random Variables 55

1

U

F (x)

{
{

p1

p2

p3

p4

p5

x1 x2 x3 x5
x

X

0

Fig. 2.17 The inverse-transform method for a discrete random variable

Drawing one of the numbers 1; : : : ; n according to a probability vector
.p1; : : : ; pn/ can be done in one line of MATLAB code:

min(find(cumsum(p)> rand));

Here p is the vector of probabilities, such as .0:3; 0:2; 0:5/, cumsum gives the
cumulative vector, e.g., .0:3; 0:5; 1/, find.� � � / finds the indices i such that the
cumulative probability is greater than some random number rand, and min takes
the smallest of these indices.

2.7.3 Acceptance–Rejection Method

The inverse-transform method may not always be easy to implement, in particular
when the inverse cdf is difficult to compute. In that case the acceptance–rejection
method may prove to be useful. The idea of this method is depicted in Fig. 2.18.
Suppose we wish to sample from a pdf f . Let g be another pdf such that for some
constant C � 1 we have that Cg.x/ � f .x/ for all x. It is assumed that it is easy
to sample from g, for example, via the inverse-transform method.

x

f(x)

Cg(x)

Fig. 2.18 Illustration of the
acceptance–rejection method
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It is intuitively clear that if a random point .X; Y / is uniformly distributed under
the graph of f —that is, on the set f.x; y/ W 0 � y � f .x/g—then X must have pdf
f . To construct such a point, let us first draw a random point .Z; V / by drawing Z
from g and then drawing V uniformly on Œ0; Cg.Z/�. The point .Z; V / is uniformly
distributed under the graph of Cg. If we keep drawing such a point .Z; V / until
it lies under the graph of f , then the resulting point .X; Y / must be uniformly
distributed under the graph of f and hence the X coordinate must have pdf f . This
leads to the following algorithm.

Algorithm 2.4. (Acceptance–Rejection Method).

1. GenerateZ � g.
2. Generate Y � U.0; C g.Z//.
3. If Y � f .Z/, return X D Z; otherwise, repeat from Step 1.

Example 2.8 (Generating from the Standard Normal Distribution). To sample
from the standard normal pdf via the inverse-transform method requires knowledge
of the inverse of the corresponding cdf, which involves numerical integration.
Instead, we can use acceptance–rejection. First, observe that the standard normal
pdf is symmetric around 0. Hence, if we can generate a random variableX from the
positive normal pdf (see Fig. 2.19),

f .x/ D
r

2

�
e�x2=2; x � 0 ; (2.25)

then we can generate a standard normal random variable by multiplyingX with 1 or
�1, each with probability 1=2. We can bound f .x/ byC g.x/, where g.x/ D e�x is
the pdf of the Exp.1/ distribution. The smallest constantC such that f .x/ � Cg.x/

is
p

2e=�.
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Fig. 2.19 Bounding the
positive normal density (solid
curve) via an Exp.1/ pdf
(times C � 1:3155)
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Drawing from the Exp.1/ distribution can be easily done via the inverse-
transform method, noting that the corresponding cdf is the function 1� e�x; x � 0,
whose inverse is the function � ln.1 � u/, u 2 .0; 1/. This gives the following
specification of Algorithm 2.4, where f and C are defined above.

Algorithm 2.5. (N.0; 1/Generator).

1. Draw U1 � U.0; 1/, and let Z D � lnU1.
2. Draw U2 � U.0; 1/, and let Y D U2 C e�Z .
3. If Y � f .Z/, letX D Z and continue with Step 4. Otherwise, repeat from

Step 1.
4. Draw U3 � U.0; 1/ and return eX D X .2 IfU3<1=2g � 1/ as a standard

normal random variable.

In Step 1, we have used the fact that ifU � U.0; 1/, then also 1�U � U.0; 1/. In
Step 4, IfU3<1=2g denotes the indicator of the event fU3 < 1=2g, which is 1 if U3 <
1=2 and 0 otherwise. An alternative generation method is given in Algorithm 3.2. In ☞ 82

MATLAB normal random variable generation is implemented via therandn function.

2.8 Problems

2.1. Two fair dice are thrown and the smallest of the face values,M say, is noted.

(a) Give the discrete pdf of M in table form, as in Table 2.1. ☞ 27

(b) What is the probability that M is at least 3?
(c) Calculate the expectation and variance of M .

2.2. A continuous random variable X has cdf

F.x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0; x < 0

x2=5; 0 � x � 1

1
5

��x2 C 6x � 4� ; 1 < x � 3

1; x > 3 :

(a) Find the corresponding pdf and plot its graph.
(b) Calculate the following probabilities:

(i) P.X � 2/ .
(ii) P.1 < X � 2/ .

(iii) P.1 � X � 2/ .
(iv) P.X > 1=2/ .

(c) Show that EX D 22=15.
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2.3. In this book most random variables are either discrete or continuous; that
is, they have either a discrete or a continuous pdf. It is also possible to define
random variables that have a mix of discrete and continuous characteristics. A
simple example is a random variable X with cdf

F.x/ D
(

0; x < 0

1 � c e�x; x � 0

for some fixed 0 < c < 1.

(a) Sketch the cdf F .
(b) Find the following probabilities:

(i) P.0 � X � x/, x � 0 .
(ii) P.0 < X � x/, x � 0 .

(iii) P.X D x/, x � 0 .

(c) Describe how the inverse-transform method can be used to draw samples from
this distribution.

2.4. Let X be a positive random variable with cdf F . Prove that

EX D
Z 1

0

.1 � F.x// dx : (2.26)

2.5. Let X be a random variable that can possibly take values �1 and 1 with
probabilities P.X D �1/ D a and P.X D 1/ D b, respectively. Show that the
corresponding cdf F satisfies limx!�1 F.x/ D a and limx!1 F.x/ D 1 � b.

2.6. Suppose that in a large population the fraction of left-handers is 12 %. We
select at random 100 people from this population. Let X be the number of left-
handers among the selected people. What is the distribution of X? What is the
probability that at most 7 of the selected people are left-handed?

2.7. Let X � Geom.p/. Show that

P.X > k/ D .1 � p/k:

2.8. Find the MGF of X � UŒa; b�.

2.9. Let X D a C .b � a/U , where U � UŒ0; 1�. Prove that X � UŒa; b�. Use this
to provide a more elegant proof of Theorem 2.13.☞ 43

2.10. Show that the exponential distribution is the only continuous (positive)
distribution that possesses the memoryless property. Hint: show that the memoryless
property implies that the tail probability g.x/ D P.X > x/ satisfies g.x C y/ D
g.x/g.y/.
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2.11. Let X � Exp.2/. Calculate the following quantities:

(a) P.�1 � X � 1/ .
(b) P.X > 4/ .
(c) P.X > 4 jX > 2/ .
(d) EX2 .

2.12. What is the expectation of a random variable X with the following discrete
pdf on the set of integer numbers, excluding 0:

f .x/ D 3

�2
1

x2
; x 2 Z n f0g :

What is the pdf of the absolute value jX j and what is its expectation?

2.13. A random variable X is said to have a discrete uniform distribution on the
set fa; aC 1; : : : ; bg if

P.X D x/ D 1

b � aC 1
; x D a; a C 1; : : : ; b :

(a) What is the expectation of X?
(b) Show that Var.X/ D .b � a/.b � a C 2/=12.
(c) Find the PGF of X .
(d) Describe a simple way to generate X using a uniform number generator.

2.14. Let X and Y be random variables. Prove that if X � Y , then EX � EY .

2.15. A continuous random variable is said to have a logistic distribution if its pdf
is given by

f .x/ D e�x

.1C e�x/2
; x 2 R : (2.27)

(a) Plot the graph of the pdf.
(b) Show that P.X > x/ D 1=.1C ex/ for all x.
(c) Write an algorithm based on the inverse-transform method to generate random

variables from this distribution.

2.16. An electrical component has a lifetime (in years) that is distributed according
to an exponential distribution with expectation 3. What is the probability that the
component is still functioning after 4.5 years, given that it still works after 4 years?
Answer the same question for the case where the component’s lifetime is normally
distributed with the same expected value and variance as before.

2.17. Consider the pdf given by

f .x/ D



4 e�4.x�1/; x � 1 ;

0; x < 1 :
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(a) If X is distributed according to this pdf f , what is its expectation?
(b) Specify how one can generate a random variable X � f using a uniform

random number generator.

2.18. Let X � N.4; 9/.

(a) Plot the graph of the pdf.
(b) Express the following probabilities in terms of the cdf ˚ of the standard normal

distribution:

(i) P.X � 3/ .
(ii) P.X > 4/ .

(iii) P.�1 � X � 5/ .

(c) Find EŒ2X C 1�.
(d) Calculate EX2.

2.19.Let ˚ be the cdf of X � N.0; 1/. The integral

˚.x/ D
Z x

�1
1p
2�

e� 1
2 u2 du

needs to be evaluated numerically. In MATLAB there are several ways to do this:

(1) If the Statistics Toolbox is available, the cdf can be evaluated via the functions
normcdf or cdf. The inverse cdf can be evaluated using norminv or icdf.
See also their replacements cumdf and icumdf in Appendix A.9.☞ 365

(2) Or one could use the built-in error function erf, defined as

erf.x/ D 2p
�

Z x

0

e�u2 du ; x 2 R :

The inverse of the error function, erf�1, is implemented in MATLAB as erfinv.
(3) A third alternative is to use numerical integration (quadrature) via the quad

function. For example, quad(@f,0,1) integrates a MATLAB function f.m on
the interval Œ0; 1�.

(a) Show that ˚.x/ D .erf.x=
p
2/C 1/=2.

(b) Evaluate ˚.x/ for x D 1; 2, and 3 via (a) the error function and (b) numerical
integration of the pdf, using the fact that ˚.0/ D 1=2.

(c) Show that the inverse of ˚ is given by

˚�1.y/ D p
2 erf�1.2y � 1/ ; 0 < y < 1 :

2.20. Based on MATLAB’s rand and randn functions only, implement algorithms
that generate random variables from the following distributions:
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(a) UŒ2; 3� .
(b) N.3; 9/ .
(c) Exp.4/ .
(d) Bin.10; 1=2/ .
(e) Geom.1=6/ .

2.21.The Weibull distribution Weib.˛; �/ has cdf

F.x/ D 1 � e�.�x/˛ ; x � 0 : (2.28)

It can be viewed as a generalization of the exponential distribution. Write a MATLAB

program that draws 1000 samples from the Weib.2; 1/ distribution using the inverse-
transform method. Give a histogram of the sample.

2.22.Consider the pdf

f .x/ D c e�xx.1 � x/; 0 � x � 1 :

(a) Show that c D e=.3� e/.
(b) Devise an acceptance–rejection algorithm to generate random variables that are

distributed according to f .
(c) Implement the algorithm in MATLAB.

2.23. Implement two different algorithms to draw 100 uniformly generated points
on the unit disk: one based on Example 2.7 and the other using (two-dimensional) ☞ 54

acceptance–rejection.



Chapter 3
Joint Distributions

Often a random experiment is described via more than one random variable. Here
are some examples:

1. We randomly select n D 10 people and observe their heights. Let X1; : : : ; Xn be
the individual heights.

2. We toss a coin repeatedly. Let Xi D 1 if the i th toss is Heads and Xi D 0

otherwise. The experiment is thus described by the sequence X1;X2; : : : of
Bernoulli random variables.

3. We randomly select a person from a large population and measure his/her weight
X and height Y .

How can we specify the behavior of the random variables above? We should
not just specify the pdf of the individual random variables, but also say something
about the interaction (or lack thereof) between the random variables. For example,
in the third experiment above, if the height Y is large, then most likely X is large
as well. In contrast, in the first two experiments, it is reasonable to assume that the
random variables are “independent” in some way; that is, information about one of
the random variables does not give extra information about the others. What we need
to specify is the joint distribution of the random variables. The theory below for
multiple random variables follows a similar path to that of a single random variable
described in Sects. 2.1–2.3. ☞ 23

Let X1; : : : ; Xn be random variables describing some random experiment. We
can accumulate the fXig into a random vector X D .X1; : : : ; Xn/ (row vector)
or X D .X1; : : : ; Xn/

> (column vector). Recall that the distribution of a single
random variable X is completely specified by its cumulative distribution function.
For multiple random variables we have the following generalization.

Definition 3.1. (Joint Cdf). The joint cdf of X1; : : : ; Xn is the function F W
R
n ! Œ0; 1� defined by

F.x1; : : : ; xn/ D P.X1 � x1; : : : ; Xn � xn/ :

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__3, © The Author(s) 2014
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Notice that we have used the abbreviation P.fX1 � x1g \ � � � \ fXn � xng/ D
P.X1 � x1; : : : ; Xn � xn/ to denote the probability of the intersection of events.
We will use this abbreviation throughout the book.

As in the univariate (i.e., single variable) case we distinguish between discrete
and continuous distributions.

3.1 Discrete Joint Distributions

Example 3.1 (Dice Experiment). In a box there are three dice. Die 1 is an ordinary
die; die 2 has no 6 face, but instead two 5 faces; die 3 has no 5 face, but instead two
6 faces. The experiment consists of selecting a die at random followed by a toss with
that die. Let X be the die number that is selected and let Y be the face value of that
die. The probabilities P.X D x; Y D y/ in Table 3.1 specify the joint distribution
ofX and Y . Note that it is more convenient to specify the joint probabilities P.X D
x; Y D y/ than the joint cumulative probabilities P.X � x; Y � y/. The latter
can be found, however, from the former by applying the sum rule. For example,
P.X � 2; Y � 3/ D P.X D 1; Y D 1/C � � � C P.X D 2; Y D 3/ D 6=18 D 1=3.
Moreover, by that same sum rule, the distribution of X is found by summing the
P.X D x; Y D y/ over all values of y—giving the last column of Table 3.1.
Similarly, the distribution of Y is given by the column totals in the last row of
the table.

Table 3.1 The joint distribution of X (die number) and Y (face value)

x

y

1 2 3 4 5 6
P

1 1
18

1
18

1
18

1
18

1
18

1
18

1
3

2 1
18

1
18

1
18

1
18

1
9

0 1
3

3 1
18

1
18

1
18

1
18

0 1
9

1
3

P

1
6

1
6

1
6

1
6

1
6

1
6

1

In general, for discrete random variablesX1; : : : ; Xn, the joint distribution is easiest
to specify via the joint pdf.

Definition 3.2. (Discrete Joint Pdf). The joint pdf f of discrete random
variables X1; : : : ; Xn is given by the function

f .x1; : : : ; xn/ D P.X1 D x1; : : : ; Xn D xn/ :
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We sometimes write fX1;:::;Xn instead of f to show that this is the pdf of the
random variablesX1; : : : ; Xn. Or, if X D .X1; : : : ; Xn/ is the corresponding random
vector, we can write fX instead.

