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Abstract

We investigate multi-period mean–risk portfolio optimization for long-horizon Defined Contribution

plans, focusing on buffered Probability of Exceedance (bPoE), a more intuitive, dollar-based alternative to

Conditional Value-at-Risk (CVaR). We formulate both pre-commitment and time-consistent Mean–bPoE

and Mean–CVaR portfolio optimization problems under realistic investment constraints (e.g. no leverage, no

short selling) and jump-diffusion dynamics. These formulations are naturally framed as bilevel optimization

problems, with an outer search over the shortfall threshold and an inner optimization over rebalancing

decisions. We establish an equivalence between the pre-commitment formulations through a one-to-one

correspondence of their scalarization optimal sets, while showing that no such equivalence holds in the time-

consistent setting. We develop provably convergent numerical schemes for the value functions associated

with both precommitment and time-consistent formulations of these mean-risk control problems.

Using nearly a century of market data, we find that time-consistent Mean–bPoE strategies closely

resemble their pre-commitment counterparts. In particular, they maintain alignment with investors’ pref-

erences for a minimum acceptable terminal wealth level—unlike time-consistent Mean–CVaR, which often

leads to counterintuitive control behaviour. We further show that bPoE, as a strictly tail-oriented measure,

prioritizes guarding against catastrophic shortfalls while allowing meaningful upside exposure—making it

especially appealing for long-horizon wealth security. These findings highlight bPoE’s practical advantages

for Defined Contribution investment planning.

Keywords: Mean-risk portfolio optimization, Buffered Probability of Exceedance, Conditional Value-at-

Risk, Pre-commitment, Time-consistent
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1 Introduction
The main objective of this paper is to investigate buffered Probability of Exceedance as a viable alternative

risk measure to Conditional Value-at-Risk for multi-period Defined Contribution portfolio optimization.

1.1 Motivation

Saving for and managing wealth throughout retirement remains one of the most critical and challenging

financial tasks facing individuals.1 This challenge is magnified by the global shift from Defined Benefit (DB) to

Defined Contribution (DC) pension systems, which places the full burden of investment and longevity risk—

the possibility that individuals outlive their retirement savings—on plan participants. In many countries,

including Australia, the United States, Canada, and parts of Europe, this shift has led to the emergence

of “full-life cycle” DC plans that span several decades, covering both the accumulation (working years) and

decumulation (retirement) phases.
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1Nobel Laureate William Sharpe famously described this challenge as “the nastiest, hardest problem in finance” [48].
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Compounding these challenges is the rapid aging of the world’s population [55], together with the cur-

rent era of rising inflation and economic turbulence, all of which underscore the urgency of prudent lifecycle

financial planning. Moreover, low levels of financial literacy further exacerbate long-horizon financial decision-

making.2 Consequently, there is a clear need for risk measures that combine mathematical rigor with intuitive,

readily interpretable insights, enabling retail investors—particularly retirees—and DC plan providers to un-

derstand, communicate, and manage downside risk within long-horizon portfolio decision-making.

Over the past few decades, a number of risk measures have been proposed for portfolio optimization, with

increasing emphasis on left-tail metrics that capture downside risk. In this context, investors typically aim

to maximize some notion of reward–such as the expectation of terminal wealth or total withdrawals—while

minimizing a measure of risk, leading to so-called “reward–risk” portfolio optimization.

Among the various risk measures proposed, Conditional Value-at-Risk (CVaR), also known as Expected

Shortfall, stands out as a natural means of capturing left-tail risk in a portfolio’s wealth outcomes. Specifically,

it measures the average of the worst α-fraction of wealth outcomes, where α ∈ (0, 1) is a confidence level [50].

Mathematically, CVaR at confidence level α can be expressed through a threshold-based optimization formu-

lation, in which a candidate shortfall threshold variable Wa partitions the wealth distribution into its worst

α-fraction and the remainder. This threshold-based formulation is widely employed in portfolio optimization

due to its significant computational advantages [38, 50]. Although CVaR is often defined on losses (making

lower values preferable), this paper defines CVaR on terminal wealth so that higher values are desirable.

CVaR has gained considerable popularity in risk management due to its coherent risk properties and its

ability to be optimized efficiently using scenario-based linear programs or non-smooth convex optimization

methods [31, 50]. As a result, CVaR-based formulations have become standard in institutional portfolio

construction and widely adopted in academic research (see, for example, [3, 4, 13, 20, 37, 41] among many

other publications). Crucially, CVaR’s focus on left-tail risk is especially relevant for individuals in the

accumulation phase—who face the possibility of not achieving sufficient retirement savings—as well as for

retirees in the decumulation phase—who risk outliving their wealth—making CVaR a suitable risk measure

across the entire retirement lifecycle [24].3

Despite CVaR’s widespread adoption in institutional settings and academic research, in our experience,

practitioners frequently observe that its probability-based formulation can be opaque to many retail investors,

who tend to prefer tangible minimum acceptable terminal wealth levels over an abstract confidence level such

as α. This observation aligns with broader research documenting widespread gaps in financial literacy, as

mentioned earlier, with [35] noting that “across countries, financial literacy is at a crisis level,. . . individuals

have the lowest level of knowledge around the concept of risk, and risk diversification.”

In light of these considerations, the buffered Probability of Exceedance (bPoE) [38, 39] emerges as a

risk measure that preserves many of CVaR’s key advantages while offering a more intuitive, dollar-based

perspective on minimum acceptable terminal wealth. More specifically, bPoE directly specifies a “disaster

level” D in dollar terms and identifies the minimal probability mass in the left tail whose conditional average

equals D. As with CVaR, we define bPoE on terminal wealth, ensuring that a lower bPoE value corresponds

to a more favorable outcome from the investor’s perspective. Conceptually, bPoE can be viewed as the inverse

of CVaR: whereas CVaR fixes α and calculates the average wealth in the left-α tail of the distribution, bPoE

instead fixes the disaster level D and determines the corresponding probability level [39]. Similar to CVaR,

bPoE at a fixed disaster level D can also be expressed through a threshold-based optimization formulation,

using a candidate shortfall threshold Wo that partitions the terminal wealth distribution into a left-tail with

conditional average equal to D, and the remainder [39].

To illustrate, consider an investor concerned about their DC account balance falling below $100,000—a

2Numerous studies consistently show that, even in advanced economies with well-developed financial markets, many adults—
including younger individuals—lack foundational financial knowledge, such as an understanding of investment risk, portfolio
diversification, and the implications of long-term market fluctuations [2, 28, 36, 45, 46]. In Australia, for example, approximately
30% of adults exhibit low financial literacy, and about one-quarter lack an understanding of basic financial concepts [46, page 21].

3Beyond retirement planning, CVaR has also found widespread application in fields such as supply chain management, schedul-
ing and networks, energy systems, and medicine [18].
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level they regard as the minimum acceptable terminal wealth. In a CVaR framework, the investor would

first select a probability level α (e.g. 5%) and then compute the average wealth in the worst α-fraction of

scenarios—an approach that appears detached from the practical concern of falling below a specific dollar-

based terminal wealth level. By contrast, bPoE begins by fixing $100,000 as the disaster level D and deter-

mines the likelihood that terminal wealth falls into a region whose conditional average equals $100,000. This

dollar-based framing naturally addresses the core question: “What is the chance that my retirement wealth

falls into a disaster region where the average outcome is only $100,000?”. As a result, bPoE is more intuitive

for retail investors and supports clearer communication between DC plan holders and providers.

While CVaR-based frameworks have become standard in portfolio optimization [20, 27, 41], bPoE remains

largely unexplored within this domain—despite its promising theoretical properties [39, 44].4 A notable

exception is the single-period analysis in [44], which derives closed-form expressions for bPoE under certain

probability distributions and demonstrates its use in portfolio selection and density estimation. However, to

the best of our knowledge, bPoE has not been explored in either discrete- or continuous-time multi-period

portfolio optimization settings, where notions of time-consistency and pre-commitment (the latter being

inherently time-inconsistent) play a central role in investment decisions. As we shall see, the fixed dollar

disaster level D in bPoE not only aligns more naturally with investors’ absolute wealth perspectives, but also

offers insights into significant advantages over CVaR in developing time-consistent solutions for multi-period

portfolio optimization.

Furthermore, while tail-based reward–risk formulations, such as Mean–CVaR, are well established in

theory and increasingly explored in practice, there remains a notable lack of provably convergent numerical

methods for computing the value functions of these problems in multi-period settings under realistic market

dynamics and investment constraints. This limitation highlights the need for reliable numerical tools that

enable the practical adoption of these strategies.

1.2 Background

Broadly speaking, two main approaches have been developed for multi-period mean–risk portfolio optimiza-

tion: the pre-commitment approach and the time-consistent approach. Pre-commitment strategies are known

to exhibit time-inconsistent behavior [8, 9, 10, 11]. Concretely, time-inconsistency means that there exists

0 ≤ tk < tl < tn ≤ T , where T is the finite investment horizon, such that the optimal decision for time tn,

computed at tk, differs from the optimal decision for the same time tn, but computed at a later time tl.

A classic illustration of this phenomenon is Mean-Variance optimization, where the variance of the terminal

wealth serves as the risk-measure. Because the variance term in the Mean–Variance objective is not separable

in the sense of dynamic programming, the Bellman principle cannot be applied, thereby resulting in time-

inconsistency [15, 33, 41, 61]. Likewise, CVaR and bPoE are nonlinear risk measures, and hence their

associated mean–risk objectives are also non-separable in the sense of dynamic programming.

In contrast, the time-consistent approach enforces an explicit time-consistency constraint that, for any

0 ≤ tk < tl < tn ≤ T , the optimal control for time tn, computed at tl, must match the optimal control for

the same time tn, but computed at earlier time tk. Imposing this constraint restores dynamic-programming

tractability by making the mean-risk objective satisfy the Bellman principle [6, 20, 51, 52]. However, since

time-consistent strategies can be viewed as pre-commitment strategies with an additional constraint, they

are generally not globally optimal when evaluated from time zero. The reader is referred to [57] for a broader

discussion of the merits and demerits of time-consistent and pre-commitment policies.

Without enforcing time consistency, multi-period portfolio optimization under the pre-commitment frame-

work generally yields strategies that are globally optimal when viewed from time zero, but may not re-

main optimal as time evolves. This has led many researchers to label pre-commitment strategies as non-

implementable. However, in certain specialized settings, the pre-commitment strategy can be reformulated

as a time-consistent solution under an alternative objective.

For example, in Mean–Variance optimization, the pre-commitment strategy can be recast as a time-

4bPoE has seen applications in logistics, natural-disaster analysis, statistics, stochastic programming, and machine learning.
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consistent solution under an alternative objective that minimizes quadratic shortfall relative to a fixed wealth

target, often referred to as the Mean–Variance–induced utility maximization problem [54]. Likewise, in both

continuous-time [27, 41] and multi-period [20] Mean–CVaR portfolio optimization, although pre-commitment

strategies are formally time-inconsistent, they can be equivalently viewed at time zero as linear shortfall

policies with a fixed wealth threshold—policies that are time-consistent [20]. Therefore, in both cases, the

investor has no incentive to deviate from the strategy computed at inception, rendering the pre-commitment

solution effectively implementable.

Interestingly, the literature has observed that imposing time-consistency constraints in Mean-CVaR port-

folio optimization can lead to undesirable properties in the resulting optimal controls, even under otherwise

realistic conditions. In discrete rebalancing settings with no leverage and no short selling, time-consistent

Mean-CVaR strategies have been found to be wealth–independent in lump-sum investment scenarios—and

only weakly dependent otherwise—thus behaving similarly to deterministic strategies and offering little or

no improvement over simple constant-weight strategies [20, 23].

This phenomenon arises because time-consistent Mean-CVaR policies re-optimize the shortfall threshold

Wa at each rebalancing time based on current wealth, which can vary substantially from earlier wealth levels.

Thus, the shortfall threshold Wa shifts over time in response to these wide fluctuations. In contrast, as noted

earlier, most investors naturally prefer anchoring their investment strategy to a fixed minimum terminal

wealth level rather than redefining the shortfall threshold whenever their wealth changes. In fact, [20] states

“At time zero, we have some idea of what we desire as a minimum final

wealth. Fixing this shortfall target for all t > 0 makes intuitive sense.”

Therefore, re-optimizing the shortfall threshold Wa across a wide range of possible wealth levels in time-

consistent Mean-CVaR solutions can conflict with these absolute goals, leading to strategies that are often

viewed as counterintuitive from a practical standpoint. We note that related paradoxes concerning time-

consistent Mean–Variance formulations under constraints have also been discussed; see [7] for details.

By contrast, pre-commitment Mean-CVaR formulations, while formally time-inconsistent, adopt a fixed

shortfall threshold from inception—thus aligning more closely with the minimum terminal wealth levels that

investors typically prefer and delivering more practically appealing outcomes.

1.3 Contributions

While the prevailing narrative in the literature emphasizes that enforcing time-consistency can lead to coun-

terintuitive outcomes, we argue that the choice of risk measure is equally critical in shaping the behavior

of time-consistent portfolio strategies. In particular, it is not the imposition of time-consistency itself that

causes undesirable outcomes; rather, the behavior of the solution critically depends on how subproblems

are re-solved at each state and time step, an aspect that is fundamentally governed by the structure of the

risk measure. Unlike its CVaR counterpart, time-consistent Mean-bPoE—anchored by a fixed disaster level

D—enforces a constrained re-optimization of the bPoE shortfall threshold Wo at each time step. Specifically,

Wo must define a left-tail region whose conditional average equals D, thereby limiting how much the thresh-

old can shift in response to wealth fluctuations. As a result, the policy may remain better aligned with an

investor’s minimum terminal wealth preferences, thus avoiding the counterintuitive behavior of investment

controls often observed in time-consistent formulations.

In response to these observations, this paper sets out to achieve three primary objectives. First, we formu-

late multi-period Mean–bPoE and Mean–CVaR optimization frameworks under both pre-commitment and

time-consistent settings, incorporating realistic investment constraints and modeling assumptions appropriate

for long-horizon DC plans. We then develop and analyze a provably convergent numerical scheme to compute

the resulting value functions and optimal controls under these frameworks. For illustration, we focus specif-

ically on the accumulation phase. Second, we analyze the mathematical connection between Mean–bPoE

and Mean–CVaR strategies, motivated by the fact that these risk measures are inverse to one another, and

explore how this duality influences their behaviour under both optimization paradigms. Third, using nearly

a century of actual market data, we illustrate the properties of both Mean–bPoE and Mean–CVaR strategies,
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with particular focus on whether bPoE’s minimum terminal wealth perspective can avoid the counterintuitive

control behaviour often observed in time-consistent mean–risk formulations.

The main contributions of this paper are as follows.

� We present both the pre-commitment and time-consistent formulations of multi-period Mean–bPoE and

Mean–CVaR portfolio optimization problems using a scalarization approach. For the pre-commitment

case, we establish the existence of finite optimal thresholds. Building on this result, we then show that

pre-commitment Mean–bPoE and Mean–CVaR formulations can be reformulated as time-consistent

target-based portfolio problems, thereby ensuring their implementability.5

� We then rigorously establish an equivalence between the pre-commitment Mean–bPoE and Mean–CVaR

formulations, in the sense of a one-to-one correspondence between points on their scalarization optimal

sets (i.e. efficient frontiers), under appropriately calibrated scalarization parameters, such that each

corresponding pair is attained by the same optimal threshold and rebalancing control. As a result, the

induced distributions of terminal wealth are identical under both formulations.

In contrast, we demonstrate that this equivalence does not hold in the time-consistent setting: the time-

consistent Mean–bPoE and Mean–CVaR optimal controls exhibit fundamentally different behavior with

respect to wealth dependence.

� We develop a unified numerical framework for both pre-commitment and time-consistent multi-period

Mean–bPoE and Mean–CVaR formulations, based on monotone numerical integration. To the best of

our knowledge, this is the first work to establish convergence of a numerical scheme to the value function

for these problems under realistic market dynamics and investment constraints.

� We conduct a comprehensive numerical comparison of Mean–bPoE and Mean–CVaR optimization re-

sults, examining the behavior of optimal investment strategies, terminal wealth distributions, and sev-

eral key performance metrics—including the mean of terminal wealth, CVaR, bPoE, and the 5th,

50th, and 95th percentiles. All numerical experiments use model parameters calibrated to 88 years of

inflation-adjusted long-term U.S. market data, enabling realistic conclusions to be drawn.

We find that pre-commitment Mean–bPoE and its CVaR counterpart yield virtually identical investment

outcomes across all comparison metrics, consistent with the theoretical equivalence established earlier.

Consequently, pre-commitment Mean–bPoE can be integrated seamlessly into existing Mean–CVaR

workflows, allowing institutions to adopt a dollar-based risk measure without altering broader frame-

works or results.

� In contrast, time-consistent Mean–bPoE and Mean–CVaR strategies exhibit fundamentally different

control behaviour and investment outcomes, consistent with theoretical findings.

For the same mean of terminal wealth, time-consistent Mean–bPoE outperforms its Mean–CVaR coun-

terpart on nearly all comparison metrics, including CVaR, bPoE, and the 5th and 95th percentiles,

while yielding a noticeably lower median. This reflects a key distinction: Mean–CVaR tends to com-

press the wealth distribution toward the median, whereas Mean–bPoE emphasizes tail performance by

prioritizing protection against catastrophic shortfalls while allowing meaningful upside exposure. As a

result, bPoE may be especially appealing for investors focused on long-term wealth security rather than

distributional tightness.

The remainder of the paper is organized as follows. Section 2 describes the investment setting and the underly-

ing asset dynamics. Section 3 introduces the two risk measures—CVaR and bPoE—and discusses their inverse

relationship. In Section 4, we define the scalarization optimal sets for the pre-commitment formulations and

examine their key properties. Section 5 establishes the equivalence between pre-commitment Mean–bPoE

5The existence of a finite optimal threshold is essential not only to this result, but also to the mathematical analysis and the
development of numerical methods, yet a formal proof is often overlooked in the existing literature.
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and Mean–CVaR formulations and discusses their respective implementability under a target-based inter-

pretation. In Section 6, we present the formulations for time-consistent Mean–bPoE and Mean–CVaR, and

examine key differences in the behavior of their optimal controls. A unified numerical framework applicable

to both settings is developed in Section 7. Section 8 presents and discusses the numerical results. Section 9

concludes the paper and outlines directions for future research.

2 Modelling

2.1 Rebalancing discussion

We consider a portfolio consisting of a risky asset and a risk-free asset. In practice, the risky asset may

represent a broad market index, while the risk-free asset could be a bank account. This setup is justified by

the observation that a diversified portfolio of various risky assets, such as stocks, can often be approximated

by a single broad index. Long-term investors typically focus on strategic asset allocation—determining how

much to allocate to different asset classes—rather than selecting individual stocks.

We consider a complete filtered probability space (S,F , {Ft}0≤t≤T ,P), where S is the sample space, F
is a σ-algebra, {Ft}0≤t≤T is the filtration over a finite investment horizon T > 0, and P is the real-world

probability measure. Let S(t) and B(t) respectively denote the amounts invested in the risky and risk-free

assets at time t ∈ [0, T ]. The total wealth at time t is W (t) = S(t) + B(t). For simplicity, we often write

St = S(t), Bt = B(t), and Wt = W (t). We also denote by {Xt}, t ∈ [0, T ], where Xt = (St, Bt), the

multi-dimensional controlled underlying process, and let x = (s, b) represent a generic state of the system.

We also let T be the set of M pre-determined, equally spaced, rebalancing times in [0, T ]:6

T = {tm | tm = m∆t, m = 0, . . . ,M − 1}, ∆t = T/M, (2.1)

where t0 = 0 is the inception time of the investment. At each rebalancing time tm ∈ T , the investor first

adjusts the portfolio by incorporating a cashflow qm, either as a deposit or withdrawal, and then rebalances

the portfolio. At time tM = T , the portfolio is liquidated (no rebalancing), yielding the terminal wealth WT .

For subsequent use, we define the shorthand notation for instants just before and after time t ∈ [0, T ]

respectively as:
t− = t− ϵ, and t+ = t+ ϵ, where ϵ→ 0+.

For a generic time-dependent function f(t), we write:

f−m = lim
ϵ→0+

f(tm − ϵ), f+m = lim
ϵ→0+

f(tm + ϵ), where tm ∈ T .

