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Abstract

We develop an efficient and provably pointwise convergent Fourier-based numerical integration ap-

proach for Guaranteed Lifetime Withdrawal Benefit (GLWB) contracts in a realistic modeling setting

with discrete withdrawals and the Cox-Ingersoll-Ross dynamics for the instantaneous variance of the

sub-account’ balance. Over each withdrawal interval, we formulate the GLWB no-arbitrage pricing

problem as a double integral. The inner of this double integral takes the form of a convolution

integral involving a conditional density of the (log) of the sub-account’s balance, while the outer one

involves a conditional density of the instantaneous variance. We develop a numerical Fourier-based

integration method, which is stable, pointwise consistent (with respect to the double integral GLWB

formulation), and ϵ-monotone, where ϵ > 0 is an user-defined monotonicity tolerance. We mathe-

matically demonstrate pointwise convergence of the proposed numerical integration scheme to the

unique solution of the GLWB pricing problem as ϵ → 0. Numerical experiments demonstrate an

excellent agreement with benchmark no-arbitrage prices and fair insurance fees of GLWBs obtained

by Monte Carlo simulation. A study of the impact of stochastic variance of the sub-account’s balance

on the holder’s optimal withdrawal behaviors is also presented.

Keywords: guaranteed lifelong withdrawal benefit, stochastic volatility, ϵ-monotonicity, pointwise

convergence

AMS Classification 65T40, 60E10, 62P05, 91B30

1 Introduction
Variable annuities are a class of insurance products that offer various types of guaranteed benefit rid-

ers. These products provide policyholders with benefits similar to traditional life insurance or annuities,

while, through guaranteed benefit riders, allowing policyholders to enjoy potentially favorable market

conditions from their participation in equity investment. Guaranteed Lifetime Withdrawal Benefit

(GLWB) provides unique features that combine longevity protection of an income benefit and periodic

withdrawal benefit in which a certain percentage (often based on the holder’s age) of the initial in-

vestment can be withdrawn as long as the policyholder lives, even if the balance of the sub-account

drops to zero [5, 6, 18, 22, 25, 33, 34, 35, 51]. In principle, a GLWB is a lifelong Guaranteed Mini-

mum Withdrawal Benefit (GMWB) with more complex withdrawal features, such as ratchet or bonus

events (prompting holders not to withdraw). For the past few years, GLWBs continue to dominate

living benefit riders due to their contract flexibility, income sustainability and potential market growth,

particularly given the international rapid trend towards deprecation of Defined Benefit pension plans

in favour of Defined Contribution plans. It is noted in [15] that GLWBs are offered by almost fourteen

top variable annuity providers in North America that roughly accounted for over $65 billion in reported

sales in 2017.
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Research findings indicate that volatility of the balance of the sub-account exhibits strong impact

on the no-arbitrage price and the fair insurance fee of a GLWB contract [10, 37, 42]. Therefore, various

stochastic models for the sub-account’s instantaneous variance, such as the Cox-Ingersoll-Ross (CIR)

dynamics [16, 32] or 3/2 model [14], have been proposed for the GLWB no-arbitrage pricing problems

(see, for example, [34, 35]). In light of the increased market volatility and the high sale volume of variable

annuities, it is of significant importance to incorporate realistic modeling of volatility of the balance of

the sub-account of GLWBs. In addition, it is also equally important to develop mathematically reliable

numerical methods for those products, alleviating mispricing and enabling realistic and practically useful

conclusions to be drawn from the numerical results. In this work, instead of considering continuous

withdrawals, we primarily focus on a discrete withdrawal setting, which is adopted in practice1. In

this setting, time-advancement between withdrawal dates typically involves a linear pricing problem,

whereas, across withdrawal dates, an optimization problem needs to be solved to determine the optimal

withdrawal amount.

The GLWB no-arbitrage pricing problem is an example of stochastic optimal control problems. In

general, it is often the case that a closed-form expression for solutions to stochastic optimal control

problems is not known to exist, and hence, these control problems must be solved numerically. In

addition, since solutions to stochastic optimal control problems are often non-smooth, convergence issues

of numerical methods, especially monotonicity considerations, are of primary importance. To illustrate

this point further, consider a generic time-advancement scheme from time-(m-1) to time-m of the form

umn =
∑

ℓ∈Ln
ωn,ℓ u

m−1
ℓ . Here, ωn,ℓ are the weights and and Ln is an index set typically capturing the

computational stencil associated with the n-th spatial partition point. This time-advancement scheme

is monotone if, for any spatial partition point, we have ωn,ℓ ≥ 0, ∀ℓ ∈ Ln. Optimal controls at time-m

are determined typically by comparing candidates numerically computed from applying intervention on

time-advancement results umn . Therefore, these candidates need to be approximated using a monotone

scheme as well. If interpolation is needed in this step, linear interpolation is commonly chosen, due to

its monotonicity2. Non-monotone schemes could produce numerical solutions that fail to converge to

financially relevant solution, i.e. a violation of the no-arbitrage principle [43, 45, 57]. For example, loss

of monotonicity occurring in the time-advancement may result in umn < 0 even um−1
ℓ ≥ 0 for all ℓ ∈ Ln.

For stochastic optimal control problems with a small number of stochastic factors, the partial

differential equation (PDE) approach is a natural choice. To the best of our knowledge, finite differences

methods are the only existing provably (pointwise) convergent methods for GLWBs [5, 6, 25], in which

monotonicity in time-advancement is achieved via a positive coefficient discretization method (for the

partial derivatives) combined with an implicit timestepping. This results in the discretization matrix

being anM -matrix, and therefore, the tine-advancement scheme is monotone [23, 56]. Nonetheless, in a

multi-dimensional setting, such as with stochastic variance, due to cross derivative terms in the pricing

PDE, to ensure monotonicity through a positive coefficient discretization method, a wide-stencil method

based on a local coordinate rotation is needed. However, this is very computationally expensive [17, 41].

In addition, in a discrete withdrawal setting, such as that for GLWBs, finite difference methods also

require timestepping between (yearly) withdrawal dates. This incurs timestepping error and further

increases the computational cost of the methods.

For GLWBs with stochastic variance, such as the CIR dynamics [16, 32], regression-based Monte-

Carlo simulation and Fourier-based methods have been proposed (see, for example, [7, 34, 35]). Fourier-

based methods often depend on the availability of an analytical expression of the Fourier transform of

the underlying transition density function [2, 9, 35, 36, 38, 39, 40, 50]3. If applicable, Fourier-based

1This is also similar to asset allocation, where in practice, rebalancing of portfolios is carried out discretely, see

[53, 54, 55].
2Other non-monotone interpolation schemes are discussed in [26, 47].
3The well-known Fourier cosine series expansion method [19, 48] can achieve high-order convergence for piecewise

smooth problems. However, optimal control problems are often non-smooth, and hence high order convergence cannot be

expected.
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methods offer several important advantages over finite differences and Monte-Carlo simulation, such

as no timestepping error between withdrawals dates, and the capability of straightforward handling

of realistic underlying dynamics, such as jump diffusion, regime-switching, and stochastic variance.

However, for the GLWB no-arbitrage pricing problem, a major drawback of existing Fourier-based

methods and Monte-Carlo simulation is their lack of monotonicity. In a context of Fourier-based

methods for GLWBs with stochastic variance for the sub-account balance, it is remarked in [35] that

the Fourier series expansion of the value function proposed therein might result in potential loss of

monotonicity. A similar issue is also raised in [34] in which regression-based Monte-Carlo simulation is

proposed for GLWBs with stochastic variance: the expansion of the value function in terms of a finite

number of basis functions may lose monotonicity as well.

This paper aims to close the afore-mentioned research gap through the development of an efficient

and provably convergent weakly monotone Fourier method for GLWB contracts with discrete with-

drawals and the CIR dynamics for the instantaneous variance of the sub-account balance. Specifically,

in our approach, the monotonicity requirement for time-advancement ωn,ℓ ≥ 0, ∀ℓ ∈ Ln is relaxed to∑
ℓ∈Ln

|min(ωn,ℓ, 0)| ≤ ϵ, where ϵ > 0 is an user-defined monotonicity tolerance [38, 39]. The signifi-

cance of this approach lies in a full control of potential loss of monotonicity via the tolerance ϵ > 0:

potential loss of monotonicity is quantified and is constrained to O(ϵ), allowing (pointwise) convergence

to be established as ϵ → 0. In addition, no timestepping error is incurred between withdrawals dates,

which is a substantial advantage over existing finite differences and Monte Carlo simulation.

We emphasize that we do not advocate for any specific stochastic variance models, but rather to

(i) address an outstanding significant mathematical challenge in the no-arbitrage pricing of GLWBs

with stochastic variance, as evidenced by the the above-mentioned research gap; and (ii) study the

impact of stochastic volatility on variable annuities with a GLWB rider. In principle, our approach

is applicable if (i) the Fourier transform of an associated conditional density of the (log) of the sub-

account’s balance is known in closed form, and (ii) this conditional density can be shown to satisfy very

mild regularity conditions. For ease of presentation, we focus on the GLWB pricing problem with basic

contract features.

The main contributions of the paper are as follows.

(i) We present a recursive and localized formulation of the GLWB no-arbitrage pricing problem in

a discrete withdrawal setting, where the instantaneous variance of the sub-account’s balance is

given by the CIR dynamics. Over each withdrawal interval, the formulation involves a double

integral. The inner integral takes the form of a convolution integral involving a conditional density

of the balance of the sub-account taking the form of a convolution kernel, while the outer one is

a definite integral that involves a conditional density of the variance.

(ii) We develop a numerical integration method built upon ϵ-monotone Fourier techniques for the

inner integral, where ϵ > 0 is an user-defined monotonicity tolerance, while the outer one is

handled by Gauss-Legendre quadrature. We then propose an efficient implementation of the

scheme via Fast Fourier Transform for the inner integral, including proper handling of boundary

conditions and padding techniques.

(iii) We study the regularity of the conditional density in the inner integral. We mathematically

demonstrate that the proposed scheme is stable, pointwise consistent with the double integral

formulation, and ϵ-monotone. We rigourously prove the pointwise convergence of the scheme as

the discretization parameter and the monotonicity tolerance ϵ approach zero.

(iv) Numerical experiments demonstrate an agreement with benchmark results obtained by finite dif-

ference method and Monte Carlo simulation in [25, 29], as well as the robustness of the proposed

numerical methods. We shed more light on the impact of stochastic volatilities on optimal with-

drawal behaviours under various scenarios.
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Although we focus specifically on integration methods for GLWBs, our comprehensive and systematic

approach could serve as a numerical and convergence analysis framework for the development of similar

weakly monotone integration methods for control problems in finance.

In Section 2, we describe the underlying dynamics and introduce the contractual features of variable

annuities embedded with GLWBs. A formulation of the no-arbitrage GLWB pricing problem in the

form of a double integral together with appropriate boundary conditions is presented in Section 3, and

its localization is discussed in Section 4. A numerical integration method is described in Section 5. The

convergence proof of the proposed ϵ-monotone integration method is conducted in Section 6. Numerical

results with respect to varying contractual parameters are given in Section 7. We also investigate the

impact of stochastic volatility on fair insurance fees and optimal withdrawal behaviours. Section 8

concludes the paper and outlines possible future work.

2 Modelling

2.1 Underlying processes

We consider a probability space (S,F , {Ft}0≤t≤T ,Q) with sample space S, sigma-algebra F , filtration

{Ft}0≤t≤T , where T > 0 is the fixed maturity of the GLWB contract, which generally reflects the time

when the holder passes away, and a risk-neutral measure Q defined on F . We respectively denote by

Z(t) and A(t), t ∈ [0, T ], the time-t balance of the sub-account and of the guarantee account. The

inception date of the GLWB contract is t = 0, and the balances of the sub-account and the guarantee

account at inception are set to be Z(0) = A(0) = z0, with z0 be the premium paid upfront.

In practice, GLWB contracts typically allow the policy holder to withdraw at discrete, pre-determined,

and often equally spaced, withdrawal times. We denote by T this set of withdrawal times in [0, T ],

which is defined as follows

T = {tm|tm = m∆t, m = 1, . . . ,M − 1} , where ∆t = T/M. (2.1)

We adopt the convention that t0 = 0 is the inception date of the contract, and tM = T is the maturity

date of the policy. We emphasize that T does not contain t0 = 0 and tM = T , i.e. no withdrawal is

allowed at the inception date or the maturity date. Each withdrawal time tm ∈ T , m = 1, . . . ,M − 1,

is also referred to as an intervention time hereafter. For subsequent use, for any functional f , we let

f(t−) := limϵ→0+ f(t− ϵ) and f(t+) := limϵ→0+ f(t+ ϵ). Informally, t− (resp. t+) denotes the instant

of time immediately before (resp. after) the forward time t ∈ [0, T ].

The evolution of the balances of the sub-account and the guarantee account in each interval

[tm−1, tm], tm ∈ T , can be viewed as consisting of two steps as follows. Over the time period [tm−1, t
−
m],

no withdrawal is allowed, and the balance of the sub-account is uncontrolled, and is assumed to fol-

low some risk-neutral dynamics; in addition, as contractually stipulated, the balance of the guarantee

account remains unchanged during this time period. Over the time period [t−m, tm], the balances of

both accounts change according to contractual features, such as withdrawals, bonuses, ratchets. In

the following, we first discuss stochastic modeling of the balance of the sub-account, and then describe

contractual features, and a jump condition in the balances of the two accounts due to these features.