If the joint pdf f is known, we can calculate the probability of any event fX 2
Bg, B � R

n, via the sum rule as

P.X 2 B/ D
X

x2B
f .x/ :

Compare this with (2.2). In particular, as explained in Example 3.1, we can find ☞ 27

the pdf of Xi—often referred to as a marginal pdf, to distinguish it from the joint
pdf—by summing the joint pdf over all possible values of the other variables:

P.Xi D x/ D
X

x1

� � �
X

xi�1

X

xiC1

� � �
X

xn

f .x1; : : : ; xi�1; x; xiC1; xn/ : (3.1)

The converse is not true: from the marginal distributions one cannot in general
reconstruct the joint distribution. For example, in Example 3.1, we cannot recon-
struct the inside of the two-dimensional table if only given the column and row
totals.

However, there is an important exception, namely, when the random variables
are independent. We have so far only defined what independence is for events.
We can define random variables X1; : : : ; Xn to be independent if events fX1 2 ☞ 17

B1g; : : : ; fXn 2 Bng are independent for any choice of sets fBig. Intuitively, this
means that any information about one of the random variables does not affect our
knowledge about the others.

Definition 3.3. (Independence). Random variables X1; : : : ; Xn are called
independent if for all events fXi 2 Bi g with Bi � R, i D 1; : : : ; n

P.X1 2 B1; : : : ; Xn 2 Bn/ D P.X1 2 B1/ � � �P.Xn 2 Bn/ : (3.2)

A direct consequence of the above definition is the following important theorem.

Theorem 3.1. (Independence and Product Rule). Random variables
X1; : : : ; Xn with joint pdf f are independent if and only if

f .x1; : : : ; xn/ D fX1.x1/ � � �fXn.xn/ (3.3)

for all x1; : : : ; xn, where ffXi g are the marginal pdfs.
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Proof. The theorem is true in both the discrete and continuous case. We only show
the discrete case, where (3.3) is a special case of (3.2). It follows that (3.3) is a
necessary condition for independence. To see that it is also a sufficient condition, let
X D .X1; : : : ; Xn/ and observe that

P.X1 2 B1; : : : ; Xn 2 Bn/ D P.X 2 B1 � � � � � Bn
„ ƒ‚ …

A

/ D
X

x2A
f .x/

D
X

x2A
fX1.x1/ � � �fXn.xn/ D

X

x12B1
fX1.x1/ � � �

X

xn2Bn
fXn.xn/

D P.X1 2 B1/ � � �P.Xn 2 Bn/ :

Here A D B1 � � � � �Bn denotes the Cartesian product of B1; : : : ; Bn. ut
Example 3.2 (Dice Experiment Continued). We repeat the experiment in
Example 3.1 with three ordinary fair dice. Since the events fX D xg and fY D yg
are now independent, each entry in the pdf table is 1

3
� 1

6
. Clearly in the first

experiment not all events fX D xg and fY D yg are independent.

Remark 3.1. An infinite sequence X1;X2; : : : of random variables is said to be
independent if for any finite choice of positive integers i1; i2; : : : ; in (none of them
the same) the random variables Xi1; : : : ; Xin are independent. Many statistical
models involve random variables X1;X2; : : : that are independent and identically
distributed, abbreviated as iid. We will use this abbreviation throughout this book
and write the corresponding model as

X1;X2; : : :
iid� Dist (or f or F ) ;

where Dist is the common distribution with pdf f and cdf F .

Example 3.3 (Bernoulli Process). Consider the experiment where we toss a biased
coin n times, with probability p of Heads. We can model this experiment in the
following way. For i D 1; : : : ; n let Xi be the result of the i th toss: fXi D 1g means
Heads (or success), and fXi D 0g means Tails (or failure). Also, let

P.Xi D 1/ D p D 1� P.Xi D 0/; i D 1; 2; : : : ; n :

Finally, assume that X1; : : : ; Xn are independent. The sequence

X1;X2; : : :
iid� Ber.p/

is called a Bernoulli process with success probability p. Let X D X1 C � � � C Xn
be the total number of successes in n trials (tosses of the coin). Denote by Bk the
set of all binary vectors x D .x1; : : : ; xn/ such that

Pn
iD1 xi D k. Note that Bk has

�

n

k

�

elements. We have for every k D 0; : : : ; n,
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P.X D k/ D
X

x2Bk
P.X1 D x1; : : : ; Xn D xn/

D
X

x2Bk
P.X1 D x1/ � � �P.Xn D xn/ D

X

x2Bk
pk.1 � p/n�k

D
 

n

k

!

pk.1 � p/n�k :

In other words, X � Bin.n; p/. Compare this with Example 2.2. ☞ 24

For the joint pdf of dependent discrete random variables we can write, as a
consequence of the product rule (1.5), ☞ 14

f .x1; : : : ; xn/ D P.X1 D x1; : : : ; Xn D xn/

D P.X1 D x1/P.X2 D x2 jX1 D x1/ � � � �
� � � � P.Xn D xn jX1 D x1; : : : ; Xn�1 D xn�1/ ;

assuming that all probabilities P.X D x1/; : : : ;P.X1 D x1; : : : ; Xn�1 D xn�1/ are
nonzero. The function which maps, for a fixed x1, each variable x2 to the conditional
probability

P.X2 D x2 jX1 D x1/ D P.X1 D x1;X2 D x2/

P.X1 D x1/
(3.4)

is called the conditional pdf of X2 given X1 D x1. We write it as fX2 jX1.x2 j x1/.
Similarly, the function xn 7! P.Xn D xn jX1 D x1; : : : ; Xn�1 D xn�1/ is the
conditional pdf of Xn given X1 D x1; : : : ; Xn�1 D xn�1, which is written as
fXn jX1;:::;Xn�1

.xn j x1; : : : ; xn�1/.
Example 3.4 (Generating Uniformly on a Triangle). We uniformly select a point
.X; Y / from the triangle T D f.x; y/ W x; y 2 f1; : : : ; 6g; y � xg in Fig. 3.1.

6

1 2 3 4 5 6
1

2

3

4

5

Fig. 3.1 Uniformly select a
point from the triangle
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Because each of the 21 points is equally likely to be selected, the joint pdf is
constant on T :

f .x; y/ D 1

21
; .x; y/ 2 T :

The pdf of X is found by summing f .x; y/ over all y. Hence,

fX.x/ D x

21
; x 2 f1; : : : ; 6g :

Similarly,

fY .y/ D 7 � y
21

; y 2 f1; : : : ; 6g :

For a fixed x 2 f1; : : : ; 6g the conditional pdf of Y given X D x is

fY jX.y j x/ D f .x; y/

fX.x/
D 1=21

x=21
D 1

x
; y 2 f1; : : : ; xg ;

which simply means that, given X D x, Y has a discrete uniform distribution on
f1; : : : ; xg.

3.1.1 Multinomial Distribution

An important discrete joint distribution is the multinomial distribution. It can be
viewed as a generalization of the binomial distribution. We give the definition and
then an example of how this distribution arises in applications.

Definition 3.4. (Multinomial Distribution). A random vector .X1;X2;
: : : ; Xk/ is said to have a multinomial distribution with parameters n and
p1; p2; : : : ; pk (positive and summing up to 1), if

P.X1 D x1; : : : ; Xk D xk/ D nŠ

x1Šx2Š � � �xkŠ p
x1
1 p

x2
2 � � �pxkk (3.5)

for all x1; : : : ; xk 2 f0; 1; : : : ; ng such that x1 C x2 C � � � C xk D n. We write
.X1; : : : ; Xk/ � Mnom.n; p1; : : : ; pk/ .

Example 3.5 (Urn Problem). We independently throw n balls into k urns, such
that each ball is thrown in urn i with probability pi , i D 1; : : : ; k; see Fig. 3.2.
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Fig. 3.2 Throwing n balls into k urns with probabilities p1; : : : ; pk . The random configuration of
balls has a multinomial distribution

Let Xi be the total number of balls in urn i , i D 1; : : : ; k. We show that
.X1; : : : ; Xk/ � Mnom.n; p1; : : : ; pk/. Let x1; : : : ; xk be integers between 0 and
n that sum up to n. The probability that the first x1 balls fall in the first urn, the next
x2 balls fall in the second urn, etc., is

p
x1
1 p

x2
2 � � �pxkk :

To find the probability that there are x1 balls in the first urn, x2 in the second, and so
on, we have to multiply the probability above with the number of ways in which we
can fill the urns with x1; x2; : : : ; xk balls, i.e., nŠ=.x1Šx2Š � � �xkŠ/. This gives (3.5).

Remark 3.2. Note that for the binomial distribution there are only two possible urns.
Also, note that for each i D 1; : : : ; k, Xi � Bin.n; pi /.

3.2 Continuous Joint Distributions

Joint distributions for continuous random variables are usually defined via their
joint pdf. The theoretical development below follows very similar lines to both
the univariate continuous case in Sect. 2.2.2 and the multivariate discrete case in ☞ 28

Sect. 3.1. ☞ 64

Definition 3.5. (Continuous Joint Pdf). Continuous random variables
X1; : : : ; Xn are said to have a joint pdf f if

P.a1 < X1 � b1; : : : ; an < Xn � bn/ D
Z b1

a1

� � �
Z bn

an

f .x1; : : : ; xn/ dx1 � � � dxn

for all a1; : : : ; bn.
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This implies, similar to the univariate case in (2.3), that the probability of any event☞ 28

pertaining to X D .X1; : : : ; Xn/—say event fX 2 Bg, where B is some subset of
R
n—can be found by integration:

P.X 2 B/ D
Z

B

f .x1; : : : ; xn/ dx1 : : : dxn : (3.6)

As in (2.5) we can interpret f .x1; : : : ; xn/ as the density of the probability☞ 29

distribution at .x1; : : : ; xn/. For example, in the two-dimensional case, for small
h > 0,

P.x1 � X1 � x1 C h; x2 � X2 � x2 C h/

D
Z x1Ch

x1

Z x2Ch

x2

f .u; v/ du dv � h2 f .x1; x2/ :

Similar to the discrete multivariate case in (3.1), the marginal pdfs can be
recovered from the joint pdf by integrating out the other variables:

fXi .x/ D
Z 1

�1
� � �
Z 1

�1
f .x1; : : : ; xi�1; x; xiC1; : : : ; xn/ dx1 : : : dxi�1 dxiC1 : : : dxn :

We illustrate this for the two-dimensional case. We have

FX1.x/ D P.X1 � x;X2 � 1/ D
Z x

�1

�Z 1

�1
f .x1; x2/ dx2

�

dx1 :

By differentiating the last integral with respect to x, we obtain

fX1.x/ D
Z 1

�1
f .x; x2/ dx2 :

It is not possible, in general, to reconstruct the joint pdf from the marginal pdfs.
An exception is when the random variables are independent; see Definition 3.3.
By modifying the arguments in the proof of Theorem 3.3 to the continuous case—
basically replacing sums with integrals—it is not difficult to see that the theorem
also holds in the continuous case. In particular, continuous random variables
X1; : : : ; Xn are independent if and only if their joint pdf, f say, is the product of the
marginal pdfs:

f .x1; : : : ; xn/ D fX1.x1/ � � �fXn.xn/ (3.7)

for all x1; : : : ; xn. Independence for an infinite sequence of random variables is
discussed in Remark 3.1.☞ 66
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Example 3.6 (Generating a General iid Sample). Consider the sequence of
numbers produced by a uniform random number generator such as MATLAB’s
rand function. A mathematical model for the output stream is U1; U2; : : : ; are
independent and U.0; 1/ distributed; that is,

U1; U2; : : :
iid� U.0; 1/ :

Using the inverse-transform method it follows that for any cdf F , ☞ 53

F�1.U1/; F�1.U2/; : : :
iid� F :

Example 3.7 (Quotient of Two Independent Random Variables). Let X and Y
be independent continuous random variables, with Y > 0. What is the pdf of the
quotient U D X=Y in terms of the pdfs of X and Y ? Consider first the cdf of U .
We have

FU .u/ D P.U � u/ D P.X=Y � u/ D P.X � Y u/

D
Z 1

0

Z yu

�1
fX.x/fY .y/ dx dy D

Z u

�1

Z 1

0

yfX.yz/fY .y/ dy dz ;

where we have used the change of variable z D x=y and changed the order of
integration in the last equation. It follows that the pdf is given by

fU .u/ D d

du
FU .u/ D

Z 1

0

yfX .yu/ fY .y/ dy : (3.8)

As a particular example, suppose that X and V both have a standard normal
distribution. Note that X=V has the same distribution as U D X=Y , where
Y D jV j > 0 has a positive normal distribution. It follows from (3.8) that ☞ 56

fU .u/ D
Z 1

0

y
1p
2�

e� 1
2 y

2u2 2p
2�

e� 1
2 y

2

dy

D
Z 1

0

y
1

�
e� 1

2 y
2.1Cu2/ dy D 1

�

1

1C u2
; u 2 R :

This is the pdf of the Cauchy distribution. ☞ 50

Definition 3.6. (Conditional Pdf). Let X and Y have joint pdf f and
suppose fX.x/ > 0. The conditional pdf of Y given X D x is defined as

fY jX.y j x/ D f .x; y/

fX.x/
for all y : (3.9)
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For the discrete case, this is just a rewrite of (3.4). For the continuous case, the
interpretation is that fY jX.y j x/ is the density corresponding to the cdf FY jX.y j x/
defined by the limit

FY jX.y j x/ D lim
h#0

P.Y � y j x � X � xCh/ D lim
h#0

P.Y � y; x � X � x C h/

P.x � X � x C h/
:

In many statistical situations, the conditional and marginal pdfs are known and (3.9)
is used to find the joint pdf via

f .x; y/ D fX.x/ fY jX.y j x/ ;
or, more generally for the n-dimensional case,

f .x1; : : : ; xn/ D
fX1.x1/ fX2jX1.x2 j x1/ � � �fXnjX1;:::;Xn�1

.xn j x1; : : : ; xn�1/ ;
(3.10)

which in the discrete case is just a rephrasing of the product rule in terms of☞ 14

probability densities. For independent random variables (3.10) reduces to (3.7).
Equation (3.10) also shows how one could sequentially generate a random vector
X D .X1; : : : ; Xn/ according to a pdf f , provided that it is possible to generate
random variables from the successive conditional distributions, as summarized in
the following algorithm.

Algorithm 3.1. (Dependent Random Variable Generation).

1. Generate X1 from pdf fX1 . Set t D 1.
2. While t < n, given X1 D x1; : : : ; Xt D xt , generate XtC1 from the

conditional pdf fXtC1jX1;:::;Xt .xt j x1; : : : ; xt / and set t D t C 1.
3. Return X D .X1; : : : ; Xn/.

Example 3.8 (Nonuniform Distribution on Triangle). We select a point .X; Y /
from the triangle .0; 0/-.1; 0/-.1; 1/ in such a way that X has a uniform distribution
on .0; 1/ and the conditional distribution of Y given X D x is uniform on .0; x/.
Figure 3.3 shows the result of 1000 independent draws from the joint pdf f .x; y/ D
fX.x/ fY jX.y j x/, generated via Algorithm 3.1. It is clear that the points are not
uniformly distributed over the triangle.