As noted in [20], DC plan savings are typically held in tax-advantaged accounts, where portfolio rebalancing

does not trigger immediate tax liabilities. This includes 401(k) plans in the United States, superannuation

funds in Australia, and similar tax-advantaged savings vehicles worldwide. Given this, we assume no taxes

in our analysis. In addition, rebalancing occurs infrequently on a fixed schedule, such as annually, reducing

trading activity and significantly lowers costs associated with bid-ask spreads, brokerage fees, and market

impact; hence, we assume no transaction costs. Given these assumptions, the total wealth at time t+m after

incorporating the cashflow qm is given by

W+
m =W−

m + qm, tm ∈ T . (2.2)

For a rebalancing time tm ∈ T , we use um(·) ≡ u(·) to denote the rebalancing control which is the proportion

of total wealth allocated to the risky asset. This proportion depends on both the total wealth W+
m (including

the cashflow) and time tm, i.e.

um(·) = um(W+
m) = u(W+

m , tm), where W+
m is given by (2.2).

We denote by Z the set of all admissible rebalancing controls, i.e. um ∈ Z for every tm ∈ T . The set Z is

typically determined by investment constraints. To enforce no leverage and no shorting, we impose Z = [0, 1].

Suppose that the investor applies the rebalancing control um ∈ Z at tm ∈ T , and the system is in state

6The assumption of equal spacing is made for simplicity. In practice, industry conventions typically follow a fixed rebalancing
schedule, such as semi-annually or yearly adjustments, rather than a mix of different intervals.
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x = (s, b) immediately before rebalancing, i.e. at time t−m. Hence, W−
m = s + b. We let X+

m = (S+
m, B

+
m) ≡

(S+(s, b, um), B+(s, b, um)) denote the state of the system immediately after applying um. We then have

S+
m ≡ s+(s, b, um) = umW

+
m , and B+

m ≡ b+(s, b, um) = (1− um)) W+
m ,

where by (2.2) W+
m =W−

m + qm = s+ b+ qm.
(2.3)

Let A be the set of admissible controls, defined as follows

A =
{
U = {um}m=0,...,M−1

∣∣um ∈ Z, for m = 0, . . . ,M − 1
}
. (2.4)

For any rebalancing time tm, we define the subset of controls applicable from tm onward as

Um =
{
um′ | um′ ∈ Z, m′ = m, . . . ,M − 1

}
⊆ U0 ≡ U . (2.5)

2.2 Underlying dynamics

In practice, real (inflation-adjusted) returns are more relevant to investors than nominal returns [22, 56].

Consequently, we model both the risky and risk-free assets in real terms. All parameters, including the risk-

free interest rate, are thus taken to be inflation-adjusted. Given that we focus on relatively long investment

horizons (often 20 or 30 years) and that real interest rates tend to be mean-reverting, we assume a constant,

continuously compounded real risk-free interest rate r.

Between consecutive rebalancing times, the process {Bt} follows

dBt = r Bt dt, t ∈ [ t+m, t
−
m+1], tm ∈ T , (2.6)

where r is the constant real risk-free rate. In a discrete setting, the amount invested in the risk-free asset

remains constant over [t+m, t
−
m+1] and is updated at tm+1 to reflect the interest accrued over [tm, tm+1].

Specifically, if the risk-free amount at t+m is Bt+m
= b, it remains at b throughout [t+m, t

−
m+1] and is updated to

b er∆t at tm+1. Rebalancing then occurs immediately after settlement, i.e. over [tm+1, t
+
m+1].

To capture more realistic behavior of the risky asset, we allow for both diffusion and jump components

[34]. We let the random variable ξ be the jump multiplier. If a jump occurs at time t, the amount invested

in the risky asset jumps from St− to St = ξ St− . We adopt the Kou model [29, 30], in which log(ξ) follows an

asymmetric double-exponential distribution. The probability density function of log(ξ) is given by

ρ(ζ) = pup η1 e
−η1 ζ I{ζ≥0} + (1− pup) η2 e

η2 ζ I{ζ<0}, pup ∈ [0, 1], η1 > 1, η2 > 0. (2.7)

Between consecutive rebalancing times, in the absence of active control, the process {St} evolves according

to the jump-diffusion dynamics:

dSt
St−

=
(
µ− λκ

)
dt + σ dZt + d

( πt∑
i=1

(ξi − 1)
)
, t ∈ [ t+m, t

−
m+1], tm ∈ T . (2.8)

Here, µ and σ are the (inflation-adjusted) drift and instantaneous volatility, respectively, and {Zt}t∈[0,T ] is a

standard Brownian motion. The process {πt}0≤t≤T is a Poisson process with a constant finite intensity rate

λ ≥ 0. All jump multiplier ξi are i.i.d. with the same distribution as random variable ξ, and κ = E[ξ − 1]

is the compensated drift adjustment, where E[·] is the expectation taken under the real-world measure P.
It is further assumed that {Zt}t∈[0,T ], {πt}0≤t≤T , and all {ξi} are mutually independent. Note that GBM

dynamics for {St} can be recovered from (2.8) by setting the intensity parameter λ to zero.

3 Risk measures

In this and the next sections, we introduce two risk measures, namely CVaR and bPoE, along with their

corresponding mean-risk portfolio optimization formulations. For simplicity and clarity, we establish the

following notational conventions. A subscript j ∈ {a, o} is used to distinguish quantities related to the CVaR

risk measure or CVaR-based formulation (j = a) from those corresponding to the bPoE counterparts (j = o).

Additionally, a superscript “p” denotes quantities associated with pre-commitment optimizations, while a

superscript “c” identifies those related to their time-consistent counterparts.

7



3.1 Conditional Value-at-Risk

Recalling that WT is the random variable representing terminal wealth, we let g(w) denote its pdf. For a

given confidence level α, typically 0.01 or 0.05, the CVaR of WT at level α is defined as

CVaRα (WT ) =
1
α

∫ VaRα(WT )

−∞
w g (w) dw. (3.1)

Here, VaRα(WT ) denotes the Value-at-Risk (VaR) of WT at confidence level α, given by

VaRα (WT ) = {w | P [ WT ≤ w ] = α} . (3.2)

That is, ∫ VaRα(WT )

−∞
g (w) dw = α. (3.3)

We can interpret VaRα(WT ) as the threshold such that WT falls below this value with probability α [49].

Intuitively, given a pre-specified α, CVaRα(WT ) represents the average level of WT in the worst α-fraction of

all possible outcomes, i.e. in the leftmost α-quantile of the distribution of WT .

As noted in [50], the integral-based definition of CVaRα (WT ) given in (3.1) often becomes cumbersome

when embedded in optimization problems, particularly those involving complex or non-smooth probability

distributions of terminal wealth. To address this, [50] shows that CVaRα (WT ) can be reformulated as a more

computationally tractable optimization problem. The key idea in [50] is to introduce a candidate thresholdWa

that effectively partitions the probability distribution ofWT into its lower tail and the remainder. Optimizing

over this threshold leads to an equivalent formulation for CVaRα (WT ):

CVaRα (WT ) = sup
Wa

E
[
Wa +

1
α min (WT −Wa, 0)

]
. (3.4)

We note that the theoretical range of Wa coincides with the set of all feasible values for WT , which is [0,∞)

under the no-leverage, no-shorting constrain. We denote by W ∗
a the optimal threshold, i.e.

W ∗
a ∈ argmax

Wa

E
[
Wa +

1
α min (WT −Wα, 0)

]
. (3.5)

Because WT is treated here as a gain-oriented variable, the worst outcomes lie in the left tail; hence, the

formulation (3.4) employs sup(·, ·) and min(·, 0) (rather than max(·, 0), which is more common in loss-oriented

setups). Notably, the optimal threshold W ∗
a that attains the optimum in (3.4) coincides with VaRα(WT ) [50].

From a computational standpoint, the threshold-based formulation (3.4) is often more tractable than the

integral-based definition (3.1) of CVaRα (WT ). Therefore, we adopt it for the remainder of this paper.

3.2 Buffered Probability of Exceedance

For a given disaster level D, we define the bPoE of the terminal wealth WT at level D by [39]

bPoED (WT ) = P {WT ≤ w | E [WT | WT ≤ w] = D} . (3.6)

That is, bPoED(WT ) measures the probability of the left tail of the distribution of the random variable WT ,

where the conditional mean of WT within this tail equals the disaster level D. Hence, for a given disaster

level D, bPoED(WT ) quantifies how large, i.e. how probable, this left tail is relative to D.

The formulation (3.6) is reminiscent of CVaRα(WT ), which measures the average level of WT in the worst

α-fraction of all possible wealth outcomes. However, while CVaRα(WT ) pre-specifies this probability α and

identifies the corresponding α-quantile of the distribution along with its average, bPoED(WT ) instead fixes the

quantile mean, namely the disaster level D, and determines the probability of the portion of the distribution

satisfying this condition. Hence, they can be regarded as inverse risk measures [42] (see Remark 3.2).

In addition, as noted earlier, both risk measures are defined in terms of terminal wealth WT rather than

losses. Thus, a larger CVaRα(WT ) indicates a more favorable outcome. However, for bPoED(WT ), a smaller

value is preferred, as it signifies a lower probability of terminal wealth falling below the disaster level D.

Direct computation of (3.6) requires evaluating the conditional expectation of the tail of a distribu-

tion, which can be cumbersome in practice. However, analogous to CVaR’s optimization-based formula,
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bPoED (WT ) also admits an alternative infimum formulation (see [39, 43]):

bPoED (WT ) = inf
Wo >D

E
[
max

(
1− WT−D

Wo−D , 0
)]
, (3.7)

noting that Wo ranges over (D,∞), covering all feasible values of WT above D.

Computationally, the bPoE formulation in (3.7) is simpler than evaluating the conditional expectation in

(3.6). Like the CVaR expression in (3.4), it treatsWo as a decision variable, enabling a systematic search for a

threshold that yields a tail mean of D. This structure makes (3.7) well-suited for numerical implementation.

Remark 3.1 (Monotonicity and optimal threshold in bPoE). In practice, we often assume that the disaster

level satisfies D < E[WT ], ensuring that D represents an adverse or undesirable outcome [39]. Let W ∗
o be the

threshold minimizing the bPoE objective:

W ∗
o = argmin

Wo >D
E
[
max

(
1− WT−D

Wo−D , 0
)]
. (3.8)

It is shown in [39] that W ∗
o is indeed the VaR of the terminal wealth WT at a confidence level that corresponds

to the disaster level D. Below, in addition to this identity, we also show that the bPoE objective function is

strictly decreasing on (D, W ∗
o ) and strictly increasing on (W ∗

o ,∞).

Let f(Wo) denote the bPoE objective function, which can be expressed as the integral below for Wo > D

f (Wo) = E
[
max

(
1− WT−D

Wo−D , 0
)]

=

∫ Wo

−∞

(
1− w−D

Wo−D

)
g(w)dw, (3.9)

where g(w) is the pdf of WT . The derivative of f (Wo) for Wo > D is ∂f
∂Wo

= 1
(Wo−D)2

∫Wo

−∞(w −D)g(w) dw.

Setting this derivative to zero gives
∫Wo

−∞(w −D)g(w) dw = 0, or equivalently,∫Wα

−∞ wg(w)dw∫Wα

−∞ g(w) dw
= D, (3.10)

which corresponds the defining relation between CVaRα(WT ) and VaRα(WT ) at a confidence level α, where

CVaRα(WT ) = D (see (3.1) and (3.3)). Thus, the point Wo = VaRα (WT ) solves the first-order optimality

condition (3.10). Furthermore, examining the sign of ∂f
∂Wo

reveals

Wo < VaRα (WT ) ⇒ ∂f
∂Wo

< 0 and Wo > VaRα (WT ) ⇒ ∂f
∂Wo

> 0.

Hence, f(Wo) is strictly decreasing in (D,VaRα(WT )) and strictly increasing for (VaRα(WT ),∞), giving it a

“V-shaped” profile centered at VaRα(WT ). As a result, the point Wo = W ∗
o = VaRα(WT ) is then the unique

minimizer of f(Wo) in (D,∞), and bPoED(WT ) is thus attained at this point.

Remark 3.2 (Duality between CVaR and bPoE). Recall the bPoE objective function f(Wo) in (3.9). By

evaluating f at Wo = VaRα(WT ), and using (3.10), we obtain

inf
Wo>D

f(Wo) = f (VaRα(WT )) = α. (3.11)

This equation reveals a duality relationship between the definitions of CVaR (3.4) and bPoE (3.7). Con-

cretely, if we fix α and set D = CVaRα(WT ) in the bPoE formulation (3.7), then by (3.11), choosing

Wo = VaRα(WT ) yields a bPoE value of exactly α, and this threshold is optimal. Conversely, suppose we

are given a disaster level D, and the corresponding bPoE value obtained from (3.7) is α. Then, by (3.11), the

optimal threshold in (3.7) is W ∗
o = VaRα(WT ), and moreover, the disaster level D must be CVaRα(WT ) due

to (3.10). Thus, CVaRα and bPoED are inverse risk measures: specifying one uniquely determines the other.

4 Pareto optimal points
Recall that {Xt}t∈[0,T ], where Xt = (St, Bt), represents the multi-dimensional controlled underlying process,

and that x = (s, b) denote a generic state of the system. For tm ∈ T , we write X−
m = X(t−m) and X+

m = X(t+m).

We begin by examining the notion of Pareto optimality in the pre-commitment setting. For subsequent

use, we denote by EX+
0 ,t+0

U0
[WT ] the mean of WT under the real-world measure, conditioned on the state

X+
0 = (S+

0 , B
+
0 ) at time t+0 (after the cashflow q0), while using the control U0 over [t0, T ].
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Following [17], we introduce the concepts of the achievable objective sets, Pareto optimal points, and

scalarization optimal sets. We first address the bPoE risk measure.

4.1 Mean–bPoE optimal sets

To evaluate trade-offs under the Mean–bPoE framework, we first define the achievable Mean–bPoE objective set.

Definition 4.1 (Achievable Mean–bPoE objective set). Consider a disaster level D > 0, and let (x0, 0) ≡
(X−

0 , t
−
0 ) be the initial state, where x0 = (s0, b0). For an admissible control U0 ∈ A, we define the conditional

bPoE at disaster level D and the expected value of the terminal wealth WT as

bPoEx0,t0
U0

= inf
Wo>D

{
EX+

0 ,t+0
U0

[
max

(
1− WT−D

Wo−D , 0
) ∣∣∣∣ X−

0 = x0

]}
,

Ex0,t0
U0

= EX+
0 ,t+0

U0

[
WT

∣∣ X−
0 = x0

]
.

(4.1)

We define the achievable Mean–bPoE objective set as

Yo(D) =
{(

bPoEx0,t0
U0

[WT ] , E
x0,t0
U0

)
: U0 ∈ A

}
, (4.2)

and let Yo(D) be its closure in R2.

Remark 4.1 (Boundedness of Yo). Under no-leverage/no-short constraints, with W0 = s0 + b0 ≥ 0 and

qm ≥ 0 (∀m), it follows that WT is almost surely non-negative. Hence, for any U0 ∈ A, we have Ex0,t0
U0

≥ 0.

Next, we establish a finite upper bound for Ex0,t0
U0

. Assuming µ > r, which is typical in real market data

[15, 52, 53, 56], fully investing in the risky asset yields the highest expected value of terminal wealth. Let

Û0(·) denote the strategy that fully invests in the risky asset, and define Emax = Ex0,t0
Û0(·)

. We have

Emax = Ex0,t0
Û0(·)

=W0e
µT +

M−1∑
m=0

qm e
µ (T−m∆t) <∞. (4.3)

We can then have the bound Ex0,t0
U0

≤ Ex0,t0
Û0(·)

= Emax. Also, the bPoE risk measure satisfies bPoEx0,t0
U0

∈ [0, 1]

by definition. Therefore, the achievable Mean–bPoE objective set satisfies

Yo(D) ⊆ [0, 1]× [0, Emax], Emax given by (4.3).

Definition 4.2 (Mean–bPoE Pareto optimal points). A point (B∗, E∗) ∈ Yo(D) is a Pareto (optimal) point

if there exists no admissible strategy U0 ∈ A such that

Ex0,t0
U0

≥ E∗, and bPoEx0,t0
U0

≤ B∗ , (4.4)

and at least one of the inequalities in (4.4) is strict. We denote the set of all Pareto optimal points for the

Mean–bPoE problem by Po(D), so Po(D) ⊆ Yo(D).

Intuitively, the set of all Pareto optimal points, Po, characterizes the efficient trade-offs between the

mean and bPoE of terminal wealth, ensuring that no further improvement is possible without sacrificing one

objective for the other. In this sense, these points are efficient, as any point outside Po is dominated by an

alternative achievable Mean–bPoE outcome that provides at least as much expected terminal wealth while

also achieving a smaller probability of wealth falling below the disaster level D, or vice versa.

Although the above definitions are intuitive, determining the points in Po requires solving a challenging

multi-objective optimization problem involving two conflicting criteria. A standard scalarization method can

be used to transform this into a single-objective optimization problem. Specifically, for a given scalarization

parameter γ > 0, we denote by So(D, γ) the set of Mean–bPoE scalarization optimal points corresponding to

γ for a given disaster level D. This set is defined by

So(D, γ) =
{
(B∗, E∗) ∈ Yo(D)

∣∣ γB∗ − E∗ = inf
(B, E)∈Yo(D)

(γB − E)
}
. (4.5)

We then define the Mean–bPoE scalarization optimal set, denote by So(D), as follows

So(D) =
⋃
γ>0

So(D, γ). (4.6)
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Mathematically, the scalarization parameter γ is simply a device for converting the multi-objective Mean–

bPoE problem into a single-objective optimization. However, from a financial perspective, γ naturally reflects

the investor’s preference (or aversion) to bPoE risk. As γ ↘ 0, the investor effectively ignores bPoE and

prioritizes maximizing expected terminal wealth. Conversely, as γ → ∞, bPoE is heavily penalized, and the

investor’s preference shifts to minimizing the probability of wealth falling below the disaster level D.

It is well known that the set of all Mean–bPoE Pareto optimal points Po(D), given in Definition 4.2,

and the set of Mean–bPoE scalarization optimal points So(D), defined in (4.6), satisfy the general relation

So(D) ⊆ Po(D). However, the converse does not necessarily hold if the achievable Mean–bPoE objective

set Yo(D) is not convex [19, 40]. Following [17], we restrict our attention to determining So(D), hereafter

referred to as the Mean-bPoE efficient frontier.

Next, we establish that the Mean–bPoE scalarization optimal set So(D, γ) is non-empty.

Lemma 4.1 (Non-emptiness of So(D, γ)). Consider a disaster level D > 0. For any γ > 0, the Mean–bPoE

scalarization optimal set So(D, γ) is non-empty, i.e. ∃(B′, E ′) ∈ Yo(D) such that γ B′−E ′ = inf
(B,E)∈Yo(D)

(γ B − E).

Proof. From Remark 4.1, we know Yo(D) ⊆ [0, 1] × [0, Emax] is a compact set. The map (B, E) 7→ γ B − E
is continuous on Yo(D), so by the extreme value theorem, it attains its infimum there. Any point (B′, E ′) ∈
Yo(D) that realizes this infimum belongs to So(D, γ). Hence, So(D, γ) is non-empty for all γ > 0.

4.2 Mean–CVaR optimal sets

We now outline the Mean–CVaR framework, mirroring the structure of the Mean–bPoE formulation. Here,

the investor seeks to balance the trade-off between the mean and CVaR of terminal wealth. To start with,

we formally define the achievable Mean–CVaR objective set.

Definition 4.3 (Achievable Mean–CVaR objective set). Consider a confidence level α ∈ (0, 1), and let

(x0, 0) ≡ (X−
0 , t

−
0 ) be the initial state, where x0 = (s0, b0). For an admissible control U0 in A, we define

CVaRx0,t0
U0

= sup
Wa ∈R

EX+
0 ,t+0

U0

[
Wa + 1

α min
(
WT −Wa, 0

) ∣∣X−
0 = x0

]
,

Ex0,t0
U0

= EX+
0 ,t+0

U0

[
WT

∣∣X−
0 = x0

]
.

(4.7)

The achievable Mean–CVaR objective set is then defined as

Ya(α) =
{(

CVaRx0,t0
U0

, Ex0,t0
U0

)
: U0 ∈ A

}
, (4.8)

and let Ya(α) be its closure in R2.

Remark 4.2 (Boundedness of Ya(α)). We now establish a finite upper bound for CVaRx0,t0
U0

under no-

leverage/no-short constraints. Let W ∗
a (U0) be the optimal threshold in the equivalent CVaR definition (3.4)

and let g
(
w;U0

)
denote the pdf of WT under an admissible control U0 ∈ A. Recalling that WT ≥ 0 almost

surely, we have

CVaRx0,t0
U0

= 1
α

∫ W ∗
a (·)

0
w g

(
w;U0

)
dw ≤ 1

α

∫ ∞

0
w g

(
w;U0

)
dw =

E
x0,t0
U0
α

(i)

≤ Emax
α . (4.9)

Here, (i) follows from Remark 4.1, and Emax is a finite constant given in (4.3). Therefore, the achievable

Mean–CVaR objective set satisfies

Ya(α) ⊆ [0, Emax/α]× [0, Emax], Emax given by (4.3).