For realistic modelling of Z(t), we consider a diffusion model with a constant interest rate and

stochastic variance. The instantaneous variance of Z(t), denoted by V (t), is uncontrolled at all t ∈ [0, T ],

and is assumed to follow the well-know Cox-Ingersoll-Ros (CIR) dynamics [16]. Under the risk-neutral

measure Q, the CIR dynamics are given as follows

dV (t) = λ (θ − V (t)) dt+ ξ
√
V (t)dB1(t), t ∈ [0, T ], V (0) = ν0 given, (2.2)

where {B1(t)}t∈[0,T ] is a standard Brownian motion; λ, θ, and ξ are positive constants representing the

mean-reversion rate, the long-term mean, and the instantaneous volatility, respectively.

Over the time interval [tm−1, t
−
m], tm ∈ T , the balance of the sub-account Z(t) is assumed to follow

the risk-neutral dynamics

dZ(t) = (r − β)Z(t)dt+
√
V (t)Z(t)

(
ρdB1(t) +

√
1− ρ2dB2(t)

)
, t ∈ [tm−1, t

−
m], tm ∈ T , (2.3)
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subject to (2.2) for V (t). Here, in (2.3), r > 0 is the constant risk-free rate, β > 0 is the proportional

insurance fee paid by the holder, B1 and B2 are uncorrelated standard Brownian motions under the

risk-neutral Q-measure, and ρ is the correlation coefficient between the processes of Z(t) and V (t). It

is stipulated by (2.3) that, if Z(t) reaches zero, it will remain at zero. Also, as noted previously, over

the time interval [tm−1, t
−
m], tm ∈ T , the balance of the guarantee account remains A(t) unchanged, i.e.

A(t) = A(tm−1), t ∈ [tm−1, t
−
m], tm ∈ T . (2.4)

Remark 2.1 (Feller’ condition). For subsequent use, we define the constant v = 2λθ
ξ2

− 1 which is

directly related to the Feller’s condition for the instantaneous variance process {V (t)}: if v ≥ 0, the

Feller’s condition is satisfied, i.e. 2λθ ≥ ξ2; otherwise, when v < 0, the Feller’s condition is not satisfied

(2λθ > ξ2). When v < 0, as shown in [4, 27], zero is an attainable, but strongly reflecting, boundary

for process (2.2). For any value of v, ∞ is an unattainable boundary in this process. As discussed in

[21], the definition interval for v is [−1,∞).

We remark that the provable point-wise convergence of the proposed ϵ-monotone Fourier method to

the value function does not depend on whether the Feller’s condition is satisfied. However, as demon-

strated theoretically and experimentally, the cost of achieving weak monotonicity does increase if the

Feller’s condition is not satisfied. We illustrate this through numerical experiments in Section 7.

2.2 Mortality risk

As commonly adopted in the GLWB literature, we assume that the mortality risk is well diversified

across a large number of holders in this work.4 We use the usual mortality table given in terms of

integer ages of the policy holder available in the literature (see, for example, [25]).

We let m0 be the age of the policy holder at the inception time t = 0 of the policy, which is a

given positive integer constant. We denote by pm ≡ pm0
m , m = 0, . . . ,M , the probability that the policy

holder, who is m0-years of age at the inception date, survives in the next m years, i.e. the holder lives

past his/her (m0 +m)th birthday. We also denote by qm ≡ qm0
m , m = 0, . . . ,M − 1, the probability

that the policy holder, who is m0-years of age at the inception date, will pass away during the time

interval (tm, tm+1). Here, it is understood that p0 = 1, i.e. the policy holder is alive at the inception

date of the policy; in addition, pM = qM−1 = 0, i.e. the maximum longevity of the policy holder is

capped at m0 + T years. For m = 0, . . . ,M − 1, the quantity pmqm is the probability that the holder,

who is m0-years of age at the inception date, will pass away during the time interval (tm, tm+1). These

probabilities will be included in the value function as shown subsequently.

2.3 Contractual features

The balances of the sub-account and the guarantee account change across each intervention time tm ∈ T
according to contractual features. In this work, we consider several popular features, namely with-

drawal, ratchet, bonus, and death benefit.

2.3.1 Withdrawals

At each intervention time tm ∈ T , the holder is allowed to withdraw a finite amount. We denote by

γm the withdrawal amount at each intervention time tm ∈ T . In addition, due to a penalty charge if

the withdrawal amount exceeds a contractual amount (to be explained below), the net revenue cash

flow may not be the same as the withdrawal amount γm. To this end, we denote by f(γm) the function

representing the net cash flow received by the holder at the withdrawal time tm. This function is defined

subsequently.

The range of γm is typically determined by (i) the balance of the sub-account at time t−m, i.e. Z(t−m)

and (ii) a pre-specified contractual amount proportional to the balance of the guarantee account at

time t−m, i.e. proportional to A(t−m). Specifically, this contractual amount is typically given by CrA(t
−
m),

4In the case that this assumption is not justified, then the risk-neutral value of the contract can be adjusted using an

actuarial premium principle [28].

5



where Cr > 0 is a pre-determined contractual rate. Then, the withdrawal amount γm must satisfy

γm ∈ [0,max (Z(t−m), CrA(t
−
m))]. Withdrawal events of a GLWB are specified according to different

cases for max (Z(t−m), CrA(t
−
m)), as discussed below.

� If max (Z(t−m), CrA(t
−
m)) = CrA(t

−
m), then, in this case, since γm ≤ CrA(t

−
m), we have

Z(tm) = max
(
Z(t−m)− γm, 0

)
, A(tm) = A(t−m), f(γm) = γm, if γm ∈ [0, CrA(t

−
m)]. (2.5)

That is, if the withdrawal amount γm does not exceed the pre-specified contractual amount

CrA(t
−
m), then the balance of the guarantee account does not change as a result of the withdrawal;

no penalty is applied to the withdrawal amount γm in this case.

� If max (Z(t−m), CrA(t
−
m)) = Z(t−m), we consider two cases, namely γm ∈ [0, CrA(t

−
m)] and γm ∈

(CrA(t
−
m)Z(t−m)].

If γm ∈ [0, CrA(t
−
m)], then Z(tm), A(tm) and f(γm) are given by (2.5).

If γm ∈ (CrA(t
−
m)Z(t−m)], it is stipulated that the excessive withdrawal amount beyond the con-

tractual amount CrA(t
−
m), i.e. the amount γm −CrA(t

−
m), is subject to a penalty charge at a rate

denoted by µm. Due to this penalty charge, the net revenue cash flow provided to the policy

holder at time tm is f(γm) ≡ f(γm;A(t−m)) = γm − µm(γm − CrA(t
−
m)), or equivalently,

f(γm) = CrA(t
−
m) + (1− µm)(γm − CrA(t

−
m)), if γm ∈ (CrA(t

−
m), Z(t−m)]. (2.6)

In addition to the aforementioned penalty charge, the guarantee account balance is also reduced

proportionately by the factor given by
Z(t−m)− γm

Z(t−m)− CrA(t
−
m)

. To recap, in this case, we haveZ(tm) = max(Z(t−m)− γm, 0), A(tm) =
A(t−m)(Z(t−m)− γm)

Z(t−m)− CrA(t
−
m)

,

f(γm) = CrA(t
−
m) + (1− µm)(γm − CrA(t

−
m)), if γm ∈ (CrA(t

−
m), Z(t−m)].

(2.7)

2.3.2 Ratchets

In a nutshell, under a ratchet provision, at an intervention time, the balance of the guarantee account,

if less than that of the sub-account, can be increased to that balance; however, no withdrawal is allowed

at that intervention time. The pre-determined set of contractual ratchet event times can be a subset of

the set of intervention times T . To this end, we denote by Tr ⊆ T a pre-determined set of contractual

ratchet event times. Mathematically, for tm ∈ Tr, under a ratchet provision, we have

Z(tm) = Z(t−m), A(tm) = max
(
A(t−m), Z(t−m)

)
, f(γm) = 0, if tm ∈ Tr ⊆ T . (2.8)

2.3.3 Bonuses

Under a bonus provision, if the holder chooses not to withdraw at an intervention time tm ∈ T , i.e.

γm = 0, the balance of the guarantee account can be increased proportionally by a pre-specified bonus

rate, hereinafter denoted by b. Mathematically, in this case, we have

Z(tm) = Z(t−m), A(tm) = A(t−m)(1 + b), f(γm) = 0, if γm = 0. (2.9)

2.3.4 Death benefit

The death of the policy holder will terminate the contract, and the remaining balance of the sub-account

will be passed to a beneficiary. Precisely, if the holder passes away during the time period (tm−1, tm),

then the time-tm−1 balance of the sub-account, i.e. Z(tm−1) is the death benefit which will be paid at

the next event time tm. That is, death benefits are assumed to be paid at the next event time, rather

than continuously as in [25].

For subsequent references, we combine all the contractual events (2.5)-(2.9) into a case-defined jump
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condition for the balances of the two accounts over [t−m, tm], tm ∈ T , as follows.

(Z(tm), A(tm)) =



(
Z(t−m),max(A(t−m)(1 + b), Z(t−m)1{t−m∈Tr})

)
,

if γm = 0,(
max

(
Z(t−m)− γm, 0

)
,max

(
A(t−m),max

(
Z(t−m)− γm, 0

)
1{t−m∈Tr}

))
,

if γm ∈ (0, CrA(t
−
m)],(

Z(t−m)− γm,max

(
A(t−m)(Z(t−m)− γm)

Z(t−m)− CrA(t
−
m)

, (Z(t−m)− γm)1{t−m∈Tr}

))
,

if γm ∈ (CrA(t
−
m), Z(t−m)].

(2.10)

Here, 1E is an indicator function of event E, with 1E = 1 if E is true, and 1E = 0 otherwise. From

(2.5) and (2.6), the net revenue cash flow received by the holder at time tm ∈ T is given by

f (γm) ≡ f
(
γm;A(t−m)

)
=

{
γm γm ∈ [0, CrA(t

−
m)] ,

CrA(t
−
m) + (1− µm)(γm − CrA(t

−
m)) γm ∈ (CrA(t

−
m), Z(t−m)].

(2.11)

We emphasize that the jump condition (2.10) and the net revenue cash flow (2.11) are only realized

if the policy holder does not pass away during [tm−1, t
+
m]. If the policy holder passes away during

[tm−1, t
+
m], the only cash flow paid at time tm is the dead benefit, which is Z(tm−1).

3 Formulation
For the multi-dimensional controlled underlying process (Z(t), A(t), V (t)), t ∈ [0, T ], we let (z, a, ν) be

the state of the system. Given state (z, a, ν) at time t−m, m = M − 1, . . . , 1, the time-tm state of the

system at is denoted by (ẑ, â, ν), where (ẑ, â), as dictated by the jump condition (2.10), is given by

(ẑ, â) ≡


(
z,max

(
a(1 + b), z1{tm∈Tr}

))
if γ = 0,(

max (z − γ, 0) , max
(
a,max (z − γ, 0)1{tm∈Tr}

))
if 0 < γ ≤ Cra,(

z − γ,max

(
z − γ

z − Cra
a, (z − γ)1{tm∈Tr}

))
if Cra < γ ≤ z.

(3.1)

The net revenue cash flow function f(γm; a) is given by

f (γ; a) =

{
γ if 0 ≤ γ ≤ Cra,

γ(1− µm+1) + µm+1Cra if Cra < γ.
(3.2)

For subsequent discussions, we introduce a change of variables via the (natural) logarithmic trans-

formation. As noted in Remark 2.1, zero is an attainable boundary for process {V (t)}t∈[0,T ], while ∞
is not. Therefore, the state (z, a, ν) takes values in [0,∞) × [0,∞) × [0,∞). For z > 0 and ν > 0, we

introduce variables w = ln(z) ∈ (−∞,∞), and σ = ln(ν) ∈ (−∞,∞). We denote by u(w, a, σ, tm),

m = M, . . . , 0, the time-tm no-arbitrage price of the GLWB contract when the state of the system is

(Z(tm), A(tm), V (tm)) = (ew, a, eσ).

Since log(·) is undefined at zero, in (3.1), under the log-transformation in w = ln(z), the term

max (z − γ, 0) becomes max (ew − γ, ew-∞), for a finite w-∞ ≪ 0. With this in mind, the jump condition

(3.1) for (z, a) → (ẑ, â) becomes the jump-condition for (w, a) → (ŵ, â) given by

(ŵ, â) ≡


(
w,max

(
a(1 + b), ew1{tm∈Tr}

))
if γ = 0,(

ln (max (ew − γ, ew-∞)) ,max
(
a,max (ew − γ, ew-∞)1{tm∈Tr}

))
if 0 < γ ≤ Cra,(

ln (max (ew − γ, ew-∞)) ,max
(

ew−γ
ew−Cra

a, (ew − γ)1{tm∈Tr}

))
if Cra < γ ≤ ew.

(3.3)

For subsequent use, we define the intervention operator

M(γ)u(w, a, σ, t−m) = u (ŵ, â, σ, tm) + pm−1qm−1e
w, (3.4)

where (ŵ, â) is given by (3.3).

For (z, a, ν) ∈ (0,∞) × [0,∞) × (0,∞), with w = ln(z), and σ = ln(ν), by dynamic programming

arguments (e.g. [44, 46]), u(w, a, σ, tm), m =M, . . . , 0, can be shown to satisfy

u(w, a, σ, t−m) = = pm−1e
w, m =M,

u(w, a, σ, t−m) = sup
γm∈[0,ew∨Cra]

(
M(γm)u(w, a, σ, t−m) + pmf(γm; a)

)
, M(·) given in (3.4),

u(w, ·, σ, tm−1)=

∫∫
R2

u(w′, ·, σ′, t−m)g(w − w′, σ, σ′; ∆t) dw′ϱ(·; ∆t) dσ′, m =M, . . . , 1.

(3.5a)

(3.5b)

(3.5c)
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Here, in (3.5a), we use the convention that, at m = M , u(w, a, σ, t−M ) = u(w, a, σ, tM ); In (3.5b), the

intervention operator M(·) is defined in (3.4). The double integral (3.5c) is obtained following the

arguments in [21, Section 2.4], where the functions g(·; ∆t) and ϱ(·; ·) are defined as follows.