Random variable X has a uniform distribution on .0; 1/; hence, its pdf is
fX.x/ D 1 on x 2 .0; 1/. For any fixed x 2 .0; 1/, the conditional distribution
of Y given X D x is uniform on the interval .0; x/, which means that

fY jX.y j x/ D 1

x
; 0 < y < x :
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%nutriang.m
N = 1000;
x = rand(N,1);
y = rand(N,1).*x;
plot(x,y,’.’)

0 1
0

1

x

y

Fig. 3.3 One thousand realizations from the joint density f .x; y/, generated using the MATLAB

program on the left, which implements Algorithm 3.1.

It follows that the joint pdf is given by

f .x; y/ D fX.x/ fY jX.y j x/ D 1

x
; 0 < x < 1; 0 < y < x :

From the joint pdf we can obtain the pdf of Y as

fY .y/ D
Z 1

�1
f .x; y/ dx D

Z 1

y

1

x
dx D � ln y; 0 < y < 1 :

Finally, for any fixed y 2 .0; 1/, the conditional pdf of X given Y D y is

fX jY .x j y/ D f .x; y/

fY .y/
D �1
x ln y

; y < x < 1 :

3.3 Mixed Joint Distributions

So far we have only considered joint distributions in which the random variables
are all discrete or all continuous. The theory can be extended to mixed cases in
a straightforward way. For example, the joint pdf of a discrete variable X and a
continuous variable Y is defined as the function f .x; y/ such that for all events
f.X; Y / 2 Ag, where A � R

2,

P..X; Y / 2 A/ D
X

x

Z

If.x;y/2Ag f .x; y/ dy ;

where I denotes the indicator. The pdf is often specified via (3.10).
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Example 3.9 (Beta Distribution). Let 
 � U.0; 1/ and .X j
 D �/ � Bin.n; �/.
Using (3.10), the joint pdf of X and 
 is given by

f .x; �/ D
 

n

x

!

�x.1 � �/n�x; � 2 .0; 1/; x D 0; 1; : : : ; n :

By integrating out � , we find the pdf of X :

fX.x/ D
Z 1

0

 

n

x

!

�x.1 � �/n�xd� D
 

n

x

!

B.x C 1; n � x C 1/ ;

where B is the beta function, defined as

B.˛; ˇ/ D
Z 1

0

t˛�1.1 � t/ˇ�1dt D � .˛/� .ˇ/

� .˛ C ˇ/
; (3.11)

and � is the gamma function in (2.20). The conditional pdf of 
 given X D x,☞ 48

where x 2 f0; : : : ; ng, is

f
jX.� j x/ D f .�; x/

fX.x/
D �x.1 � �/n�x

B.x C 1; n � x C 1/
; � 2 .0; 1/ :

The continuous distribution with pdf

f .xI˛; ˇ/ D �˛�1.1 � �/ˇ�1

B.˛; ˇ/
; x 2 .0; 1/ (3.12)

is called the beta distribution with parameters ˛ and ˇ. Both parameters are
assumed to be strictly positive. We write Beta.˛; ˇ/ for this distribution. For this
example we have thus .
 jX D x/ � Beta.x C 1; n � x C 1/.

3.4 Expectations for Joint Distributions

Similar to the univariate case in Theorem 2.2, the expected value of a real-☞ 31

valued function h of .X1; : : : ; Xn/ � f is a weighted average of all values that
h.X1; : : : ; Xn/ can take. Specifically, in the continuous case,

Eh.X1; : : : ; Xn/ D
Z

� � �
Z

h.x1; : : : ; xn/ f .x1; : : : ; xn/ dx1 : : : dxn : (3.13)

In the discrete case replace the integrals above with sums.
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Two important special cases are the expectation of the sum (or more generally
affine transformations) of random variables and the product of random variables.

Theorem 3.2. (Properties of the Expectation). Let X1; : : : ; Xn be random
variables with expectations �1; : : : ; �n. Then,

EŒa C b1X1 C b2X2 C � � � C bnXn� D a C b1�1 C � � � C bn�n (3.14)

for all constants a, b1; : : : ; bn. Also, for independent random variables,

EŒX1X2 � � �Xn� D �1 �2 � � ��n : (3.15)

Proof. We show it for the continuous case with two variables only. The general case
follows by analogy and, for the discrete case, by replacing integrals with sums. Let
X1 and X2 be continuous random variables with joint pdf f . Then, by (3.13),

EŒa C b1X1 C b2X2� D
“

.aC b1x1 C b2x2/ f .x1; x2/ dx1 dx2

D a C b1

“

x1f .x1; x2/ dx1 dx2 C b2

“

x2f .x1; x2/ dx1 dx2

D a C b1

Z

x1

�Z

f .x1; x2/ dx2

�

dx1 C b2

Z

x2

�Z

f .x1; x2/ dx1

�

dx2

D a C b1

Z

x1fX1.x1/ dx1 C b2

Z

x2fX2.x2/ dx2 D a C b1�1 C b2�2 :

Next, assume that X1 and X2 are independent, so that f .x1; x2/ D fX1.x1/�
fX2.x2/. Then,

EŒX1 X2� D
“

x1 x2 fX1.x1/fX2.x2/ dx1 dx2

D
Z

x1fX1.x1/ dx1 �
Z

x2fX2.x2/ dx2 D �1 �2 : ut

Definition 3.7. (Covariance). The covariance of two random variables X
and Y with expectations EX D �X and EY D �Y is defined as

Cov.X; Y / D EŒ.X � �X/.Y � �Y /� :
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The covariance is a measure of the amount of linear dependency between two
random variables. A scaled version of the covariance is given by the correlation
coefficient:

%.X; Y / D Cov.X; Y /

�X �Y
; (3.16)

where �2X D Var.X/ and �2Y D Var.Y /. The correlation coefficient always lies
between �1 and 1; see Problem 3.16.☞ 95

For easy reference Theorem 3.3 lists some important properties of the variance
and covariance.

Theorem 3.3. (Properties of the Variance and Covariance). For random
variables X , Y , and Z, and constants a and b, we have

1. Var.X/ D EX2 � .EX/2.
2. Var.a C bX/ D b2Var.X/.
3. Cov.X; Y / D EXY � EX EY .
4. Cov.X; Y / D Cov.Y;X/.
5. Cov.aX C bY;Z/ D aCov.X;Z/C b Cov.Y;Z/.
6. Cov.X;X/ D Var.X/.
7. Var.X C Y / D Var.X/C Var.Y /C 2Cov.X; Y /.
8. If X and Y are independent, then Cov.X; Y / D 0.

Proof. For simplicity of notation we write EZ D �Z for a generic random variable
Z. Properties 1 and 2 were already shown in Theorem 2.4.☞ 33

3. Cov.X; Y / D EŒ.X � �X/.Y � �Y /� D EŒX Y � X �Y � Y �X C �X �Y � D
EŒX Y � � �X �Y .

4. Cov.X; Y / D EŒ.X � �X/.Y � �Y /� D EŒ.Y � �Y /.X � �X/� D Cov.Y;X/.
5. Cov.aX C bY;Z/ D EŒ.aX C bY /Z� � EŒaX C bY �EZ D aEŒXZ� �
aEXEZ C b EŒYZ� � b EY EZ D aCov.X;Z/C b Cov.Y;Z/.

6. Cov.X;X/ D EŒ.X � �X/.X � �X/� D EŒ.X � �X/
2� D Var.X/.

7. By Property 6, Var.X C Y / D Cov.X C Y;X C Y /. By Property 5, Cov.X C
Y;X C Y / D Cov.X;X/C Cov.Y; Y /C Cov.X; Y /C Cov.Y;X/ D Var.X/C
Var.Y /C 2Cov.X; Y /, where in the last equation Properties 4 and 6 are used.

8. If X and Y are independent, then EŒX Y � D �X �Y . Therefore, Cov.X; Y / D 0

follows immediately from Property 3. ut
As a consequence of Properties 2 and 7, we have the following general result for the
variance of affine transformations of random variables.
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Corollary 3.1. (Variance of an Affine Transformation). LetX1; : : : ; Xn be
random variables with variances �21 ; : : : ; �

2
n . Then,

Var

 

a C
n
X

iD1
biXi

!

D
n
X

iD1
b2i �

2
i C 2

X

i<j

bibjCov.Xi ; Xj / (3.17)

for any choice of constants a and b1; : : : ; bn. In particular, for independent
random variablesX1; : : : ; Xn,

Var.aC b1X1 C � � � C bnXn/ D b21�
2
1 C � � � C b2n�

2
n : (3.18)

Let X D .X1; : : : ; Xn/
> be a random column vector. Sometimes it is convenient

to write the expectations and covariances in vector notation.

Definition 3.8. (Expectation Vector and Covariance Matrix). For any
random column vector X we define the expectation vector as the vector of
expectations

� D .�1; : : : ; �n/
> D .EX1; : : : ;EXn/

> :

The covariance matrix ˙ is defined as the matrix whose .i; j /th element is

Cov.Xi ; Xj / D EŒ.Xi � �i /.Xj � �j /� :

If we define the expectation of a matrix to be the matrix of expectations, then we
can write the covariance matrix succinctly as

˙ D E
�

.X ��/.X � �/>� :

Definition 3.9. (Conditional Expectation). The conditional expectation of
Y given X D x, denoted EŒY jX D x�, is the expectation corresponding to
the conditional pdf fY jX.y j x/. That is, in the continuous case,

EŒY jX D x� D
Z

y fY jX.y j x/ dy :

In the discrete case replace the integral with a sum.
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Note that EŒY jX D x� is a function of x, say h.x/. The corresponding
random variable h.X/ is written as EŒY jX�. The expectation of EŒY jX� is, in
the continuous case,

EEŒY jX� D
Z

EŒY jX D x�fX .x/ dx D
Z Z

y
f .x; y/

fX.x/
fX.x/ dy dx

D
Z

y fY .y/ dy D EY :

(3.19)

This “stacking” of (conditional) expectations is sometimes referred to as the tower
property.

Example 3.10 (Nonuniform Distribution on Triangle Continued). In Exam-
ple 3.8 the conditional expectation of Y given X D x, with 0 < x < 1, is

EŒY jX D x� D 1

2
x ;

because conditioned on X D x, Y is uniformly distributed on the interval .0; x/.
Using the tower property we find

EY D 1

2
EX D 1

4
:

3.5 Functions of Random Variables

Suppose X1; : : : ; Xn are measurements of a random experiment. What can be said
about the distribution of a function of the data, say Z D g.X1; : : : ; Xn/, when the
joint distribution of X1; : : : ; Xn is known?

Example 3.11 (Pdf of an Affine Transformation). Let X be a continuous random
variable with pdf fX and let Z D a C bX , where b ¤ 0. We wish to determine the
pdf fZ of Z. Suppose that b > 0. We have for any z

FZ.z/ D P.Z � z/ D P
�

X � .z � a/=b� D FX
�

.z � a/=b
�

:

Differentiating this with respect to z gives fZ.z/ D fX
�

.z � a/=b
�

=b. For b < 0

we similarly obtain fZ.z/ D fX
�

.z � a/=b
�

=.�b/: Thus, in general,

fZ.z/ D 1

jbj fX
� z � a

b

�

: (3.20)
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Example 3.12 (Pdf of a Monotone Transformation). Generalizing the previous
example, suppose that Z D g.X/ for some strictly increasing function g. To find
the pdf of Z from that of X we first write

FZ.z/ D P.Z � z/ D P
�

X � g�1.z/
� D FX

�

g�1.z/
�

;

where g�1 is the inverse of g. Differentiating with respect to z now gives

fZ.z/ D fX.g
�1.z//

d

dz
g�1.z/ D fX.g

�1.z//
g0.g�1.z//

: (3.21)

For strictly decreasing functions, g0 needs to be replaced with its negative value.

3.5.1 Linear Transformations

Let x D .x1; : : : ; xn/
> be a column vector in R

n and B an m � n matrix. The
mapping x 7! z, with z D Bx, is called a linear transformation. Now consider a
random vector X D .X1; : : : ; Xn/

>, and let

Z D BX :

Then Z is a random vector in R
m. In principle, if we know the joint distribution of

X, then we can derive the joint distribution of Z. Let us first see how the expectation
vector and covariance matrix are transformed.

Theorem 3.4. (Expectation and Covariance Under a Linear Transforma-
tion). If X has expectation vector �X and covariance matrix ˙X, then the
expectation vector and covariance matrix of Z D BX are given by

�Z D B�X (3.22)

and

˙Z D B˙XB
> : (3.23)
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Proof. We have �Z D EZ D EBX D B EX D B�X and

˙Z D EŒ.Z ��Z/.Z � �Z/
>� D EŒB.X � �X/.B.X � �X//

>�

D B EŒ.X � �X/.X ��X/
>�B>

D B˙XB
> : ut

Suppose that B is an invertible n � n matrix. If X has a joint pdf fX, what is
the joint density fZ of Z? Let us consider the continuous case. For any fixed x, let
z D Bx. Hence, x D B�1z. Consider the n-dimensional cube C D Œz1; z1 C h� �
� � � � Œzn; zn C h�. Then, by definition of the joint density for Z, we have

P.Z 2 C/ � hn fZ.z/ :

Let D be the image of C under B�1—that is, the parallelepiped of all points x
such that Bx 2 C ; see Fig. 3.4.

Fig. 3.4 Linear transformation

A basic result from linear algebra is that any matrix B linearly transforms an
n-dimensional rectangle with volume V into an n-dimensional parallelepiped with
volume V jBj, where jBj D j det.B/j. Thus, in addition to the above expression for
P.Z 2 C/, we also have

P.Z 2 C/ D P.X 2 D/ � hnjB�1j fX.x/ D hnjBj�1 fX.x/ :

Equating these two expressions for P.Z 2 C/ and letting h go to 0, we obtain

fZ.z/ D fX.B
�1z/

jBj ; z 2 R
n : (3.24)
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3.5.2 General Transformations

We can apply similar reasoning as in the previous subsection to deal with general
transformations x 7! g.x/, written out as

0

B

B

B

@

x1
x2
:::

xn

1

C

C

C

A

7!

0

B

B

B

@

g1.x/
g2.x/
:::

gn.x/

1

C

C

C

A

:

For a fixed x, let z D g.x/. Suppose g is invertible; hence, x D g�1.z/. Any
infinitesimal n-dimensional rectangle at x with volume V is transformed into an
n-dimensional parallelepiped at z with volume V jJg.x/j, where Jg.x/ is the matrix
of Jacobi at x of the transformation g; that is, ☞ 367

Jg.x/ D

0

B

B

@

@g1
@x1

� � � @g1
@xn

:::
: : :

:::
@gn
@x1

� � � @gn
@xn

1

C

C

A

:

Now consider a random column vector Z D g.X/. Let C be a small cube around z
with volume hn. Let D be the image of C under g�1. Then, as in the linear case,

hn fZ.z/ � P.Z 2 C/ � hnjJg�1 .z/j fX.x/ :

Hence, we have the following result.

Theorem 3.5. (Transformation Rule). Let X be a continuous n-dimensional
random vector with pdf fX and g a function from R

n to R
n with inverse g�1.