Definition 4.4 (Mean–CVaR Pareto optimal points). A point (C∗, E∗) ∈ Ya(α) is a Pareto optimal point if

there is no admissible strategy U0 ∈ A with

CVaRx0,t0
U0

≥ C∗ and Ex0,t0
U0

≥ E∗,

and at least one of these inequalities is strict. We denote the set of all Pareto optimal points by Pa(α) ⊆ Ya(α).

We also employ a scalarization approach to transform the Mean–CVaR Pareto optimization problem,

which inherently requires a multi-objective framework, into a single-objective problem using a scalarization
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parameter γ > 0. Formally, we define the Mean–CVaR scalarization optimal set for a given γ > 0 as follows.

Sa(α, γ) =
{
(C∗, E∗) ∈ Ya(α)

∣∣ γ C∗ + E∗ = sup
(C,E)∈Ya(α)

(
γ C + E

)}
. (4.10)

The Mean–CVaR scalarization optimal set is then

Sa(α) =
⋃
γ>0

Sa(α, γ). (4.11)

Just as in the Mean–bPoE framework, we have Sa(α) ⊆ Pa(α), with equality if Ya(α) is convex [19, 40]. We

focus on determining Sa(α, γ), and hence Sa(α), hereinafter referred to as the Mean-CVaR efficient frontier.

Lemma 4.2 (Non-emptiness of Sa(α, γ)). Consider a confidence level α ∈ (0, 1). For any γ > 0, the Mean–

CVaR scalarization optimal set Sa(α, γ) is non-empty.

Proof. This follows immediately from the compactness of Ya(α) (see Remark 4.2) and the continuity of the

map (C, E) 7→ γ C − E .

5 Precommitment Mean–bPoE and Mean–CVaR
We now consider the problem of determining points in the scalarization optimal sets So(D, γ) (for Mean–

bPoE, defined in (4.5)) and Sa(α, γ) (for Mean–CVaR, defined in (4.10)) in a form that can be solved using

stochastic optimal control techniques. We begin with So(D, γ).

5.1 Precommitment Mean–bPoE

Using the definitions in (4.1), we recast (4.5) as a control problem involving both system dynamics and

rebalancing constraints. Specifically, for a given disaster level D and scalarization parameter γ > 0, the

precommitment Mean–bPoE problem PCMot0
(
D, γ

)
is defined in terms of the value function V p

o (s0, b0, t
−
0 ).

Its formulation is as follows:

PCMot0 (D, γ) : V
p
o

(
s0, b0, t

−
0

)
:= inf

U0∈A

{
inf

W p
o > D

EX+
0 ,t+0

U0

[
γmax

(
1− WT −D

W p
o −D

, 0

)
−WT∣∣∣∣X−

0 = (s0, b0)

]}
(5.1)

subject to



(St, Bt) follow dynamics (2.6) - (2.8) , t /∈ T ,
W+

k =W−
k + qk = S−

k +B−
k + qk,

X+
k = (S+

k , B
+
k ) where

S+
k = ukW

+
k , B+

k = (1− uk)W
+
k ,

uk ∈ Z = [0, 1], k = 0, 1, . . . ,M − 1.


otherwise.

(5.2)

We denote by Up∗
0,o =

{
up∗0,o, u

p∗
1,o, . . . , u

p∗
M−1,o

}
the optimal control of problem PCMot0 (D, γ).

Following [20, 41, 54], we interchange the infima in (5.1), yielding a more computationally tractable form

V p
o

(
s0, b0, t

−
0

)
= inf

W p
o > D

{
inf

U0∈A
EX+

0 ,t+0
U0

[
γmax

(
1− WT −D

W p
o −D

, 0

)
−WT

∣∣∣∣X−
0 = (s0, b0)

]}
. (5.3)

In Lemma 5.1 below, we establish the existence of a finite optimal threshold W p∗
o in (D,∞), which is

essential for both the theoretical analysis and the development of numerical methods. We begin with a

continuity result for the inner optimization in the precommitment Mean–bPoE problem

Proposition 5.1 (Continuity of the inner optimization function). Fix γ > 0, and suppose the initial state

X−
0 = (s0, b0) and the disaster level D are given. Define F (W p

o ) ≡ F (W p
o ; (s0, b0)) as the inner infimum of

the value function V p
o (s0, b0, t

−
0 ) in (5.3), i.e.

F (W p
o ) = inf

U0∈A
EX+

0 ,t+0
U0

[
γmax

(
1− WT −D

W p
o −D

, 0

)
−WT

∣∣∣∣X−
0 = (s0, b0)

]
, W p

o > D, subject to (5.2). (5.4)

Then, the function F (W p
o ) is continuous in W p

o for all W p
o > D.
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A proof of Proposition 5.1 is given in Appendix A.

Lemma 5.1 (Existence of a finite optimal threshold W p∗
o (s0, b0)). Let F (W p

o ; (s0, b0)) be defined on (D,∞)

as in (5.4). Then, inf
W p

o >D
F (W p

o ; (s0, b0)) is finite and is attained at some W p∗
o (s0, b0) ∈ (D,∞).

A proof of Lemma 5.1 is given in Appendix B.

5.1.1 An equivalent time-consistent problem

We now show that the precommitment Mean–bPoE portfolio optimization can be reformulate as a time-

consistent target-based portfolio problem. To this end, for a fixed Ŵo > D, we define a time-consistent

portfolio optimization problem induced by precommitment Mean–bPoE formulation. This problem is denoted

by TCEotm
(
D, γ; Ŵo

)
and is characterized by the value function Q̂c

o(s, b, tm; Ŵo) as follows.

TCEotm(·) :

Q̂
c
o(s, b, tm; Ŵo) := inf

Um

{
EX+

m,t+m
Um

[
max(Ŵo −WT , 0)− (Ŵo −D) WT

γ

∣∣∣∣X−
m = (s, b)

]}
.

subject to system dynamics and rebalancing constraints (5.2)

(5.5)

In the TCEotm(·; Ŵo) problem, the terminal objective max(Ŵo −WT , 0) − (Ŵo − D) WT
γ depends only on

the terminal wealth WT and it remains fixed throughout the investment horizon. Its structure reveals a

target-based interpretation: the first term max(Ŵo −WT , 0) penalizes shortfalls relative to the target Ŵo,

while the second term is a negative linear function of WT that lowers the overall objective as WT increases.

Together, these components encode a trade-off between achieving a specific wealth benchmark and managing

the impact of large terminal outcomes.

Since the objective is fixed at each rebalancing time tm, with no re-optimization of risk parameters, dy-

namic programming can be applied over the control sequence Um, yielding a time-consistent policy. Such poli-

cies, which carry no incentive to deviate over time, are referred to as implementable in the literature [20, 54].

Although TCEotm(·; Ŵo) yields a time-consistent control policy in this sense, it differs from fully time-

consistent mean–risk formulations, which explicitly impose time-consistency constraints across the control

sequence (see Section 6). Following the literature, we therefore refer to TCEotm(·; Ŵo) as a Mean–bPoE

induced time-consistent optimization [54].

We now establish the equivalence between the precommitment problem PCMot0(D, γ) and the induced

time-consistent formulation TCEotm
(
D, γ; Ŵo

)
, for an appropriate choice of Ŵo. Let the initial state be

(s0, b0) = (0,W0), where W0 is the initial wealth. Define W p∗
o (0,W0) as the optimal threshold obtained from

solving the precommitment problem at time t0:

W p∗
o (0,W0) ∈ argmin

W p
o >D

{
inf

U0∈A
EX+

0 ,t+0
U0

[
γmax

(
1− WT −D

W p
o −D

, 0

)
−WT

∣∣∣∣X−
0 = (s0, b0)

]}
. (5.6)

It follows from Lemma 5.1 that such aW p∗
o (0,W0) exists and is finite. The proposition below establishes that

when Ŵo =W p∗
o (0,W0), PCMot0(D, γ) is equivalent to TCEotm(D, γ; W

p∗
o (0,W0)).

Proposition 5.2 (Equivalent time-consistent problem). Let Up∗
0,o be the optimal control of the precommitment

problem PCMot0 (D, γ), defined in (5.1)-(5.2), obtained by solving the value function V p
o (s0, b0, t

−
0 ) with

initial state X−
0 = (s0, b0) = (0,W0). Then Up∗

0,o is also the optimal time-consistent control for the problem

TCEotm
(
D, γ;W p∗

o (0,W0)
)
defined in (5.5), where W p∗

o (0,W0) is given by (5.6).

For a proof of Proposition 5.2, see Appendix C.

Remark 5.1 (Precommitment Mean–bPoE implementability). Among the family of induced time-consistent

problems TCEotm(D, γ; , Ŵo) for varying Ŵo > D, the case Ŵo = W p∗
o (0,W0) yields equivalence with the

precommitment formulation PCMot0(D, γ). We refer to this particular case, TCEotm(D, γ; ,W
p∗
o (0,W0)), as

the Mean–bPoE induced time-consistent equivalent optimization. Consequently, the optimal control obtained

from solving PCMot0(D, γ) is also a time-consistent strategy for the associated target-based single-objective

problem, and is therefore implementable across the entire investment horizon.
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5.2 Precommitment Mean–CVaR

Similarly to the precommitment Mean–bPoE case, using the definitions in (4.7), we now express the scalar-

ization formulation (4.10) as a control problem involving both system dynamics and rebalancing constraints.

For a given confidence level α and scalarization parameter γ > 0, the precommitment Mean–CVaR problem

PCMat0 (α, γ) is given in terms of the value function V p
a (s0, b0, t

−
0 ):

PCMat0 (α, γ) : V
p
a

(
s0, b0, t

−
0

)
:= sup

U0∈A

{
sup
W p

a

EX+
0 ,t+0

U0

[
γ

(
W p

a +
1

α
min (WT −W p

a , 0)

)
+WT∣∣∣∣X−

0 = (s0, b0)

]}
, (5.7)

subject to



(St, Bt) follow dynamics (2.6) - (2.8) , t /∈ T ,
W+

k =W−
k + qk = S−

k +B−
k + qk,

X+
k = (S+

k , B
+
k ) where

S+
k = ukW

+
k , B+

k = (1− uk)W
+
k ,

uk ∈ Z = [0, 1], k = 0, 1, . . . ,M − 1.


otherwise.

(5.8)

We denote by Up∗
0,a =

{
up∗0,a, u

p∗
1,a, . . . , u

p∗
M−1,a

}
the optimal control of problem PCMat0 (α, γ). As in the

Mean–bPoE case, we interchange the order of optimization in (5.7). The value function V p
a (s0, b0, t

−
0 ) can be

equivalently written as

V p
a

(
s0, b0, t

−
0

)
= sup

W p
a

{
sup
U0∈A

EX+
0 ,t+0

U0

[
γ

(
W p

a +
1

α
min (WT −W p

a , 0)

)
+WT

∣∣∣∣X−
0 = (s0, b0)

]}
(5.9)

Although prior work, such as [20], defines the threshold using the upper semicontinuous envelope of the value

function, no formal existence proof is given, and uniqueness is implicitly assumed. For completeness, we

establish existence in the lemma below, noting that uniqueness is not guaranteed.

Lemma 5.2 (Existence of a finite optimal threshold for precommitment Mean–CVaR). Fix γ > 0, and let

the initial state X−
0 = (s0, b0) and confidence level α ∈ (0, 1) be given. Define Fa(W

p
a ) as the inner supremum

of the precommitment Mean–CVaR value function V p
a (s0, b0, t

−
0 ) in (5.3), i.e.

Fa(W
p
a ) = sup

U0∈A
EX+

0 , t+0
U0

[
γ
(
W p

a + 1
α min(WT −W p

a , 0)
)

+ WT

∣∣∣ X−
0 = (s0, b0)

]
, W p

a ≥ 0.

Then, supW p
a ≥0 Fa(W

p
a ) is finite and is attained by some W p∗

a (s0, b0) ∈ [0,∞).

The argument parallels the Mean–bPoE case (Lemma 5.1) with full details given in Appendix D.

Remark 5.2 (Precommitment Mean–CVaR implementability). Given the existence of an optimal threshold

W p∗
a in the precommitment Mean–CVaR formulation (Lemma 5.2), one can construct a corresponding time-

consistent optimization problem with a fixed, target-based single objective—mirroring the approach used in

the Mean–bPoE setting. As a result, the optimal control from PCMat0 (α, γ) defines a time-consistent and

implementable strategy. For further discussion, also see [20].

5.3 Equivalence between precommitment Mean–bPoE and Mean–CVaR

In the analysis, for brevity, we will occasionally write EU0 [·] in place of the full notation EX+
0 ,t+0

U0
[· |·]. To distin-

guish between the scalarization parameter values used in the precommitment Mean–bPoE and Mean–CVaR

formulations, we use γo and γa, respectively, following the notational convention adopted earlier.

We now formalize the equivalence between the precommitment Mean–CVaR and Mean–bPoE scalarization

optimal sets by establishing a one-to-one correspondence between Sa(α, γa) and So(D, γo) under appropriately

calibrated parameters. Moreover, we will show that the corresponding points on these sets are attained by

the same optimal control/threshold pair in each formulation. Each direction of this equivalence is captured

in Lemmas 5.3 and 5.4.
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5.3.1 Mean–CVaR to Mean–bPoE direction

Before presenting the result for the Mean–CVaR to Mean–bPoE direction, we provide a brief heuristic illus-

trating how the parameter γo, the disaster level D, and the corresponding point in So(D, γo) naturally emerge.

Suppose we begin with a point
(
C∗
a, E∗

a

)
in the Mean–CVaR scalarization optimal set Sa(α, γa), attained

by the threshold/control pair
(
W p∗

a , Up∗
0,a

)
. The associated Mean–CVaR scalarization objective is

γa

(
W p∗

a +
1

α
EUp∗

0,a

[
min(WT −W p∗

a , 0)
])

+ EUp∗
0,a

[WT ].

Rewriting this in a bPoE-style form by introducing a disaster level D, we obtain

−γa
α (W p∗

a −D)EUp∗
0,a

[
max

(
1 − WT −D

W p∗
a −D

, 0
)]

+ EUp∗
0,a

[WT ] + γaW
p∗
a ,

which we compare to the Mean–bPoE objective under the same threshold/control pair
(
W p

o , U0

)
=

(
W p∗

a , Up∗
0,a

)
:7

γo EUp∗
0,a

[
max

(
1 − WT−D

W p∗
a −D

, 0
)]

− EUp∗
0,a

[WT ].

Matching terms suggests the relation γo = γa
α

(
W p∗

a − D
)
. Motivated by the CVaR-bPoE duality result in

Remark 3.2, we set D = C∗
a = CVaRα(WT ), leading to the formula for γo: γo =

γa(W
p∗
a − C∗

a )
α . By Remark 3.2,

setting D = CVaRα(WT ) implies bPoED(WT ) = α. In the proof of this direction, we further show that

the resulting bPoE point is attained by the same optimal threshold/control pair
(
W p∗

a , Up∗
0,a

)
and achieves

the same expected terminal wealth, i.e. E∗
o = E∗

a . Hence (B∗
o , E∗

o ) = (α, E∗
a) belongs to So(D, γo). This

point can be viewed as the image of (C∗
a, E∗

a) under the correspondence from Mean-CVaR to Mean-bPoE

scalarization optimal points. The above provides the heuristic motivation for the parameter transformation

used in Lemma 5.3 below.

Lemma 5.3 (Equivalence direction: Mean–CVaR to Mean–bPoE). Consider a confidence level α ∈ (0, 1) and

scalarization parameter γa > 0. Let
(
C∗
a, E∗

a

)
be any point in Sa(α, γa). Suppose (W p∗

a , Up∗
0,a) is the optimal

threshold/control pair associated with the solution that attains
(
C∗
a, E∗

a

)
. In particular, we have W p∗

a ≥ C∗
a.

Define
γo =

γa(W
p∗
a − C∗

a )

α
. (5.10)

Then the point
(
B∗
o , E∗

o

)
, where B∗

o = α and E∗
o = E∗

a , lies in So

(
C∗
a, γo) and is attained by the same optimal

threshold/control pair (W p∗
a , Up∗

0,a). Hence,
(
C∗
a, E∗

a

)
and

(
B∗
o , E∗

o

)
represent the same “efficient” portfolio

outcome, mapped from Sa

(
α, γa

)
to So

(
C∗
a, γo

)
.

A complete proof of Lemma 5.3 is given in Appendix E.

5.3.2 Mean–bPoE to Mean–CVaR direction

As a brief heuristic, we observe that a formula for γa can be derived by inverting the relationship from the

Mean–CVaR to Mean–bPoE direction in the expression for γo given in (5.10). Specifically, rearranging (5.10)

to solve for γa, and then identifying α = B∗
o , W

p∗
a = W p∗

o , and C∗
a = D, immediately yields γa = γo B∗

o

W p∗
o −D

.

Consequently, the point
(
C∗
a, E∗

a

)
=

(
D, E∗

o

)
belongs to Sa

(
B∗
o , γa

)
and can be viewed as the image of

(
B∗
o , E∗

o

)
under the correspondence from Mean–bPoE to Mean–CVaR scalarization optimal points. We now formally

establish this direction in the lemma below.

Lemma 5.4 (Equivalence direction: Mean–bPoE to Mean–CVaR). Consider a disaster level D > 0 and

scalarization parameter γo. Let
(
B∗
o , E∗

o

)
be any point in So(D, γo). Suppose (W p∗

o , Up∗
0,o) is the optimal

threshold/control pair associated with the solution that attains
(
B∗
o , E∗

o

)
. In particular, we have W p∗

o > D.

Define
γa = γo B∗

o

W p∗
o −D

. (5.11)

Then the point
(
C∗
a, E∗

a

)
, where C∗

a = D and E∗
a = E∗

o , lies in Sa

(
B∗
o , γa

)
and is attained by the same optimal

threshold/control pair (W p∗
o , Up∗

0,o). Hence,
(
B∗
o , E∗

o

)
and

(
C∗
a, E∗

a

)
represent the same “efficient” portfolio

outcome, mapped from So(D, γo) to Sa

(
B∗
o , γa

)
.

Full details of a proof of Lemma 5.4 are given in Appendix F.

7At this stage, we do not claim
(
W p∗

a , Up∗
0,a

)
is also optimal for Mean–bPoE problem; we only use it for rewriting the objective.
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Remark 5.3. Lemmas 5.3 and 5.4 jointly establish a one-to-one correspondence between the efficient fron-

tiers in the Mean–CVaR and Mean–bPoE frameworks. These results carry both mathematical and practical

significance. Mathematically, they show that, with appropriately calibrated parameters, both formulations yield

precisely the same efficient frontier. Practically, bPoE’s dollar-based disaster level provides a more intuitive

and communicable alternative to probability-based CVaR—especially for retail investors—while preserving the

same set of optimal outcomes. Therefore, this equivalence enables seamless integration of pre-commitment

Mean–bPoE into existing Mean–CVaR workflows, without altering broader frameworks or results.

We conclude this section by noting that, although our analysis has focused on terminal wealth objec-

tives, analogous arguments apply when maximizing Expected Withdrawals, a popular reward measure in DC

superannuation [25, 26]. Minor adjustments to handle interim withdrawals do not affect the equivalences.

6 Time-consistent Mean–bPoE and Mean–CVaR
We now introduce the time-consistent Mean–bPoE (TCMb) and Mean–CVaR (TCMa) problems, each in-

corporating an explicit time-consistency constraint [6, 8, 9]. For a given disaster level D and scalarization

parameter γ > 0, let V c
o (s, b, t

−
m) be the value function for TCMo at state X−

m = (S−
m, B

−
m) = (s, b) and time

t−m. The problem TCMotm
(
D, γ

)
is then formulated as follows:

TCMotm (D, γ) : V c
o (s, b, tm) := inf

W c
o>D

{
inf

Um∈A
EX+

m,t+m
Um

[
γ max

(
1− WT −D

W c
o −D

, 0

)
−WT

]
∣∣∣∣X−

m = (s, b)

}
, (6.1)

subject to Um =
{
pm,Uc,∗

m+1,o

}
=

{
um, u

c∗
m+1,o, . . . , u

c∗
M−1,o

}
,

where Uc∗
m+1,o is the optimal control for TCMotm+1 (D, γ) , (6.2)

subject to



(St, Bt) follow dynamics (2.6) - (2.8) , t /∈ T ,
W+

m =W−
m + qm = s+ b+ qm,

X+
m = (S+

m, B
+
m) where

S+
m = umW

+
m , B+

m = (1− um)W+
m ,

um ∈ Z = [0, 1].