� g(·; ∆t) ≡ gln(Z)| ln(V )(w,w
′, σ, σ′; ∆t) denotes the probability density of the logarithm of the

balance of the sub-account at a future time (t−m), given the natural logarithm of the variance

value as well as the information known at the current time (tm−1);

� ϱ(·; ·) ≡ pln(V )(σ, σ
′; ∆t) denotes the probability density of the natural logarithm of the variance

at a future time given the information at the current time; ∆t is the length of the time increment.

It can be shown that g(w,w′, σ, σ′; ∆t) has the form g(w−w′, σ, σ′; ∆t), and therefore, in (3.5c), the

inner integral takes the form of the convolution of g(·) and u(·, t−m). Although a closed-form expression

for g(w,w′, σ, σ′; ∆t) is not known to exist, its Fourier transform, denoted by G(·, ·; ∆t), is known in

closed-form. Specifically, we recall the Fourier transform and inverse Fourier transform

F[g(w; ·)] = G(η; ·) =
∫ ∞

−∞
e−2πiηwg(w; ·)dw, F−1[G(η; ·)] = g(w; ·) =

∫ ∞

−∞
e2πiηwG(η; ·)dη. (3.6)

By [20, Equation (7)], we have

G(η;σ, σ′,∆t) = exp

(
2πiη

[
(r − β)∆t+

ρ

ξ
(eσ

′ − eσ − λθ∆t)

]
− r∆t

)
· Φ
(
2πη

(
λρ

ξ
− 1

2

)
+

1

2
i(2πη)2(1− ρ2); eσ, eσ

′
)
.

(3.7)

Here, Φ(·) is defined by

Φ(ς; ν, ν ′) =

Iq

[√
νν ′ 4c(ς)e

− 1
2 c(ς)∆t

ξ2(1−e−c(ς)∆t)

]
Iq

[√
νν ′ 4λe−

1
2λ∆t

ξ2(1−e−λ∆t)

] · c(ς)e
− 1

2
(c(ς)−λ)∆t(1− e−λ∆t)

λ
(
1− e−c(ς)∆t

)
· exp

(
ν + ν ′

ξ2

[
λ(1 + e−λ∆t)

1− e−λ∆t
− c(ς)(1 + e−c(ς)∆t)

1− e−c(ς)∆t

])
, with c(ς) :=

√
λ2 − 2iξ2ς. (3.8)

Here, we follow the convention that the square root of a complex number is its principal one (with a

positive real-part). A closed-form expression for ϱ(σ, σ′; ∆t) is given by [20, Equation (9)]

ϱ(σ, σ′; ∆t) = ζe−ζ(eσe−λ∆t+eσ
′
)

(
eσ

′

eσe−λ∆t

) q
2

eσ
′
Iq

(
2ζe−

1
2
λ∆t

√
eσeσ′

)
, (3.9)

with v = 2λθ/ξ2 − 1, ζ = 2λ/
(
(1− e−λ∆t)ξ2

)
,

where Iv(·) is the modified Bessel function of the first kind with order v.

Remark 3.1 (Bang-bang control). Under the risk-neutral dynamics (2.2) - (2.4), {(Z(t), A(t), V (t))}t∈[0,T ]

is a Markovian process and the stochastic volatility model preserves convexity, which then ensures the

bang-bang analysis of the strategy space of GLWBs [5, 34]. Specifically, given the state x = (z, a, ν)

at time t−m, tm ∈ T , the time-tm admissible withdrawal values are: (i) zero withdrawal (γm = 0), (ii)

contractual withdrawal amount (γm = Cra), and (iii) full surrender (γm = z).

For subsequent use, we introduce a result related to decay properties of function G(η;σ, σ′,∆t) as

|η| → ∞ for finite σ and σ′.

Lemma 3.1 (Decay properties of |G(η; ·)| as |η| → ∞). For the function G(η; ·) defined in (3.7), where

σ and σ′ are finite, we have∣∣G(η;σ, σ′,∆t)∣∣ ≤ C1

(
|η|e−

1
2
C2|η|∆t

)v+1
, as |η| → ∞,

where C1, C2 > 0 are bounded constants independently of h, and v = 2λθ/ξ2 − 1 as defined in (3.9).
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Proof of Lemma 3.1. In this proof, we let C1 > 0, C2 > 0, and C3 > 0 be generic finite constants

independently of h, which may take different value from line to line. With c(ς) and Φ (ς; ·) defined in

(3.8), we define functions χ,Ψ : R → C, η 7→ χ(η),Ψ(η), as follows

χ(η) := c(ς) ≡
√
λ2 − 2iξ2ς and Ψ(η) := Φ (ς; ·) , ς = 2πη

(
λρ

ξ
− 1

2

)
+

1

2
i(2πη)2(1− ρ2). (3.10)

Recall the convention that χ(η) is the principal square root of a respective complex function of η, so

Re(χ(η)) > 0.5 With χ(η) given in (3.10), it is straightforward to obtain

Re2(χ(η))− Im2(χ(η)) = λ2 + ξ2(2π)2(1− ρ2)η2, Re(χ(η)) Im(χ(η)) = −2πξ2
(
λρ

ξ
− 1

2

)
η. ∀η.

We then obtain Re2(χ(η)) ≥ λ2+ ξ2(2π)2(1−ρ2)η2 which leads to Im2(χ(η)) ≤ C1. Therefore, we have

Re(χ(η)) ≥ max{λ,C1|η|}, | Im(χ(η))| ≤ C2, ∀η ∈ R, and |χ(η)| ≤ C3|η|, as |η| → ∞. (3.11)

With a closed-form expression of G(η; ·) given in (3.7), we have

|G(η; ·)| (3.7)= C1 |Φ (ς; ·)| = C1 |Ψ(η; ·)| (ii)= C2 |Ψ1 (η; ·)| |Ψ2 (η; ·)| |Ψ3 (η; ·)| ,

where Ψ1(η) = Iq [Ψ2(η)], Ψ2(η) =
χ(η)e−

1
2χ(η)∆t

(1−e−χ(η)∆t)
and Ψ3(η) = exp

(
−χ(η)(1+e−χ(η)∆t)

1−e−χ(η)∆t

)
. Here, (ii) is due

to the fact that σ and σ′ and all the model parameters bounded, and that Iq[·] in the denominator of

G(η; ·) is independent of η, and hence its modulus is also bounded by a positive constant.

We investigate |Ψ2 (η; ·)| =
|χ(η)|

∣∣∣e− 1
2χ(η)∆t

∣∣∣
|1−e−χ(η)∆t| . As noted in (3.11), as |η| → ∞, |χ(η)| ≤ C1|η|, and∣∣∣e− 1

2
χ(η)∆t

∣∣∣ = e−
1
2
Re(χ(η))∆t ≤ e−

1
2
C2|η|∆t as |η| → ∞. In addition, noting Re(χ(η)) ≥ λ for all η gives

1

|1−e−χ(η)∆t| ≤
1

|1−e−Re(χ(η))∆t| ≤ C1. Therefore,

|Ψ2 (η; ·)| ≤ C1|η|e−
1
2
C2|η|∆t, as |η| → ∞. (3.12)

For the term |Ψ1(η)| = |Iq [Ψ2(η)] |, we recall a classical result on Bessel functions from [58, p. 51]:

for complex numbers v and c, Iv(c) =
( 1
2
c)

v

Γ(v+1)(1 +ϖ), where |ϖ| < exp
( 1

4
|c|2

|v0+1|

)
− 1 with |v0 + 1| is the

smallest of the numbers |v + 1|, |v + 2|, . . . , and Γ(·) is the Gamma function. Since our case, v is a

bounded real number, applying this result on Iv [Ψ2(η)] gives

|Ψ1(η)| = |Iv [Ψ2(η)]| ≤ C1 |Ψ2(η)|v e|Ψ2(η)|2
(i)

≤ C1

(
|η|e−

1
2
C2|η|∆t

)v
, |η| → ∞, (3.13)

where (i) is due to (3.12), noting e|Ψ2(η)|2 → 1 as |η| → ∞.

For the term |Ψ3(η)|, we have

|Ψ3(η)| = exp

(
−Re

(
χ(η)(1 + e−χ(η)∆t)

1− e−χ(η)∆t

))
→ C1e

−Re(χ(η)) ≤ C1e
−|χ(η))| = C1e

0 as |η| → ∞.

(3.14)

Putting (3.12), (3.13), and (3.14) together gives the desired result.

Remark 3.2 (Smoothness of g(w; ·)). We recall a classical result, namely the Paley-Wiener theorem

(see [13]): the decay of |G(η; ·)| as |η| → ∞ is also reflected in the smoothness of g(w; ·). Specifically,

since g(w; ·) is integrable, if |G(η; ·)| ≤ C(1 + |η|)−c, c > 2 as |η| → ∞, then g(w; ·) is continuous and

has c continuous derivatives. From Lemma (3.1), if v > −1, then we can conclude that g(w; ·) is at

least in C2(R). Although we note in Remark 2.1 that the definition range for v is [−1,∞), for typical

market data available in the literature, v > −1 [3, 21]. Nonetheless, as we illustrate subsequently, the

cost of achieving weak monotonicity (within a user-defined tolerance) does increase as v → −1 (as more

terms in an associated Fourier series are required).

5If Re(χ(η)) < 0, similar steps of this proof can be followed to arrive at the same asymptotic result.
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4 Localization

Under the log-transformation, the GLWB formulation (3.5) is posed on the infinite domain. For the

problem statement and convergence analysis of numerical schemes, we define a localized GLWB formu-

lation. To this end, with wmin < 0 < wmax, σmin < 0 < σmax, and |wmin|, wmax, |σmin| and σmax are

sufficiently large, and amax = ewmax , we define the following spatial sub-domains:

Ω∞ = (−∞,∞)× [0,∞]× [σmin, σmax], Ω∞
wmin

= (−∞, wmin]× [0, amax]× [σmin, σmax],

Ωin = (wmin, wmax)× [0, amax]× [σmin, σmax], Ω
∞
wmax

= [wmax,∞)× [0, amax]× [σmin, σmax], (4.1)

We now present equations for spatial sub-domains defined in (4.1). We note that boundary conditions

for w → −∞ and w → ∞ are obtained by relevant asymptotic forms of the no-arbitrage price of GLWB

when z → 0 and z → ∞, respectively, similar to [25, 34]. We also note that the terminal and boundary

solutions in Ω∞×{T} and Ω∞
wmax

×{t}, t ∈ (0, T ), may grow unbounded as w → ∞. Therefore, to ensure

boundedness of numerical solutions in the interior sub-domains Ωin, where pointwise convergence to the

unique solution is studied, we require the terminal and boundary solutions in Ω∞×{T} and Ω∞
wmax

×{t}
to be bounded as w → ∞. This is detailed below.

� For (w, a, σ, T ) ∈ Ω∞ × {T}, we apply the terminal condition (3.5a)

u(w, a, σ, T−) = pm−1(e
w ∧ ew∞), for a finite w∞ ≫ wmax. (4.2)

� As w → −∞, z = ew → 0. In [34][Proposition 2], an analytical solution to the no-arbitrage price

of the GLWB when the balance of the sub-account z = 0 is given. Therefore, for (w, a, σ, t) ∈
Ω∞
wmin

×{t}, t ∈ (0, T ), we impose the boundary condition given by the above-mentioned analytical

solution as follows

u(w, a, σ, t) = max
i∗∈{i0,i0+1,...,T−1}

[
i∗−1∏
i=i0

(1 + b)

(
T−1∑
τ=i∗

e−r(τ−t)pτ

)]
Cra, (4.3)

for i0 ≤ T − 2, where i0 := inf{i : ti > t}. For each time t = t−m, the equation (4.3) can be solved

by exhaustive search.

� For (w, a, σ, t) ∈ Ω∞
wmax

×{t}, t ∈ (0, T ), using similarity reduction results from [25, 34], we impose

the boundary solutions

u(w, a, σ, t) =
a

a∗
u

(
ln

(
ewa∗

a

)
, a∗, σ, t

)
∧ ew∞ , (4.4)

where a∗ is selected such that (ln
(
ewa∗

a

)
, a∗, σ) ∈ Ωin, i.e. a

∗ can be different for different w. For

t = tm, the boundary condition (4.4) can be obtained using the solution in Ωin × {tm}.

We note that the theoretical quantity w∞ is needed to indicate that the solutions in Ω∞ × {T}
and Ωin × {tm} are bounded as w → ∞, and it does not need to be numerically specified.

� For (w, a, σ, t−m) ∈ Ωin ×{t−m}, tm ∈ T , the intervention result u(w, a, σ, t−m) is given by (3.5b), i.e.

u(w, a, σ, t−m) = sup
γm∈[0,ew∨Cra]

(M(γm)u(x, tm) + pmf(γ; a)) , (4.5)

where the intervention operator M(·) is defined in (3.4).

For (w, a, σ, tm−1) ∈ Ωin × {tm−1}, tm ∈ T , u(x, tm−1) is given by (3.5c), which, after taking into

account the boundary conditions in Ω∞
wmin

× {tm} given by (4.3) and Ω∞
wmax

× {tm}, becomes

u(w, a, σ, tm−1) =

∫ σmax

σmin

∫
R
û(w′, a, σ′, t−m) g(w − w′, σ, σ′; ∆t) dw′ϱ(σ, σ′; ∆t) dσ′, (4.6)

where the terminal condition û(w′, a, σ′, t−m) is given by

û(w′, a, σ′, t−m) =


u(w′, a, σ′, tm) satisfies (4.3) (w′, a, σ′) ∈ Ω∞

wmin
,

u(w′, a, σ′, t−m) satisfies (4.5) (w′, a, σ′) ∈ Ωin,

u(w′, a, σ′, tm) satisfies (4.4) (w′, a, σ′) ∈ Ω∞
wmax

.