Then, Z D g.X/ has pdf

fZ.z/ D fX.g�1.z// jJg�1 .z/j ; z 2 R
n : (3.25)

Remark 3.3. Note that jJg�1 .z/j D 1=jJg.x/j.
Example 3.13 (Box–Muller Method). The joint distribution of X; Y

iid� N.0; 1/ is

fX;Y .x; y/ D 1

2�
e� 1

2 .x
2Cy2/ ; .x; y/ 2 R

2 :

In polar coordinates we have

X D R cos
 and Y D R sin
 ; (3.26)
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where R � 0 and 
 2 .0; 2�/. What is the joint pdf of R and 
? Consider the
inverse transformation g�1, defined by

�

r

�

�

g�1

7�!
�

r cos �
r sin �

�

D
�

x

y

�

:

The corresponding matrix of Jacobi is

Jg�1 .r; �/ D
�

cos � �r sin �
sin � r cos �

�

;

which has determinant r . Since x2 C y2 D r2.cos2 � C sin2 �/ D r2, it follows that

fR;
.r; �/ D fX;Y .x; y/ r D 1

2�
e� 1

2 r
2

r; � 2 .0; 2�/; r � 0 :

By integrating out � and r , respectively, we find fR.r/ D r e�r2=2 and f
.�/ D
1=.2�/. Since fR;
 is the product of fR and f
 , the random variablesR and
 are
independent. This shows how X and Y could be generated: independently generate
R � fR and
 � U.0; 2�/ and returnX and Y via (3.26). Generation from fR can
be done via the inverse-transform method. In particular,R has the same distribution☞ 53

as
p�2 lnU with U � U.0; 1/. This leads to the following method for generating

standard normal random variables.

Algorithm 3.2. (Box–Muller Method).

1. Generate U1; U2
iid� U.0; 1/.

2. Return two independent standard normal variables, X and Y , via

X D
p

�2 lnU1 cos.2�U2/ ;

Y D
p

�2 lnU1 sin.2�U2/ :
(3.27)

3.6 Multivariate Normal Distribution

It is helpful to view a normally distributed random variable as an affine transforma-
tion of a standard normal random variable. In particular, if Z has a standard normal
distribution, then X D �C �Z has a N.�; �2/ distribution; see Theorem 2.15.☞ 46
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We now generalize this to n dimensions. Let Z1; : : : ; Zn be independent and
standard normal random variables. The joint pdf of Z D .Z1; : : : ; Zn/

> is given by

fZ.z/ D
n
Y

iD1

1p
2�

e� 1
2 z2i D .2�/�

n
2 e� 1

2 z>z; z 2 R
n : (3.28)

We write Z � N.0; I /, where I is the identity matrix. Consider the affine
transformation (i.e., a linear transformation plus a constant vector)

X D �C B Z (3.29)

for some m � n matrix B and m-dimensional vector �. Note that, by Theorem 3.4,
X has expectation vector � and covariance matrix˙ D BB>:

Definition 3.10. (Multivariate Normal Distribution). A random vector X
is said to have a multivariate normal or multivariate Gaussian distribution
with mean vector � and covariance matrix ˙ if it can be written as X D
�C B Z, where Z � N.0; I / and BB> D ˙ . We write X � N.�; ˙/.

Suppose that B is an invertible n � n matrix. Then, by (3.24), the density of
Y D X �� is given by

fY.y/ D 1

jBjp.2�/n e� 1
2 .B

�1y/>B�1y D 1

jBjp.2�/n e� 1
2 y>.B�1/>B�1y :

We have jBj D pj˙ j and .B�1/>B�1 D .B>/�1B�1 D .BB>/�1 D ˙�1, so
that

fY.y/ D 1
p

.2�/n j˙ j e� 1
2 y>˙�1y :

Because X is obtained from Y by simply adding a constant vector �, we have
fX.x/ D fY.x � �/ and therefore

fX.x/ D 1
p

.2�/n j˙ j e� 1
2 .x��/>˙�1.x��/; x 2 R

n : (3.30)

Figure 3.5 shows the pdfs of two bivariate (i.e., two-dimensional) normal distri-
butions. In both cases the mean vector is � D .0; 0/> and the variances (the
diagonal elements of ˙) are 1. The correlation coefficients (or, equivalently here,
the covariances) are, respectively, % D 0 and % D 0:8.
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Fig. 3.5 Pdfs of bivariate normal distributions with means zero, variances 1, and correlation
coefficients 0 (left) and 0:8 (right)

Conversely, given a covariance matrix ˙ D .�ij /, there exists a unique
lower triangular matrix B such that ˙ D BB>. In MATLAB, the function chol
accomplishes this so-called Cholesky factorization. Note that it is important to
use the option ’lower’ when calling this function, as MATLAB produces an upper
triangular matrix by default. Once the Cholesky factorization is determined, it is
easy to sample from a multivariate normal distribution.

Algorithm 3.3. (Normal Random Vector Generation). To generate N

independent draws from a N.�; ˙/ distribution of dimension n carry out the
following steps:

1. Determine the lower Cholesky factorization˙ D BB>.
2. Generate Z D .Z1; : : : ; Zn/

> by drawingZ1; : : : ; Zn �iid N.0; 1/.
3. Output X D �C BZ.
4. Repeat Steps 2 and 3 independentlyN times.

Example 3.14 (Generating from a Bivariate Normal Distribution). The MATLAB

code below draws 1000 samples from the two pdfs in Fig. 3.5. The resulting point
clouds are given in Fig. 3.6.

%bivnorm.m
N = 1000; rho = 0.8;
Sigma = [1 rho; rho 1];
B=chol(Sigma,’lower’);
x=B*randn(2,N);
plot(x(1,:),x(2,:),’.’)
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Fig. 3.6 One thousand realizations of bivariate normal distributions with means zero, variances 1,
and correlation coefficients 0 (left) and 0:8 (right)

The following theorem states that any affine combination of independent multivari-
ate normal random variables is again multivariate normal.

Theorem 3.6. (Affine Transformation of Normal Random Vectors). Let
X1;X2; : : : ;Xr be independentmi -dimensional normal random vectors, with
Xi � N.�i ; ˙i /, i D 1; : : : ; r . Then, for any n � 1 vector a and n � mi

matrices B1; : : : ; Br ,

a C
r
X

iD1
Bi Xi � N

�

a C
r
X

iD1
Bi �i ;

r
X

iD1
Bi ˙i B

>
i

�

: (3.31)

Proof. Denote the n-dimensional random vector in the left-hand side of (3.31) by
Y. By Definition 3.10, each Xi can be written as �i C AiZi , where the fZi g are
independent (because the fXig are independent), so that

Y D a C
r
X

iD1
Bi .�i C AiZi / D a C

r
X

iD1
Bi �i C

r
X

iD1
BiAiZi ;

which is an affine combination of independent standard normal random vectors.
Hence, Y is multivariate normal. Its expectation vector and covariance matrix can
be found easily from Theorem 3.4. ut

The next theorem shows that the distribution of a subvector of a multivariate
normal random vector is again normal.



86 3 Joint Distributions

Theorem 3.7. (Marginal Distributions of Normal Random Vectors). Let
X � N.�; ˙/ be an n-dimensional normal random vector. Decompose X, �,
and ˙ as

X D
�

Xp

Xq

�

; � D
 

�p
�q

!

; ˙ D
�

˙p ˙r

˙>
r ˙q

�

; (3.32)

where ˙p is the upper left p � p corner of˙ and ˙q is the lower right q � q
corner of ˙ . Then, Xp � N.�p;˙p/.

Proof. Let BB> be the lower Cholesky factorization of ˙ . We can write

�

Xp

Xq

�

D
 

�p
�q

!

C
�

Bp O

Cr Cq

�

„ ƒ‚ …

B

�

Zp
Zq

�

; (3.33)

where Zp and Zq are independent p- and q-dimensional standard normal random
vectors. In particular, Xp D �p CBpZp , which means that Xp � N.�p;˙p/, since
BpB

>
p D ˙p . ut

By relabeling the elements of X we see that Theorem 3.7 implies that any subvector
of X has a multivariate normal distribution. For example, Xq � N.�q;˙q/.

Not only the marginal distributions of a normal random vector are normal but
also its conditional distributions.

Theorem 3.8. (Conditional Distributions of Normal Random Vectors).
Let X � N.�; ˙/ be an n-dimensional normal random vector with
det.˙/ > 0. If X is decomposed as in (3.32), then

�

Xq j Xp D xp
� � N.�q C˙>

r ˙
�1
p .xp � �p/; ˙q �˙>

r ˙
�1
p ˙r/ : (3.34)

As a consequence, Xp and Xq are independent if and only if they are
uncorrelated; that is, if ˙r D O (zero matrix).

Proof. From (3.33) we see that

.Xq j Xp D xp/ D �q C Cr B
�1
p .xp � �p/C CqZq ;

where Zq is a q-dimensional multivariate standard normal random vector. It follows
that Xq conditional on Xp D xp has a N.�qCCr B�1

p .xp��p/; CqC>
q / distribution.
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The proof of (3.34) is completed by observing that˙>
r ˙

�1
p D CrB

>
p .B

>
p /

�1B�1
p D

Cr B
�1
p , and

˙q �˙>
r ˙

�1
p ˙r D CrC

>
r C CqC

>
q � CrB�1

p ˙r
„ƒ‚…

BpC>

r

D CqC
>
q :

If Xp and Xq are independent, then they are obviously uncorrelated, as ˙r D
EŒ.Xp � �p/.Xq � �q/

>� D E.Xp � �p/E.Xq � �q/
> D O . Conversely, if

˙r D O , then by (3.34), the conditional distribution of Xq given Xp is the same
as the unconditional distribution of Xq , that is, N.�q;˙q/. In other words, Xq is
independent of Xp . ut

Theorem 3.9. (Relationship Between Normal and �2 Distributions). If
X � N.�; ˙/ is an n-dimensional normal random with vector with
det.˙/ > 0, then

.X � �/>˙�1.X � �/ � �2n : (3.35)

Proof. Let BB> be the Cholesky factorization of ˙ , where B is invertible. Since
X can be written as �C BZ, where Z D .Z1; : : : ; Zn/

> is a vector of independent
standard normal random variables, we have

.X � �/>˙�1.X ��/ D .X � �/>.BB>/�1.X ��/ D Z>Z D
n
X

iD1
Z2
i :

The moment generating function of Y D Pn
iD1 Z2

i is given by

E etY D E et .Z
2
1C���CZ2n/ D E ŒetZ

2
1 � � � etZ

2
n � D

�

E etZ
2
�n

;

where Z � N.0; 1/. The moment generating function of Z2 is

E etZ
2 D

Z 1

�1
etz

2 1p
2�

e�z2=2dz D 1p
2�

Z 1

�1
e� 1

2 .1�2t/z2dz D 1p
1 � 2t ;

so that

EetY D
 

1
2

1
2

� t

! n
2

; t <
1

2
;

which is the moment generating function of the Gamma.n=2; 1=2/ distribution, that
is, the �2n distribution—see Theorem 2.18. ut ☞ 49
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A consequence of Theorem 3.9 is that if X D .X1; : : : ; Xn/
> is n-dimensional

standard normal, then the squared length kXk2 D X2
1 C � � � C X2

n has a �2n
distribution. If instead Xi � N.�i ; 1/, i D 1; : : :, then kXk2 is said to have a
noncentral �2n distribution. This distribution depends on the f�i g only through
the norm k�k; see Problem 3.22. We write kXk2 � �2n.�/, where � D k�k is the
noncentrality parameter.

Such distributions frequently occur in statistics when considering projections of
multivariate normal random variables. The proof of the following theorem can be
found in Appendix B.4.☞ 371

Theorem 3.10. (Relationship Between Normal and Noncentral �2

Distributions). Let X � N.�; I / be an n-dimensional normal random vector
and let Vk and Vm be linear subspaces of dimensions k and m, respectively,
with k < m � n. Let Xk and Xm be orthogonal projections of X onto Vk
and Vm, and let �k and �m be the corresponding projections of �. Then, the
following holds:

1. The random vectors Xk, Xm � Xk , and X � Xm are independent.

2. kXkk2 � �2k.k�kk/, kXm�Xkk2 � �2m�k.k�m��kk/, and kX�Xmk2 �
�2n�m.k� � �mk/ .

Theorem 3.10 is frequently used in the statistical analysis of normal linear
models; see Sect. 5.3.1. In typical situations � lies in the subspace Vm or even☞ 142

Vk—in which case kXm � Xkk2 � �2m�k and kX � Xmk2 � �2n�m, independently.
The (scaled) quotient then turns out to have an F distribution—a consequence of
the following theorem.

Theorem 3.11. (Relationship Between �2 and F Distributions). Let U �
�2m and V � �2n be independent. Then,

U=m

V=n
� F.m; n/ :

Proof. For notational simplicity, let c D m=2 and d D n=2. It follows from
Example 3.7 that the pdf of W D U=V is given by☞ 71

fW .w/ D
Z 1

0

fU .wv/ v fV .v/ dv
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D
Z 1

0

.wv/c�1 e�wv=2

� .c/ 2c
v

vd�1e�v=2

� .d/ 2d
dv

D wc�1

� .c/ � .d/ 2cCd

Z 1

0

vcCd�1 e�.1Cw/v=2 dv

D � .c C d/

� .c/ � .d/

wc�1

.1C w/cCd
;

where the last equality follows from the fact that the integrand is equal to � .˛/�˛

times the density of the Gamma.˛; �/ distribution with ˛ D c C d and � D .1 C
w/=2. The proof is completed by observing that the density of Z D n

m
U
V

is given by

fZ.z/ D fW .zm=n/m=n :

ut

Corollary 3.2. (Relationship Between Normal, �2, and t Distributions).
Let Z � N.0; 1/ and V � �2n be independent. Then,

Z
p

V=n
� tn :

Proof. Let T D Z=
p

V=n. Because Z2 � �21, we have by Theorem 3.11 that
T 2 � F.1; n/. The result follows now from Theorem 2.19 and the symmetry around ☞ 51

0 of the pdf of T . ut

3.7 Limit Theorems

Two main results in probability are the law of large numbers and the central limit
theorem. Both are limit theorems involving sums of independent random variables.
In particular, consider a sequence X1;X2; : : : of iid random variables with finite
expectation � and finite variance �2. For each n define Sn D X1 C � � � C Xn.
What can we say about the (random) sequence of sums S1; S2; : : : or averages
S1; S2=2; S3=3; : : :? By (3.14) and (3.18) we have EŒSn=n� D � and Var.Sn=n/ D ☞ 75

�2=n: Hence, as n increases, the variance of the (random) average Sn=n goes to 0.
Informally, this means that .Sn=n/ tends to the constant �, as n ! 1. This makes
intuitive sense, but the important point is that the mathematical theory confirms our
intuition in this respect. Here is a more precise statement.
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Theorem 3.12. (Weak Law of Large Numbers). If X1; : : : ; Xn are iid with
finite expectation � and finite variance �2, then for all " > 0

lim
n!1P .jSn=n� �j > "/ D 0 :

Proof. Let Y D .Sn=n� �/2 and ı D "2. We have

Var.Sn=n/ D EY D EŒY IfY >ıg�C EŒY IfY�ıg� � EŒı IfY>ıg�C 0

D ı P.Y > ı/ D "2 P.jSn=n � �j > "/ :
Rearranging gives

P.jSn=n� �j > "/ � Var.Sn=n/

"2
D �2

n "2
:

The proof is concluded by observing that �2=.n"2/ goes to 0 as n ! 1. ut
Remark 3.4. In Theorem 3.12 the qualifier “weak” is used to distinguish the result
from the strong law of large numbers, which states that

P. lim
n!1Sn=n D �/ D 1 :

In terms of a computer simulation this means that the probability of drawing a
sequence for which the sequence of averages fails to converge to � is zero. The
strong law implies the weak law, but is more difficult to prove in its full generality;
see, for example, (Feller 1970).