(6.3)

Similarly, for a given confidence level α and scalarization parameter γ > 0, let V c
a (s, b, t

−
m) denote the value

function for the TCMa problem at state X−
m = (S−

m, B
−
m) = (s, b) and time t−m. The problem TCMatm

(
α, γ

)
is then formulated as follows [20]:

TCMatm (α, γ) : V c
a

(
s, b, t−m

)
:= sup

W c
a≥0

{
sup

Um∈A
EX+

m,t+m
Um

[
γ

(
W c

a +
1

α
min (WT −W c

a , 0)

)
+WT

]
∣∣∣∣X−

m = (s, b)

}
, (6.4)

such that Um =
{
um,Uc∗

m+1,a

}
=

{
um, u

c∗
m+1,a, . . . , u

c∗
M−1,a

}
,

where Uc∗
m+1,a is the optimal control for TCMatm+1 (α, γ) , (6.5)

subject to



(St, Bt) follow dynamics (2.6) - (2.8) , t /∈ T ,
W+

m =W−
m + qm = s+ b+ qm,

X+
m = (S+

m, B
+
m) where

S+
m = umW

+
m , B+

m = (1− um)W+
m ,

um ∈ Z = [0, 1].

(6.6)

Here, the time-consistency constraints (6.2) and (6.5) ensure that the TCMo and TCMa optimal strategies,

Uc∗
m,o =

{
uc∗m,o, u

c∗
m+1,o, . . . , u

c∗
M−1,o

}
, and Uc∗

m,a =
{
uc∗m,a, u

c∗
m+1,a, . . . , u

c∗
M−1,a

}
,

are indeed time-consistent, so that dynamic programming applies directly [6, 8, 9, 14, 58, 59].
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By contrast, the precommitment formulations PCMot0(D, γ) and PCMat0(α, γ) in (5.1)–(5.2) and (5.7)–

(5.8) are specified at the initial time t0 and treat the entire horizon [t0, T ] as one multi-period optimization

without imposing time consistency. Thus, an investor commits to a strategy at t0 but does not require

that rebalancing decisions remain optimal upon reconsideration at later times. Hence, these precommitment

problems can be solved in a single pass at t0, ignoring the explicit stagewise optimization; in contrast, the

time-consistent versions TCMotm(D, γ) and TCMatm(α, γ) must be solved iteratively across the rebalancing

points tm ∈ T to maintain optimality at each future stage.

We now highlight a key structural difference between the time-consistent Mean–CVaR and Mean–bPoE

formulations under lump-sum investment (i.e. no external cashflows).

Lemma 6.1. Suppose that no external cashflows occur, i.e. qm = 0 for all tm ∈ T (lump-sum investment).

Let λ > 0 be a scalar. Then:

� The value function V c
a (s, b, t

−
m) of the time-consistent Mean–CVaR problem defined in (6.4)–(6.6) satisfies

V c
a (λs, λb, t

−
m) = λV c

a (s, b, t
−
m).

Hence, V c
a is positively homogeneous of degree 1. As a consequence, the optimal rebalancing control is

uc∗m,a(w) = uc∗m,a(λw), where w = s+ b.

� The value function V c
o (s, b, t

−
m) of the time-consistent Mean–bPoE problem defined in (6.1)–(6.3) does not,

in general, satisfy this positive homogeneity:

V c
o (λs, λb, t

−
m) ̸= λV c

o (s, b, t
−
m).

Consequently, the TCMb optimal rebalancing control does depend on the absolute wealth w = s+ b.

A full, rigorous proof via dynamic programming and induction appears in [20] (which addresses the Mean–CVaR

case only). Specifically, in the TCMa formulation, each subproblem (at any tm ∈ T ) involves an objective

of the form γa
(
W c

a + 1
α min(WT −W c

a , 0)
)
+WT . Under lump-sum conditions (i.e. no external cashflows),

scaling WT 7→ λWT and W c
a 7→ λW c

a yields

γa
(
λW c

a + 1
α min(λWT − λW c

a , 0)
)
+ λWT = λ

[
γa

(
W c

a + 1
α min(WT −W c

a , 0)
)
+WT

]
.

Hence, the TCMa objective factors out λ. This positive homogeneity propagates through the dynamic

programming recursion, implying wealth-independent rebalancing controls, namely

for each tm ∈ T and ∀λ > 0, w > 0, uc∗m,a(w) = uc∗m,a(λw). (6.7)

In practical terms, this means the optimal fraction in the risky asset does not change if total wealth is scaled.

By contrast, the TCMb objective includes a fixed disaster levelD, leading to terms like max
(
1− WT−D

W c
o−D , 0

)
.

Scaling WT 7→ λWT and W c
o 7→ λW c

o does not eliminate the constant D, so the expression fails to factor

out λ. As a result, the bPoE objective is not positively homogeneous, and the optimal rebalancing control in

TCMb depends on the absolute wealth level. That is,

∃ some tm ∈ T and some λ > 0, w > 0 such that uc∗m,o(λw) ̸= uc∗m,o(w). (6.8)

Remark 6.1 (No equivalence under lump-sum). Suppose we are in a lump-sum setting (i.e., qm = 0 for

all tm ∈ T ), and let Φ be a hypothetical global mapping from (α, γa) to (D, γo) such that the time-consistent

problems TCMat0(α, γa) and TCMotm(D, γo) yield the same efficient frontier, attained by the same optimal

rebalancing control and threshold pair.

In the TCMa formulation, the control uc∗m,a(w) is wealth-independent in a lump-sum environment, as per

(6.7). By contrast, the TCMb control uc∗m,o(w) is wealth-dependent, as in (6.8), due to the fixed disaster level

D. Consequently, there must exist some scaled wealth level λw at which the TCMb control differs from that

of TCMa, a contradiction. Although this argument focuses on mapping from TCMa to TCMb, a symmetric

consideration applies in the reverse direction. Hence, no global parameter mapping Φ can yield the same

efficient frontiers and optimal control/threshold pairs across the entire investment horizon.8

8In contrast, in the pre-commitment setting, Lemmas (5.3) and (5.4) establish the existence of a mapping Φ between the two
formulations such that equivalent points on the efficient frontiers are attained by the same optimal control and threshold pair.

17



In our numerical examples, we consider the practical setting where the initial investment is zero and the

investor contributes a fixed amount (in real terms) at each rebalancing date. This departs from the lump-sum

assumption in Lemma 6.1. However, for states at time tm where the future discounted value of remaining

contributions is small relative to current wealth, that is, w = s+ b≫
∑M−1

ι=m e−r(T−tι)qι, the control uc∗m,a(w)

is expected to depend only weakly on w. This observation suggests that a global parameter mapping Φ is

unlikely to preserve the same frontier and optimal control/threshold structure between the TCMa and TCMb

formulations, even beyond the strict lump-sum setting.

7 Numerical methods

This section presents provably convergent numerical integration methods for both precommitment and time-

consistent multi-period Mean–bPoE and Mean–CVaR problems. To the best of our knowledge, no convergent

schemes have previously been established for this class of mean–risk formulations. Existing work, such as [20],

addresses only the Mean–CVaR case and does not provide a convergence analysis. In contrast to the PDE-

based approach of [20], which enforces monotonicity via a user-defined parameter ε, our method guarantees

strict monotonicity by construction—a property critical for convergence in stochastic control problems [32].

To treat Mean–bPoE and Mean–CVaR in a unified framework, we introduce a generic threshold variable:

W p ∈ {W p
o , W

p
a } for precommitment and W c ∈ {W c

o , W
c
a} for time-consistent formulations, collectively

referred to as W •, and include it in the state vector. We also apply a log transformation to the risky

asset, resulting in the augmented controlled process {X̂t}, where X̂t = (Yt, Bt, W
•) with Yt = ln(St). For

subsequent use, given um ∈ Z, we define the intervention operator M(um), applied to a function F (·) defined
on the augmented state (y, b,W •, t), as

M(um)
{
F (y, b,W •, tm)

}
= F

(
y+(s, b, um), b+(s, b, um),W •, t+m

)
, (7.1)

where, by (2.3), we have

y+(y, b, um) = ln(um (ey + b+ qm)), b+(ey, b, um) = (1− u) (ey + b+ qm). (7.2)

For each feasible W •, we define the payoff function

f(w,W •) =

γomax
(
1− w−D

W •−D , 0
)
− w, Mean–bPoE,

γa
(
W • + 1

α min (w −W •, 0)
)
+ w, Mean–CVaR.

(7.3)

7.1 Precommitment Mean–bPoE and Mean–CVaR

Recall that the precommitment Mean–bPoE formulation PCMot0(D, γ) in (5.1)–(5.2) and its Mean–CVaR

counterpart in (5.7)–(5.8) share a similar structure and can both be tackled using a “lifted” state approach [41]:

the threshold is fixed at candidate values, the corresponding inner control problem is solved over [0, T ] for

each value, and an outer search is performed at time t0 to determine the optimal threshold. With this in mind,

we define a generic auxiliary function V̂ p(·) on the augmented state, where W p remains fixed throughout:

V̂ p
(
y, b,W p, t−m

)
:= EX̂+

m,t+m
Um

[
f
(
eYT +BT ,W

p
) ∣∣∣∣X̂−

m = (y, b,W p)

]
. (7.4)

The terminal condition for this auxiliary function at time t = T is given by

V̂ p (y, b,W p, T ) = f(ey + b,W p), f(·) is defined in (7.3). (7.5)

For each tm ∈ T , the interest accrued over [tm, tm+1] is settled during [t−m+1, tm+1], leading to

V̂ p
(
y, b, W p, t−m+1

)
= V̂ p

(
y, b er∆t, W p, tm+1

)
. (7.6)

Over [t+m, t
−
m+1], the risk-free amount b is constant, and {Yt} = {ln(St)} evolves under the log-dynamics

of (2.8). Hence, the backward recursion takes the form of a convolution integral:

V̂ p
(
y, b, W p, t+m

)
=

∫ ∞

−∞
V̂ p

(
y′, b, W p, t−m+1

)
g(y − y′,∆t) dy′. (7.7)

18



Here, g(y − y′,∆t) is the transition density of the log-state Yt from y at t+m to y′ at t−m+1, and depends only

on the displacement y − y′ and timestep ∆t due to the spatial and temporal homogeneity of (2.8).

Remark 7.1 (Transition density for the Kou model). In the Kou model, the transition density g(y,∆t)

admits an infinite series representation of the form g(y,∆t) =
∑∞

ℓ=0 gℓ(y,∆t), where each term gℓ is non-

negative [60]. Full details of this representation are provided in Appendix G. For numerical implementation,

the series is truncated to a finite number of terms to form a partial sum; see Subsection 7.1.2.

From t+m to tm, the optimal rebalancing up∗m (W p) (dependent on the fixed threshold W p) is determined by

up∗m (W p) =


up∗m,o = arg inf

um∈Z
M(um)

{
V̂ p
o (y, b,W p

o , t+m)
}
, W p =W p

o ,

up∗m,a = arg sup
um∈Z

M(um)
{
V̂ p
a (y, b,W p

a , t+m)
}
, W p =W p

a .
(7.8)

where M(um) is given in (7.1). The auxiliary function is then updated via

V̂ p
(
y, b,W p, tm

)
= M(up∗m (W p))

{
V̂ p

(
y, b,W p, t+m

)}
. (7.9)

At time t0, we find the optimal threshold W p∗ via an outer exhaustive search over all feasible W p

W p∗ =


W p∗

o = arg inf
W p

o >D

V̂ p
o (y0, b0,W

p
o , t0) , Mean-bPoE,

W p∗
a = arg sup

W p
a

V̂ p
a (y0, b0,W

p
a , t0) , Mean-CVaR,

(7.10)

Finally, at t−0 , we set the Mean-bPoE and Mean-CVaR value functions respectively as

V p
o (s0, b0, t

−
0 ) = V̂ p

(
y0, b0,W

p∗
o , t−0

)
and V p

a (s0, b0, t
−
0 ) = V̂ p

(
y0, b0,W

p∗
a , t−0

)
(7.11)

Proposition 7.1 (Lifted formulation equivalence). Under the log transformation y = ln(s), the formulation

(7.3)–(7.11) is equivalent to PCMot0(D, γo) in (5.1)–(5.2) when W p =W p
o , and to PCMat0(α, γa) in (5.7)–

(5.8) when W p =W p
a .

The proof of the proposition follows directly by substitution and application of the backward recursion.

Remark 7.2 (Computation of expectation). As in (7.10), let W p∗ ∈ {W p∗
o ,W p∗

a } and the associated optimal

control is Up∗
0 =

{
up∗0 (W p∗), . . . , up∗M−1(W

p∗)
}
. We can obtain the expectation Ex0,t0

Up∗
0

under (W p∗,Up∗
0 ) by

defining an auxiliary function Ê(y, b,W p∗, t) with terminal condition Ê(y, b, ·, T ) = ey + b, and evolving it

backward with the same convolution equation and rebalancing decision as V̂ p:

Êp
(
y, b, ·, t+m

)
=

∫ ∞

−∞
Êp(y′, b, ·, t−m+1)g(y − y′,∆t)dy′, Êp

(
y, b, ·, tm

)
= M(up∗m (W p∗))

{
Êp

(
y, b, ·, t+m

)}
.

The interest settlement during [t−m+1, tm+1] is in the same fashion as (7.6) by updating b to ber∆t. At time t−0 ,

we have Ex0,t0
Up∗
0

= Êp
(
y0, b0,W

p∗, t−0
)
. Thus,

bPoEx0,t0
Up∗
0

= γoV̂
p
o

(
y0, b0, t

−
0

)
−Êp

(
y0, b0,W

p∗
o , t−0

)
and CVaRx0,t0

Up∗
0

= γaV̂
p
a

(
y0, b0, t

−
0

)
−Êp

(
y0, b0,W

p∗
a , t−0

)
.

7.1.1 Localization and problem definition

Since W p∗ is finite by Lemmas 5.1 and 5.2, we truncate the threshold domain to Γ ≡ Γo = [D, Wmax
o ]

(Mean–bPoE) or Γ ≡ Γa = [0, Wmax
a (Mean–CVaR), where Wmax

o and Wmax
a are sufficiently large. We

localize the (y, b) domain to Ω =
[
y†min, y

†
max

]
× [0, bmax], where y

†
min < ymin < 0 < ymax < y†max and bmax > 0

are chosen sufficiently large in magnitude to ensure negligible boundary errors [15, 60]. We partition Ω into

Ωin = (ymin, ymax)× [0, bmax], Ωymin = [y†min, ymin]× [0, bmax], Ωymax = [ymax, y
†
max]× [0, bmax].

On Ωin, for each fixed W p ∈ Γ, we truncate the integral (7.7) to

V̂ p
(
y, b, W p, t+m

)
=

∫ y†max

y†min

V̂ p
(
y′, b, W p, t−m+1

)
g(y − y′,∆t) dy′, (y, b) ∈ Ωin. (7.12)
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For (y, b) ∈ Ωymin (resp. Ωymax), by the payoff function (7.5), we assume V̂ p(y, b, ·, t) has the form A0(t)b (resp.

A1(t)e
y) for some unknown A0(t) (resp. A1(t)) to approximate the behavior as y → −∞ (resp. y → ∞).

Substituting this form into (7.7), and applying standard properties of exponential Lêvy processes, yields

Ωymin : V̂ p(y, b, ·, t+m) = V̂ p(y, b, ·, t−m+1)
(
resp. Ωymax : V̂ p(y, b, ·, t+m) = eµ∆t V̂ p(y, b, ·, t−m+1)

)
. (7.13)

Finally, for interest-settlement usage in (7.6), we define Ωbmax = (ymin, ymax)×(bmax, bmaxe
rT ] and approximate

the solution there using linear extrapolation

V̂ p(y, b, ·, t+m) = b
bmax

V̂ p(y, bmax, ·, t+m). (7.14)

Definition 7.1 (Localized pre-commitment formulations). The value function of the pre-commitment Mean-

bPoE/CVaR problem at time t−0 is given by V p(s0, b0, t
−
0 ) = V̂ p(y0, b0,W

p∗, t−0 ), where y0 = ln(s0), W
p∗ is

the optimal threshold determined via the outer search (7.10), and Up∗
0 =

{
up∗0 (W p∗), . . . , up∗M−1(W

p∗)
}
is the

associated optimal control.

The function V̂ p(y, b,W p, t) is defined on Ω×Γ×{T ∪{T}} as follows. At each tm ∈ T , V̂ p(·, tm) is given

by the rebalancing optimization (7.8)–(7.9), where V̂ p(·, t+m) satisfies: (i) the integral (7.12) on Ωin × {t+m},
(ii) the boundary conditions (7.13) and (7.14) on {Ωymin ,Ωymax ,Ωbmax} × {t+m}. In addition, V̂ p(·, t) satisfies
the terminal condition (7.5) on Ω× {T} and the interest-settlement update (7.6) on Ω× {t−m+1}.

We note that on the bounded domain Ω ⊂ R2 and the finite threshold interval Γ ⊂ R, standard Markov

decision process arguments [47] with bounded payoff ensure that for each fixed thresholdW p ∈ Γ, the discrete-

time function V̂ p(y, b,W p, tm) is unique, bounded, and continuous on Ωin × {tm}, for each tm ∈ T ∪ {T}.
Continuity might not exists across ymin and ymax, due to boundary conditions.

7.1.2 Numerical schemes and convergence

We first discretize the domain and then apply a numerical scheme for the localized problem in Definition 7.1.

The admissible control set Z = [0, 1] is discretized using Nu nodes, yielding {ui}Nu
i=0. The threshold domain Γ

is partitioned intoNw unequally spaced intervals, denoted by {Wk}Nw
k=0. For the interior region Ωin ⊂ Ω, we use

a uniform partition in y with N †
y subintervals, yielding {yn}

N†
y/2

n=−N†
y/2

, and an unequally spaced partition in b

with Nb subintervals, denoted by {bj}Nb
j=0. For each fixed Wk, we approximate the function V̂ p(yn, bj ,Wk, t

⋆
m)

using a discrete scheme that produces the numerical approximation V̂ p
h (yn, bj ,Wk, t

⋆
m), where h denotes a

unified discretization parameter (i.e. h→ 0 implies N †
y , Nb, Nw, Nu → ∞); (yn, bj ,Wk, tm) is a reference node;

and t⋆m ∈ {tm, t+m, t−m} indicates the evaluation time. The numerical scheme proceeds as follows.

Inner optimization (fixed Wk). This consists of the steps below.

� Terminal condition (7.5): we set

V̂ p
h (yn, bj ,Wk, T ) = f(eyn + bj ,Wk). (7.15)

� Interest-settlement update(7.6): we apply interpolation or extrapolation as needed to compute

V̂ p
h (yn, bj ,Wk, t

−
m+1) = V̂ p

h (yn, bje
r∆t,Wk, tm+1). (7.16)

� Time-advancement via integral (7.12): For numerical implementation, we truncate the infinite series rep-

resentation of g(·,∆t) (see Remark 7.1) after Ng terms (typically Ng = 10–15), forming the partial sum

g(y,∆t;Ng) =
∑Ng

ℓ=0 gℓ(y,∆t), where each term gℓ is non-negative. This partial sum is used to approxi-

mate (7.7) via a discrete convolution along the y-dimension: for each (yn, bj) ∈ Ωin, we compute

V̂ p
h (yn, bj ,Wk, t

+
m) =

∑N†/2
l=−N†/2

φl g(yn − yl,∆t;Ng) V̂
p
h (yl, bj ,Wk, t

−
m+1), (7.17)

where {φl} are the composite trapezoidal weights. As the discretization parameter h → 0, we also let

Ng → ∞ so that |g − g(·; Ng)| → 0, thus ensuring no truncation error in the limit. Full details of this

truncated representation and its error bounds appear in Appendix G.

� Boundary condition (7.13): we enforce

Ωymin : V̂ p
h (yn, bj , ·, t

+
m) = V̂ p

h (yn, bj , ·, t
−
m+1), Ωymax : V̂ p

h (yn, bj , ·, t
+
m) = eµ∆tV̂ p

h (yn, bj , ·, t
−
m+1). (7.18)
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� Rebalancing (7.8)–(7.9): we solve the optimization problem by exhaustive search, interpolating as needed:

V̂ p
h (yn, bj ,Wk, tm) =


min
{ui}

V̂ p
h (y

+
n , b

+
j ,Wk, t

+
m), Mean–bPoE,

max
{ui}

V̂ p
h (y

+
n , b

+
j ,Wk, t

+
m), Mean–CVaR,

y+n = ln(ui(e
yn + bj + qm)), b+j = (1− ui)(e

yn + bj + qm) as given in (7.2).

(7.19)

This step yields the numerically computed optimal rebalancing control up∗m,h(Wk) at each node (yn, bj , tm).