(4.7)

10



In Definition 4.1 below, we formally define a GLWB pricing problem.

Definition 4.1 (Localized GLWB pricing problem). The GLWB pricing problem under a discrete

withdrawal setting with the set of withdrawal times being T defined in (2.1), and dynamics (2.2)-(2.3)-

(2.4) is defined in Ω∞×T ∪{t0, tM} as follows. At each tm−1, tm ∈ T , the solution to the GLWB pricing

problem u(w, a, σ, tm−1) satisfies (i) the double integral (4.6) in Ωin × {tm−1}, and (ii) the boundary

conditions (4.3) and (4.4) in
{
Ω∞
wmin

,Ω∞
wmax

}
× {tm}, tm ∈ T ∪ t0, respectively, subject to the terminal

condition (4.2) in Ω∞ × {tM}.
We introduce a result on uniform continuity of the solution to the GLWB pricing problem.

Proposition 4.1. The solution u(w, a, σ, tm) to the GLWB pricing problem in Definition 4.1 is uni-

formly continuous within each sub-domain Ωin × {tm}, m =M − 1, . . . , 0.

Proof of Proposition 4.1. This proposition can be proved using mathematical induction on m. For

brevity, we outline key details below. We first observe that if u(x, t) is a uniformly continuous function,

then sup
γm∈[0,ew∨Cra]

M(γ)u(x, t), whereM(·) defined in (3.4), is also uniformly continuous [30, Lemma 2.2]

(also see [34, Proposition 3]). Therefore, it follows that if u(w, a, σ, tm), m =M − 1, . . . , 1 is uniformly

continuous then u(w, a, σ, t−m) defined in (4.5) is also uniformly continuous. The other key step is to

show that, if u(w, a, σ, t−m), m = M, . . . , 1, is uniformly continuous, then the solution u(w, a, σ, tm−1)

for (w, a, σ) ∈ Ωin given by the double integral (4.6) is also uniformly continuous. Combining these

above two steps with the fact that u(w, a, σ, tM ) given in (4.2) is uniformly continuous in (w, a, σ) gives

the desired result.

We conclude this section by emphasizing that Ωin × {tm}, m = M − 1, . . . , 0, is the target region

where provable pointwise convergence of the proposed numerical method is investigated, which relies

on Proposition 4.1.

5 Numerical methods
The key challenge in the development of numerical schemes for the GLWB pricing problem given

by Definition 4.1 is the numerical approximation of u(w, ·, σ, tm−1), via the double integral (4.6),

for (w, σ) ∈ (wmin, wmax) × [σmin, σmax]. The solution u(w, ·, σ, tm−1) for w ̸∈ (wmin, wmax) and

σ ∈ [σmin, σmax] is given by the boundary conditions (4.3) and (4.4). For computational purposes, we

truncate the infinite region of integration of the convolution (the inner integral) in (4.6) to [w†
min, w

†
max],

where w†
min ≪ wmin < 0 < w†

max ≪ w†
max, and |w†

min| and w
†
max are sufficiently large. This results in

the approximation

u(w, ·, σ, tm−1) ≃
∫ σmax

σmin

(∫ w†
max

w†
min

û(w′, ·, σ′, t−m) g(w − w′, σ, σ′; ∆t) dw′
)
ϱ(σ, σ′; ∆t) dσ′, (5.1)

where (w, σ) ∈ (wmin, wmax) × [σmin, σmax]. The error arising from this truncation is discussed in

Section 6.

With the above in mind, we define finite computational domain and sub-domains as follows

Ω = [w†
min, w

†
max]× [0, amax]× [σmin, σmax], Ωin defined in (4.1), (5.2)

Ωwmin = [w†
min, wmin]× [0, amax]× [σmin, σmax], Ωwmax = [wmax, w

†
max]× [0, amax]× [σmin, σmax].

We stress that the region (Ωwmin ∪ Ωwmax) × (0, T ) plays an important role in the proposed numerical

method. It is well-documented that wraparound error (due to periodic extension) is an important issue

for Fourier methods, particularly in the case of control problems (see, for example, [39]). Therefore, in

(5.2), the region (Ωwmin ∪Ωwmax)× (0, T ) is also set up to serve as padding areas for nodes in Ωin. For

this purpose, we assume that |wmin| and wmax are chosen sufficiently large so that

w†
min = wmin −

wmax − wmin

2
and w†

max = wmax +
wmax − wmin

2
. (5.3)

Due to withdrawals, the intervention action in (4.5) may require evaluating a candidate value at a point

having w = ln(max(ew − γ, ew-∞)), which could be outside [w†
min, w

†
max] if w-∞ < w†

min. Without loss of
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generality, we assume w-∞ ≥ w†
min. Therefore, in computing (ŵn, âj) via (3.3), w-∞ is replaced by w†

min

in (3.3).

Remark 5.1 (Minimizing the wrap-around errors). Recall that we apply the asymptotic form of value

solution in the region (Ωwmin ∪ Ωwmax) × (0, T ) to minimize the wrap-around errors. As presented

in Section 5.2.1 below, for each time advancement, we initially pre-set the approximation values for

every node in this area using suitable asymptotic forms around the boundaries and then discard the

Fast-Fourier Transform (FFT) values of these nodes after applying the Fourier method to these nodes.

As discussed above, the numerical scheme for problem (3.5) consists of two main parts, namely

intervention actions due to withdrawals (3.5b) and time advancement (3.5c). The key challenge here is

the development of a (weakly) monotone scheme for time advancement, which allows us to prove the

pointwise convergence of the numerical scheme.

5.1 Discretization

The computational grid is constructed as follows:

(i) We denote by N (resp. N †) the number of points of a uniform partition of [wmin, wmax] (resp.

[w†
min, w

†
max]). For convenience, we typically choose N † = 2N so that only one set of w-coordinates

is needed. Also let P = wmax − wmin, and P
† = w†

max − w†
min. We define ∆w = P

N = P †

N† . We use

an equally spaced partition in the w-direction, denoted by {wn}, where
wn = ŵ0 + n∆w; n = −N †/2, . . . , N †/2, where (5.4)

∆w = P/N = P †/N †, and ŵ0 = (wmin + wmax)/2 = (w†
min + w†

max)/2.

(ii) We use an unequally spaced partition in the a-direction, denoted by {aj}, j = 0, . . . , J , with

∆amax = max0≤j≤J−1 (aj+1 − aj), ∆amin = max0≤j≤J−1 (aj+1 − aj).

(iii) We use an unequally spaced partition in the σ-direction, denoted by {σk}, k = 0, . . . ,K−1, where

the nodes are given by the Gauss-Legendre quadrature rule.

We emphasize that no timestepping is required for the interval [tm−1, t
−
m], tm ∈ T . As noted earlier,

∆t = T/M is kept constant.

Assumption 5.1.

∆w = C1h, ∆amax = C2h, ∆amin = C ′
2h, K = C3/h, P † = C4/h, (5.5)

where the positive constants C1, C2, C
′
2, C3, and C4 are independent of h.

It is also straightforward to ensure the theoretical requirement P † → ∞ as h → 0. For example,

with C4 = 1 in (5.5), we can quadruple N † as we halve h.

For convenience, we define sets of indices: N† =
{
−N †/2, . . . , N †/2− 1

}
, N = {−N/2 + 1, . . . , N/2− 1},

J = {0, . . . , J}, and K = {0, . . . ,K − 1}. We occasionally use xm
n,j,k ≡ (xn,j,k, tm) to refer to the refer-

ence gridpoint (wn, aj , νk, tm), n ∈ N†, j ∈ J, k ∈ K, m = M, . . . , 0. We denote by umn,j,k a numerical

approximation to the exact solution to u(wn, aj , νk, tm).

5.2 Numerical schemes

For (wn, aj , σk, tM ) ∈ Ω× {T}, we impose the terminal condition (4.2) by

uM−
n,j,k = pM−1(e

wn ∧ ew∞), n ∈ N†, j ∈ J, k ∈ K. (5.6)

We impose the condition (4.3) for (wn, aj , σk, tm) ∈ Ωwmin × {tm}, tm ∈ T , by

umn,j,k = max
i∗∈{i0,i0+1,...,T−1}

[
i∗−1∏
i=i0

(1 + b)

(
T−1∑
τ=i∗

e−r(τ−m)pτ

)]
Craj ,

n = −N †/2, . . . ,−N/2, j ∈ J, k ∈ K.

(5.7)

for i0 ≤ T − 2, where i0 := inf{i : ti > tm}.
We impose the condition (4.4) for (wn, aj , σk, tm) ∈ Ωwmax × {tm}, tm ∈ T , as follows

umn,j,k =
aj
a∗
u

(
ln

(
ewna∗

aj

)
, a∗, σk, tm

)
∧ ew∞ , n = N/2, . . . , N †/2− 1, j ∈ J, k ∈ K. (5.8)
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where a∗ is selected such that (ln
(
ewa∗

a

)
, a∗, σ) ∈ Ωin.

We now focus on the interior spatial domain Ωin, which forms the region of convergence of the

numerical scheme. As discussed previously, over the time interval [tm−1, tm], there are two key com-

ponents to the proposed numerical scheme, namely (i) the intervention action over [t−m, tm] as given in

(4.5), and (ii) the time advancement from t−m to tm−1, as captured by the double integral (5.1).

5.2.1 Ωin: a monotone scheme

In subsequent discussions, we denote by γmn,j,k the control representing the withdrawal amount at node

(wn, aj , σk, tm) ∈ Ωin × {tm}, where tm ∈ T . We let ûmn,j,k be an approximation to u(ŵn, âj , σk, tm),

where (ŵn, âj) is given by (3.3) computed by linear interpolation. To this end, for fixed k ∈ K, we

denote by I {umk } (w, a) a two-dimensional linear interpolation operator acting on the time-tm discrete

solution
{
(wn, aj) , u

m
n,j,k

}
, (n, j) ∈ N† × J. Then, ûmn,j,k is computed as follows

ûmn,j,k = I {umk } (ŵn, âj) , where (ŵn, âj) is given by (3.3), k ∈ K fixed. (5.9)

Here, we note that in computing (ŵn, âj) via (3.3), w-∞ is replaced by w†
min in (3.3). We then compute

the intermediate result um−
n,j,k by solving the optimization problem

um−
n,j,k = sup

γm
n,j,k∈[0,ewn∨Craj ]

(
ûmn,j,k + pmf

(
γmn,j,k; aj

))
+ pm−1qm−1e

wn , (n, j, k) ∈ N× J×K, (5.10)

where ûmn,j,k is given by (5.9) and f
(
γmn,j,k; aj

)
is defined in (3.2).

Remark 5.2 (Attainability of supremum). Guaranteed by the existence of bang-bang control, established

in [5, 34], we can expect that the supremum defined in (5.10) must be attainable. This can be also shown

from the boundedness of nodal values used in I {umk } (·) (see Lemma 6.2 on stability).

Next, we focus on the numerical approximation of the double integral (5.1). The outer integral

of (5.1) is handled by a K-point Gauss-Legendre quadrature rule along the σ-direction [12, 31, 52],

whereas for the convolution in the inner one, an ϵ-monotone Fourier method is utilized. Specifically,

for the reference point (wn, aj , σk, tm−1), tm ∈ T , approximating the outer integral of the rhs-of-

(5.1) using a K-point Gauss-Legendre quadrature rule gives an intermediate result denoted by ũm−1
n,j,k ,

(n, j, k) ∈ N× J×K, as follows

rhs-of-(5.1) ≃
∑
s∈K

ϑs ϱ(σk, σs; ∆t)

(∫ w†
max

w†
min

û(w, aj , σs, t
−
m) g(wn − w, σk, σs; ∆t) dw

)
. (5.11)

Here, the terms of ϑs, s ∈ K, are the weights at the quadrature node σs ∈ [σmin, σmax] of the quadrature

rule. More details about the quadrature nodes and weights can be referred to [12, 31, 52].

To prepare for the convolution integral term in (5.11), where (j, s) ∈ J × K is fixed, we combine

the intervention results for Ωin × {t−m} given by (5.10) and the padding (previously computed) values

in (Ωwmin ∪ Ωwmax)× {tm} (see Remark 5.1) as below (with a slight abuse of notation)

um−
l,j,s =


uml,j,s in (4.3), l = −N †/2, . . . ,−N/2,
um−
l,j,s in (5.10), l = −N/2 + 1, . . . , N/2− 1,

uml,j,s in (4.4), l = N/2, . . . , N †/2− 1.

(5.12)

For the integral in (5.11), the terminal condition û(w, aj , σs, t
−
m), where (j, s) ∈ J×K is fixed, is replaced

by a linear combination of the discrete values in (5.12). That is, û(w, aj , σs, t
−
m) is given by

û(w, aj , σs, t
−
m) =

∑
l∈N†

φl (w)u
m−
l,j,s, w ∈ [w†

min, w
†
max], (j, s) ∈ J×K fixed, (5.13)

where {φl(w)}l∈N† are (hat-shaped) piecewise linear basis functions defined by

φl(w) =


(w − wl−1) /∆w, wl−1 ≤ w ≤ wl,

(wl+1 − w) /∆w, wl ≤ w ≤ wl+1,

0, otherwise.