The central limit theorem describes the approximate distribution of Sn (or Sn=n),
and it applies to both continuous and discrete random variables. Loosely, it states
that

the sum of a large number of iid random variables approx-
imately has a normal distribution.

Specifically, the random variable Sn has a distribution that is approximately normal,
with expectation n� and variance n�2. A more precise statement is given next.

Theorem 3.13. (Central Limit Theorem). If X1; : : : ; Xn are iid with finite
expectation � and finite variance �2, then for all x 2 R,

lim
n!1P

�

Sn � n�
�

p
n

� x

�

D ˚.x/ ;

where ˚ is the cdf of the standard normal distribution.
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Proof. (Sketch) A full proof is out of the scope of this book. However, the main
ideas are not difficult. Without loss of generality assume � D 0 and � D 1. This
amounts to replacing Xn by .Xn � �/=� . We also assume, for simplicity, that the
moment generating function of Xi is finite in an open interval containing 0, so that
we can use Theorem 2.7. We wish to show that the cdf of Sn=

p
n converges to that ☞ 36

of the standard normal distribution. It can be proved (and makes intuitive sense)
that this is equivalent (up to some technical conditions) to demonstrating that the
corresponding moment generating functions converge. That is, we wish to show that

lim
n!1E exp

�

t
Snp
n

�

D e
1
2 t
2

; t 2 R ;

where the right-hand side is the moment generating function of the standard normal
distribution. Because EX1 D 0 and EX2

1 D Var.X1/ D 1, we have by Theorem 2.7
that the moment generation function of X1 has the following Taylor expansion: ☞ 369

M.t/
defD E etX1 D 1C t EX1 C 1

2
t2 EX2

1 C o.t2/ D 1C 1

2
t2 C o.t2/ ;

where o.t2/ is a function for which limt#0 o.t2/=t2 D 0. Because the fXig are iid,
it follows that the moment generating function of Sn=

p
n satisfies

E exp

�

t
Snp
n

�

D E exp

�

tp
n
.X1 C � � � CXn/

�

D
n
Y

iD1
E exp

�

tp
n
Xi

�

D Mn

�

tp
n

�

D
�

1C t2

2n
C o.t2=n/

	n

�! e
1
2 t
2

as n ! 1. ut
Figure 3.7 shows central limit theorem in action. The left part shows the pdfs of
S1; : : : ; S4 for the case where the fXig have a UŒ0; 1� distribution. The right part
shows the same for the Exp.1/ distribution. We clearly see convergence to a bell-
shaped curve, characteristic of the normal distribution.
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Fig. 3.7 Illustration of the central limit theorem for (left) the uniform distribution and (right) the
exponential distribution
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Recall that a binomial random variable X � Bin.n; p/ can be viewed as the sum
of n iid Ber.p/ random variables: X D X1 C � � � C Xn. As a direct consequence☞ 66

of the central limit theorem it follows that, for large n, P.X � k/ � P.Y � k/,
where Y � N.np; np.1�p//. As a rule of thumb, this normal approximation to the
binomial distribution is accurate if both np and n.1 � p/ are larger than 5.

There is also a central limit theorem for random vectors. The multidimensional
version is as follows.

Theorem 3.14. (Multivariate Central Limit Theorem). Let X1; : : : ;Xn be
iid random vectors with expectation vector � and covariance matrix ˙ . For
large n the random vector X1 C � � � C Xn approximately has a N.n�; n˙/
distribution.

A more precise formulation of the above theorem is that the average random
vector Zn D .X1 C � � � C Xn/=n, when rescaled via

p
n.Zn � �/, converges in

distribution to a random vector K � N.0; ˙/ as n ! 1. A useful consequence of
this is given next.

Theorem 3.15. (Delta Method). Let Z1;Z2; : : : be a sequence of random
vectors such that

p
n.Zn � �/ ! K � N.0; ˙/ as n ! 1. Then, for any

continuously differentiable function g of Zn,

p
n.g.Zn/� g.�// ! R � N.0; J˙J>/ ; (3.36)

where J D J.�/ D .@gi .�/=@xj / is the Jacobian matrix of g evaluated at �.

Proof. (Sketch) A formal proof requires some deeper knowledge of statistical
convergence, but the idea of the proof is quite straightforward. The key step is to
construct the first-order Taylor expansion (see Theorem B.1) of g around �, which☞ 369

yields

g.Zn/ D g.�/C J.�/.Zn ��/C O.kZn � �k2/ :

As n ! 1, the remainder term goes to 0, because Zn ! �. Hence, the left-
hand side of (3.36) is approximately J

p
n.Zn � �/. For large n this converges to

a random vector R D J K, where K � N.0; ˙/. Finally, by Theorem 3.4 , we have☞ 80

R � N.0; J˙ J>/. ut
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Example 3.15 (Ratio Estimator). Let .X1; Y1/; : : : ; .Xn; Yn/ be iid copies of
a random vector .X; Y / with mean vector .�X ; �Y / and covariance matrix ˙ .
Denoting the average of the fXig and fYig by NX and NY , respectively, what can
we say about the distribution of NX= NY for large n?

Let Zn D . NX; NY / and � D .�X ; �Y /. By the multivariate central limit theorem
Zn has approximately a N.�; ˙=n/ distribution. More precisely,

p
n.Zn � �/

converges to a N.0; ˙/-distributed random vector.
We apply the delta method using the function g.x; y/ D x=y, whose Jacobian

matrix is

J.x; y/ D
�

@g.x; y/

@x
;

@g.x; y/

@y

�

D
�

1

y
;

�x
y2

�

:

It follows from (3.36) that g. NX; NY / D NX= NY has approximately a normal distribution
with expectation g.�/ D �X=�Y and variance �2=n, where

�2 D J.�/˙J>.�/ D
�

1

�Y
;

��X
�2Y

��

Var.X/ Cov.X; Y /
Cov.X; Y / Var.Y /

�

 

1
�Y��X
�2Y

!

D
�

�X

�Y

�2 �Var.X/

�2X
C Var.Y /

�2Y
� 2

Cov.X; Y /

�X �Y

�

:

(3.37)

3.8 Problems

3.1. LetU and V be independent random variables with P.U D 1/ D P.V D 1/ D
1=4 and P.U D �1/ D P.V D �1/ D 3=4. Define X D U=V and Y D U C V .
Give the joint discrete pdf of X and Y in table form, as in Table 3.1. Are X and Y ☞ 64

independent?

3.2. Let X1; : : : ; X4 �iid Ber.p/.

(a) Give the joint discrete pdf of X1; : : : ; X4.
(b) Give the joint discrete pdf of X1; : : : ; X4 givenX1 C � � � CX4 D 2.

3.3. Three identical-looking urns each have 4 balls. Urn 1 has 1 red and 3 white
balls, urn 2 has 2 red and 2 white balls, and urn 3 has 3 red and 1 white ball. We
randomly select an urn with equal probability. Let X be the number of the urn. We
then draw 2 balls from the selected urn. Let Y be the number of red balls drawn.
Find the following discrete pdfs:

(a) The pdf of X .
(b) The conditional pdf of Y given X D x for x D 1; 2; 3.
(c) The joint pdf of X and Y .
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(d) The pdf of Y .
(e) The conditional pdf of X given Y D y for y D 0; 1; 2.

3.4. We randomly select a point .X; Y / from the triangle f.x; y/ W x; y 2
f1; : : : ; 6g; y � xg (see Fig. 3.1) in the following nonuniform way. First, select☞ 67

X discrete uniformly from f1; : : : ; 6g. Then, given X D x, select Y discrete
uniformly from f1; : : : ; xg. Find the conditional distribution of X given Y D 1

and its corresponding conditional expectation.

3.5. We randomly and uniformly select a continuous random vector .X; Y / in the
triangle .0; 0/–.1; 0/–.1; 1/, the same triangle as in Example 3.8.☞ 72

(a) Give the joint pdf of X and Y .
(b) Calculate the pdf of Y and sketch its graph.
(c) Specify the conditional pdf of Y given X D x for any fixed x 2 .0; 1/.
(d) Determine EŒY jX D 1=2�.

3.6. Let X � UŒ0; 1� and Y � Exp.1/ be independent.

(a) Determine the joint pdf of X and Y and sketch its graph.
(b) Calculate P..X; Y / 2 Œ0; 1� � Œ0; 1�/.
(c) Calculate P.X C Y < 1/.

3.7. Let X � Exp.�/ and Y � Exp.�/ be independent.

(a) Show that min.X; Y / also has an exponential distribution, and determine its
corresponding parameter.

(b) Show that

P.X < Y / D �

�C �
:

3.8. Let X � Exp.1/ and .Y jX D x/ � Exp.x/.

(a) What is the joint pdf of X and Y ?
(b) What is the marginal pdf of Y ?

3.9. Let X � U.��=2; �=2/. Show that Y D tan.X/ has a Cauchy distribution.☞ 71

3.10. Let X � Exp.3/ and Y D ln.X/. What is the pdf of Y ?

3.11. We draw n numbers independently and uniformly from the interval [0,1] and
denote their sum Sn.

(a) Determine the pdf of S2 and sketch its graph.
(b) What is approximately the distribution of S20?
(c) Approximate the probability that the average of the 20 numbers is greater

than 0.6.

3.12. A certain type of electrical component has an exponential lifetime distribution
with an expected lifetime of 1=2 year. When the component fails it is immediately
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replaced by a second (new) component; when the second component fails, it is
replaced by a third, etc. Suppose there are ten such identical components. Let T
be the time that the last of the components fails.

(a) What is the expectation and variance of T ?
(b) Approximate, using the central limit theorem, the probability that T exceeds

6 years.
(c) What is the exact distribution of T ?

3.13. Let A be an invertible n � n matrix and let X1; : : : ; Xn �iid N.0; 1/. Define
X D .X1; : : : ; Xn/

> and let .Z1; : : : ; Zn/> D AX. Show that Z1; : : : ; Zn are iid
standard normal only if AA> D I (identity matrix), in other words, only if A is an
orthogonal matrix. Can you find a geometric interpretation of this?

3.14. Let X1; : : : ; Xn be independent and identically distributed random variables
with mean � and variance �2. Let NX D .X1C� � �CXn/=n. Calculate the correlation
coefficient of X1 and NX .

3.15. Suppose that X1; : : : ; X6 are iid with pdf

f .x/ D



3x2; 0 � x � 1;

0; elsewhere:

(a) What is the probability that all fXig are greater than 1=2?
(b) Find the probability that at least one of the fXig is less than 1/2.

3.16. Let X and Y be random variables.

(a) Express Var.�aXCY /, where a is a constant, in terms of Var.X/;Var.Y /; and
Cov.X; Y /.

(b) Take a D Cov.X; Y /=Var.X/. Using the fact that the variance in (a) is always
nonnegative, prove the following Cauchy–Schwarz inequality:

.Cov.X; Y //2 � Var.X/Var.Y / :

(c) Show that, as a consequence, the correlation coefficient of X and Y must lie
between �1 and 1.

3.17. Suppose X and Y are independent uniform random variables on [0,1]. Let
U D X=Y and V D XY , which means X D p

UV and Y D p

V=U .

(a) Sketch the two-dimensional region where the density of .U; V / is nonzero.
(b) Find the matrix of Jacobi for the transformation .x; y/> 7! .u; v/>.
(c) Show that its determinant is 2x=y D 2u.
(d) What is the joint pdf of U and V ?
(e) Show that the marginal pdf of U is

fU .u/ D
(

1
2
; 0 < u < 1
1
2u2
; u � 1

: (3.38)
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3.18. LetX1; : : : ; Xn be iid with mean � and variance �2. Let NX D 1
n

Pn
iD1 Xi and

Y D 1
n

Pn
iD1.Xi � NX/2.

(a) Show that

Y D 1

n

n
X

iD1
X2
i � NX2 :

(b) Calculate EY .
(c) Show that EY ! �2 as n ! 1.

3.19. Let X D .X1; : : : ; Xn/
>, with fXig �iid N.�; 1/. Consider the orthogonal

projection, denoted X1, of X onto the subspace spanned by 1 D .1; : : : ; 1/>.

(a) Show that X1 D NX1.
(b) Show that X1 and X � X1 are independent.
(c) Show that kX � X1k2 D Pn

iD1.Xi � NX/2 has a �2n�1 distribution.

Hint: apply Theorem 3.10.

3.20. Let X1; : : : ; X6 be the weights of six randomly chosen people. Assume each
weight is N.75100/ distributed (in kg). Let W D X1 C � � � CX6 be the total weight
of the group. Explain why the distribution of W is equal or not equal to 6X1.

3.21. Let X � �2m and Y � �2n be independent. Show that X C Y � �2mCn. Hint:
use moment generating functions.

3.22. Let X � N.�; 1/. Show that the moment generation function of X2 is

M.t/ D e�
2t=.1�2t/

p
1 � 2t t < 1=2 :

Next, consider independent random variables Xi � N.�i ; 1/, i D 1; : : : ; n. Use the
result above to show that the distribution of kXk2 only depends on n and k�k. Can
you find a symmetry argument why this must be so?

3.23. A machine produces cylinders with a diameter which is normally distributed
with mean 3.97 cm and standard deviation 0.03 cm. Another machine produces
(independently of the first machine) shafts with a diameter which is normally dis-
tributed with mean 4.05 cm and standard deviation 0.02 cm. What is the probability
that a randomly chosen cylinder fits into a randomly chosen shaft?

3.24. A sieve with diameter d is used to separate a large number of blueberries
into two classes: small and large. Suppose that the diameters of the blueberries
are normally distributed with an expectation � D 1 cm and a standard deviation
� D 0:1 cm.

(a) Find the diameter of the sieve such that the proportion of large blueberries
is 30 %.
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(b) Suppose that the diameter is chosen such as in (a). What is the probability that
out of 1000 blueberries, fewer than 280 end up in the “large” class?

3.25. Suppose X , Y , and Z are independent N.1; 2/-distributed random variables.
Let U D X � 2Y C 3Z and V D 2X � Y C Z. Give the joint distribution of U
and V .