Outer optimization (7.10). After computing V̂ p
h (y, b,Wk, t) for each threshold Wk, we perform an exhaus-

tive search over {Wk} to obtain the Mean–bPoE and Mean–CVaR results, respectively, as follows:

V̂ p
o,h(y0, b0, t

−
0 ) = min

{Wk}
V̂ p
o,h(y0, b0,Wk, t0), and V̂ p

a,h(y0, b0, t
−
0 ) = max

{Wk}
V̂ p
a,h(y0, b0,Wk, t0). (7.20)

Finally, the precommitment numerical value function at inception is

V p
h (s0, b0, t

−
0 ) = V̂ p

h (y0, b0,W
p∗
h , t−0 ), (7.21)

where W p∗
h is the computed optimal threshold from (7.20). The scheme also yields the associated computed

optimal control Up∗
0,h = {up∗0,h(W

p∗
h ), . . . , up∗M−1,h(W

p∗
h )}, with up∗m,h(W

p∗
h ) obtained from (7.19).

Expectation of WT . We approximate this as discussed in Remark 7.2, using the same grids, and boundary

conditions. Time advancement is carried out via discrete convolution, as in (7.17), along with interpola-

tion/extrapolation similar to (7.19) and (7.16) to handle intervention and interest settlement.

We next state the convergence result for the numerical scheme in the pre-commitment setting.

Theorem 7.1 (Pre-commitment scheme convergence). Consider the pre-commitment Mean–bPoE/CVaR

problem defined in Definition 7.1 on the localized domain Ω× Γ× {T ∪ {T}}. Suppose the threshold domain

Γ is chosen sufficiently large to contain the optimal threshold W p∗. Also suppose linear interpolation is used

for the intervention (rebalancing) step. As the discretization parameter h→ 0 (i.e. N †
y , Nb, Nw, Nu, Ng → ∞)

the numerical scheme (7.15)-(7.21) for V p
h (·) converges in both the value function and the optimal threshold.

� Value function convergence: lim
h→0

∣∣V p
h (s0, b0, t

−
0 )− V p(s0, b0, t

−
0 )

∣∣ = 0.

� Threshold convergence: As h → 0, any sequence of computed optimal thresholds {W p∗
h } has a subsequence

converging to W p,∗.

A detailed proof is given in Appendix H.

7.2 Time-consistent Mean–bPoE and Mean–CVaR

In contrast to the precommitment problems in Subsection 7.1, where the optimal threshold W p is obtained

via an outer optimization at time t0, time-consistent formulations re-optimize the threshold W c ∈ {W c
o ,W

c
a}

at each rebalancing time tm ∈ T . Specifically, we use an embedding technique, lifting the state space to

X̂t = (Yt, Bt, W
c) where Yt = ln(St) and W

c remains a decision variable that can be re-optimized at each

rebalancing time. We then define an auxiliary function V̂ c(·) by

V̂ c
(
y, b,W c, t−m

)
:= E X̂+

m, t+m
Um

[
f
(
eYT +BT , W

p
) ∣∣∣ X̂−

m = (y, b,W c)
]
. (7.22)

The terminal condition at time t = T for each feasible threshold value W c is given by

V̂ c (y, b,W c, T ) = f(ey + b,W c), f(·) is defined in (7.3). (7.23)

The interest accrued over [tm, tm+1] is settled during [t−m+1, tm+1] for all feasible threshold values W c:

V̂ c
(
y, b,W c, t−m+1

)
= V̂ c

(
y, b er∆t, W c, tm+1

)
. (7.24)

Over [t+m, t
−
m+1], the backward recursion for each feasible value of W c is given by the integral as in (7.7)

V̂ c
(
y, b,W c, t+m

)
=

∫ ∞

−∞
V̂ c

(
y′, b, W c, t−m+1

)
g
(
y − y′,∆t

)
dy′. (7.25)

Unlike the pre-commitment case, in the time-consistent formulation we must jointly re-optimize both the

rebalancing control um (an inner step) and the threshold W c (an outer step) over the interval [t+m, tm]. We
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express the exact function V̂ c(·) through two nested optimizations as follows:

V̂ c
(
y, b,W c, tm

)
=



inf
W c

o>D
Û c
o

(
y, b,W c

o , t
+
m

)
(Mean–bPoE),

where Û c
o

(
y, b,W c

o , t
+
m

)
= inf

um∈Z

[
M(um) V̂ c

o

(
y, b,W c

o , t
+
m

)]
,

sup
W c

a≥0
Û c
a

(
y, b,W c

a , t
+
m

)
(Mean–CVaR),

where Û c
a

(
y, b,W c

a , t
+
m

)
= sup

um∈Z

[
M(um) V̂ c

a

(
y, b,W c

a , t
+
m

)]
,

(7.26)

The associated optimal rebalancing control and threshold are given by


uc∗m(y, b) ∈ arg inf

um∈Z

{
M(um) V̂ c

o (y, b,W
c∗
o (y, b), t+m)

}
W c∗

m (y, b) ∈ arg inf
W c

o>D

{
Û c
o(y, b,W

c
o , t

+
m)

} Mean–bPoE,


uc∗m(y, b) ∈ arg sup

um∈Z

{
M(um) V̂ c

a (y, b,W
c∗
a (y, b), t+m)

}
W c∗

m (y, b) ∈ arg sup
W c

a≥0

{
Û c
a(y, b,W

c
a , t

+
m)

} Mean-CVaR.

(7.27)

Here, M(um) is the intervention operator defined in (7.1), and each Û c(· · · ) encodes the inner optimization

over um ∈ Z, defined in (7.26).

Finally, at the initial time t−0 , we set the Mean-bPoE and Mean-CVaR value functions respectively as

V̂ c
o

(
y0, b0, t

−
0

)
= inf

W c
o>D

V̂ c
(
y0, b0,W

c
o , t0

)
, and V̂ c

a

(
y0, b0, t

−
0

)
= sup

W p
a≥0

V̂ c
(
y0, b0,W

c
a , t0

)
. (7.28)

Proposition 7.2. The formulation (7.23)–(7.28) is equivalent, under the log transformation y = ln(s), to

(i) TCMot0(D, γo) in (6.1)–(6.3) when W c =W c
o , and (ii) TCMat0(α, γa) in (6.4)–(6.6) when W c =W c

a .

The proof of the proposition follows directly by substitution and application of the backward recursion.

7.2.1 Localization and problem definition

We adopt the same localized spatial domain Ω ⊂ R2 and threshold domain Γ ⊂ R as in the precommitment

setting (see Subsection 7.1.1). Specifically, Ω is a finite region in the (y, b)-plane, with interior sub-domain

Ωin and boundary regions Ωymin ,Ωymax ,Ωbmax ; Γ ⊂ R is chosen sufficiently large to contain optimal time-

consistent threshold values W c∗. On each boundary region in {Ωymin ,Ωymax ,Ωbmax}, we impose the same

conditions as specified in (7.13)–(7.14) in Subsection 7.1.1. In particular, boundary conditions in y are

handled via approximate asymptotic conditions, while those in b are treated by extrapolation. We now define

the time-consistent localized problem.

Definition 7.2 (Localized time-consistent formulations). The value function of the time-consistent

Mean–bPoE/CVaR problem at time tm ∈ T and state (s, b) is given by V c(s, b, tm) = V̂ c(y, b,W c∗
m , tm), where

y = ln(s), and {W c∗
m , . . . ,W c∗

M−1} is the sequence of optimal thresholds from tm onward, determined via (7.27).

The associated optimal control is Uc∗
m = {uc∗m , . . . , uc∗M−1}.

The function V̂ c(y, b,W c, t) is defined on Ω×Γ×{T ∪{tM = T}} as follows. At each tm ∈ T , V̂ c(·,W c, tm)

is given by the rebalancing/threshold optimization (7.26)–(7.27), where V̂ c(·,W c, t+m) satisfies: (i) the integral

(7.25)on Ωin × {t+m}, (ii) the boundary conditions (7.13) and (7.14) on {Ωymin ,Ωymax ,Ωbmax} × {t+m}. In

addition, V̂ c(·,W c, t) satisfies the terminal condition (7.23) on Ω × {tM = T} and the interest-settlement

update (7.24) on Ω× {t−m+1}.

7.2.2 Numerical schemes and convergence

We now present the numerical scheme for approximating the function V̂ c(y, b,W c, t) from Definition 7.2.

The scheme uses the same domain discretization and convolution technique as in the precommitment case

(Subsection 7.1.1), with the key distinction that both um and W c are re-optimized at each tm ∈ T .

The localized domain Ω = [y†min, y
†
max] × [0, bmax] is discretized into a grid {(yn, bj)}, with interior sub-

domain Ωin and boundary regions {Ωymin ,Ωymax ,Ωbmax}, where boundary conditions remain as in (7.13)–(7.14).
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The threshold domain Γ ⊂ R is discretized into {Wk}Nw
k=0, identical to the precommitment case. The control

set Z = [0, 1] is likewise discretized to {ui}Nu
i=0. For each fixed (yn, bj ,Wk, tm), the exact function V̂ c is

approximated by a discrete solution V̂ c
h (yn, bj ,Wk, t

⋆
m), where t⋆m ∈ {tm, t+m, t−m} indicates the evaluation time.

� Terminal condition (7.23): we set

V̂ c
h (yn, bj ,Wk, T ) = f

(
eyn + bj , Wk

)
. (7.29)

� Interest settlement (7.24): is handled by same step (7.16) in the precommitment scheme, via interpolation

V̂ c
h (yn, bj ,Wk, t

−
m+1) = V̂ c

h (yn, bje
r∆t,Wk, tm+1). (7.30)

� Time-advancement via integral (7.25): we use the same discrete convolution approach in (7.17):

V̂ c
h (yn, bj ,Wk, t

+
m) =

N†/2∑
l=−N†/2

φl g
(
yn − yl, ∆t;Ng

)
V̂ c
h

(
yl, bj , Wk, t

−
m+1

)
. (7.31)

� On the boundary regions {Ωymin , Ωymax , Ωbmax}×Γ×{t+m}, we impose the same asymptotic or extrapolation

conditions from (7.18) and (7.14).

� Rebalancing/threshold re-optimization (7.26)–(7.27): At each node (yn, bj , tm), both um and W c must be

re-optimized. Numerically, we do a nested min–min (bPoE) or nested max–max (CVaR) search over {ui}
(an inner step) and {Wk} (an outer step) as follows:

V̂ c
h (yn, bj ,Wk, tm) =



min
{Wι}

Û c
o,h(yn, bj ,Wι, t

+
m), Mean-bPoE,

where Û c
o,h(yn, bj ,Wι, t

+
m) = min

{ui}

{
V̂ c
o,h(y

+
n , b

+
j ,Wι, t

+
m)

}}
,

max
{Wι}

Û c
h(yn, bj ,Wι, t

+
m), Mean-CVaR,

where Û c
a,h(yn, bj ,Wι, t

+
m) = max

{ui}

{
V̂ c
a,h(y

+
n , b

+
j ,Wι, t

+
m)

}}
.

(7.32)

Here, y+n = ln(ui(e
yn + bj + qm)) and b+j = (1 − ui)(e

yn + bj + qm) as in (7.2). This step yields a

numerically computed optimal pair (uc∗m,h,W
c∗
m,h) at each node (yn, bj , tm), with uc∗m,h = uc∗m,h(yn, bj) and

W c∗
m,h =W c∗

m,h(yn, bj) to reflect their state dependence.

� After (7.32) is completed, the time-consistent numerical value function V c
h (sn, bj , tm), sn = eyn , is given by

V c
h (sn, bj , tm) = V̂ c

h (yn, bj ,W
c∗
m,h, tm), sn = eyn , (7.33)

where W c∗
m,h =W c∗

m,h(yn, bj) is the computed optimal threshold from (7.32) in the log-domain.

� Once the optimal pair (uc∗m,h,W
c∗
m,h) is computed at each node (yn, bj , tm), we approximate E[WT ] as in the

precommitment case (see Remark 7.2).

Let Ωh be the computational grid parameterized by h, with Ωh → Ω as h→ 0, and let Ωh
in denote the interior

subgrid. To map the log-domain Ωin to the original (s, b) coordinates, define Ω̃in := {(s, b) | (ln s, b) ∈ Ωin}, and
similarly define the discrete version Ω̃h

in. We define the exact time-consistent threshold in original coordinates

by W̃ c∗
m (s, b) := W c∗

m (y, b), where y = ln s and W c∗
m (y, b) is the exact threshold on the (y, b) grid. The

corresponding discrete threshold is denoted by W̃ c∗
m,h(sh, bh).

We now state the convergence result in these original variables.

Theorem 7.2 (Time-consistent scheme convergence). Consider the time-consistent Mean–bPoE/CVaR prob-

lem defined in Definition 7.2. Suppose the threshold domain Γ is chosen sufficiently large to contain all optimal

time-consistent thresholds. Also suppose linear interpolation is used for the intervention (rebalancing) step.

As the discretization parameter h → 0 (i.e., N †
y , Nb, Nu, Nw, Ng → ∞), the numerical scheme for V c

h (·)
defined in (7.29)–(7.33) converges in both value function and optimal thresholds.

� Value function convergence: For any fixed (s′, b′, tm) ∈ Ω̃in × T ,

lim
h→0

(sh,bh)→(s′,b′)

∣∣V c
h (sh, bh, tm)− V c(s′, b′, tm)

∣∣ = 0, where (sh, bh) ∈ Ω̃h
in for each h. (7.34)
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� Threshold convergence: For any fixed (s′, b′, tm) ∈ Ω̃in×T , let W̃ c∗
m (s′, b′) be an associated optimal threshold.

Then, for any sequence {(sh, bh)} such that (sh, bh) ∈ Ω̃h
in for each h, and (sh, bh) →

h→0
(s′, b′), the corre-

sponding computed thresholds {W̃ c∗
m,h(sh, bh)} have a subsequence converging to W̃ c∗

m (s′, b′).

A detailed proof is given in Appendix I.

8 Numerical results

8.1 Empirical data and calibration

To calibrate the parameters specified in dynamics (2.8) and (2.6), we employ the same data sources and

calibration techniques as described in [16, 21, 56]. The risky asset data is based on daily total return series

of the VWD index from the Center for Research in Security Prices (CRSP), covering the period 1926:1 -

2014:12.9 This is a capitalization-weighted index of all domestic stocks on major US exchanges, including

dividends and other distributions in the total return. The risk-free asset is represented by 3-month US T-bill

rates covering the period 1934:1-2014:12.10 To account for the impact of the 1929 crash, we supplement this

data with short-term government bond yields from the National Bureau of Economic Research (NBER) over

the period 1926:1 - 1933:12.11 To ensure all parameters correspond to their inflation-adjusted counterparts,

the annual average CPI-U index (inflation for urban consumers) from the US Bureau of Labor Statistics is

used to adjust the time series for inflation.12 The resulting calibrated parameters are provided in Table 8.1.

Table 8.1: Calibrated parameters for asset dynamics

µ σ λ pup η1 η2 r

0.0874 0.1452 0.3483 0.2903 4.7941 5.4349 0.00623

To illustrate the accumulation phase of a DC plan, we consider a 35-year-old investor with an annual

salary of $100,000 and the total contribution to the plan account is 20% of the salary each year. This investor

plans to retire at age 65, yielding a 30-year money saving horizon [20]. The investment scenario considered is

summarized in Table 8.2, and the numerical discretization parameters used in this work are listed in Table 8.3.

Table 8.2: Investment scenario

Investment horizon T 30 years
Rebalancing frequency yearly
Initial wealth W0 0
Cashflow {qm}m=0,1,...,29 20,000

Table 8.3: Discretization parameters

y†min log
(
105

)
− 16 bmax 5× 108

ymin log
(
105

)
− 8 Wmax

a 5× 108

ymax log
(
105

)
+ 8 Wmax

o 5× 108

y†max log
(
105

)
+ 16 Nb 333

Ny 512 Nw 333

N †
y 1024 Nu 333

8.2 Precommitment Mean–bPoE and Mean–CVaR

We now numerically illustrate the equivalence between the pre-commitment Mean–bPoE and Mean–CVaR

formulations, as established in Lemmas 5.3 and 5.4. Specifically, in Subsection 8.2.1, we examine terminal

wealth distributions and key performance metrics, including the mean, CVaR, bPoE, and the 5th, 50th, and

95th percentiles. Subsection 8.2.2 analyzes the structure of optimal investment strategies, and Subsection 8.2.3

presents the efficient frontiers.

9The results presented here were calculated based on data from Historical Indexes, ©2015 Center for Research in Security
Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this
article. This service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or
its third-party suppliers.

10See http://research.stlouisfed.org/fred2/series/TB3MS.
11See http://www.nber.org/databases/macrohistory/contents/chapter13.html.
12CPI data from the U.S. Bureau of Labor Statistics. Specifically, we use the annual average of the all urban consumers

(CPI-U)index. See http://www.bls.gov/cpi.
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8.2.1 Investment outcomes

We start by specifying a confidence level α = 0.05, which is a standard choice in practice, and set the scalar-

ization parameter γa = 10. Solving PCMat0 (α, γa) yields the optimal threshold/control pair
(
W p∗

a , Up∗
0,a

)
and a point (C∗

a = CVaRα (WT ) , E∗
a = E [WT ]) in the Mean-CVaR scalarization optimal set Sa (α, γa). We

then let D = C∗
a and compute the corresponding γo via the relationship (5.10) proposed in Lemma 5.3.

Knowing D and γo allows us to solve PCMot0 (D, γo) and obtain a point (B∗
o = bPoED (WT ) , E∗

o = E [WT ])

in the Mean-bPoE scalarization optimal set So (D, γo).

Table 8.4 presents the optimal thresholds and relevant statistics obtained by conducting the numerical

experiment described above. The statistics are computed via Monte Carlo simulation of the portfolio using

the optimal control from the numerical scheme. Overall, the reported investment outcomes are virtually

identical, with relative errors under 1.3% across all metrics, and under 1% for most—consistent with Monte

Carlo simulation error.

Table 8.4: Investment outcomes of PCMat0 (α, γa) and PCMot0 (D, γo). α = 0.05, D = 668.81, γa = 10,
γo = 1.6238× 104. Results computed using Monte Carlo simulations with 2.56× 106 paths. Units: thousands
of dollars (real).

E [WT ] CVaRα (WT ) bPoED (WT ) W p∗
a (o) 5th WT 50th WT 95th WT

PCMa 2441.27 668.81 5.00% 750.00 759.14 1107.78 7977.45

PCMo 2462.99 665.45 5.17% 759.39 766.31 1121.58 8024.51

Specifically, using the input D = CVaRα(WT ), the so-

lution to PCMo achieves the same expected termi-

nal wealth as PCMa, and the resulting bPoED(WT )

matches the pre-specified confidence level α. This con-

firms the mapping from the point (C∗
a, E∗

a) ∈ Sa(α, γa)

to the corresponding point (B∗
o = α, E∗

o = E∗
a) ∈

So(D = C∗
a, γo). Moreover, both formulations yield the

same optimal threshold, W p∗
a = W p∗

o , which numeri-

cally coincides with the 5th percentile of the terminal

wealth distribution—confirming the interpretation of

the optimal threshold as VaRα(WT ). Although our ex-

periment proceeds by mapping from PCMa to PCMo,

the reverse direction can be carried out analogously.

Figure 8.1: Terminal wealth distribution
comparison–PCMa vs. PCMo

Finally, as shown in Figure 8.1, the terminal wealth distributions under PCMa and PCMo nearly overlap,

indicating that their investment outcomes are essentially indistinguishable across the entire distribution. This

visual agreement complements the close alignment of all key statistics in Table 8.4, and confirms the theoretical

equivalence established by Lemmas 5.3 and 5.4.

8.2.2 Optimal rebalancing controls

Having shown that both PCMa and PCMo lead to numerically identical investment outcomes, we now

examine their optimal rebalancing controls. Figure 8.2 presents the heat maps of the optimal controls for both

frameworks. A direct side-by-side comparison reveals virtually identical controls under these two frameworks.

These heat maps illustrate the optimal proportion in the risky asset as a function of current real wealth and

time. The optimal proportion can be determined by comparing the color of each point to the legend on the

right-hand side. Redder colors indicate a higher proportion should be invested in the risky asset, while bluer

colors suggest allocating more funds to the risk-free asset.

We observe from those heatmaps in Figure 8.2 that initially the strategies recommend allocating all funds

to the risky asset to maximize return. However, about 15 years later, the investment strategies begin to

depend on the current wealth realized. We also note that a distinct triangular band appears in the second

half of the investment horizon. This band indicates that investors should move their funds from risky to
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(a) PCMa optimal control (b) PCMo optimal control

Figure 8.2: Precommitment optimal control heat maps

risk-free asset as their realized wealth approaches $0.6-0.8 million. Recall that the optimal threshold W p∗ is

around $0.75 million, see Table 8.4. Financially, this threshold can be interpreted as the dollar level below

which investors want to avoid falling. Therefore, if the current wealth is below this threshold, a higher

allocation to risky asset is suggested to pursue the return. In contrast, if the current wealth is already at the

nearby level, funds should be shifted to risk-free asset to ensure that the terminal wealth does not fall below

this amount. The reason for the reallocation to risky asset in the upper right corner is that, in this area,

investors have accumulated $2-3 million, which is far above the threshold level. Thus, they do not worry

about falling into a poor situation and can allocate all funds to the risky asset to pursue enhanced return.