(5.14)
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Substituting û(w, aj , σs, t
−
m) from (5.13) into the convolution integral in (5.11) gives an approximation

for the rhs-of-(5.11) that involves a discrete convolution as follows

rhs-of-(5.11) ≃
∑
s∈K

ϑs ϱ(σk, σs; ∆t)

(∫ w†
max

w†
min

g(wn − w, σk, σs; ∆t)

(∑
l∈N†

φl (w)u
m−
l,j,s

)
dw

)
(i)
=
∑
s∈K

ϑs ϱ(σk, σs; ∆t)

(
∆w

∑
l∈N†

um−
l,j,s g̃n−l(σk, σs; ∆t)

)
. (5.15)

Here, in (i), g̃n−l(σk, σs; ∆t) ≡ g̃(wn − wl, σk, σs; ∆t) is given by the convolution of g(·) and the basis

function φl(·) as follows

g̃n−l(σk, σs; ∆t) ≡ 1

∆w

∫ w†
max

w†
min

φl(w) g(wn − w, σk, σs; ∆t) dw

=
1

∆w

∫ wn−wl+∆w

wn−wl−∆w
φn−l (w) g(w, σk, σs; ∆t) dw, (5.16)

using a suitable change of variable and the property φl(wn − w) = φn−l(w).

To summarize, approximations (5.11) and (5.15) for the outer and inner integrals, respectively, gives

a scheme for the double integral (5.1) as follows

um−1
n,j,k =

∑
s∈K

ϑs ϱ(σk, σs; ∆t) ũ
m−1
n,j,k,s, (n, j, k) ∈ N× J×K, tm ∈ T , (5.17)

where ũm−1
n,j,k,s = ∆w

∑
l∈N†

g̃n−l(σk, σs; ∆t) u
m−
l,j,s, (5.18)

with um−
l,j,k are given in (5.12), and g̃n−l(σk, σs; ∆t) is given by (5.16).

5.2.2 Ωin: approximation of g̃n−l(·)
We note that, in (5.18), the exact weight g̃n−l(σk, σs; ∆t), defined in (5.16), is not known in closed-

form because an explicit formula for the function g is not known, and g̃n−l(σk, σs; ∆t) needs to be

approximated. To this end, following ideas in our papers [24, 38, 39], we replace the function g(w, ·) in
(5.16) by its localized, periodic approximation ĝ(w, ·), where

ĝ(w, σk, σs; ∆t) =
1

P †

∞∑
q=−∞

e2πiηqwG(ηq, σk, σs; ∆t) with ηq =
q

P † , P
† = w†

max − w†
min. (5.19)

That is, g̃n−l(·), defined in (5.16), is approximated by

g̃n−l(σk, σs; ∆t) ≃
1

∆w

∫ wn−wl+∆w

wn−wl−∆w
φn−l (w) ĝ(w, σk, σs; ∆t) dw, (5.20)

where ĝ(·) is given in (5.19). We then integrate the resulting finite integral (5.20) to obtain an approx-

imation g̃n−l(σk, σs; ∆t,∞) to g̃n−l(·) in the form of the infinite series as follows

g̃n−l(σk, σs; ∆t,∞) =
1

P †

∞∑
q=−∞

e2πiηq(n−l)∆w sin2 πηq∆w

(πηq∆w)
2 G(ηq, σk, σs; ∆t). (5.21)

For computational purposes, the infinite series (5.21) must be truncated. For this truncation, we do

not need use the same number of terms as the number of linear basis functions, which is N †. Specifically,

for fixed (σk, σs), we truncate the infinite series for g̃n−l(σk, σs; ∆t,∞) to a total of (αk,sN
†) terms,

where αk,s ∈ {2, 4, 8, . . .} is the refinement parameter. For a fixed αk,s ∈ {2, 4, 8, . . .}, the result of this

truncation is

g̃n−l(σk, σs; ∆t, α) =
1

P †

αk,sN
†/2−1∑

q=−αk,sN†/2

e2πiηq(n−l)∆w sin2 πηq∆w

(πηq∆w)
2 G(ηq, σk, σs; ∆t). (5.22)

Note that, in its exact form (5.16), the weight g̃n−l(σk, σs; ∆t) is strictly positive, since g(·) ≥ 0

and φn−l(w) ≥ 0. However, its approximation, given by the discrete convolution (5.22), may not have

this property, and hence the strict monotonicity of the timestepping method is not guaranteed. To
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this end, given an ϵ > 0, we enforce an ϵ-monotonicity on the approximate weight g̃(·) in (5.22) by the

condition

∆w
∑
l∈N†

∣∣min (g̃n−l(σk, σs; ∆t, αk,s), 0)
∣∣ < ϵ

∆t

T
. (5.23)

Furthermore, in determining a suitable value for the refinement parameter αk,s to be used in (5.22),

given ϵα > 0, we employ the stopping criterion

∆w
∑
l∈N†

∣∣g̃n−l(σk, σs; ∆t, αk,s)− g̃n−l(σk, σs; ∆t, αk,s/2)
∣∣ < ϵα. (5.24)

Remark 5.3 (Notational convention for αk,s). We emphasize that the refinement parameter is depen-

dent on (σk, σs), k, s ∈ K. That is, different (σk, σs) may require different number of terms in the

truncated series. For brevity, hereafter, we write α instead of αk,s, with the dependence on (σk, σs)

implicitly understood.

5.2.3 Convergence of truncated Fourier series

We now investigate the Fourier truncation error arising from using a finite α ∈ {2, 4, 8, . . .} in g̃n−l(·).
In order to focus on the role of α, in this subsection, we will write g̃n−l(α). We also write G(η) instead

of G(η; ·). Based on the theoretical result in Lemma 3.1, we assume that v+1 > 0. We also let C1 > 0

and C2 > 0 be generic finite constants independently of h, which may take different value from line to

line. We have |g̃n−l(α)− g̃n−l(∞)| = . . .

. . . =

∣∣∣∣ 1P †

∞∑
q=αN†/2

e2πiηq(n−l)∆w

(
sin2 πηq∆w

(πηq∆w)2

)
G(ηq) +

1

P †

−αN†/2−1∑
q=−∞

e2πiηq(n−l)∆w

(
sin2 πηq∆w

(πηq∆w)2

)
G(ηq)

∣∣∣∣
≤ 2

P †

∞∑
q=αN†/2

1

(πηq∆w)
2 |G(ηq)|

(i)

≤ 2

P †
4

π2α2

∞∑
q=αN†/2

|G(ηq)|
(ii)

≤ 8

P †π2α2

∞∑
q=αN†/2

C1

(
ηqe

− 1
2
C2ηq∆t

)v+1

≤ C1

α2

∞∑
q=αN†/2

(ηq)
v+1

P † e−C2(v+1)ηq . (5.25)

Here, (i) is due to 1
(πηq∆w)2

≤ 4
π2α2 , since ηq =

k
P † , ∆w = P †

N† , and q ≥ αN †/2; (ii) is due to Lemma 3.1.

We consider the function d(x) = xv+1e−C2(v+1)x, which is positive and monotonically decreasing for

x > 0, noting v + 1 > 0. Therefore, using the usual Integral Test, we can bound the sum in (5.25) as

follows ∞∑
q=αN†/2

(ηq)
v+1

P † e−C2(v+1)ηq ≤
∫ ∞

α/2h
xv+1e−C2(v+1)xdx. (5.26)

Recall the definition of the Incomplete Upper Gamma function Γ(y, x) [1]: Γ(y, x) =
∫∞
x ty−1e−tdt,

Re(y) > 0, and the result below from calculus
d

dx
Γ(y + 1, cx) =

d

dx

∫ ∞

cx
tye−tdt = −cy+1xye−cx, x > 0. (5.27)

Using (5.27), the integral in (5.26) becomes
∫∞
α/2h x

v+1e−C2(v+1)xdx = . . .

. . . = −(C2(v + 1))−(v+1)−1Γ(v + 2, C2(v + 1)x)
∣∣∞
α/2h

= (C2(v + 1))−(v+1)−1Γ

(
v + 2,

αC2(v + 1)

2h

)
.

Therefore,
|g̃n−l(α)− g̃n−l(∞)| ≤ (C2(v + 1))−(v+1)−1Γ

(
v + 2,

αC2(v + 1)

2h

)
. (5.28)

Consider the monotonicity test in (5.23), from (5.28), noting g̃n−l(∞) ≥ 0, and
∑

l∈N† ∆w = P † = C/h,

we have
∆w

∑
l∈N†

∣∣min (g̃n−l(σk, σs; ∆t, α), 0)
∣∣ ≤ C1

h
Γ

(
v + 2,

αC2(v + 1)

2h

)
.

As such, for a given monotonicity tolerance ϵ > 0, the monotonicity test in (5.23) is satisfied for

sufficiently large α. However, how quickly this monotonicity test is satisfied depends on how pos-

itive/negative v + 1 is and how small the discretization parameter h is. Therefore, in a practical

situation, the cost for achieving weak monotonicity in this case is higher than that in the case of

jump-diffusion with a constant instantaneous variance (with and without stochastic interest rate) as

demonstrated in [38, 39].
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5.2.4 Efficient implementation via FFT and algorithms

We now discuss an efficient implementation of the scheme via FFT. Given a fixed α ∈ {2, 4, 8, . . .}, the
sequence {g̃−N†/2(σk, σs; ∆t, α), . . . , g̃N†/2−1(σk, σs; ∆t, α)} is N †-periodic for fixed s ∈ K and k ∈ K.

With this in mind, we let q = n − l in the discrete convolution (5.22), and, for a fixed α, the set of

approximate weights in the physical domain to be determined is g̃q(α), q = −N †/2, . . . , N †/2−1. Using

this notation, in (5.22), with q = n− l, we rewrite e2πiηk(n−l)∆w = e2πikαq/(αN
†), and obtain for s ∈ K,

k ∈ K fixed,

g̃q(σk, σs; ∆t, α) =
1

P †

αN†/2−1∑
ȷ=−αN†/2

e2πiȷ(αq)/(αN
†) yȷ, q = −N †/2, . . . , N †/2− 1,

where yȷ =

(
sin2 πηȷ∆w

(πηȷ∆w)
2

)
G(ηȷ, σk, σs; ∆t), ȷ = −αN

†

2
, . . . ,

αN †

2
− 1.

(5.29)

It is observed from (5.29) that, given {yȷ}, {g̃q(σk, σs; ∆t, α)} can be computed efficiently via a single

FFT of size αN †. A suitable value for α, i.e. satisfying the ϵ-monotonicity condition (5.23), can be

determined through an iterative procedure based on formula (5.29). Let this value be αϵ. We also

observe that once αϵ is found, the discrete convolutions (5.18) can also be computed efficiently using

an FFT. This suggests that we only need to compute the weights in the Fourier domain, i.e. the DFT

of {g̃q(σk, σs; ∆t, αϵ)}, only once, and reuse them for all timesteps. We define {G̃(ηq, σk, σs; ∆t, αϵ)} to

be the DFT of {g̃q(αϵ)} given by

G̃(ηȷ, σk, σs; ∆t, αϵ) =
P †

N †

N†/2−1∑
q=−N†/2

e−2πiqȷ/N†
g̃q(σk, σs; ∆t, αϵ), ȷ ∈ N†. (5.30)

An iterative procedure for computing {G̃(ηq, σk, σs; ∆t, αϵ)} for each pair (k, s) ∈ K × K is given in

Algorithm 5.1, where we also use the stopping criterion introduced in (5.24).

Algorithm 5.1 Computation of weights G̃(ηq, σk, σs; ∆t, αϵ), q ∈ N†, in Fourier domain, for each pair

(k, s) ∈ K×K.

1: set α = 1 and compute g̃q(σk, σs; ∆t, α), q ∈ N† using (5.29);

2: for α = 2, 4, . . . until convergence do

3: compute g̃q(σk, σs; ∆t, α) q ∈ N†, using (5.29);

4: compute test1 = ∆w
∑

q∈N† min (g̃q(σk, σs; ∆t, α), 0) for monotonicity test;

5: compute test2 = ∆w
∑

q∈N†

∣∣g̃q(σk, σs; ∆t, α)− g̃q(σk, σs; ∆t, α/2)
∣∣ for accuracy test;

6: if |test1| < ϵ(∆t/T ) and test2 < ϵα then

7: αϵ = α;

break from for loop;

8: end if

9: end for

10: use (5.30) to compute and output weights G̃q(ηq, σk, σs; ∆t, αϵ), q ∈ N†, in Fourier domain.

Remark 5.4. For simplicity, unless otherwise stated, we adopt the following notional convention: for

fixed (k, s) ∈ K × K, g̃n−l(σk, σs) = g̃n−l(σk, σs; ∆t, αϵ) and G̃(ηq, σk, σs; ∆t) ≡ G̃(ηq, σk, σs; ∆t, αϵ),

where αϵ is selected by Algorithm 5.1. That is, αϵ satisfies the ϵ-monotonicity condition (5.23). That

is, ∆w
∑

l∈N†

∣∣min (g̃n−l(σk, σs; ∆t, α), 0)
∣∣ < ϵ∆t

T , ϵ > 0, for all n ∈ N and for s ∈ K, k ∈ K fixed.

The intermediate result (inner integral) ũm−1
n,j,k,s defined (5.18) can then be implemented efficiently

via an FFT as follows

ũm−1
n,j,k,s ≃

∑
q∈N†

e2πiqn/N
†
Ũ(ηq, aj , σs, t

−
m) G̃(ηq, σk, σs; ∆t), (5.31)

with Ũ
(
ηq, aj , σs, t

−
m

)
=

1

N †

∑
l∈N†

e−2πiql/N†
um−
l,j,s, q ∈ N†,
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where G̃(ηq, σk, σs; ∆t) is given by (5.30). Putting everything together, an ϵ-monotone algorithm for

the computational domain Ω is presented in Algorithm 5.2.

Algorithm 5.2 An ϵ-monotone Fourier algorithm for the GLWB pricing problem; x◦y is the Hadamard

product of vectors x and y.