3.26. For many of the above problems it is instructive to simulate the corresponding
model on a computer in order to better understand the theory.

(a) Generate 105 points .X; Y / from the model in Problem 3.6.
(b) Compare the fraction of points falling in the unit square Œ0; 1� � Œ0; 1� with the

theoretical probability in Problem 3.6(b).
(c) Do the same for the probability P.X C Y < 1/.

3.27. Simulate 105 draws from U.��=2; �=2/ and transform these using the
tangent function, as in Problem 3.9. Compare the histogram of the transformed
values with the theoretical (Cauchy) pdf.

3.28. Simulate 105 independent draws of .U; V / in Problem 3.17. Verify with a
histogram of the U -values that the pdf of U is of the form (3.38).

3.29. Consider the MATLAB experiments in Example 3.14.

(a) Carry out the experiments with % D 0:4; 0:7; 0:9; 0:99, and �0:8, and observe ☞ 84

how the outcomes change.
(b) Plot the corresponding pdfs, as in Fig. 3.6.
(c) Give also the contour plots of the pdfs, for % D 0 and % D 0:8. Observe that the

contours are ellipses.
(d) Show that these ellipses are of the form

x21 C 2% x1 x2 C x22 D constant :



Appendix A
Matlab Primer

MATLAB, a portmanteau of MATrix LABoratory, is an interactive matrix-based
program for numerical computation. It is a very easy to use high-level language
that requires minimal programming skills. The purpose of this appendix is to
introduce the reader to some basic MATLAB functions that are used in the main
text. For more detailed information and full documentation, please visit the official
documentation site

http://www.mathworks.com/help/techdoc/.

In addition, the command help function_name gives information about the
function function_name. Alternatively, select Help -> Product Help in the
toolbar in the MATLAB command window.

A.1 Matrices and Matrix Operations

The most fundamental objects in MATLAB are, not surprisingly, matrices. For
instance, to create a 1�3matrix (i.e., row vector) a, enter into the MATLAB command
window:

a = [1 2 3]

MATLAB returns

a =
1 2 3

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__12, © The Author(s) 2014
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To create a matrix with more than one row, use semicolons to separate the rows.
For example, the line

A = [1 2 3; 4 5 6; 7 8 9];

creates a 3� 3matrix A. It is worth noting that MATLAB is case sensitive for variable
names and built-in functions. That means MATLAB treats a andA as different objects.
To display the i th element in a vector x, just type x(i). For example,

a(2)

refers to the second element of a: Similarly, one can access a particular element of
A by specifying its row and column number (row first followed by column). For
instance,

A(2,3)

displays the .2; 3/ entry of the matrixA. To display multiple elements in the matrix,
one can use expressions involving colons. For example,

A(1,1:2)

displays the first and second elements in the first row, whereas

A(:,2)

displays all the elements in the second column.
To perform numerical computation, one needs some basic matrix operations. In

MATLAB, the following matrix operations, among many others, are available:

C addition = right division
� subtraction ˆ power
	 multiplication 0 transpose
n left division

For example,

a’
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returns the transpose of a:

ans =

1
2
3

whereas

a*A

gives the product of a and A:

ans =

30 36 42

Other operations are obvious, except for the matrix divisions n and =. If A is
an invertible square matrix and a is a compatible vector, then x D Ana is the
solution of A x D a and x D a=A is the solution of xA D a: In other words,
Ana gives the same result (in principle) as A�1 a, though they compute their results
in different ways. Specifically, the former solves the linear system A x D a for x
by Gaussian elimination, whereas the latter first computes the inverse A�1, then
multiplies it by a. As such, the second method is in general slower as computing the
inverse of a matrix is time-consuming (and inaccurate).

It is important to note that although addition and subtraction are element-wise
operations, the other operations listed above are not—they are matrix operations.
For example, Aˆ2 gives the square of the matrix A, not a matrix whose entries are
the squares of those in A. One can make the operations 	, n, =, and ˆ to operate
element-wise by preceding them by a full stop. For example,

A^2

returns the square of the matrix A:

ans =

30 36 42
66 81 96
102 126 150
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On the other hand,

A.^2

computes the squares element-wise:

ans =

1 4 9
16 25 36
49 64 81

A.2 Some Useful Built-In Functions

In this section we list some common built-in functions which are used throughout
the main text. One can learn more about a specific function, say, eye, by
typing help eye in the command window. Here are some useful matrix-building
functions:

eye create an identity matrix
zeros create a matrix of zeros
ones create a matrix of ones
diag create a diagonal matrix or extract the diagonal from a matrix
rand generate U.0; 1/ random variables
randn generate N.0; 1/ random variables

For example, eye(n) creates an n � n identity matrix, and ones(m,n)
produces an m � n matrix of ones. Given the 3 � 3 matrix A,

diag(A)

extracts the diagonal of the matrix A:

ans =

1
5
9

But for the 3 � 1 vector a, the same command

diag(a)
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builds a diagonal matrix whose main diagonal is a:

ans =

1 0 0
0 2 0
0 0 3

Some other useful vector and matrix functions:

exp exponential log natural log
sqrt square root abs absolute value
sin sine cos cosine
sum sum prod product
max maximum min minimum
chol Cholesky factorization inv inverse
det determinant size size

If x is a vector, sum(x) returns the sum of the elements in x. For a matrix X ,
sum(X) returns a row vector consisting of sums of each column, while sum(X,2)
returns a column vector of sums of each row. For example,

sum(A)

returns

ans =

12 15 18

whereas

sum(A,2)

gives

ans =

6
15
24

For a positive definite matrix C , chol(C,’lower’) returns the lower
Cholesky factorization B such that BB> D C . For example,



354 A Matlab Primer

B = [ 1 0 0; 2 3 0; 4 5 6];
C = B*B’;
chol(C,’lower’)

returns the lower Cholesky factor of BB>, which is, of course, B .

A.3 Flow Control

MATLAB has the usual control flow statements such as if-then-else, while,
and for. For instance, the general form of a simple if statement is

if condition
statements

end

The statements will be executed if the condition is true. Multiple branching is done
by using elseif and else. For example, the following code simulates rolling a
four-sided die:

u = rand;
if u <= .25

disp(’1’);
elseif u <= .5

disp(’2’);
elseif u <= .75

disp(’3’);
else

disp(’4’);
end

The general form of a while loop is

while condition
statements

end

The statements will be repeatedly executed while the condition remains true. To
illustrate the while loop syntax, suppose we wish to generate a positive normal
random variable [with pdf given in (2.25)]. We can do that using the following☞ 56

simple while loop:

u = randn;
while u <= 0

u = randn;
end
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Another useful control flow statement is the for loop, whose general form is

for count
statements

end

Unlike a while loop, the for loop executes the statements for a fixed number of
times. As an example, the following code generates five draws from the positive
normal distribution.

x = zeros(1,5); %% create a storage vector
for i=1:5

u = randn;
while u <= 0

u = randn;
end
x(i)=u;

end

A.4 Function Handles and Function Files

In previous sections we have introduced some built-in functions in MATLAB. For
instance, sqrt is a function that takes an argument and returns an output (its square
root). Later on we will need to create our own functions that take one or more input
arguments, operate on them, and return the results. One way to create new functions
is through function handles. For example,

f = @(x) x.^2 + 5*x - 10 ; % Note the use of the dot

creates the function f .x/ D x2 C 5x � 10 with the function handle f. The function
handle gives you a means of invoking the function. To evaluate, say, f .10/, we can
type feval(f,10), or simply, f(10).

Function handles can be passed to other functions as inputs. For instance, if we
want to find the minimum point of f .x/ in the interval .�10; 10/, we can use
the built-in function fminbnd (see Sect. A.6 for a more detailed discussion on
optimization routines):

[xmin fmin] = fminbnd(f,-10, 10)

Note that fminbnd takes three inputs (a function handle and the two end-points
of the interval) and returns two outputs (the minimizer and the minimal value). In
our example, the minimizer of f .x/ in .�10; 10/ is �2:5, and the corresponding
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functional value is �16:25. To create a function that takes more than one input is
just as easy. For example,

g = @(x,y) x.^2 + y.^3 + x.*y

defines the two-variable function g.x; y/ D x2 C y3 C xy.
For more complex functions that involve multiple lines and intermediate vari-

ables, we need the command function. For example, the following code takes a
column vector of data and computes its mean and standard deviation:

function [meanx, stdevx] = stat(x)
n = length(x);
meanx = sum(x)/n;
stdevx = sqrt(sum(x.^2)/n - meanx.^2);

It is important to note that all the code must be written and saved in a separate
m-file. Also, the name of the file should coincide with the name of the function; in
this case, the file must be called stat.m. After saving the file, it can be used the
same way as other built-in functions, for example:

[meanx stdx] = stat(randn(100,1))

returns

meanx =

0.0530

stdx =

0.9902

A.5 Graphics

MATLAB has several high-level graphical routines and very extensive plotting
capabilities. It allows users to create various graphical objects including two- and
three-dimensional graphs. One can also have a title on a graph, add a legend, change
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the font and font size, label the axis, etc. For more information, in the command
window, click on Help and next select Demos. Then choose Graphics followed
by 2D Plots.

In MATLAB the most basic function used to create 2D graphs is plot. For
example, to make a graph of y D sin.x/ on the interval from x D 0 to x D 2� , we
use the following code:

x = 0:.01:2*pi;
y = sin(x);
plot(x,y);

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1Fig. A.1 A plot of the graph
y D sin.x/ from 0 to 2�

The graph produced is given in Fig. A.1. Note that the command x =
0:.01:2*pi; creates a vector whose components range from 0 to 2� in steps
of 0.01. Another useful command to create a grid is linspace (use help
linspace to learn more about this function).

Another useful function is hist, which allows us to plot histograms. For
example,

hist(randn(1000,1),50);

creates a histogram where the 1000 standard normal draws are put into 50 equally
spaced bins (see Fig. A.2).
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70Fig. A.2 A histogram of
1000 standard normal draws

Instead of a histogram, it is often more useful to have a density estimate. One
fast and reliable Gaussian kernel density estimator is the theta KDE of Botev
et al. (2010). The MATLAB function kde.m can be downloaded from http://www.
mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator. See
also Example 7.4 for an illustration.☞ 202

It is often desirable to plot several graphs in the same figure window. For this
purpose we need the function subplot. The function subplot(i,j,k) takes
three arguments: the first two tells MATLAB that an i � j array of plots will be
created, and the third is the running index that indicates the kth subplot is currently
generated. Suppose we wish to plot the functions y D sin.x2=2/ and y D sin.2x/
in the same figure window. A little modification of the above code accomplishes this
goal:
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−0.5
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0.5

1

0 2 4 6
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−0.5

0

0.5

1

Fig. A.3 Plots of the graphs y D sin.x2=2/ and y D sin.2x/ from 0 to 2�

http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
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x = 0:.01:2*pi;
y1 = sin(x.^2/2); y2 = sin(2*x);
subplot(1,2,1); plot(x,y1);
subplot(1,2,2); plot(x,y2);

In addition, one can also easily produce 3D graphical objects in MATLAB. To
illustrate various useful routines, suppose we want to plot the density function of
the bivariate normal distribution (see Sect. 3.6) given by ☞ 82

f .x; yI %/ D 1

2�
p

1 � %2
e

� 1

2.1�%2/
.x2�2%xyCy2/

:

As in plotting a 2D graph, we first need to build a grid, and this can be done
with the function meshgrid. After computing the values of the function at each
point on the grid, we can plot the 3D graph using mesh. For example, we use the
following code

rho = .6;
[x y] = meshgrid(-2:.1:2, -2:.1:2); %% build a 2D grid
z = 1/(2*pi*sqrt(1-rho^2)) ...

* exp(-(x.^2 -2*rho*x.*y + y.^2)/(2*(1-rho^2)));
mesh(x,y,z);

to plot the bivariate normal density function with % D 0:6 in Fig. A.4. The ellipsis
(. . . ) is used to break up a long line into multiple lines.
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Fig. A.4 The density
function of the bivariate
normal distribution with
% D 0:6
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We can produce a contour plot by using the function contour:

contour(x,y,z);

The result is shown in Fig. A.5.
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2Fig. A.5 A contour plot of
the bivariate normal density
function with % D 0:6

A.6 Optimization Routines

MATLAB provides various built-in optimization routines. In this section we discuss
some of them that are used in the main text. Note that all the optimization routines
in MATLAB are framed in terms of minimization. In order to perform maximization,
some minor changes to the objective function are required. More precisely, suppose
we want to maximize the function f .x/ and find a maximizer xmax D argmaxx f .x/.
Instead of the original maximization problem, consider minimizing �f .x/ and
noting that

xmax D argmax
x

f .x/ D argmin
x

�f .x/ :

Hence, without loss of generality, we will focus on minimization routines. One
basic minimization function is fminbnd, which finds the minimum of a single-
variable function on a fixed interval. To illustrate its usage, suppose we wish to
minimize the function f .x/ D sin.x2/ over the interval Œ0; 3� (see Fig. A.6).
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Fig. A.6 A plot of
f .x/ D sin.x2/ from 0 to 3

After defining the function f .x/ D sin.x2/ using the command

f = @(x) sin(x.^2);

we pass f to fminbnd, which takes three inputs (the function handle, lower and
upper bounds of the interval) and gives two outputs (the minimizer and value of the
function evaluated at the minimizer):

[xmin fmin] = fminbnd(f,0,3);

For this example, we have

[xmin fmin]

ans =

2.1708 -1.0000

The function fminbnd can only be used to minimize univariate functions
on a closed interval. For multivariate minimization, one very useful function is
fminsearch that finds the unconstrained minimum of a function of several
variables. fminsearch takes two inputs, namely, the function handle and a
starting value. Like fminbnd, fminsearch gives two outputs: the minimizer and
the minimum (the value of the function evaluated at the minimizer). As an example,
suppose we wish to maximize the bivariate normal pdf
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f .x1; x2I %/ D 1

2�
p

1 � %2 e
� 1

2.1�%2/
.x21�2%x1x2Cy22 /

with respect to x D .x1; x2/ with % D 0:6. To this end, first define g.x1; x2/ D
�f .x1; x2I %/:

rho = .6;
g = @(x) -1/(2*pi*sqrt(1-rho^2)) ...

*exp(-(x(1).^2 -2*rho*x(1).*x(2) +x(2).^2)
/(2*(1-rho^2)));

Note that the variable x is a 1� 2 vector. Then, we pass g to fminsearchwith
starting values, say, Œ1;�1�:

[xmin gmin] = fminsearch(g, [1 -1]);

For this example, we have

[xmin gmin]

ans =

0.0000 0.0000 -0.1989

That is, the mode of f .x1; x2I % D 0:6/ is x D .0; 0/; and f .0; 0/ D 0:1989.

A.7 Handling Sparse Matrices

A sparse matrix is simply a matrix that contains a large proportion of zeros.
Computation for sparse matrices can typically be done much faster than for full
matrices. In addition, as most of the elements in a sparse matrix are zeros, the storage
cost of a sparse matrix is also small. In statistics we often need to deal with large
sparse matrices. Thus it is useful to learn how to handle them in MATLAB.