With the same optimal controls Up∗
0,a = Up∗

0,o indicated in Figure 8.2 and the same optimal thresholds

W p∗
a =W p∗

o shown in Table 8.4, under the equivalence relationship presented in Lemmas 5.3 and 5.4, PCMa

and PCMo admit the same optimal threshold/control pair
(
W p∗

a , Up∗
0,a

)
=

(
W p∗

o , Up∗
0,o

)
.

8.2.3 Efficient frontiers

Table 8.4 and Figure 8.2 illustrate the detailed one-to-one correspondence between PCMa and PCMo for

a specific scalarization-optimal set. To demonstrate that this correspondence holds across the full efficient

frontier, we vary the value of γ and repeat the procedure described above. The resulting efficient frontiers

are reported in Figure 8.3.

Although the two efficient frontiers shown in Figure 8.3 appear as mirror images, they plot different risk

measures along the x-axis. In Figure 3(a), risk is quantified by CVaRα(WT ); increasing γa places greater

emphasis on risk reduction, resulting in strategies that increase CVaRα(WT ) (i.e. reduce downside risk) at

the cost of lower expected terminal wealth E[WT ]. This drives the (CVaRα(WT ), E[WT ]) efficient frontier

downward and to the right. In contrast, Figure 3(b) uses bPoED(WT ) as the risk measure; increasing γo places

more emphasis on lowering bPoED(WT )) at the cost of reduced E[WT ], which drives the (bPoED(WT ), E[WT ])

efficient frontier downward and to the left.

In Figure 3(a), each black point generated by PCMa is mapped via Lemma 5.3 into a red point of PCMa.

Conversely, Figure 3(b) starts from PCMo then applies Lemma 5.4 to map to PCMa points. The perfect

overlap of these two frontiers in both mapping directions provides excellent numerical confirmation of the

theoretical equivalence between PCMa and PCMo established in Lemma 5.3 and 5.4.

8.3 Time-consistent Mean–bPoE and Mean–CVaR

8.3.1 Investment outcomes

In the time-consistent setting, Remark 6.1 suggests that no global parameter mapping can preserve the

same efficient frontier and optimal control/threshold structure between the TCMa and TCMb formulations.
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(a) Direction: PCMa to PCMo (b) Direction: PCMo to PCMa

Figure 8.3: Equivalent efficient frontiers of PCMa and PCMo

Nevertheless, we compare the investment outcomes of TCMa and TCMo by first matching their expected

terminal wealth and then comparing other statistics, such as CVaR, bPoE, and percentiles. Specifically, for

TCMo, we adopt the same disaster level D and parameter γo as in PCMo, enabling a direct comparison

between PCMo and TCMo. We then solve the TCMo problem using the proposed numerical scheme to

obtain its expected terminal wealth. For TCMa, we numerically determine the corresponding γa using

Newton’s method to match this value.

Table 8.5: Investment outcomes of TCMat0 (α, γa) and TCMot0 (D, γo). α = 0.05, D = 668.81, γa = 0.4,
γo = 1.6238× 104. Results computed using Monte Carlo simulations with 2.56× 106 paths. Units: thousands
of dollars (real).

E [WT ] CVaRα (WT ) bPoED (WT ) 5th WT 50th WT 95th WT

TCMa 2140.11 476.49 19.00% 575.84 1618.12 5508.10

TCMo 2133.97 672.50 4.62% 717.92 952.42 7176.15

Table 8.5 presents the investment outcomes of TCMa

and TCMo. With the same expected terminal wealth,

TCMa produces a substantially lower CVaRα (WT )

and a much higher bPoED (WT ). Since a larger

CVaRα (WT ) and a smaller bPoED (WT ) indicate a

more favorable outcome, TCMo dominates TCMa in

both the Mean-CVaR and Mean-bPoE sense. Thus,

although the expected terminal wealth is matched, the

differing risk levels imply that the scalarization opti-

mal sets of TCMa and TCMo are not equivalent–as

PCMa and PCMo are in the pre-commitment case–

and no pair of efficient points coincides.

Figure 8.4: Terminal wealth distribution
comparison–TCMa vs. TCMo

We note that among the other statistics reported in Table 8.5, the only metric in which TCMa outperforms

TCMo is the median of terminal wealth. To investigate this further, we compare their terminal wealth density

functions, shown in Figure 8.4. An interesting observation from this figure is that TCMa concentrates more

probability mass around the middle range (e.g., $0.5–2 million), whereas TCMo spreads its density more into

the tails.

This behavior reflects the key difference between these two risk measures. In TCMa, the strategy aims

to minimize the average of the worst α fraction of outcomes at each rebalancing time, hence intuitively

encouraging the portfolio to compress its distribution toward the middle to reduce extreme downside risk,

which in turn elevates the median metric. By contrast, TCMo enforces a fixed disaster level D, ensuring
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the wealth avoids falling below this specific wealth floor, while allowing the remainder of the distribution

(including the median and upper tail) to spread more widely, if needed. Consequently, the portfolio may

accept greater variance in the median or mid-range outcomes so that it can preserve or even enhance both

the upside (e.g. high-end returns) and downside protection. The result is a potentially lower median outcome

than Mean–CVaR, but better tail performance at the extremes (both upside and downside).

This suggests that bPoE is a strictly tail-oriented measure that prioritizes guarding against catastrophic

shortfalls while still permitting meaningful upside exposure–making it especially appealing for investors fo-

cused on long-term wealth security rather than distributional tightness.

Further comparison between the TCMo results in Table 8.5 and the PCMo results in Table 8.4 indicates

that, under the same inputs D and γo, the investment outcomes of TCMo closely resemble those of its

precommitment counterpart. In particular, the resulting CVaRα (WT ) of TCMo is nearly equal to the input

disaster level D, and its bPoED (WT ) is close to the pre-specified confidence level α = 5%. This consistency

across the TCMo and PCMo formulations motivates the next investigation, which focuses on a detailed

heatmap analysis of the TCMo optimal rebalancing control and its comparison with that of PCMo.

8.3.2 Optimal rebalancing controls

Figure 8.5 displays the heat maps of the optimal controls for TCMa and TCMo. In contrast to the pre-

commitment case—where the optimal control heatmaps of PCMa and PCMo are identical—the control

behaviors of TCMa and TCMo differ significantly. We highlight two key observations below.

(a) TCMa optimal control (b) TCMo optimal control

Figure 8.5: Time-consistent optimal control heat maps

� As shown in Figure 5(a), the TCMa control depends primarily on time and exhibits a weak sensitivity to

current wealth. Although our numerical experiment includes annual contributions rather than a lump-sum

investment, the optimal rebalancing control remains nearly wealth-independent, consistent with the scaling

property discussed earlier in Lemma 6.1 and Remark 6.1.

Consequently, the TCMa control resembles a glide-path strategy. It begins with full allocation to the risky

asset to pursue growth, and gradually shifts to the risk-free asset over time to reduce risk exposure. This

mirrors the principle of glide-path design: aggressive investment in early periods followed by systematic

de-risking as the investment horizon shortens.

� The TCMo control shown in Figure 5(b) closely resembles the PCMo control in Figure 2(b). This similarity

supports the idea that TCMo closely mirrors PCMo not only in outcomes but also in the structure of

optimal rebalancing decisions. By contrast, the Mean–CVaR case shows a clear divergence between PCMa

and TCMa, with markedly different control behavior.

To better understand the structural differences between TCMa and TCMo, we now examine the behavior

of their optimal thresholds W c∗, which serve as the key drivers of each strategy.
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8.3.3 Optimal thresholds W c∗

Figure 8.6 displays heat maps of the optimal thresholds W c∗ for TCMa and TCMo. In the TCMa case

(Figure 6(a)),W c∗
a varies substantially, sweeping the full range from $0 to over $3.5 million as wealth increases

from $0 to $3 million and time evolves.

(a) TCMa optimal threshold (b) TCMo optimal threshold

Figure 8.6: Time-consistent optimal threshold heat maps

By contrast, in the TCMo case (Figure 6(b)), more than 80% of the computed values of W c∗
o remain

within a narrow interval around the disaster level, specifically between D ≈ $0.67 million and $0.8 million.

Interestingly, the red region in the bottom-right corner of Figure 6(b) corresponds to W c∗
o = +∞, which

arises when the current wealth is far below the disaster level D. In this case, the bPoE constraint E[WT ] > D

cannot be satisfied, leading to W c∗
o = +∞ and a control of uc∗o = 1. Earlier in the investment horizon—when

time to maturity is longer—the portfolio has more opportunity to satisfy the constraint, resulting in the

triangular transition band observed in the lower-right portion of the heatmap.

Ignoring the singular region discussed above, we observe that W c∗
o remains relatively stable across both

time and wealth. This threshold stability implies that TCMo behaves effectively like a constant-threshold

policy, closely resembling its precommitment counterpart PCMo. The region with W c∗
o = +∞ has little

practical impact: in such low-wealth scenarios, both PCMo and TCMo allocate all wealth to the risky asset

anyway. In contrast, the wide variation in W c∗
a under TCMa leads to rebalancing decisions that depart

significantly from the constant-threshold structure of PCMa.

Given that PCMo and TCMo produce remarkably similar rebalancing controls and investment outcomes,

investors may interchange the precommitment and time-consistent solutions with minimal loss of accuracy.

This behavioral similarity stands in sharp contrast to the Mean–CVaR case, where time consistency leads

to counterintuitive, wealth-independent controls that diverge substantially from their precommitment coun-

terparts. The key difference lies in the structural role of the disaster level D: by fixing D from the outset,

bPoE preserves a stable tail-risk objective across time, thereby avoiding the shifting risk preferences and

unintuitive rebalancing behavior commonly caused by time-consistency constraints. In this sense, bPoE not

only offers intuitive tail protection but also resolves the well-known dynamic inconsistency challenges that

arise in multi-period mean–risk portfolio optimization.

9 Conclusion and future work
This paper investigates the use of bPoE as a viable and intuitive alternative to CVaR in multi-period port-

folio optimization for Defined Contribution plans. We formulate both pre-commitment and time-consistent

Mean–bPoE and Mean–CVaR problems under realistic investment constraints and jump-diffusion dynamics,

and develop a provably convergent numerical framework capable of solving all formulations.
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In the pre-commitment setting, we establish a one-to-one correspondence between the scalarization op-

timal sets of Mean–bPoE and Mean–CVaR. Each pair of corresponding frontier points is attained by the

same optimal threshold and rebalancing control, allowing bPoE to be seamlessly integrated into existing

CVaR-based workflows.

In the time-consistent setting, however, this equivalence no longer holds. Mean–CVaR strategies often

exhibit counterintuitive, wealth-independent controls due to dynamic threshold re-optimization. By contrast,

Mean-bPoE maintains a fixed disaster level, resulting in stable shortfall thresholds and wealth-dependent

rebalancing behavior that better aligns with investor preferences for a minimum acceptable terminal wealth.

As a result, time-consistent Mean–bPoE closely resembles its pre-commitment counterpart—both in control

structure and investment outcomes—and consistently delivers superior tail performance across a range of key

metrics.

These findings show that bPoE retains the computational tractability of CVaR while offering practical

advantages for long-horizon retirement planning. Its stable threshold and control structure, intuitive interpre-

tation, and ability to resolve key limitations of time-consistent Mean–CVaR formulation make it a compelling

risk measure for DC lifecycle portfolio design.

Future work may extend the bPoE framework to incorporate interim withdrawals, inflation-linked liabil-

ities, or stochastic mortality, to assess its robustness in more realistic lifecycle settings.
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Appendices

A Proof of Proposition 5.1
Consider a fixed control U0 ∈ A. Define the function

f(W p
o ;U0) = EX+

0 ,t+0
U0

[
h(W p

o ;WT )

∣∣∣∣X−
0 = (s0, b0)

]
, (A.1)

where h(W p
o ;w) = γmax

(
1− w−D

W p
o −D

, 0
)
− w. Clearly, h(W p

o ;w) is continuous in W
p
o for each fixed w. Note

that F (W p
o ) = infU0∈A f(W

p
o ;U0).

We now show that f(W p
o ;U0) is continuous in W p

o for this fixed control U0. Specifically, for any fixed

Ŵo ∈ (D,∞), and any sequence {W p (n)
o } with W

p (n)
o > D for all n and W

p (n)
o → Ŵo, we will prove

lim
n→∞

f
(
W p (n)

o ;U0

)
= f

(
Ŵo;U0

)
. (A.2)

Equivalently, we will show

lim
n→∞

EX+
0 ,t+0

U0

[
h
(
W p (n)

o ;WT (ω)
) ∣∣ ·

]
= EX+

0 ,t+0
U0

[
h
(
Ŵo;WT (ω)

) ∣∣ ·
]
. (A.3)
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Once (A.3) is established, by the compactness of A and the continuity argument in parametric optimization

[12], we conclude that F (W p
o ) = infU0∈A f(W

p
o ;U0) is also continuous for all W p

o > D.

It remains to prove (A.3), which we will do using a dominated convergence argument. In the remainder

of the proofs, let C and C ′ denote bounded constants that potentially depend only on the fixed parameters

Ŵo, γ, and D, and are independent of n and w. Their values may vary from line to line.

Let δ = 1
2

(
Ŵo − D

)
> 0. For sufficiently large n, say n ≥ N∗, W

p (n)
o ∈ [Ŵo − δ, Ŵo + δ ] ⊂ (D,∞).

Thus, for n ≥ N∗, we have
W p (n)

o −D ≥ Ŵo −D − δ = 1
2 (Ŵo −D). (A.4)

In addition,
W p (n)

o ≤ Ŵo + δ = Ŵo +
1
2 (Ŵo −D) ≤ 2 (Ŵo + |D|). (A.5)

Now, we bound h(W
p (n)
o ;w) for sufficiently large n, i.e. n ≥ N∗, so that W

p (n)
o ∈ [Ŵo − δ, Ŵo + δ ].

� If w ≥W
p (n)
o : we have h(W

p (n)
o ;w) = γ · 0− w = −w, so |h(W p (n)

o ;w)| ≤ |w|.

� If w < W
p (n)
o : max

(
1− w−D

W
p (n)
o −D

, 0
)
= 1− w−D

W
p (n)
o −D

, so h
(
W

p (n)
o ;w

)
= γ

(
W

p (n)
o −w

W
p (n)
o −D

)
− w.

By (A.4), for sufficiently large n, the denominator (W
p (n)
o −D) ≥ 1

2 (Ŵo−D). The numerator (W
p (n)
o −

w) ≤ (W
p (n)
o + |w|). Thus,∣∣∣γ W

p (n)
o −w

W
p (n)
o −D

− w
∣∣∣ ≤ γ W

p (n)
o +|w|

1
2 (Ŵo−D)

+ |w|
(A.5)

≤ 4γ
(
Ŵo+|D|+|w|

)
Ŵo−D

+ |w| (ii)= C + C ′ |w|+ |w|.

Hence, in either of the two cases, we can conclude that ∀n ≥ N∗ and w ≥ 0∣∣h(W p (n)
o ;w

)∣∣ ≤ C + (C ′ + 1) |w|.

For ω ∈ Ω, we define B(ω) = C + (C ′ + 1)WT (ω). Hence, for n ≥ N∗,
∣∣h(W p (n)

o ;WT (ω))
∣∣ ≤ B(ω). By

Remark 4.1, EX+
0 ,t+0

U0

[
WT

∣∣ ·] < Emax, so the random variable B(ω) is integrable.

By the Dominated Convergence Theorem and the pointwise continuity in Wo, we conclude that

lim
n→∞

EX+
0 ,t+0

U0

[
h
(
W p (n)

o ;WT (ω)
) ∣∣ ·

]
= EX+

0 ,t+0
U0

[
lim
n→∞

h
(
W p (n)

o ;WT (ω)
) ∣∣ ·

]
= EX+

0 ,t+0
U0

[
h
(
Ŵo;WT (ω)

) ∣∣ ·
]
.

This is (A.3). In conclusion, for each fixed U0 ∈ A, the function f(W p
o ;U0) is continuous in W

p
o .

B Proof of Lemma 5.1
For brevity, we will write F (W p

o ), with the dependence on the initial state (s0, b0) understood implicitly. Let

f(W p
o ;U0) be as in (A.1), so F (W p

o ) = infU0∈A f(W
p
o ;U0).

First, we examine the behavior of F (W p
o ) as W

p
o → D+ and W p

o → ∞. As W p
o → D+, the term 1

W p
o −D

blows up, causing F (W p
o ) → +∞.

For W p
o → +∞, the term max

(
1− WT−D

W p
o −D

, 0

)
→ 1, and the function F (W p

o ) becomes

lim
W p

o →+∞
F (W p

o ) = inf
U0∈A

EX+
0 , t+0

U0

[
γ −WT

∣∣∣∣X−
0 = (s0, b0)

]
. (B.1)

The only target for optimization problem (B.1) is to maximize the expected return, so the optimal control is

the strategy that fully invests in the risky asset, as noted in Remark 4.1. Denote by Û0 the optimal control

in this case. Thus, recalling Emax from (4.3), we have

lim
W p

o →+∞
F (W p

o ) = γ − Emax.

However, as noted in Remark 3.1, there exists a threshold value W ′
o = VaRB′(WT ; Û0) ∈ (D,+∞), where

B′ = EX+
0 ,t+0

Û0

[
max

(
1− WT−D

W ′
o−D , 0

)]
∈ (0, 1), such that

F
(
W ′

o

)
≤ f

(
W ′

o; Û0

)
= γB − Emax < γ − Emax. (B.2)

Therefore, we show that W p
o → +∞ can not be the minimizer.
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By Proposition 5.1, F (W p
o ) is continuous on (D,∞). Combined with the boundary behavior, where

F (W p
o ) → +∞ as W p

o → D+ and no further decrease is possible for F (W p
o ) as W

p
o → ∞, we conclude that

infW p
o >D F (W

p
o ) is finite and is attained at some finite point W p∗

o (s0, b0) ∈ (D,∞).

C Proof of Proposition 5.2
From (5.6) and (5.3), the pre-commitment value function becomes

V p
o

(
0,W0, t

−
0

)
= inf

U0∈A
EX+

0 ,t+0
U0

[
γmax

(
1− WT −D

W p∗
o (0,W0)−D

, 0

)
−WT

∣∣∣∣X−
0 = (0,W0)

]
. (C.1)

Meanwhile, for TCEQt0(D, γ;W
p∗
o (0,W0)) at t0, the value function reads

Q̂c
o(0,W0, tm) := inf

U0

{
EX+

0 ,t+0
Um

[
max(Ŵo −WT , 0)− (Ŵo −D) WT

γ

∣∣∣∣X−
0 = (0,W0)

]}
. (C.2)

Since γ > 0, and Ŵo − D > 0, any optimal control Up∗
0,o for (C.1) also minimizes (C.2), and vice versa.

Moreover, (C.2) is solvable via standard dynamic programming over the controls. Hence, Up∗
0,o itself is time-

consistent. This completes the proof.

D Proof of Lemma 5.2
For each fixed admissible control U0 ∈ A, we define

fa
(
W p

a ;U0

)
= EX+

0 , t+0
U0

[
γ
(
W p

a + 1
α min(WT −W p

a , 0)
)
+WT

∣∣ ·
]
.

A standard dominated convergence argument (analogous to Proposition 5.1 for the pre-commitment Mean–bPoE

case) shows that fa(W
p
a ;U0) is continuous in W

p
a . By compactness of A and parametric optimization results

[12], the function Fa(W
p
a ) = supU0∈A fa(W

p
a ; U0) is continuous for all W

p
a in [0,∞).

We next verify that Fa(W
p
a ) cannot blow up as W p

a → 0+ or W p
a → ∞. As W p

a → 0+, fa behaves like

EU0 [γ min(WT , 0)/α+WT |·]. SinceWT is integrable (Remark 4.2), this expectation is finite, so no unbounded

positive growth occurs.

For the case W p
a → ∞, for each fixed W p

a , we partition the sample space Ω into

Ω1(W
p
a ) = {ω ∈ Ω|WT (ω) ≤W p

a } and Ω2(W
p
a ) = {ω ∈ Ω|WT (ω) > W p

a }.

On Ω1(W
p
a ), we have WT ≤ W p

a , so W
p
a + 1

α min(WT −W p
a , 0) = W p

a

(
1 − 1

α

)
+ WT

α . Since 1 − 1
α < 0,

pushing W p
a larger actually lowers this part.