1: compute vector G̃k,s =
[
G̃(ηq, σk, σs; ∆t, α)

]
q∈N†

using Algorithm 5.1, k ∈ K, s ∈ K;

2: initialize uM−
n,j,k = pM−1(e

wn ∧ ew∞), n ∈ N†, j ∈ J, k ∈ K;

3: for m =M, . . . , 1 do

4: if m < M then

5: solve the optimization problem (5.10) to obtain um−
l,j,s, l ∈ N, j ∈ J, s ∈ K;

6: combine results in Line (5) with uml,j,s corresponding to Ωwmin and Ωwmax to obtain vectors

um−
j,s =

[
um−
l,j,s

]
l∈N†

, j ∈ J, s ∈ K, as per (5.12);

7: end if

8: compute vectors of intermediate values[
ũm−1
n,j,k,s

]
n∈N†

= IFFT
{
FFT

{
um−
j,s

}
◦ G̃k,s

}
, j ∈ J, k ∈ K, s ∈ K;

9: discard FFT values in padding areas Ωwmin and Ωwmax , i.e. discard for each fixed (j, k, s) ∈
J×K×K, ũm−1

n,j,k,s with n ∈ N† \ N;
10: compute um−1

n,j,k =
∑

s∈K ϑs ϱ(σk, σs; ∆t) ũ
m−1
n,j,k,s, (n, j, k) ∈ N× J×K, as per (5.17); Ωin

11: compute um−1
n,j,k , n = −N †/2, . . . ,−N/2, (j, k) ∈ J×K using (5.7); Ωwmin

12: compute um−1
n,j,k , n = N/2, . . . , N †/2− 1, (j, k) ∈ J×K using (5.8); Ωwmax

13: end for

Remark 5.5 (Fair insurance fees). With respect to the insurance fee β, let u(β;w, a, σ, t) be the exact

solution, i.e. u(w, a, σ, t), be parameterised by the insurance fee β. Then, the fair insurance fee for

t = 0, denoted by βf , solves the equation u (βf ; ln(z0), z0, ln(ν0), 0) = z0. In a numerical setting, with

a slight abuse of notation, let u0ln(z0),z0,ln(ν0)(β) be the numerical solution parameterized by β. Then

Newton iteration can be employed to solve for βf from the non-linear equation u0ln(z0),z0,ln(ν0)(βf ) = z0,

where u0ln(z0),z0,ln(ν0) is obtained by Algorithm 5.2.

6 Pointwise convergence

In this section, we establish pointwise convergence of the proposed numerical integration method.

We start by verifying three properties: ℓ∞-stability, ϵ-monotonicity (as opposed to monotonicity), and

consistency (with respect to the double integral formulation (4.6)). We will then show that convergence

of our scheme is ensured if the monotonicity tolerance ϵ→ 0 as h→ 0.

For subsequent use, we present relevant properties of the weights g̃n−l(σk, σs; ∆t), where σs and σk
are fixed. in the scheme (5.17).

Lemma 6.1. Suppose the function g̃n−l(σk, σs; ∆t) is given by (5.22), we have, n ∈ N, s ∈ K, k ∈ K,

∆w
∑
l∈N†

g̃n−l = e−r∆t, ∆w
∑
l∈N†

(max(g̃n−l, 0) + |min (g̃n−l, 0)|) ≤ 1 + 2ϵ
∆τ

T
≤ e2ϵ

∆τ
T . (6.1)

Proof of Lemma 6.1. Letting ℓ = n− l, we have ∆w
∑
l∈N†

g̃n−l(σk, σs; ∆t) = . . .
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. . . =
P †

N †

∑
ℓ∈N†

g̃ℓ(σk, σs; ∆t)
(i)
=
P †

N †

∑
ℓ∈N†

1

P †

αN†/2−1∑
q=−αN†/2

e2πiηqℓ∆w

(
sin2 πηq∆w

(πηq∆w)2

)
G(ηq, σk, σs; ∆t)

=
1

N †

αN†/2−1∑
q=−αN†/2

(
sin2 πηq∆w

(πηq∆w)2

)
G(ηq, σk, σs; ∆t)

∑
ℓ∈N†

exp

(
2πiℓq

N †

)
(ii)
= G(0, σk, σs; ∆t)

(iii)
= e−r∆t.

Here, in (i), we use the definition of (5.22), in (ii), we apply the properties of N †th roots of unity; in

(iii), we use the closed-form expression of G(·) in (3.7). Finally, in (6.1), the second result follows from

the first, noting g̃n−l = max(g̃n−l, 0) + min(g̃n−l, 0), and e−r∆τ ≤ 1, together with the monotonicity

condition (5.23).

Remark 6.1. Since ϱ(σ, σ′; ∆t), given in (3.9), is a (conditional) probability density function, for a

fixed σk ∈ [σmin, σmax], we have

∫
R
ϱ(σk, σ; ∆t) dσ = 1, hence,

∫ σmax

σmin

ϱ(σk, σ; ∆t) dσ ≤ 1. Applying

Gauss-Legendre quadrature rule to approximate

∫ σmax

σmin

ϱ(σk, σ; ∆t) dσ gives rise to an approximation

error ϵp defined as follows ϵp :=

∣∣∣∣∑
s∈K

ϑs ϱ(σk, σs; ∆t)−
∫ σmax

σmin

ϱ(σk, σ; ∆t) dσ

∣∣∣∣. It is straightforward to

see that ϵp → 0 as K → ∞, i.e. as h→ 0. Using the above results, recalling the weights ϑs, s ∈ K, are

positive, we have

0 ≤
∑
s∈K

ϑsϱ(σk, σs; ∆t) ≤ 1 + ϵp < eϵp . (6.2)

6.1 Stability

Our scheme consists of the following equations: (5.6) for Ω×{T}, (5.7) for Ωwmin , (5.8) for Ωwmax , and

finally (5.17) for Ωin. We start by verifying ℓ∞-stability of our scheme.

Lemma 6.2 (ℓ∞-stability). Suppose the discretization parameter h satisfies (5.5). If linear inter-

polation is used for the intervention action (5.10), then the scheme (5.6), (5.7), (5.8), and (5.17)

satisfies sup
h>0

∥um∥∞ < ∞ for all m = M, . . . , 0, as the discretization parameter h → 0. Here, we have

∥um∥∞ = maxn,j,k |umn,j,k|, (n, j, k) ∈ N† × J×K.

Proof of Lemma 6.2. First, we note that, for any fixed h > 0, as given by (5.6), we have
∥∥uM−∥∥

∞ <∞.

Therefore, we have suph>0

∥∥uM−∥∥
∞ < ∞. Motivated by this observation, to demonstrate ℓ∞-stability

of our scheme, we will show that, for a fixed h > 0, at any (wn, aj , σk, tm), m =M, . . . , 0, we have

|umn,j,k| < C
(∥∥uM−∥∥

∞ + ewmax
)
, C > 0 bounded above independently of h. (6.3)

In our proof techniques, the constant C > 0 is typically of the form

(M −m+ 1)e2(M−m)ϵ∆t
T e(M−m)ϵp , m =M, . . . , 0,

where ϵ is the monotonicity tolerance used in (5.23) with 0 < ϵ≪ 1, and ϵp is the error of the quadrature

rule discussed in Remark (6.1). Since m∆τ ≤ T and ϵp ≪ 1, C is bounded above by e2(M+1), where

M is a fixed positive constant.

For the rest of the proof, we will show the key inequality (6.3) when h > 0 is fixed. For clarity, we

will address stability for the boundary and interior sub-domains (together with their respective initial

conditions) separately, starting with the boundary sub-domains.

It is straightforward to show that (5.6) is ℓ∞-stable, since maxn,j,k |uM−
n,j,k| obviously satisfies (6.3)

for (n, j, k) ∈ N† × J × K. Next, recall that aj ∈ [0, ewmax ], j ∈ J, hence (5.7) is also ℓ∞-stable since

|umn,j,k|, n = −N †/2, . . . ,−N/2, (j, k) ∈ J × K, also satisfies (6.3). It is also straightforward to show

that (5.8) is also ℓ∞-stable since maxn,j,k |umn,j,k| n = N/2, . . . , N †/2−1 and (j, k) ∈ J×K, also satisfies

(6.3).
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Now we focus on the main task which is to demonstrate ℓ∞-stability for (5.17) (for Ωin). Recall the

monotonicity tolerance ϵ used in (5.23), where 0 < ϵ ≪ 1, and the error ϵp is given in Remark (6.1).

We typically use ϵ ≤ 1/2 in the proof below.

To prove ℓ∞-stability for (5.17) (for Ωin), we show that, for m =M, . . . , 0, we have

∥um∥∞ ≤ (M −m+ 1)e2(M−m)ϵ∆t
T e(M−m)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
, (6.4)

which is bounded above by e2(M+1)
(∥∥uM−∥∥

∞ + ewmax
)
independently of h, sincem∆τ ≤ T , and ϵp ≪ 1.

For subsequent use, with (n, j, k) ∈ N× J×K, and m =M, . . . , 1, we define the measures∥∥∥um−
j,k

∥∥∥
∞

= max
n

∣∣∣um−
n,j,k

∣∣∣ and
∥∥umj,k∥∥∞ = max

n

∣∣∣umn,j,k∣∣∣,[
um−
j,k

]
max

= max
n

{
um−
n,j,k

}
,
[
umj,k
]
max

= max
n

{
umn,j,k

}
,
[
um−
j,k

]
min

= min
n

{
um−
n,j,k

}
,
[
umj,k
]
min

= min
n

{
umn,j,k

}
.

To show (6.4), using induction on m, m =M, . . . , 0, we will show that for all (j, k) ∈ J×K,[
umj,k
]
max

≤ (M −m+ 1)e2(M−m)ϵ∆t
T e(M−m)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
, (6.5)[

umj,k
]
min

≥ −(M −m+ 1)e2(M−m)ϵ∆τ
T e(M−m)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
. (6.6)

Base case: when m =M , and hence M −m = 0, it follows that (6.5) and (6.6) become[
uMj,k
]
max

≤
(∥∥uM−∥∥

∞ + ewmax
)
,
[
uMj,k
]
min

≥ 0,

which hold for all (n, j, k) ∈ N× J×K, due to from terminal condition (5.6).

Hypothesis: we assume that (6.5)-(6.6) hold for m = m̂, where 1 ≤ m̂ ≤M and (j, k) ∈ J×K.

Induction: we show that (6.5)-(6.6) also hold for m = m̂ − 1 and (j, k) ∈ J × K. This is done in two

steps as follows. In Step 1, we show, for (j, k) ∈ J×K,
[
um̂−
j,k

]
max

and
[
um̂−
j,k

]
min

satisfy[
um̂−
j,k

]
max

≤ (M − (m̂− 1) + 1)e2(M−m̂)ϵ∆τ
T e(M−m̂)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
, (6.7)[

um̂−
j,k

]
min

≥ −(M − (m̂− 1) + 1)e2(M−m̂)ϵ∆τ
T e(M−m̂)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
. (6.8)

In Step 2, we bound the timestepping result (5.17) at m = m̂− 1 using (6.7)-(6.8).

Step 1 - Bound (6.7)-(6.8) for um̂−
n,j,k: As noted in Remark 5.2, for the intervention result um̂−

n,j,k, the

supremum of (5.10) is achieved by an optimal control γ∗ ∈ [0, ewn ∨Craj ]. Therefore, for m = m̂, um̂−
n,j,k

can be written as

um̂−
n,j,k = I

{
um̂k

}(
ŵ∗
n, â

∗
j

)
+ pm̂f (γ

∗; aj) + pm̂−1qm̂−1e
wn , γ∗ ∈ [0, ewn ∨ Craj ], (6.9)

where (ŵ∗
n, â

∗
j ) are given by (3.3) with γ = γ∗. We assume that ŵ∗

n ∈ [ewn′ , ewn′+1 ] and â∗j ∈ [aj′ , aj′+1],

and nodes that are used for linear interpolation are (xm̂n′,j′,k, . . . , x
m̂
n′+1,j′+1,k), where x = (w, a, σ). We

note that these nodes could be outside Ωin, i.e. in Ωwmin . However, as previously demonstrated, the

numerical solutions at these nodes satisfy the same bounds (6.5)-(6.6). Computing um̂−
n,j,k using linear

interpolation results in

um̂−
n,j,k = xa

(
xw um̂n′,j′,k + (1− xw) u

m̂
n′+1,j′,k

)
+ (1− xa)

(
xw um̂n′,j′+1,k + (1− xw) u

m̂
n′+1,j′+1,k

)
,(6.10)

where 0 ≤ xa ≤ 1 and 0 ≤ xw ≤ 1 are interpolation weights. By the induction hypothesis for (6.5), we

have the following bound for nodal values used in (6.10):{
um̂n′,j′,k, . . . u

m̂
n′+1,j′+1,k

}
≤ (M − m̂+ 1)e2(M−m̂)ϵ∆t

T e(M−m̂)ϵp
(∥∥uM−∥∥

∞ + ewmax
)
. (6.11)

Taking into account the non-negative weights in linear interpolation, and upper bounds in (6.11), the

interpolated result I
{
um̂k
}(

ŵ∗
n, â

∗
j

)
in (6.9) is bounded by

I
{
um̂k

}(
ŵ∗
n, â

∗
j

)
≤ (M − m̂+ 1)e2(M−m̂)ϵ∆t

T e(M−m̂)ϵp
(∥∥uM−∥∥

∞ + ewmax
)
. (6.12)

Hence, using (6.12), (6.9) becomes

um̂−
n,j,k

(i)

≤ (M − m̂+ 1)e2(M−m̂)ϵ∆t
T e(M−m̂)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
+ pm̂e

wmax + pm̂−1qm̂−1e
wmax

(ii)

≤ (M − m̂+ 1)e2(M−m̂)ϵ∆t
T e(M−m̂)ϵp(∥uM−∥∞ + ewmax) + pm̂−1e

wmax

(iii)

≤ (M − (m̂− 1) + 1)e2(M−(m̂)ϵ∆t
T e(M−m̂)ϵp(∥uM−∥∞ + ewmax). (6.13)
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Here, in (i), by (3.2), f(γ∗; aj) ≤ γ∗ ≤ ewn < ewmax . In (ii), we use pm̂ + pm̂−1qm̂−1 = pm̂−1, and (iii)

follows from e2(M−m̂)ϵ∆t
T e(M−m̂)ϵp ≥ 1. This proves (6.7) at m = m̂− 1.