A basic function for creating sparse matrices is sparse. For example, suppose
the matrix

W D

0

B

B

@

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 1

1

C

C

A
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is stored as a full matrix in MATLAB. The command sparse(W) converts W to
sparse form by squeezing out any zero elements and returns:

ans =

(1,1) 1
(2,2) 1
(3,3) 2
(4,4) 3
(4,5) 1

Notice that only the nonzero elements in W are stored. In general, we can create
a matrix S by the command S = sparse(i,j,s,m,n), which uses vectors i,
j, and s to generate an m � n sparse matrix such that S.i.k/; j.k// D s.k/: For
example, to create the matrix W above, we first need to build a vector s that stores
all the nonzero elements:

s = [1 1 2 3 1]’;

Next, we create a vector i that stores the row position for each element in s.
For example, the first element in s should be in the first row, the second element in
second row, and so on. We then do the same thing for the column positions and store
them in the vector j:

i = [1 2 3 4 4]’;
j = [1 2 3 4 5]’;

Finally,

W = sparse(i,j,s,4,5);

creates the 4 � 5 matrix W above.
There are several useful built-in functions for creating special sparse matrices.

For example,

I = speye(100);
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creates the 100� 100 sparse identity matrix. Of course we can accomplish the same
goal by using

I = sparse(1:100,1:100,ones(1,100));

though the latter is more clumsy. Another useful function is spdiags, the sparse
version of diag, which can be used to extract and create sparse diagonal matrices.
Use help spdiags to learn more about this function.

As mentioned earlier, one main advantage of working with sparse rather than full
matrices is that computations involving sparse matrices are usually much quicker.
For instance, it takes about 2.7 seconds to obtain the Cholesky decomposition of the
full 5000� 5000 identity matrix:

tic; chol(eye(5000)); toc;
Elapsed time is 2.728245 seconds.

whereas the same operation takes only 0.015 second for a sparse 5000 � 5000

identity matrix:

tic; chol(speye(5000)); toc;
Elapsed time is 0.014867 seconds.

A.8 Gamma and Dirichlet Generator

The following MATLAB program gamrand implements the method developed in
(Marsaglia and Tsang 2000) to generate samples from a Gamma.˛; �/ distribution.
If the Statistics Toolbox is available, the function gamrnd can be used instead;
but note that gamrnd(a,b) generates random variables from a Gamma.a; 1=b/
distribution.

function x=gamrand(alpha,lambda)
if alpha>1

d=alpha-1/3; c=1/sqrt(9*d); flag=1;
while flag

Z=randn;
if Z>-1/c

V=(1+c*Z)^3; U=rand;
flag=log(U)>(0.5*Z^2+d-d*V+d*log(V));

end
end
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x=d*V/lambda;
else

x=gamrand(alpha+1,lambda);
x=x*rand^(1/alpha);

end

As a direct consequence of Theorem 8.2, the following MATLAB program ☞ 241

dirichrnd generates samples from a Dirichlet.˛/ distribution. Draws from a
Beta.˛; ˇ/ are obtained by taking ˛ D .˛; ˇ/.

function x=dirichrnd(alpha)
n=length(alpha)-1;
Y=nan(1,n+1);
for k=1:n+1

Y(k)=gamrand(alpha(k),1);
end
x=Y(1:n)/sum(Y);

A.9 Cdfs and Inverse Cdfs

The following MATLAB program cumdf evaluates the cdfs of normal, Student’s t ,
gamma, chi-squared, and F distributions. If the Statistics Toolbox is available, the
function cdf can be used instead.

function y = cumdf(dist,x,varargin)
switch dist

case ’norm’
mu = varargin{1}; sigma = varargin{2};
y = (erf(( (x - mu)/sigma )/sqrt(2)) + 1)/2;

case ’t’
nu = varargin{1};
y = 1-0.5*betainc(nu/(nu+x.^2),nu/2,1/2);

case ’gamma’
alpha = varargin{1}; lambda = varargin{2};

% different from Stats toolbox
y = gammainc(lambda*x,alpha);

case ’chi2’
n = varargin{1};
y = gammainc(x/2,n/2);

case ’F’
m = varargin{1}; n = varargin{2};
y = 1 - betainc(n/(n+m*x),n/2,m/2);

end
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The following MATLAB program icumdf evaluates the inverse cdfs of normal,
Student’s t , gamma, chi-squared, and F distributions. The corresponding built-in
function in the Statistics Toolbox is icdf.

function x = icumdf(dist,y,varargin)
switch dist

case ’norm’
mu = varargin{1}; sigma = varargin{2};
x = mu + sigma*sqrt(2)*erfinv(2*y -1);

case ’t’
nu = varargin{1};
x = sqrt(nu/betaincinv(2*(1-y),nu/2,1/2) - nu);

case ’gamma’
alpha = varargin{1}; lambda = varargin{2};

% different from Stats toolbox
x = gammaincinv(y,alpha)/lambda;

case ’chi2’
n = varargin{1};
x = gammaincinv(y,n/2)*2;

case ’F’
m = varargin{1}; n = varargin{2};
x = n/m/betaincinv(1-y,n/2,m/2) - n/m;

end

A.10 Further Reading and References

The official MATLAB documentation site is

http://www.mathworks.com/help/techdoc/

A good place to learn more about the major functionality in MATLAB is the MATLAB

Getting Started Guide available at

http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

MATLAB programs for generating random variables from a wide range of distri-
butions may be found on the homepage of the Handbook of Monte Carlo Methods
(Kroese et al. 2011):

http://www.montecarlohandbook.org

Finally, all programs and (large) data files in this book may be downloaded from
the homepage

http://www.statmodcomp.org

To accommodate the users of the statistical programming language R, we have
mirrored each MATLAB program with its equivalent in R.

http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.montecarlohandbook.org
http://www.statmodcomp.org
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B.1 Multivariate Differentiation

For a real-valued multivariate function f .x1; : : : ; xn/ the partial derivative with
respect to xi , denoted @f

@xi
or simply @if , is the derivative taken with respect to xi

while all other variables are held constant. The partial derivative of @if with respect

to xj is denoted @2f

@xi @xj
or simply @ij f .

Let f be a multivariate function taking values in R
m, defined by

x D

0

B

B

B

@

x1
x2
:::

xn

1

C

C

C

A

7!

0

B

B

B

@

f1.x/
f2.x/
:::

fm.x/

1

C

C

C

A

D f.x/ :

The derivative of f at x is defined as the matrix of partial derivatives,

Jf.x/ D

0

B

@

@1f1.x/ � � � @nf1.x/
::: � � � :::

@1fm.x/ � � � @nfm.x/

1

C

A ; (B.1)

and is called the matrix of Jacobi of f at x, sometimes written as @f
@x .x/.

Example B.1 (Differentiating a Linear Function). Let f.x/ D Ax for somem�n
constant matrix A. Then,

@f.x/
@x

D A : (B.2)

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__13, © The Author(s) 2014
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To see this, let aij denote the .i; j /th element of A, so that

f.x/ D Ax D

0

B

@

Pn
kD1 a1kxk
:::

Pn
kD1 amkxk

1

C

A :

To find the .i; j /th element of them� n Jacobian matrix Jf, we differentiate the i th
element of f with respect to xj :

@fi .x/
@xj

D @

@xj

n
X

kD1
aikxk D aij :

In other words, the .i; j /th element of Jf is aij , the .i; j /th element of A.
For a real-valued multivariate function, that is, f W Rn ! R, the gradient of f

is the transpose of the Jacobian matrix, that is, the column vector

rf .x/ D

0

B

@

@1f .x/
:::

@nf .x/

1

C

A : (B.3)

The derivative of the function x 7! rf .x/ is called the Hessian matrix of f ,
denoted Hf .x/ or r2f .x/. In other words, the Hessian is the matrix of second
derivatives:

r2f .x/ D

0

B

@

@11f .x/ � � � @1nf .x/
::: � � � :::

@n1f .x/ � � � @nnf .x/

1

C

A : (B.4)

If the partial derivatives are continuous in a region around x, then @ij f .x/ D
@j if .x/ and, hence, the Hessian matrix Hf .x/ is symmetric.

Example B.2 (Differentiating a Quadratic Function). Let f .x/ D x>Ax for
some n � n constant matrix A. Then,

rf .x/ D .AC A>/x : (B.5)

It follows immediately that if A is symmetric, i.e., A D A>, then r.x>Ax/ D 2Ax
and r2 .x>Ax/ D 2A.

To prove (B.5), first, observe that the quadratic function f .x/ D x>Ax is real-
valued, and therefore the Jacobian Jf is a 1 � n vector (and its transpose is the
gradient). Specifically,
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f .x/ D
n
X

iD1

n
X

jD1
aij xixj ;

and the kth element of Jf is obtained by differentiating f .x/ with respect to xk :

@f .x/
@xk

D @

@xk

n
X

iD1

n
X

jD1
aij xi xj D

n
X

jD1
akj xj C

n
X

iD1
aikxi :

The first term on the right-hand side is equal to the kth element of Ax, whereas the
second term equals the kth element of x>A; or equivalently the kth element ofA>x.

Gradients and Hessian matrices feature prominently in multidimensional Taylor
expansions.

Theorem B.1. (Multidimensional Taylor Expansions). Let X be an open
subset of R

n and let a 2 X . If f W X ! R is a continuously twice
differentiable function with gradient rf .x/ and Hessian matrix Hf .x/, then
for every x 2 X we have the following first- and second-order Taylor
expansions:

f .x/ D f .a/C Œrf .a/�> .x � a/C O.kx � ak2/

and

f .x/ D f .a/C Œrf .a/�> .x � a/C 1

2
.x � a/>Hf .a/ .x � a/CO.kx � ak3/

as kx � ak ! 0. By dropping the O remainder terms, one obtains the
corresponding Taylor approximations.

B.2 Proof of Theorem 2.6 and Corollary 2.2

☞ 34

The proof makes use of two fundamental properties of the expectation E: the
monotone convergence theorem and the dominated convergence theorem. The first
states that if X1 � X2 � X3 � : : : is a sequence of positive random variables
that increases to a random variable X , then the corresponding expectations EX1 �
EX2 � EX3 : : : converge to EX . The second theorem states that the same holds
true for any positive sequence X1;X2; : : : converging to X , if there exists a Y with
EY < 1 such that Xn � Y for all n. An accessible account of these theorems may
be found, for example, in (Williams 1991).
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We prove Theorem 2.6 for the case k D 1 only. Let G.z/ D EzX . Take a fixed
z with jzj < R and any r < R such that r < jzj < R. Let .hn/ be any sequence
converging to 0 such that jz C hnj < r . By definition, the derivative of G at z is
limn!1 ECn, where Cn D h�1

n Œ.z C hn/
X � zX �. Observe that

1. jCnj is dominated by X rX�1,
2. EXrX�1 < 1, because the power series

P1
xD0 xzx�1f .x/ has again radius of

convergenceR,
3. limn!1 Cn D XzX�1.

It follows by the dominated convergence theorem that

lim
n!1ECn D E lim

n!1Cn D EXzX�1 :

Next, let .zn/ be a sequence of real numbers that is converging to 1, where
jznj < 1 for all n. The sequence of random variables .Yn/ defined by Yn D
X.X � 1/ � � � .X � kC 1/zkn is increasing to Y D X.X � 1/ � � � .X � kC 1/. Hence,
by the monotone convergence theorem limn!1 EYn D EY . This shows (2.10). The
second statement of the corollary is left as an exercise.

B.3 Proof of Theorem 2.7

If the moment generating function of a random variable X is finite in an open
interval containing 0, then for all n D 0; 1; : : :,

EXn D M.n/.0/ ;

whereM.n/ is the nth derivative of the MGF M evaluated at 0.

Proof. Let R > 0 be such that M.s/ < 1 for all jsj < R. Choose any numbers
r and s such that 0 < r < R and jsj < r . Let .hn/ be a sequence converging to 0
satisfying jhnj < " and jsChnj < r for some " > 0. LetCn D h�1

n Œe
.sChn/X�esX � D

esX .ehnX � 1/=hn, which converges to XesX . Also, jCnj � H.X/
defD e.jsjC"/ jX jjX j,

because 0 � .et � 1/=t � ejt j for all t . Moreover, because jsj C " < r and x grows
at a lesser rate than eax for any a > 0, there must exist an M > 0 such that for all
jxj > M ,H.x/ < er jxj. It follows that

EH.X/ � EH.X/ IfjX j>M g C EH.X/ IfjX j�M g

� Eer jX j C max
jxj�M

H.x/ < 1 :

By the dominated convergence theorem we have M 0.s/ D limn!1 ECn D
E limn!1Cn D EŒXesX �. Finally, take a monotone sequence .sn/ converging to
0 and apply the monotone convergence theorem to the sequence .XesnX / to find
M 0.0/ D EX . The proof for higher moments is similar. ut
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B.4 Proof of Theorem 3.10

Let v1; : : : ; vn be an orthonormal basis of R
n such that v1; : : : ; vk spans Vk and

v1; : : : ; vm spans Vm. We can write the orthogonal projection matrices onto Vj , as
Pj D Pj

iD1 viv>
i , j D k;m; n, where Vn is defined as Rn. Note that Pn is simply

the identity matrix. Let V D .v1; : : : ; vn/ and define Z D .Z1; : : : ; Zn/
> D V >X.

Recall that any orthogonal transformation such as z D V >x is length preserving;
that is, kzk D kxk.

To prove the first statement of the theorem, note that V >Xj D V >PjX D
.Z1; : : : ; Zj ; 0; : : : ; 0/

>, j D k;m. It follows that V >.Xm � Xk/ D .0; : : : ; 0;

ZkC1; : : : ; Zm; 0; : : : ; 0/> and V >.X � Xm/ D .0; : : : ; 0; ZmC1; : : : ; Zn/>. More-
over, being a linear transformation of a normal random vector, Z is also normal,
with covariance matrix V >V D I ; see also Problem 3.13. In particular, the fZi g ☞ 95

are independent. This shows that Xk, Xm � Xk , and X � Xm are independent
as well.

Next, observe that kXkk D kV >Xkk D kZkk, where Zk D .Z1; : : : ; Zk/
>.