On Ω2(W
p
a ), WT > W p

a , so min(WT −W p
a , 0) = 0. Therefore,

fa
(
W p

a ;U0

)
= EX+

0 , t+0
U0

[ γ W p
a + WT | · ] =

∫
{WT (ω)>W p

a }

[
γ W p

a +WT (ω)
]
dP(ω)

= γ W p
a P

(
WT > W p

a

)
+

∫
{WT (ω)>W p

a }
WT (ω) dP(ω).

(i)

≤ γ W p
a

EX+
0 , t+0

U0
[WT ]

W p
a

+ EX+
0 , t+0

U0

[
WT I{WT>W p

a }
]

(ii)
= γEX+

0 , t+0
U0

[WT ] +

∫ ∞

W p
a

P(WT > u)du+W p
aP(WT > W p

a ).

Here, (i) follows from Markov’s inequality, while (ii) is due to Fubini’s theorem. Since WT has finite ex-

pectation, standard tail-integration arguments imply that, as W p
a → ∞, both

∫∞
W p

a
P(WT > u)du and and

W p
aP(WT > W p

a ) vanish. Therefore, in all cases, no blow-up can occur as W p
a → ∞.

In summary, Fa(W
p
a ) remains finite and is continuous on [0,∞), and it does not blow up at either 0 or

+∞. Therefore, supW p
a≥0 Fa(W

p
a ) must be attained at some finite W p∗

a ∈ [0,∞). This completes the proof.

E Proof of Lemma 5.3
By Lemma 4.2, the scalarization optimal set Sa(α, γa) for the Mean–CVaR problem is nonempty. As such,

the existence of a point
(
C∗
a, E∗

a

)
∈ Sa(α, γa) is guaranteed. Furthermore, the associated optimal threshold
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W p∗
a exists by Lemma 5.2. Therefore, γo given by (5.10) is well-defined.

Let Up∗
0,a denote the optimal control associated with

(
C∗
a, E∗

a

)
. Then using definitions in (4.7), the point(

C∗
a, E∗

a

)
can be expressed in terms of W p∗

a and Up∗
0,a as follows:

C∗
a =W p∗

a + 1
αEUp∗

0,a
[min (WT −W p∗

a , 0)] , and E∗
a = EUp∗

0,a
[WT ] . (E.1)

In order to prove that
(
B∗
o , E∗

o

)
=

(
α, E∗

a

)
is in So

(
C∗
a, γo

)
, by definition of the Mean–bPoE scalarization

optimal set given in (4.5), we need to show

γoα− E∗
a = inf

W p
o >C∗

a ,
U0

{
γa(W

p∗
a −C∗

a)
α EU0

[
max

(
1− WT−C∗

a

W p
o −C∗

a
, 0

)]
− EU0 [WT ]

}
. (E.2)

We first carry out further manipulations on both sides of (E.2). Using (5.10) and the formula for C∗
a in (E.1)

on the lhs of (E.2), we obtain

lhs of (E.2) = γa(W
p∗
a − C∗

a )− E∗
a

= −γa
α EUp∗

0,a
[min (WT −W p∗

a , 0)]− E∗
a . (E.3)

Simplifying the max(·, 0) term on the rhs of (E.2), noting W p
o − C∗

a > 0, gives

rhs of (E.2) = inf
W p

o >C∗
a ,

U0

{
−γa(W

p∗
a −C∗

a)

α(W p
o −C∗

a)
EU0 [min (WT −W p

o , 0)]− EU0 [WT ]

}
. (E.4)

(i)
=− sup

W p
o >C∗

a ,
U0

{
γa(W

p∗
a −C∗

a)

α(W p
o −C∗

a)
EU0 [min (WT −W p

o , 0)] + EU0 [WT ]

}
. (E.5)

Here, (i) is due to the identity −sup
z∈X

{f(z)} = inf
z∈X

{−f(z)} for any function f and any set X .

By noting that, with W p
o = W p∗

a and U0 = Up∗
0,a in (E.4), we obtain (E.3) as a candidate for the infimum

in (E.4). This leads to the following inequality

inf
W p

o >C∗
a ,

U0

{
−γa(W

p∗
a −C∗

a)

α(W p
o −C∗

a)
EU0 [min (WT −W p

o , 0)]− EU0 [WT ]

}
≤ −γa

α EUp∗
0,a

[min (WT −W p∗
a , 0)] − E∗

a .

This shows that the rhs of (E.2) is less than or equal to its lhs.

To show the reverse inequality, note that the right-hand side of (E.2) equals the right-hand side of (E.5).

Therefore, noting γaW
p∗
a is a constant, it suffices to show

rhs of (E.5) ≥ lhs of (E.2), or equivalently, − (rhs of (E.5)) + γaW
p∗
a ≤ − (lhs of (E.2)) + γaW

p∗
a .

That is, with the lhs of (E.2) given in (E.3), we will show

sup
W p

o >C∗
a ,

U0

{
γaW

p∗
a + γa(W

p∗
a −C∗

a)

α(W p
o −C∗

a)
EU0 [min (WT −W p

o , 0)] + EU0 [WT ]

}

≤ γaW
p∗
a + γa

α EUp∗
0,a

[min (WT −W p∗
a , 0)] + E∗

a .

(E.6)

Starting from the lhs of (E.6), we have

lhs of (E.6)
(i)

≤ sup
W p

o ,U0

{
γaW

p
o + γa(W

p
o −C∗

a)

α(W p
o −C∗

a)
EU0 [min (WT −W p

o , 0)] + EU0 [WT ]

}
(ii)
= sup

W p
o ,U0

{
γaW

p
o + γa

α EU0 [min (WT −W p
o , 0)] + EU0 [WT ]

}
(iii)
= γaW

p∗
a + γa

α EUp∗
0,a

[min (WT −W p∗
a , 0)] + E∗

a ,

which is the inequality (E.6) we need to prove. Here, in (i), the inequality arises because W p∗
a is replaced

by a free variable W p
o , and the supremum is taken over a larger set for W p

o ; (ii) follows from simplification;

and (iii) is due to the fact that W p
o is a dummy variable for the optimization, noting Up∗

0,a and W p∗
a are the

optimal control/threshold pair associated with
(
C∗
a, E∗

a

)
. This concludes the proof.
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F Proof of Lemma 5.4

By Lemma 4.1, the existence of a point
(
B∗
o , E∗

o

)
∈ So

(
D, γo

)
is guaranteed. Furthermore, the associated

optimal threshold W p∗
o > D exists by Lemma 5.1. Therefore, γa given by (5.11) is well-defined.

Let Up∗
0,o denote the optimal control associated with

(
B∗
o , E∗

o

)
. Then using definitions in (4.1), the point(

B∗
o , E∗

o

)
can be expressed in terms of W p∗

o and Up∗
0,o as follows:

B∗
o = EUp∗

0,o

[
max

(
1− WT−D

W p∗
o −D

, 0
)]

= −
EUp∗

0,o
[min(WT−W p∗

o , 0)]

W p∗
o −D

, and E∗
o = EUp∗

0,o
[WT ] . (F.1)

From (F.1), we can express the disaster level D in terms of W p∗
o , B∗

o , and the expectation as

D =W p∗
o + 1

B∗
o
EUp∗

0,o
[min (WT −W p∗

o , 0)] . (F.2)

In order to prove that
(
C∗
a, E∗

a

)
=

(
D, E∗

o

)
belongs to Sa

(
B∗
o , γa

)
, by definition (4.10), we need to verify

γaD + E∗
o = sup

W p
a , U0

{
γaW

p
a +

γa
B∗
o

EU0 [min (WT −W p
a , 0)] + EU0 [WT ]

}
. (F.3)

The lhs of (F.3) can be written as

γaD + E∗
o = γaW

p∗
o +

γa
B∗
o

EUp∗
0,o

[min (WT −W p∗
o , 0)] + E∗

o . (F.4)

By noting that with W p
a =W p∗

o and U0 = Up∗
0,o, we obtain a candidate for the supremum of rhs of (F.3). This

shows that

γaD + E∗
o ≤ sup

W p
a , U0

{
γaW

p
a +

γa
B∗
o

EU0 [min (WT −W p
a , 0)] + EU0 [WT ]

}
. (F.5)

To establish the reverse inequality, we note that the rhs of (F.3) can be written as

sup
W p

a , U0

{
γaW

p
a +

γa
B∗
o

EU0 [min (WT −W p
a , 0)] + EU0 [WT ]

}
= sup

W p
a , U0

{
γoB∗

oW
p
a

W p∗
o −D

+
γo

W p∗
o −D

EU0 [min (WT −W p
a , 0)] + EU0 [WT ]

} (
γa =

γoB∗
o

W p∗
o −D

)
= sup

W p
a , U0

{
γoB∗

oW
p
a

W p∗
o −D

− γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
+ EU0 [WT ]

}
= − inf

W p
a , U0

{
− γoB∗

oW
p
a

W p∗
o −D

+ γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
− EU0 [WT ]

}
. (F.6)

And lhs of (F.3) can be written as

γaD + E∗
o =

γoB∗
oD

W p∗
o −D

+ E∗
o (F.7)

So our goal is to show

γaD + E∗
o ≥ sup

Wp
a , U0

{
γaW

p
a +

γa
B∗
o

EU0 [min (WT −W p
a , 0)] + EU0 [WT ]

}
γoB∗

oD

W p∗
o −D

+ E∗
o ≥ − inf

Wp
a , U0

{
− γoB∗

oW
p
a

W p∗
o −D

+ γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
− EU0

[WT ]

}
− γoB∗

oD

W p∗
o −D

− E∗
o ≤ inf

Wp
a , U0

{
− γoB∗

oW
p
a

W p∗
o −D

+ γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
− EU0

[WT ]

}
γoB∗

o (W
p∗
o −D)

W p∗
o −D

− E∗
o ≤ inf

Wp
a , U0

{
γoB∗

o (W
p∗
o −W p

a )

W p∗
o −D

+ γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
− EU0

[WT ]

}
γoB∗

o − E∗
o ≤ inf

Wp
a , U0

{
γoB∗

o (W
p∗
o −W p

a )

W p∗
o −D

+ γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
− EU0

[WT ]

}
(F.8)
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Now we focus on rhs of (F.8),

inf
W p

a , U0

{
γoB∗

o

(
W p∗

o −W p
a

)
W p∗

o −D
+ γoEU0

[
max

(
W p

a −D

W p∗
o −D

− WT −D

W p∗
o −D

, 0

)]
− EU0 [WT ]

}
(i)

≥ inf
W p

a , U0

{
γoB∗

o (W
p
a −W p

a )

W p∗
o −D

+ γoEU0

[
max

(
W p

a −D

W p
a −D

− WT −D

W p∗
o −D

, 0

)]
− EU0 [WT ]

}
= inf

U0

{
γoEU0

[
max

(
1− WT −D

W p∗
o −D

, 0

)]
− EU0 [WT ]

}
(ii)

≥ inf
W p

o >D, U0

{
γoEU0

[
max

(
1− WT −D

W p
o −D

, 0

)]
− EU0 [WT ]

}
(iii)
= γoB∗

o − E∗
o .

Here, (i) arises because W p∗
o is replaced by a free variable W p

a ; (ii) results from replacing W p∗
o by a free

variable W p
o > D. Recall W p∗

o > D, so a free variable W p
o > D indeed provides a larger range; (iii) is due to

the fact that W p∗
o and U∗

0,o are the optimal solution associated with (B∗
o , E∗

o ). This concludes the proof.

G An infinite series representation of g(y,∆t)

Under the log-transformation, the jump-diffusion dynamics in (2.8)—where log(ξ) follows an asymmetric

double-exponential distribution with density given in (2.7)—admit an infinite series representation for the

conditional transition density g(y,∆t) [60][Corollary 3.1], as presented below. Define

α =
σ2

2
∆t, β =

(
µ− λκ− σ2

2

)
∆t, θ = −λ∆t.

Then
g(y,∆t) = g0(y,∆t) +

∞∑
ℓ=1

∆gℓ(y,∆t), (G.1)

where g0(y,∆t) =
exp

(
θ− (β+y)2

4α

)
√
4πα

, and the remaining terms ∆gℓ(y,∆t) are given by:

gℓ(y,∆t) =
eθ√
4πα

(λ∆t)ℓ

ℓ!

[
ℓ∑

k=1

Qℓ,k
1

(
η1

√
2α

)k
eη1 (β+y)+η21αHhk−1

(
η1
√
2α+

β + y√
2α

)

+

ℓ∑
k=1

Qℓ,k
2

(
η2

√
2α

)k
e−η2 (β+y)+η22αHhk−1

(
η2
√
2α− β + y√

2α

)]
, (G.2)

where Qℓ,k
1 , Qℓ,k

2 and Hhk are defined as follows

Qℓ,k
1 =

ℓ−1∑
i=k

(
ℓ− k − 1

i− k

)(
ℓ

i

)(
η1

η1 + η2

)i−k ( η2
η1 + η2

)ℓ−i

piup(1− pup)
ℓ−i, 1 ≤ k ≤ ℓ− 1,

Qℓ,k
2 =

ℓ−1∑
i=k

(
ℓ− k − 1

i− k

)(
ℓ

i

)(
η1

η1 + η2

)ℓ−i( η2
η1 + η2

)i−k

pℓ−i
up (1− pup)

i, 1 ≤ k ≤ ℓ− 1, (G.3)

where Qℓ,ℓ
1 = pℓup and Qℓ,ℓ

2 = (1− pup)
ℓ, and

Hhk(x) =
1

k!

∫ ∞

x
(z − x)k e−

1
2
z2dz, with Hh−1(x) = e−x2/2, and Hh0(x) =

√
2πNorCDF(−x). (G.4)

Here, NorCDF denotes CDF of standard normal distribution N (0, 1). For this case, we note that function

Hhℓ(·) can be evaluated very efficiently using the standard normal density function and standard normal

distribution function via the three-term recursion [1]

kHhk(x) = Hhk−2(x)− xHhk−1(x), k ≥ 1.

For computational purposes, the infinite series in (G.1) is truncated afterNg terms, yielding the approximation

g(y,∆t;Ng). As Ng → ∞, the approximation becomes exact. For finite Ng, however, truncation introduces
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an error. As shown in [60], this truncation error can be bounded by

|g(y,∆t)− g(y,∆t;Ng)| ≤
(λ∆t)Ng+1

(Ng + 1)!

1√
2πσ2∆t

. (G.5)

Therefore, from (G.5), as Ng → ∞, we have (λ∆t)Ng+1

(Ng+1)! → 0, and the truncated approximation g(y,∆t;Ng)

converges to the exact density g(y,∆t). For a given tolerance ϵg > 0, one can choose Ng such that the

truncation error satisfies |g(y,∆t)− g(y,∆t;Ng)| < ϵg. This can be ensured by requiring Ng to satisfy

(λ∆t)Ng+1

(Ng + 1)!
≤ ϵg

√
2πσ2∆t. It then follows that if ϵg = O(h), we can choose Ng = O(ln(h−1)) as h→ 0.

H Proof of Theorem 7.1

We now present the convergence proof for the pre-commitment Mean–bPoE/CVaR formulations.

H.1 Value function convergence

We first establish the convergence of the value function: lim
h→0

∣∣V p
h (s0, b0, t

−
0 ) − V p(s0, b0, t

−
0 )

∣∣ = 0. The proof

consists of two parts: we first establish a convergence bound for the inner optimisation problem at a fixed

discrete threshold, and then analyse the convergence of the outer optimisation at time t0 as h→ 0.

H.1.1 Inner optimization

For now, we fixW p ∈ Γ and consider the inner control problem, which corresponds to a portfolio optimization

over the bounded domain Ω× T ∪ {T}. We show that the scheme for this inner problem satisfies three key

properties: ℓ∞-stability, monotonicity, and local consistency. To facilitate the analysis, we reformulate both

the pre-commitment Mean–bPoE/CVaR problem in Definition 7.1 and the numerical scheme (7.15)–(7.21),

including both interior and boundary equations, each in a unified operator form.

For notational convenience, let x̂ = (y, b,W p) ∈ Ω × Γ and x̂m = (x̂, tm) with tm ∈ T ∪ {tM = T}. For

fixed W p ∈ Γ, we denote by V̂ p(W p, tm+1) the function V̂ p(y, b,W p, tm+1). When clear from context, we

write V̂ p(y, b, ·, tm+1) or V̂
p(·, tm+1) in place of the full expression.

Given a state (y, b) and rebalancing control um ∈ Z, we recall the definitions y+ = y+(y, b, um) and

b+ = b+(y, b, um) from (7.2). Including both interior and boundary equations, we now express the pre-

commitment Mean–bPoE/CVaR problem at the reference point x̂m (with fixed W p) using the operator D(·)
as follows:

V̂ p
(
x̂m

)
= D

(
x̂m, V̂ p(·, t−m+1)

)
=


inf

um∈Z
V̂ (y+(y, b, um), b+(y, b, um), ·, t+m) , Mean–bPoE,

sup
um∈Z

V̂ (y+(y, b, um), b+(y, b, um), ·, t+m) , Mean–CVaR.
(H.1)

In both cases, the quantity V̂ ∈ {V̂ p
o , V̂

p
a } denotes the appropriate value function, and is given as follows:

V̂ (y+(y, b, um), b+(y, b, um), ·, t+m) = . . .

. . . =


V̂
(
y+(y, ber∆t, um), b+(y, ber∆t, um), ·, t−m+1

)
(y, b) ∈ Ωymin ,∫ y†max

y†min

V̂
(
y+(y′, ber∆t, um), b+(y, ber∆t, um), ·, t−m+1

)
g(y − y′,∆t) dy′ (y, b) ∈ Ωin,

eµ∆t V̂
(
y+(y, ber∆t, um), b+(y, ber∆t, um), ·, t−m+1

)
(y, b) ∈ Ωymax .

(H.2a)

(H.2b)

(H.2c)

Let Ωh × Γh denote the computational grid parameterized by h. Let Ωh
in denote the interior sub-grid, and

Ωh
ymin

, Ωh
ymax

the boundary sub-grids in y. Including both interior and boundary equations, we now write the

numerical scheme at the reference node x̂k,mn,j = (yn, bj ,Wk, tm) ∈ Ωh × Γh × {tm} in operator form via Dh(·)
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as follows:

V̂ p
h

(
x̂k,mn,j

)
= Dh

(
x̂k,mn,j ,

{
V̂ p
h

(
x̂
k,(m+1)−
l,j

)}N†/2

l=−N†/2

)

=


min
{ui}

V̂h (y
+(yn, bj , ui), b

+(yn, bj , ui), ·, t+m) , Mean–bPoE,

max
{ui}

V̂h (y
+(yn, bj , ui), b

+(yn, bj , ui), ·, t+m) , Mean–CVaR.
(H.3)

In both cases, the quantity V̂h ∈ {V̂ p
o,h, V̂

p
a,h} denotes the appropriate discrete approximation, and is defined

as V̂h (y
+(yn, bj , ui), b

+(yn, bj , ui), ·, t+m) = . . .

. . . =



V̂h
(
y+(yn, bje

r∆t, ui), b
+(yn, bje

r∆t, ui), ·, t−m+1

)
(yn, bj) ∈ Ωh

ymin
,

N†/2∑
l=−N†/2

φl g(yn − yl,∆t)V̂h
(
y+(yl, bje

r∆t, ui), b
+(yn, bje

r∆t, ui), ·, t−m+1

)
(yn, bj) ∈ Ωh

in,

eµ∆tV̂h
(
y+(yn, bje

r∆t, ui), b
+(yn, bje

r∆t, ui), ·, t−m+1

)
(yn, bj) ∈ Ωh

ymax
,

(H.4a)

(H.4b)

(H.4c)

where y+(y′, b′, um) and b+ = b+(y′, b′, um) are given by (7.2).

Let ϵg denote the truncation error bound in approximating the transition density function g(·,∆t) by its

Ng-term series expansion; that is, |g(·,∆t) − g(·,∆t;Ng)| < ϵg. Suppose linear interpolation is used for the

intervention step. Also suppose that as h→ 0, N †
y , Nb, Nw, Nu, Ng,→ ∞. Following the general framework of

convergence proofs for numerical approximations of solutions in the stochastic control setting (see [5, 32]), we

show that our scheme, for each fixed Wk ∈ Γh, is ℓ∞-stable, locally consistent, and monotone. Specifically,

� ℓ∞-stability: the scheme (7.15)–(7.21) for V p
h (·) satisfies the bound:

sup
h>0

∥∥V̂ p
h (Wk, tm)

∥∥
∞ <∞, ∀tm ∈ T ∪ {T}, as h→ 0. (H.5)

Here, we have
∥∥V̂ p

h (Wk, tm)
∥∥
∞ = maxn,j |V̂ p

h

(
x̂k,mn,j

)
|, where (yn, bj ,Wk) ∈ Ωh × Γh and Wk is fixed.