Next, we show the lower bound (6.8) for um̂−
n,j,k. By the induction hypothesis (6.6), we have

um̂n,j,k ≥ −(M − m̂+ 1)e2(M−m̂)ϵ∆τ
T e(M−m̂)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
. (6.14)

Comparing um̂−
n,j,k, which is given by the supremum of the rhs of (5.10) (when m = m̂), with um̂n,j,k +

pm̂−1qm̂−1, which is the rhs of (5.10) evaluated at γm̂n,j,k = 0, yields

um̂−
n,j,k ≥ um̂n,j,k + pm̂−1qm̂−1e

wn
(i)

≥ −(M − (m̂− 1) + 1)e2(M−m̂)ϵ∆τ
T e(M−m̂)ϵp

(∥∥uM−∥∥
∞ + ewmax

)
.

(6.15)

Here, in (i), we use (6.14). This proves (6.8) at m = m̂. From (6.13)-(6.15), noting ϵ ≤ 1/2, we have

|um̂−
n,j,k| ≤ (M − (m̂− 1) + 1)e2(M−(m̂)ϵ∆t

T e(M−m̂)ϵp(∥uM−∥∞ + ewmax). (6.16)

Step 2 - Bound for um̂−1
n,j,k : We now show that (6.5)-(6.6) hold atm = m̂−1. For fixed (n, j, k) ∈ N×J×K,

we first consider ∆w
∑
l∈N†

g̃n−l(σk, σs; ∆t)u
m̂−
l,j,s ≤ ∆w

∑
l∈N†

∣∣g̃n−l(·)
∣∣ ∣∣um̂−

l,j,s

∣∣ . . .
(i)

≤ (M − (m̂− 1) + 1)e2(M−m̂)ϵ∆t
T e(M−m̂)ϵp(∥uM−∥∞ + ewmax)

(
∆w

∑
l∈N†

(max(g̃n−l, 0) + |min(g̃n−l, 0)|)
)

(ii)

≤ (M − (m̂− 1) + 1)e2(M−(m̂−1))ϵ∆t
T e(M−m̂)ϵp(∥uM∥∞ + ewmax). (6.17)

Here, in (i), we use the bound (6.16); and (ii) comes from the second result of (6.1). Then, using (6.17)

and (6.2)[ Remark 6.1], um̂−1
n,j,k as given by (5.17) can be bounded by∣∣∣um̂−1

n,j,k

∣∣∣ ≤∑
s∈K

ϑsp(σk, σs; ∆t) ∆w
∑
l∈N†

∣∣g̃n−l(σk, σs; ∆t)
∣∣∣∣um̂−

l,j,s

∣∣ (6.18)

≤ (M − (m̂− 1) + 1)e2(M−(m̂−1))ϵ∆t
T e(M−m̂)ϵp(∥uM−∥∞ + ewmax)

(∑
s∈K

ϑs p(σk, σs; ∆t)

)
≤ (M − (m̂− 1) + 1)e2(M−(m̂−1))ϵ∆t

T e(M−(m̂−1))ϵp
(
∥uM−∥∞ + ewmax

)
.

This proves (6.5) at m = m̂− 1.

To prove (6.6) at m = m̂− 1, first, with (6.7)-(6.8), we have ∆w
∑
l∈N†

g̃n−l(σk, σs; ∆t) u
m̂−
l,j,s . . .

. . . ≥ −(M − (m̂− 1) + 1)e2(M−m̂)ϵ∆τ
T e(M−m̂)ϵp ∆w

N†/2−1∑
l=−N†/2

(max(g̃n−l, 0) + |min (g̃n−l, 0)|)

≥ −(M − (m̂− 1) + 1)e2(M−m̂)ϵ∆τ
T e(M−m̂)ϵp

(
1 + 2ϵ

∆t

T

)
≥ −(M − (m̂− 1) + 1)e2(M−(m̂−1))ϵ∆τ

T e(M−m̂)ϵp . (6.19)

Here, in the last inequality of (6.19), we use (6.1). Using (6.19) gives

um̂−1
n,j,k =

∑
s∈K

ϑsp(·; ∆t)
(
∆w

∑
l∈N†

g̃n−l(σk, σs; ∆t)u
m̂−
l,j,s

)
≥ −(M − (m̂− 1) + 1)e2(M−(m̂−1))ϵ∆τ

T e(M−(m̂−1))ϵp ,

where, in the last inequality, we use the second result of (6.1). This proves (6.6) at m = m̂ − 1 and

concludes the proof.

6.2 Consistency

We now turn to the pointwise consistency of our scheme. Since it is straightforward that (5.6) (Ω×{T}),
(5.7) (Ωwmin), and (5.8) (Ωwmax) are consistent, we focus primarily on the consistency of (5.17) (for Ωin).

That is, we will show that (5.17) is (local) consistent with the double integral (4.6).

We start by introducing notational convention: we use x = (w, a, σ) ∈ Ω∞ and xm ≡ (w, a, σ, tm) ∈
Ω∞ × {tm}, m = M, . . . , 0; in addition, for brevity, we use um(x) instead of u(x, tm), m = M, . . . , 0.
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For subsequent discussions, we write (4.6) for an arbitrary, but fixed, point xm−1 = (w, a, σ, tm−1) ∈
Ωin × tm−1, m =M, . . . , 1, in an equivalent form via an operator D(·) as follows

um−1(x) = D
(
xm−1, um

)
, where (6.20)

D
(
xm−1, um

)
:=

∫ σmax

σmin

∫ ∞

−∞
û(w′, a, σ′, t−m)g(w − w′, σ, σ′; ∆t) dw ϱ(σ, σ′; ∆t) dσ,

with û(w′, ·, σ′, t−m) is given by (4.7). We write the proposed numerical scheme (5.17) for (xn,j,k, tm) =

(wn, aj , σk, tm) ∈ Ωin × tm, tm ∈ T , in an equivalent form via an operator Dh(·) as follows

um−1
n,j,k = Dh

(
xm−1
n,j,k ,

{
uml,j,s

}
l∈N†
s∈K

)
:=
∑
s∈K

ϑsϱ(σk, σs; ∆t)

(
∆w

∑
l∈N†

g̃n−l(σk, σs)u
m−
l,j,s

)
, (6.21)

where g̃n−l(σk, σs) and u
m−
l,j,s are respectively given by (5.16) and (5.12).

We denote by B the set of bounded functions defined by [8, 49]

B(Ω∞ × [0, T ]) =

{
v : Ω∞ × [0, T ] → R, sup

x∈Ω∞×[0,T ]
|v(x)| <∞

}
. (6.22)

We first show an supplementary result on functions in (B∪C)(Ω∞× [0, T ]), i.e. bounded and continuous

functions.

Lemma 6.3 (Functions in B∪C). Suppose the discretization parameter h satisfies (5.5). Let ψ(w, a, σ, t)

be in (B∪C)(Ω∞× [0, T ]). For any xm−1
n,j,k = (wn, aj , σk, tm−1), (n, j, k) ∈ N×J×K and m ∈ {M, . . . , 1},

we have

Dh

(
xm−1
n,j,k ,

{
ψm
l,j,s

}
l∈N†
s∈K

)
= D

(
xm−1
n,j,k , ψ

m
)
+O(h2) + E(xm−1

n,j,k , h), (6.23)

where E(xm−1
n,j,k , h) → 0 as h→ 0. Here, the operators D (·) and Dh(·) are defined in (6.20) and (6.21),

respectively

Proof of Lemma 6.3. We first consider the term ∆w
∑

l∈N† g̃n−l(σk, σs; ∆t) ψ
m
l,j,s on the lhs-of-(6.23).

For brevity, we fix a = aj , σ = σs, and t = tm, and instead of writing ψ(w, aj , σs, tm), we will write

ψ(w) which is a bounded and continuous function of w ∈ R. We will also write ψl instead of ψm
l,j,s,

l ∈ N†. Without loss of generality, we assume that ψ(w) ∈ L1(R); otherwise we can employ a smooth

cut-off function to modify ψ(w) into a function in L1(R) that agrees with ψ(w) in [wmin, wmax], as in

[39, Lemma 5.4].

We have ∆w
∑

l∈N† g̃n−l(σk, σs) ψl = . . .

. . .
(i)
= ∆w

∑
l∈N†

g̃n−l(σk, σs; ∆t) ψl + Ef
(5.20)
=

∑
l∈N†

ψl

(∫ wn−wl+∆w

wn−wl−∆w
φn−l(w) ĝ(w;σk, σs; ∆t) dw

)
+ Ef

(ii)
=
∑
l∈N†

ψl

(∫ wn−wl+∆w

wn−wl−∆w
φn−l(w) g(w;σk, σs; ∆t) dw

)
+ Ef + Eĝ

(iii)
= ∆w

∑
l∈N†

ψl g(wn − wl;σk, σs; ∆t) + Ef + Eĝ + Eo,

(iv)
=

∫ w†
max

w†
min

ψ(w, aj , σs, tm) g(wn − w;σk, σs; ∆t) dw + Ef + Eĝ + Eo + Ec

(v)
=

∫ ∞

−∞
ψ(w, aj , σs, tm) g(wn − w;σk, σs; ∆t) dw + Ef + Eĝ + Eo + Ec + Eb, (6.24)

where the errors Ef , Eĝ, Eo, Ec, and Eb are described below.

� In (i), Ef ≡ Ef(xm−1
n,j,k , σs, h) is the Fourier series error arising from truncating g̃n−l(σk, σs; ∆t),

defined in (5.21), to g̃n−l(σk, σs; ∆t, α), for some α ∈ {2, 4, 8, . . .}, in (5.22). (Here, in particular,

as noted in Remark 5.4, α = αϵ.) We note that, by results in Subsection 5.2.3, it follows that

Ef → 0 as h→ 0.
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� In (ii), the error Eĝ ≡ Eĝ(xm−1
n,j,k , σs, h) is due to approximating g(w, σk, σs; ∆t) by its localized,

periodic approximation ĝ(w, σk, σs; ∆t), and is defined by

Eĝ =
∑
l∈N†

ψl

(∫ wn−wl+∆w

wn−wl−∆w
φn−l(w) (ĝ(w, σk, σs; ∆t)− g(w, σk, σs; ∆t)) dw

)
. (6.25)

We note that, for fixed σ′, σ ∈ [σmin, σmax], ĝ(w, σ
′, σ; ∆t) ̸= g(w, σ′, σ; ∆t) for w ∈ [w†

min, w
†
max].

However, since h satisfies (5.5), i.e. P † = C4/h, then, as h→ 0, we have

ĝ(w, σ, σ′; ∆t) =

∫
R
e2πiηwG(η, σ, σ′; ∆t)dη +O

(
1/
(
P †
)2)

= g(w, σ, σ′; ∆t) +O(h2). (6.26)

Here, the error O
(
1/
(
P †)2) ∼ O(h2) is due to the trapezoidal rule approximation of the integral.

Using (6.26), noting that ψ(w) ∈ L1(R), we obtain Eĝ = O
(
h2
)
as h→ 0.

� In (iii), Eo ≡ Eo(xm−1
n,j,k , σs, h) is due to the simple lhs/rhs numerical rule to approximate an integral

and is given by

Eo = ∆w g(wn − wl, σk, σs; ∆t)−
∫ wn−wl+∆w

wn−wl−∆w
φn−l(w) g(w, σk, σs; ∆t) dw. (6.27)

Since the probability density function g(·) is at least in C2, it follows that Eo → 0 as h→ 0.

� In (iv), Ec ≡ Ec(xm−1
n,j,k , σs, h) is the error arising from the simple lhs numerical integration rule

Ec = ∆w
∑
l∈N†

ψl g(wn − wl, σk, σs; ∆t)−
∫ w†

max

w†
min

ψ(w, aj , σs, tm) g(wn − w, σk, σs; ∆t) dw. (6.28)

Due to continuity and boundedness of the integrand, we have Ec → 0 as h→ 0.

� In (v), Eb ≡ Eb(xm−1
n,j,k , h) is the boundary truncation error

Eb =
∫
R\[w†

min,w
†
max]

ψ(w, aj , σs, tm) g(wn − w, σk, σs; ∆t) dw. (6.29)

As h→ 0, P † → ∞, therefore, it follows that Eb → 0 as h→ 0, noting ψ(w)g(wn −w) is bounded

function for all w ∈ R.

For brevity, from (6.24), we let ψ′(σ;xm−1
n,j,k) be a function of σ ∈ [σmin, σmax], parameterized by xm−1

n,j,k ∈
Ωin defined as follows

ψ′(σ;xm−1
n,j,k) =

∫ ∞

−∞
ψ(w, aj , σ, tm) g(wn − w;σk, σ; ∆t) dw.

Then, using (6.24), the lhs-of-(6.23) =
∑
s∈K

ϑsϱ(σk, σs; ∆t)

(∑
l∈N†

ψm
l,j,s g(wn − wl, σk, σs; ∆t)

)
= . . .

. . .
(i)
=
∑
s∈K

ϑsϱ(σk, σs; ∆t)ψ
′(σ;xm

n,j,k) + E1 +O(h)
(ii)
=

∫ σmax

σmin

ψ′(σ;xm
n,j,k) ϱ(σk, σ; ∆t) dσ + E1 + E2 +O(h),

where the errors E1 ≡ E1(xm−1
n,j,k , h), E2 ≡ E2(xm−1

n,j,k , h) and O(h) are described as follows.