The latter vector has independent components with variances 1, and its squared
norm has therefore (by definition) a �2k.�/ distribution. The noncentrality parameter
is � D kEZkk D kEXkk D k�kk, again by the length-preserving property of
orthogonal transformations. This shows that kXkk2 � �2k.k�kk/. The distributions
of kXm � Xkk2 and kX � Xmk2 follow by analogy. ut

B.5 Proof of Theorem 5.2

First, observe that, by Theorem 5.1, ☞ 131

.m � 1/S2X
�2

� �2m�1 and
.n � 1/S2Y

�2
� �2n�1 :

Because these random variables are independent of each other, their sum, V , say,
can be written as the sum of m C n independent squared standard normal random
variables and has therefore a �2mCn�2 distribution. Thus,

V D .mC n � 2/S2p

�2
� �2mCn�2 :

Second, let

Z D
NX � NY � .�X � �Y /

�=

q

1
m

C 1
n

:
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Then, Z � N.0; 1/ and the square of the pivot T in Theorem 5.2 can be written as

T 2 D Z2

V=.mC n � 2/
;

where Z and V are independent, because NX and NY are independent of each other,
and are both independent of S2X and S2Y ; see Theorem 5.1. The random variable T 2

is thus the independent quotient of a �21 and a �2mCn�2 random variable. Hence, by
Theorem 3.11, T 2 � F.1;mC n � 2/. It follows now from Theorem 2.19 (and the☞ 88

☞ 51 fact that the pdf of T is symmetric around 0) that T � tmCn�2. ut



Index

Symbols
� distributed as, 28
E expectation, 29
iid� independent and identically distributed as,

66
I indicator, 73
\ intersection, 7
P probability, 9
/ proportional to, 215
' standard normal pdf, 46
˚ standard normal cdf, 46
[ union, 7

A
acceptance–rejection method, 55, 214, 215
affine transformation, 47, 75, 76, 82, 83
Akaike information criterion, 305, 320
alternative hypothesis, 140
Analysis of Variance (ANOVA), 111, 142, 143,

156
model, 111–114
single-factor, 112, 115, 143
two-factor, 113

autocorrelation, 290
autocovariance, 290
autoregressive moving average, 287, 303
auxiliary mixture sampling, 340
auxiliary variable methods, 183

B
bag of words method, 261
balanced design, 112
bandwidth, 201
bar.m, 4

Bayes factor, 140, 251
Savage–Dickey density ratio, 254

Bayes’ rule, 16, 227, 228
Bayesian information criterion, 305, 320
Bayesian network, 244–248
Bayesian statistics, 121, 228, 233
belief net, 246
Bernoulli

distribution, 36
process, 66
regression, 266

beta distribution, 74, 229, 241, 256, 365
beta function, 74
bias, 122, 205
binomial distribution, 18, 24, 37, 67, 69, 92

normal approximation to, 92
binomial formula, 38
binomial model, 135

two-sample, 103, 136
birthday problem, 15
blocking, 114
bootstrap method, 128, 203, 205
Box–Muller method, 82
burn-in, 213, 291

C
categorical variable, 111
Cauchy distribution, 50, 71, 94, 163, 204
Cauchy–Schwartz inequality, 95, 171
ceil.m, 21
central limit theorem, 90, 130

for random vectors, 92
chi-squared distribution, 48, 86, 89, 96, 132,

134
classical statistics, 121
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coefficient of determination, 156
coin tossing, 3, 7, 18, 24, 37, 39, 66, 121, 228
combined multiple-recursive generator, 52
complete-data likelihood, 183
completing the squares, 238, 393
concentration matrix, 308
conditional

expectation, 77
pdf, 71
probability, 12–19

confidence
set, 174

confidence interval, 128, 174, 175, 206
approximate, 128
approximate – for p (binomial distribution),

136
approximate – for p (two-sample, binomial

distribution), 136
Bayesian, 128, 229
bootstrap, 206
for �X � �Y (two-sample normal

distribution), 134, 157
for �2 (normal distribution), 132
for �2X=�

2
Y (two-sample normal

distribution), 134
conjugate family, 249
consistent estimator, 176
convex function, 33
correlation coefficient, 76, 85, 95, 124

sample, 125, 156
counting problems, 19
covariance, 75

matrix, 77, 79, 83, 84, 86, 92, 168, 285, 306,
308, 310

method, 290
covariate, 105
coverage probability, 128
Cramér–Rao inequality, 171
credible interval, 128, 229
cross-validation, 146
K-fold, 147
leave-one-out, 147
linear model, 148

cumdf.m, 60, 366
cumsum.m, 4, 55
cumulative distribution function (cdf), 25, 29

joint, 63

D
data

reduction, 150
transformation, 110

data augmentation, 278
De Morgan’s rules, 8, 19

delta method, 92, 207
dependent variable, 105
derivatives

multidimensional, 367
partial, 367

design matrix, 115, 116, 125, 127, 148, 173,
237, 265, 291, 304, 316

detailed balance equations, 213, 214
digamma function, 191
directed acyclic graph, 244
Dirichlet distribution, 241, 365
discrete joint pdf, 64
discrete random variable, 111
disjoint events, 7, 9
distribution

Bernoulli, 36
beta, 74, 229, 241, 256, 365
binomial, 37, 67, 69, 92
Cauchy, 50, 71, 94, 163, 204
chi-squared, 48, 86, 89, 96, 132, 134
continuous joint, 69, 73
Dirichlet, 241, 365
discrete joint, 64–69
discrete uniform, 59
double exponential, 190
exponential, 43, 94
exponential family, 152, 167, 174, 266
F , 50, 51, 89, 134
gamma, 48, 49, 232, 242
Gaussian, see normal
geometric, 38
inverse-gamma, 234, 318, 333, 336, 342
logistic, 59
mixed joint, 73–74
mixture, 187, 201, 221
multinomial, 68, 185, 220, 240
multivariate normal, 83, 106, 307
multivariate Student’s t , 271, 285
noncentral �2, 88
normal, 45, 57, 81, 82
Poisson, 34, 40
positive normal, 56, 71, 354–355
Student’s t , 50, 89, 131, 133
truncated normal, 279, 286
uniform, 42, 188
Weibull, 61, 190, 200

dominated convergence theorem, 370
double exponential distribution, 190
drawing with or without replacement, 19

E
efficient score, 167
erf.m, 60
EM-algorithm, 182, 279, 327
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empirical cdf, 196, 203
reduced, 199

ergodic Markov chain, 212
error terms, 115, 173
estimate, 122
estimator, 122

bias, 122
unbiased, 122

event, 6
elementary, 10

expectation, 31, 29–33
conditional, 77
for joint distributions, 74
properties, 33, 75
vector, 77, 79, 83

explanatory variable, 105
exponential distribution, 43, 94
exponential family, 152, 167, 174, 266

conjugate prior, 249–251
information matrix, 170
natural, 152

exponential model, 109

F
factor level, 111
factorial experiment, 111
factorization theorem, 150
F distribution, 50, 51, 89, 134
find.m, 55
Fisher information matrix, 168

observed, 268
Fisher’s scoring method, 180, 283
full rank matrix, 126
functions of random variables, 78
fzero.m, 193

G
Galton, Francis, 104
gamma distribution, 48, 49, 232, 242
gamma function, 48, 49, 74, 191, 193
gamrand.m, 232, 364
gamrnd.m, 337, 364
Gaussian distribution, see normal distribution
generalized likelihood ratio, 178
generalized linear model, 265
geometric distribution, 18, 38
geometric sum, 39
Gibbs sampler, 218–219, 225, 226, 230, 232,

234–236, 258–259, 280, 316–320,
332–333, 335–339, 342–345

global balance equations, 212
goodness of fit test, 220

gradient, 368
grid search, 193

H
Hessian matrix, 170, 176, 180, 183, 368
hierarchical model, 229, 332
hyperparameter, 245
hypothesis testing, 140–195

I
icumdf.m, 60, 129, 366
improper prior, 236
independence

of events, 17
of random variables, 65, 66, 70, 75

independence sampler, 215
independent and identically distributed (iid),

66, 71, 89, 101–104, 130
independent variable, 105
indicator, 57, 74
initial distribution, 210
integrated moving average, 301
interval estimate, see confidence interval, 174
inverse-gamma distribution, 234, 318, 333,

336, 342
inverse-transform method, 54, 71, 200, 203

discrete, 54
irreducible, 213

J
Jacobian matrix, see matrix of Jacobi
Jensen’s inequality, 33, 192
joint

cdf, 63
distribution, 63, 79

joint pdf, 69
for dependent random variables, 67

jointly normal distribution, see multivariate
normal distribution

K
Kalman filter, 325
kde.m, 202
kernel density estimation, 201–203, 209, 216,

232
Kolmogorov–Smirnov statistic, 200, 221
Kronecker product, 116, 314, 317, 389
Kullback–Leibler distance, 192
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L
Langevin Metropolis–Hastings sampler, 224
latent variable methods, see auxiliary variable

methods
law of large numbers, 89, 130
law of total probability, 16
least-squares method, 125–128, 222
likelihood, 123, 161

Bayesian, 228
binomial, 161
complete-data, 183
concentrated, 295
normal, 162
optimization, 182
profile, 189, 295, 304

limiting pdf, 212
linear model, 115, 173
linear regression model, 108
linear transformation, 79
local balance equations, see detailed balance

equations
location family, 171, 182
log-likelihood, 165
logistic distribution, 59, 267
logistic model, 109
logistic regression, 267
logit model, 267

M
marginal likelihood, 252
marginal pdf, 65, 70, 86, 230, 241, 257
Markov

property, 209
Markov chain, 209–213, 217–219, 259, 323

ergodic, 212
reversible, 212

Markov chain Monte Carlo, 209–220, 274,
276, 291

MATLAB

basic matrix operations, 349–352
built-in functions, 352–354
for-loop, 355
function, 356
function handle, 355
graphics, 356–360
if-then-else, 354
optimization routines, 360–362
sparse matrix routines, 362–364
while-loop, 354–355

matrix
covariance, 77, 84, 86, 92, 168, 285, 306,

308, 310
matrix of Jacobi, 81, 242, 257, 284, 367

maximum likelihood estimator, 172–180,
182

mean square error, 154, 205
measurement equation, 323
median, 222

sample, 204
memoryless property, 40, 44, 58
method of moments, 123, 124
Metropolis–Hastings algorithm, 214–217
mixture distribution, 187, 201, 221
mixture model, 187–188
mode, 172, 229
model

Analysis of Variance (ANOVA), 111–114
autoregressive moving average, 287, 303
binomial, 103, 135
exponential, 109
hierarchical Bayesian model, 229, 332
linear regression, 108
logistic, 109
multinomial, 240
multiple linear regression, 106, 115
nested, 253
normal linear, 88, 114–117, 125, 137, 142,

148, 156, 237
power law, 109
probability, 10, 121
randomized block design, 143
regression, 104–111
response surface, 109
selection, 114, 142, 146, 251, 287
simple linear regression, 106, 115, 127, 139
single-factor ANOVA, 112, 143
state space, 323
stochastic volatility, 339–345
time-varying parameter autoregressive,

333–339
two-factor ANOVA, 113
unobserved components, 325–333
Weibull, 109
zero inflated Poisson, 258

moment, 32
sample-, 123

moment generating function (MGF), 35, 86,
91, 96

Monte Carlo
integration, 130
sampling, 195–226

Monty Hall problem, 13
moving average, 289, 297

integrated, 301
multinomial distribution, 68, 185, 220, 240
multinomial model

Bayesian, 240
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multiple linear regression, 106, 115
multivariate normal distribution, 83, 82–89, 95,

106, 307

N
natural exponential family, 152
neighborhood structure, 224
nested model, 253
Newton’s binomial formula, 38
Newton–Raphson method, 180
noncentral �2 distribution, 88
nonlinear regression, 109, 189, 222
normal distribution, 45, 57, 81, 83

generating from, 82
positive, 56, 71, 354–355

normal equations, 126
normal linear model, 88, 114–117, 125, 137,

142, 148, 156, 266
Bayesian, 237

normal model
two-sample, 103, 111, 133

nuisance factor, 114
null hypothesis, 140

O
observed information matrix, 268
orthogonal matrix, 95

P
p-value, 140, 195
partial derivative, 367
partition, 16
Pearson’s height data, 104
pivot variable, 129
plot.m, 4
Poisson distribution, 34, 40
Poisson regression, 282
polynomial regression, 108
pooled sample variance, 133
positive normal distribution, 56, 71, 354–355
posterior

mean, 229
mode, 229

posterior pdf, 121
asymptotic normality, 248

power law model, 109
precision matrix, 308
predicted residual, 147
predictive pdf, 261
predictor, 105

prior pdf, 227, 249
improper, 236
uninformative, 233

probability, 3, 4, 9–11
probability density function (pdf)

discrete joint, 64
conditional, 67
continuous, 28
discrete, 27

probability distribution, 25
continuous, 28
discrete, 27

probability generating function (PGF), 34
probability model, 10, 121
probit model, 273
product rule, 14, 67, 72, 210, 229, 245
profile likelihood, 189, 295, 304
projection matrix, 96, 126, 148
pseudo-inverse, 126, 239

Q
quad.m, 60
quotient of independent random variables, 71

R
radius of convergence, 34
rand.m, 4, 71
randn.m, 57
random

experiment, 3, 5, 10
number generator, 52
vector, 79

random variable, 23
continuous, 25, 28
discrete, 25, 111
functions of, 78
quotient of, 71
range, 25

random vector, 63
transformation, 81

random walk sampler, 216
randomized block design, 143
range

of a random variable, 25
rank, 126
ratio estimator, 93, 207
reduction of data, 150
regression

line, 106
model, 104–111
multiple linear, 106
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regression (cont.)
nonlinear, 109, 189, 222
polynomial, 108
simple linear, 105–106, 108, 206

reliability, 8
replacement

drawing with or without —, 19
resampling, 203, 205
residuals, 127, 147, 288
response surface model, 109
response variable, 105
reversibility, 212
R2, see coefficient of determination

S
sample

correlation coefficient, 124, 125, 156
mean, 122, 123, 124
median, 204
standard deviation, 124
variance, 123, 124, 206

pooled, 133
sample space, 5

continuous, 11
discrete, 10

Savage–Dickey density ratio, 254
score

efficient, 167
function, 165, 167
interval, 174, 175

seed, 52
simple linear regression, 105–106, 115, 127,

139
sort.m, 21
sparse matrix, 295, 299, 307, 329, 362
spreadsheet, 115
standard deviation, 32

sample, 124
standard normal distribution, 46
state space model, 323

initial condition, 326
stationarity, 289, 291
statistic, 122, 140

sufficient, see sufficient statistic
statistical model, 102
statistical test

goodness of fit, 220
steps for, 129, 141

statistics, 3, 5
Bayesian, 121
classical, 121

stochastic volatility model, 339–345
Student’s t distribution, 50, 89, 131, 133, 266

multivariate, 271, 285
sufficient statistic, 150, 151, 153, 188
sum rule, 9, 10, 16, 26, 27, 64, 65

T
target distribution, 209
Taylor’s theorem, 91

multidimensional, 92, 108, 176, 177, 179,
180, 369

test statistic, 140
time series, 287–305, 323–345
time-varying parameter autoregressive model,

333–339
tower property, 78
transformation

of data, 110
transformation rule, 79, 81, 242
transition

density, 210
equation, 323
graph, 210

trimmed mean, 221
truncated normal distribution, 279, 286
two-sample

binomial model, 103, 136
normal model, 103, 111, 133

U
unbiased estimator, 122
uniform distribution, 42, 188

discrete, 59
unobserved components model, 325–333

V
variance, 32

properties, 33, 35, 36, 76, 77, 94
sample, 123, 124, 206

W
Weibull

distribution, 61, 190, 200
model, 109

Z
zero inflated Poisson, 258
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