� Local consistency: For any smooth test function ϕ ∈ C∞(Ω ∪ Ωbmax × [0, T ]) for a sufficiently small h, χ,

Dh

(
x̂k,mn,j ,

{
V̂ p
h

(
x̂
k,(m+1)−
l,j

)
+ χ

}N†/2

l=−N†/2

)
= D

(
x̂k,mn,j , V̂

p(·, t−m+1)
)
+ E

(
x̂k,mn,j , ϵg, h

)
+O (χ+ h) , (H.6)

where E(x̂k,mn,j , ϵg, h) → 0 as ϵg, h→ 0.

� Monotonicity: the numerical scheme Dh(·) satisfies

Dh

(
x̂k,mn,j ,

{
φk,m+1
l,j

}N†/2

l=−N†/2

)
≤ Dh

(
x̂k,mn,j ,

{
ψk,m+1
l,j )

}N†/2

l=−N†/2

)
(H.7)

for bounded discrete data sets
{
φk,m+1
l,j

}
and

{
ψk,m+1
l,j

}
having

{
φk,m+1
l,j

}
≤

{
ψk,m+1
l,j

}
, where the inequal-

ity is understood in the component-wise sense.

The ℓ∞-stability follows from a maximum-principle argument, which applies since Ω is bounded, together with

the monotonicity of linear interpolation, which is preserved under the scheme’s min /max operations. Mono-

tonicity of the scheme itself follows from this same interpolation structure. Local consistency is established

via standard interpolation error analysis, Taylor expansion of the smooth test function, truncation error from

the infinite series, and compactness of the admissible control set Z. For further details, we refer the reader

to [60], which develops similar techniques in the context of pre-commitment Mean–Variance optimization.

Convergence bound for the inner problem: We now state a convergence bound for the inner problem

using h-indexed notation to reflect the role of mesh refinement. A generic grid point in Ωh
in is denoted by

(yh, bh), and we write Wh ∈ Γh to emphasize the h-dependence of the discretized threshold. The following

bound holds for the inner optimization problem at fixed Wh ∈ Γh:
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Let (y′, b′) ∈ Ω be arbitrary. Suppose that linear interpolation is used for intervention step. Under the

assumption that ϵg → 0 as h → 0, we have: for each m ∈ {M − 1, . . . , 0} and any sequence {(yh, bh)}
with (yh, bh) ∈ Ωh

in and (yh, bh) → (y′, b′) as h→ 0,∣∣V̂ p
h (yh, bh,Wh, tm)− V̂ p(y′, b′,Wh, tm)

∣∣ ≤ χm
h , χm

h is bounded ∀h > 0 and χm
h → 0 as h→ 0. (H.8)

The result in (H.8) can be proved using ℓ∞-stability (H.5), local consistency (H.6), monotonicity (I.5), and

backward induction on m.

H.1.2 Outer optimization at time t0

At time t0, for each fixed W p ∈ Γ (resp. Wh ∈ Γh), we define

F (W p)
(
resp. Fh(Wh)

)
:=

 V̂ p
o (y0, b0,W

p
o , t0)

(
resp. V̂ p

o,h(y0, b0,Wh, t0)
)

Mean–bPoE,

−V̂ p
a (y0, b0,W

p
a , t0)

(
resp. − V̂ p

a,h(y0, b0,Wh, t0)
)

Mean–CVaR.
(H.9)

We include the minus sign in the Mean–CVaR case to unify both problems under a minimization framework

for the outer optimization. We note that the function F is continuous in W p. Moreover, since the problem

is localized, F (W p) remains finite on Γ. For any W p ∈ Γ, the triangle inequality yields:∣∣Fh(Wh)− F (W p)
∣∣ ≤ ∣∣Fh(Wh)− F (Wh)

∣∣+ ∣∣F (Wh)− F (W p)
∣∣ (i)

≤ χh +
∣∣F (Wh)− F (W p)

∣∣ (ii)−−−→
h→0

0. (H.10)

Here, (i) follows from the definitions of F and Fh, and from the bound (H.8) applied at t0, which gives∣∣Fh(Wh) − F (Wh)
∣∣ ≤ χh, where χh → 0 as h → 0. The limit in (ii) is due to the denseness of Γh in Γ as

h → 0: for any W p ∈ Γ, there exists a sequence {Wh} with Wh ∈ Γh and Wh → W p as h → 0, and since F

is continuous, it follows that limh→0 F (Wh) = F (W p).

We now show
lim
h→0

min
Wh∈Γh

Fh(Wh) = min
W p∈Γ

F (W p) (H.11)

by establishing the corresponding upper and lower bounds:

lim sup
h→0

min
Wh∈Γh

Fh(Wh) ≤ min
W p∈Γ

F (W p), and lim inf
h→0

min
Wh∈Γh

Fh(Wh) ≥ min
W p∈Γ

F (W p). (H.12)

Once (H.11) is established, the convergence of the value function follows:

lim
h→0

∣∣V p
h (s0, b0, t

−
0 )− V p(s0, b0, t

−
0 )

∣∣ = 0.

We first show the lim sup portion of (H.12). Pick an arbitrary ε > 0 and let ρ = minW∈Γ F (W ). By definition

of min, there exists W ′ ∈ Γ with F (W ′) ≤ ρ + ε
2 . Next, because Γh → Γ as h → 0, choose Wh ∈ Γh so

|Wh −W ′| → 0. By continuity, F (Wh) ≤ F (W ′) + ε
2 . Recalling the inner problem convergence bound (H.8),

we have |Fh(Wh)− F (Wh)| ≤ χh, where χh → 0 as h→ 0. Then

min
Wi∈Γh

Fh(Wi) ≤ Fh(Wh) ≤ F (Wh) + χh ≤ F (W ′) + ε
2 + χh ≤ ρ+ ε+ χh.

For sufficiently small h, χh ≤ ε. Thus minWi∈Γh Fh(Wi) ≤ ρ+ 2ε. Hence, we obtain the lim sup portion

lim sup
h→0

min
Wi∈Γh

Fh(Wi) ≤ min
W∈Γ

F (W ).

For the lim inf portion of (H.12), we fix any Wh ∈ Γh. By the inner problem convergence bound (H.8), we

have Fh(Wh) ≥ F (Wh) − χh, and since minW∈Γ F (W ) ≤ F (Wh), we have Fh(Wh) ≥ minW∈Γ F (W ) − χh,

from which, taking the minimum over Wh gives minWh∈Γh Fh(Wk) ≥ minW∈Γ F (W )−χh. Taking limit both

sides of the above h→ 0, noting χh → 0, gives the lim inf portion:

lim inf
h→0

min
Wh∈Γh

Fh(Wh) ≥ min
W∈Γ

F (W ).

H.2 Convergence to optimal threshold W p∗

We denote by W ∗
h the computed optimal threshold which minimizes the discrete objective Fh(·) defined in

(H.9), i.e. Fh

(
W ∗

h

)
= minWh∈Γh Fh(Wh). For a fixed h > 0, as noted earlier, the value W ∗

h is obtained by

40



exhaustive search over the discrete set Γh, ensuring that the discrete global minimiser is found. Since Γ is

compact, and the discrete thresholds W ∗
h ∈ Γh ⊂ Γ all lie in this compact set, any infinite sequence {W ∗

h}
has a subsequence {W ∗

hk
} convergent to some W ∗ ∈ Γ, i.e. W ∗

hk
−−−→
k→∞

W ∗ ∈ Γ.

We now show thatW ∗ is indeed the optimal threshold of the pre-commitment Mean-bPoE/CVaR problem:

W ∗ ∈ argmin
W∈Γ

F (W ), F (·) defined in (H.9).

Because Γh ⊂ Γ and by the convergence bound for the inner problem in (H.8), for any fixed W ∈ Γh, we

have
∣∣Fh(W )−F (W )

∣∣ → 0 as h→ 0. This implies
∣∣Fh(W

∗
hk
)−F (W ∗

hk
)
∣∣ −−−→

k→∞
0. Since W ∗

hk
→W ∗ and F is

continuous, we get F (W ∗
hk
) → F (W ∗). Thus, we also have Fh(W

∗
hk
) → F (W ∗) as k → ∞. Putting together,

we arrive at
Fh

(
W ∗

hk

)
−−−→
k→∞

F
(
W ∗). (H.13)

By convergence of the outer optimization problem at time t0 given in (H.11):

min
Wh∈Γh

Fh(Wh) −−−→
h→0

min
W p∈Γ

F (W p). (H.14)

From (H.14), we conclude that

Fh

(
W ∗

hk

)
= min

W∈Γhk

Fhk
(W ) −−−→

k→∞
min
W p∈Γ

F (W p),

which, together with (H.13), gives F (W ∗) = minW p∈Γ F (W
p), meaning W ∗ ∈ argminW∈Γ F (W ), as wanted.

This concludes the proof.

I Proof of Theorem 7.2

For the purpose of analysis, the time-consistent Mean–bPoE/CVaR formulations and their numerical schemes

can be expressed using unified operators similar to D and Dh defined in (H.1)–(H.3) for the pre-commitment

case. Specifically, including both interior and boundary equations, we write the time-consistent Mean–bPoE/CVaR

problem at the reference point x̂m = (y, b,W c, tm) using the operator G(·) as follows:
V̂ c

(
x̂m

)
= G

(
x̂m, V̂ c(·, t−m+1)

)
= . . .

. . . =



inf
W c

o∈Γo

Û c
o (y, b,W

c
o , t

+
m) Mean–bPoE,

where Û c
o (y, b,W

c
o , t

+
m) = inf

um∈Z
V̂ c
o (y+(y, b, um), b+(y, b, um),W c

o , t
+
m) ,

sup
W c

a∈Γa

Û c
a (y, b,W

c
a , t

+
m) Mean–CVaR.

where Û c
a (y, b,W

c
a , t

+
m) = sup

um∈Z
V̂ c
a (y+(y, b, um), b+(y, b, um),W c

a , t
+
m) ,

(I.1)

Here, in both case, the quantity V̂ ∈ {V̂ c
o , V̂

c
a } denotes the appropriate value function, and is defined in (H.2),

with y+(y′, b′, um) and b+ = b+(y′, b′, um) given by (7.2).

The numerical scheme at the reference node x̂k,mn,j = (yn, bj ,Wk, tm) ∈ Ωh × Γh × {tm}, including both

interior and boundary cases, can be written in unified operator form via Gh(·) as follows:

V̂ v
h

(
x̂k,mn,j

)
= Gh

(
x̂k,mn,j ,

{
V̂ c
h

(
x̂
k,(m+1)−
l,j

)}N†/2

l=−N†/2

)

=



min
{Wι}

Û c
h(yn, bj ,Wι, t

+
m) Mean–bPoE,

where Û c
h(yn, bj ,Wι, t

+
m) = min

{ui}
V̂ c
o,h (y

+(yn, bj , ui), b
+(yn, bj , ui),Wι, t

+
m) ,

max
{Wι}

Û c
h(yn, bj ,Wι, t

+
m) Mean–CVaR.

where Û c
h(yn, bj ,Wι, t

+
m) = max

{ui}
V̂ c
a,h (y

+(yn, bj , ui), b
+(yn, bj , ui),Wι, t

+
m) ,

(I.2)

In both cases, the quantity V̂h ∈ {V̂ c
o,h, V̂

c
a,h} denotes the appropriate discrete approximation, and is defined

in (H.4), with y+(y′, b′, ui) and b
+ = b+(y′, b′, ui) given by (7.2).
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We then establish ℓ∞-stability, consistency, and monotonicity of our scheme. Specifically,

� ℓ∞-stability: the scheme (7.29)–(7.33) for V c
h (·) satisfies the bound:

sup
h>0

∥∥V̂ c
h (Wk, tm)

∥∥
∞ <∞, ∀tm ∈ T ∪ {T}, as h→ 0. (I.3)

� Local consistency: For any smooth test function ϕ ∈ C∞(Ω ∪ Ωbmax × [0, T ]) for a sufficiently small h, χ,

Gh

(
x̂k,mn,j ,

{
V̂ c
h

(
x̂
k,(m+1)−
l,j

)
+ χ

}N†/2

l=−N†/2

)
= G

(
x̂k,mn,j , V̂

c(·, t−m+1)
)
+ E ′

(
x̂k,mn,j , ϵg, h

)
+O (χ+ h) , (I.4)

where E ′(x̂k,mn,j , ϵg, h) → 0 as ϵg, h→ 0.

� Monotonicity: the numerical scheme Gh(·) satisfies

Gh

(
x̂k,mn,j ,

{
φk,m+1
l,j

}N†/2

l=−N†/2

)
≤ Gh

(
x̂k,mn,j ,

{
ψk,m+1
l,j )

}N†/2

l=−N†/2

)
(I.5)

for bounded discrete data sets
{
φk,m+1
l,j

}
and

{
ψk,m+1
l,j

}
having

{
φk,m+1
l,j

}
≤

{
ψk,m+1
l,j

}
, where the inequal-

ity is understood in the component-wise sense.

Proofs of these properties follow the same steps as in the pre-commitment case (see Appendix H for details), as

the re-optimization of thresholds at each state–time node introduces no additional difficulty. This is because

the min /max operation over thresholds is simply a monotone transformation of real values.

By ℓ∞-stability, local consistency, and monotonicity, we obtain a convergence bound analogous to the

pre-commitment case:

Let (y′, b′) ∈ Ω be arbitrary. Suppose that linear interpolation is used for intervention step. Under the

assumption that ϵg → 0 as h → 0, we have: for a fixed discretized threshold value Wh ∈ Γh, and each

m ∈ {M − 1, . . . , 0} and any sequence {(yh, bh)} with (yh, bh) ∈ Ωh
in and (yh, bh) → (y′, b′) as h→ 0,∣∣V̂ c

h (yh, bh,Wh, tm)− V̂ c(y′, b′,Wh, tm)
∣∣ ≤ χm

h , χm
h is bounded ∀h > 0 and χm

h → 0 as h→ 0. (I.6)

Value function convergence. To handle the threshold re-optimization (unifying both Mean-bPoE and

Mean-CVaR problems), we follow the same approach as in the pre-commitment case (Section H.1.2) but do

it locally at each node: fix (y′, b′, tm) ∈ Ωin × {tm} (resp. (yh, bh, tm) ∈ Ωh
in × {tm}) and let the threshold

W c ∈ Γ (resp. Wh ∈ Γh) we define F (y′, b′,W c, tm) (resp. Fh(yh, bh,Wh, tm)) as follows

F (·)
(
resp. Fh(·)

)
:=

 Û c
o(y

′, b′,W c
o , tm)

(
resp. Û c

o,h(yh, bh,Wh, tm)
)

Mean–bPoE,

−Û c
a(y

′, b′,W c
a , tm)

(
resp. − Û c

a,h(yh, bh,Wh, tm)
)

Mean–CVaR.
(I.7)

Here, the functions Û c
o(·)/Û c

a(·) and Û c
o,h(·)/Û c

a,h(·) are defined in (7.26) and (7.32), respectively. In the

CVaR case, the (-) sign ensures we do a minimization rather than a maximization, so that we can unify both

problems under a minimization framework for the re-optimization of the threshold. We note that

V̂ c(y′, b′, tm) := min
W c∈Γ

F
(
y′, b′,W c, tm

)
, and V̂ c

h (yh, bh, tm) := min
Wh∈Γh

Fh

(
yh, bh,Wh, tm

)
. (I.8)

We now establish

lim
h→0

∣∣∣ min
Wh∈Γh

Fh(yh, bh,Wh, tm) − min
W c∈Γ

F (y′, b′,W c, tm)
∣∣∣ = 0 as (yh, bh) → (y′, b′) (I.9)

using the lim sup and lim inf arguments: (yh, bh) → (y′, b′) as h→ 0, we have

lim sup
h→0

min
Wh∈Γh

Fh(yh, bh,Wh, tm) ≤ min
W c∈Γ

F (y′, b′,W c, tm),

lim inf
h→0

min
Wh∈Γh

Fh(yh, bh,Wh, tm) ≥ min
W c∈Γ

F (y′, b′,W c, tm).
(I.10)

Once (I.9) is established, recalling (I.8), we conclude that

lim
h→0

∣∣∣V̂ c
h (yh, bh, tm) − V̂ c(y′, b′, tm)

∣∣∣ = 0 as (yh, bh) → (y′, b′).
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By exponentiating s = ey and letting (sh, bh) → (s′, b′), we recover the value function convergence in the

original coordinates stated in (7.34).

We first show the lim sup portion of (I.10). This is similar to the proof for the pre-commitment case. By

the definition of the continuous minimum,

∃W ∗ ∈ Γ such that F
(
y′, b′,W ∗, tm

)
≤ min

W c∈Γ
F (y′, b′,W c, tm) + ε

2 . (I.11)

Because Γh ⊂ Γ is dense as h → 0, choose Wh ∈ Γh such that |Wh −W ∗| → 0. By a triangle inequality and

for sufficiently small h, we have∣∣Fh(yh, bh,Wh, tm)− F (y′, b′,W ∗, tm)
∣∣ ≤ ∣∣Fh(yh, bh,Wh, tm)− F (y′, b′,Wh, tm)

∣∣
+
∣∣F (y′, b′,Wh, tm)− F (y′, b′,W ∗, tm)

∣∣ (i)

≤ ε
4 + ε

4 = ε
2

Here, in (i), by (I.6), for sufficiently small h, we can bound the first term by ε
4 , while due to the continuity

of F (·) in the threshold argument, the second term can be bounded above by ε
4 . Thus, we have

Fh(yh, bh,Wh, tm) ≤ F
(
y′, b′,W ∗, tm

)
+ ε

2 .

Therefore,
min

Wh∈Γh
Fh(yh, bh,Wh, tm) ≤ Fh(yh, bh,Wh, tm) ≤ F

(
y′, b′,W ∗, tm

)
+ ε

2 . (I.12)

Using (I.11)–(I.12), we obtain

min
Wh∈Γh

Fh(yh, bh,Wh, tm) ≤ min
W c∈Γ

F (y′, b′,W c, tm) + ε,

from which taking lim suph→0 yields the upper bound in (I.10).

For the lim inf portion of (I.10), we fix any W̃h ∈ Γh. By the bound (I.6), we have

Fh(yh, bh, W̃h, tm) ≥ F (y′, b′, W̃h, tm)− χh,

for some small χh → 0. Since Γh ⊆ Γ, we have

min
Wh∈Γh

Fh(yh, bh,Wh, tm) ≥ min
W c∈Γ

F (y′, b′,W c, tm)− χh.

Taking lim inf as h→ 0 and (yh, bh) → (y′, b′) yields the lim inf portion of (I.10), as wanted.

Optimal threshold convergence. Let W c∗
h be an optimal threshold for the discrete problem Fh(·) at

time tm, i.e.
Fh

(
yh, bh,W

c∗
h , tm

)
= min

Wh∈Γh
Fh

(
yh, bh,Wh, tm

)
.

Since Γ is a compact subset of R and W c∗
h ∈ Γh ⊂ Γ, any infinite sequence {W c∗

h } has a subsequence {W c∗
hk
}

that converges to some W ∗ ∈ Γ as h → 0. We claim that W ∗ is indeed an optimal threshold for the exact

time-consistent problem:
W ∗ ∈ argmin

W c ∈Γ
F
(
y′, b′,W c, tm

)
. (I.13)

To prove (I.13), we first note that, due to local consistency in (y, b), similar to pre-commitment case, for any

W ∈ Γ, consider {(yh, bh)} with (yh, bh) ∈ Ωh
in and (yh, bh) → (y′, b′) as h → 0, we have

∣∣Fh(yh, bh,W, tm) −
F (y′, b′,W, tm)

∣∣ → 0 as h→ 0. Combining this with W c∗
hk

−−−→
k→∞

W ∗, we have

Fh

(
yhk

, bhk
,W c∗

hk
, tm

)
−→ F

(
y′, b′,W ∗, tm

)
as k → ∞. (I.14)

In addition, by (I.9), we have

min
Wh∈Γh

Fh(yh, bh,Wh, tm) −−−→
h→0

min
W c∈Γ

F (y′, b′,W c, tm). (I.15)

Consequently, by (I.14)-(I.15), we conclude

F
(
y′, b′,W ∗, tm

)
= lim

k→∞
Fh

(
yhk

, bhk
,W c∗

hk
, tm

)
= min

W c∈Γ
F
(
y′, b′,W c, tm

)
.

Thus W ∗ ∈ argminW c∈Γ {F (y′, b′,W c, tm)}, proving that W ∗ is an exact optimal threshold of the continuous

problem. This concludes the proof.
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