� In (i) E1 ≡ E1(xm−1
n,j,k , h) =

∑
s∈K ϑsϱ(σk, σs; ∆t)(Ef + Eo + Ec + Eb). Due to (6.2)[Remark 6.1], it

follows that E1 → 0 as h → 0. The O(h2) error comes from
∑

s∈K ϑsϱ(σk, σs; ∆t)Eĝ = O(h), also

due to the same reason, noting Eĝ = O(h2).

� In (ii), E2 ≡ E2(xm−1
n,j,k , h) is an approximation error arising from a quadrature rule

E2 =
∑
s∈K

ϑsϱ(σk, σs; ∆t) ψ
′(σs;x

m−1
n,j,k)−

∫ σmax

σmin

ψ′(σ;xm−1
n,j,k) ϱ(σk, σ; ∆t) dσ. (6.30)

It is straightforward to see that ψ′(σ;xm−1
n,j,k) is continuous and bounded function of σ ∈ [σmin, σmax],

and hence E2 → 0 as h→ 0.

Letting E(xm−1
n,j,k , h) = E1(xm−1

n,j,k , h) + E2(xm−1
n,j,k , h) concludes the proof.
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We now introduce a lemma on local consistency of the scheme.

Lemma 6.4 (Local consistency). Suppose that (i) the discretization parameter h satisfies (5.5), (ii)

linear interpolation is used for the intervention action (5.10). For any smooth test function ϕ ∈ (B ∪
C∞)(Ω∞ × [0, T ]), with ϕmn,j,k ≡ ϕ(xm

n,j,k) and xm−1
n,j,k ∈ Ωin×{tm−1}, m =M, . . . , 1, and for a sufficiently

small h, we have

Dh

(
xm−1
n,j,k ,

{
ϕml,j,s + χ

}
l∈N†
s∈K

)
= D

(
xm−1
n,j,k , ϕ

m
)
+ c(xm−1

n,j,k)χ+O(h2) + E(xm−1
n,j,k , h). (6.31)

Here, χ is a constant and c(·) is a bounded function satisfying |c(xm
n,j,k)| ≤ max(r, 1) for all x ∈ Ω,

and E(xm−1
n,j,k , h) → 0 as h → 0. The operators D (·) and Dm−1

h (·) are defined in (6.20) and (6.21),

respectively.

Proof of Lemma 6.4. In this case, the operator Dh(·) is written as

. . .Dh(·) =
∑
s∈K

ϑsϱ(σk, σs; ∆t)

(
∆w

N/2−1∑
l=−N/2+1

g̃n−l(σk, σs) sup
γ∈[0,ewl∨Craj ]

(ϕ̂ml,j,s + pmf(γ; aj)) + pm−1qm−1e
wl ,

+∆w

N/2∑
l=−N†/2

g̃n−l(σk, σs) (ϕ
m
l,j,s + χ) + ∆w

N†/2−1∑
l=N/2

g̃n−l(σk, σs) (ϕ
m
l,j,s + χ)

)
, (6.32)

where ϕ̂ml,j,s ≡ I{ϕms +χ}(ŵl, âj) = ϕ(ŵl, âj , σs, tm)+χ+O
(
h2
)
, with (ŵl, âj) defined in (3.3). Here, the

error of size O
(
(∆w +∆amax)

2
)
= O

(
h2
)
is due to linear interpolation, noting that we can completely

separate χ from interpolated values.

Let ϕ′ (x′) be a function of x′ = (w′, a′, σ′, t) ∈ Ω∞ × [0, T ) defined by

ϕ′ (x′) =


sup

γ∈[0,ew′∨Cra′]

M(γ)ϕ(x′) + pmf(γ; a
′) x′ ∈ Ωin × [0, T )

ϕ(x′) otherwise,

(6.33a)

(6.33b)

where M(·) is defined in (3.4). It is straightforward to show that ϕ′ ∈ (B ∪ C(Ω∞ × [0, T )); Therefore,

using (6.33), (6.32) can be written as

Dh(·) =
∑
s∈K

ϑsϱ(σk, σs; ∆t)

(
∆w

∑
l∈N†

g̃n−l(σk, σs) ϕ
′(xm

l,j,s)

)

+ χ
∑
s∈K

ϑsϱ(σk, σs; ∆t)

(
∆w

∑
l∈N†

g̃n−l(σk, σs)

)
+O

(
h2
)

(i)
=

∫ σmax

σmin

∫ ∞

−∞
ϕ′(w, aj , σ, tm) g(wn − w, σk, σ; ∆t) dw ϱ(σk, σ; ∆t) dσ + c(xm−1

n,j,k)χ+O(h2) + E(xm−1
n,j,k , h).

Here, (i) is due to Lemma 6.3, with c(xm−1
n,j,k) = 1−

∑
s∈K ϑsϱ(σk, σs; ∆t)

(
∆w

∑
l∈N† g̃n−l(σk, σs)

)
. This

concludes the proof, noting that the double integral appearing above is D
(
xm−1
n,j,k , ϕ

m
)
.

Remark 6.2. Lemma 6.4 indicates that second-order convergence is possible if E(xm−1
n,j,k , h) ∼ O(h2) as

h→ 0. Through extensive numerical experiments, second-order convergence is observed in the numerical

results. This will be elaborated further in Section 7.

Next, we present a result on the ϵ-monotonicity of the numerical scheme Dm−1
h (·).

Lemma 6.5 (ϵ-monotonicity). If linear interpolation is used for the intervention action (5.10), and

g̃n−l(σk, σs) satisfies the monotonicity condition (5.23), i.e. ∆w
∑

l∈N†

∣∣min (g̃n−l(σk, σs), 0)
∣∣ < ϵ∆τ

T ,

where ϵ > 0, then scheme (6.21) satisfies

Dh

(
xm−1
n,j,k ,

{
xml,j,s

}
l∈N†
s∈K

)
≤ Dh

(
xm−1
n,j,k ,

{
yml,j,s

})
+ Cϵ,

for bounded {xml,j,s} and {yml,j,s} having {xml,j,s} ≤ {yml,j,s}, where the inequality is understood in the

component-wise sense, and C is a positive constant independent of h and ϵ.
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Proof of Lemma 6.5. Recall the linear interpolation operator I{·}(·) in (5.9). For each fixed s ∈ K,

let x̂mn,j,s and ŷmn,j,s be the results of the linear operators I{xms } (ŵl, âj) and I{yms } (ŵl, âj) acting on{(
(wl, aj) , x

m
l,j,s

)}
, and

{(
(wl, aj) , y

m
l,j,s

)}
, (l, j) ∈ N† × J, respectively. We also define for xm−

l,j,s, y
m−
l,j,s,

in a similar way that um−
l,j,s in (5.9).

For the rest of the proof, let C be a generic positive constant independent of h and ϵ, which may take

different values from line to line. From the boundedness of {xml,j,s} and {yml,j,s}, and {xml,j,s} ≤ {yml,j,s},
noting I{xms }(·) and I{yms }(·) are linear interpolation operators, we have, for each fixed j ∈ J and

s ∈ K,

xm−
l,j,s ≤ ym−

l,j,s and
∣∣∣xm−

l,j,s − ym−
l,j,s

∣∣∣ ≤ C, l = −N †/2, . . . , N †/2− 1. (6.34)

Next, using (6.34) together with the definition of the operator Dh(·) in (6.21), we have

Dh

(
·,
{
xml,j,s

}
l∈N†
s∈K

)
−Dh

(
·,
{
yml,j,s

}
l∈N†
s∈K

)
=
∑
s∈K

ϑsp(σk, σs; ∆t)
(
∆w

∑
l∈N†

g̃n−l(σk, σs)
(
xm−
l,j,s − ym−

l,j,s

))
≤
∑
s∈K

ϑsp(σk, σs; ∆t)
(
∆w

∑
l∈N†

∣∣min
(
g̃n−l(σk, σs), 0

)∣∣ ∣∣xm−
l,j,s − ym−

l,j,s

∣∣)
≤ C

∑
s∈K

ϑsp(σk, σs; ∆t)
(
∆w

∑
l∈N†

∣∣min (g̃n−l(σk, σs), 0)
∣∣)

(i)

≤ C
∑
s∈K

ϑspσ(σk, σs; ∆t)ϵ
∆t

T

(ii)

≤ C(1 + ϵp)ϵ
∆t

T
,

where in (i), we use the property (6.1), whereas in (ii), we use Remark 6.1. This concludes the proof.

With stability, consistency, and ϵ-monotonicity established in Lemmas 6.2, 6.4 and 6.5, and Proposi-

tion 4.1, we now establish the pointwise convergence of the proposed numerical scheme in Ωin×{tm−1},
m =M, . . . , 1, as h→ 0. We first need to recall/introduce relevant notation.

We denote by Ωh the computational grid parameterized by h, noting that Ωh → Ω∞ as h → 0. We

also have the respective Ωh
in. In general, a generic gridpoint in Ωh

in × {tm}, m = M, . . . , 0, is denoted

by xm
h = (xh, tm), whereas an arbitrary point in Ωin × {tm} is denoted by xm = (x, tm). Numerical

solutions at (xh, tm−1), m = M, . . . , 1, is denoted by um−1
h (xh, u

m
h ), where it is emphasized that umh ,

which is the time-tm numerical solution at gridpoints is used for the computation of um−1
h . The exact

solution at an arbitrary point in xm−1 = (x, tm−1) ∈ Ωin × {tm−1}, m = M, . . . , 1, is denoted by

um−1(x, um), where it is emphasized that um, which is the time-tm exact solution in Ω∞ is used. More

specifically, um−1
h (xh;u

m
h ) and um−1(x;um) are defined via operators Dh (·) and D(·) as follows

um−1
h

(
xh, u

m
h

)
:= Dh

(
xm−1
h , {uml,j,s}

)
, um−1

(
x, um

)
:= D

(
xm−1, um

)
, m =M, . . . , 1. (6.35)

Here, our convention is that uh
(
xM−1, uMh

)
= uh

(
xM−1, uM

)
.

The pointwise convergence of the proposed scheme is stated in the main theorem below.

Theorem 6.1 (Pointwise convergence). Suppose that all the conditions for Lemma 6.2, 6.4, and 6.5

are satisfied. Under the assumption that the monotonicity tolerance ϵ → 0 as h → 0, scheme (6.21)

converges pointwise in Ωin × {tm−1}, m ∈ {M, . . . , 1}, to the unique bounded solution of the GLWB

pricing problem in Definition 4.1, i.e. for any m ∈ {M, . . . , 1}, we have

um−1 (x, um) = lim
h→0

xh→x

um−1
h (xh;u

m
h ) , for xh ∈ Ωh

in, x ∈ Ωin. (6.36)

Proof of Theorem 6.1. By Proposition 4.1, there exists ϕ ∈ (B ∪ C∞)(Ω∞ × [0, T ]) such that, for any

h > 0,
u ≤ ϕ ≤ u+ h, in Ω∞ × {tm}, m =M, . . . , 0. (6.37)

We then define

um−1
h

(
xh, ϕ

m
)
:= Dh

(
xm−1
h , {ϕml,j,s}

)
, um−1

(
x, ϕm

)
:= D

(
xm−1, ϕm

)
,

noting our convention that ϕml,j,s = ϕ(xl,j,s, tm). To show (6.36), we will prove by mathematical induction

on m the following result: for any m ∈ {M, . . . , 1}, and for sequence {xh}h>0 such that xh → x as

h→ 0,∣∣um−1
h (xh, u

m)− um−1 (x, um)
∣∣ ≤ χm−1

h , χm−1
h is bounded ∀h > 0 and χm−1

h → 0 as h→ 0. (6.38)
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In the following proof, we let K1, K2, and K3 be generic positive constants independent of h and ϵ,

which may take different values from line to line.

Base case m =M : by (6.37), we can write uM ≤ ϕM ≤ uM + h. Therefore,

uM−1
h

(
xh;u

M
) (i)

≤ uM−1
h

(
xh;ϕ

M
)
+K1ϵ, (6.39)

uM−1
h

(
xh;ϕ

M
) (ii)

≤ uM−1
h

(
xh;u

M + h
)
+K2ϵ

(iii)

≤ uM−1
h

(
xh;u

M
)
+K1ϵ+K2ϵh.

Here, (6.39) is due to the ϵ-monotonicity of the numerical scheme, noting the boundedness of uM by

Lemma 6.2 on stability, as demonstrated in Lemmas 6.4 combined with uM ≤ ϕM for (i), ϕM ≤ uM +h

for (ii), and |ϕM − uM | ≤ h for (iii). Therefore,∣∣∣uM−1
h

(
xh;u

M
)
− uM−1

(
x;uM

)∣∣∣ (6.39)≤
∣∣∣uM−1

h

(
xh;ϕ

M
)
− uM−1(x;ϕM )

∣∣∣+K1ϵ+K2ϵh

(i)

≤
∣∣∣uM−1

h

(
xh;ϕ

M
)
− uM−1

(
xh;ϕ

M
)∣∣∣+ ∣∣uM−1

(
xh;ϕ

M
)
− uM−1

(
x;ϕM

)∣∣+K1ϵ+K2ϵh, (6.40)

where (i) is due to the triangle inequality. By Lemma 6.3, we have

uM−1
h

(
xh;ϕ

M
)
− uM−1

(
xh;ϕ

M
)
= O(h) + E(xM−1

h , h). (6.41)

Due to smoothness of ϕ(·) and regularity of g(·) (see Remark 3.2), we have∣∣uM−1
(
xh;ϕ

M
)
− uM−1

(
x;ϕM

)∣∣ ≤ K1∥xh − x∥. (6.42)

Therefore, using (6.40), (6.41), (6.42), we can show that∣∣∣uM−1
h

(
xh;u

M
)
− uM−1

(
x;uM

)∣∣∣ ≤ χM−1
h , (6.43)

χM−1
h = K1ϵ+K2ϵh+O(h) + |E(xM−1

h , h)|+K3∥xh − x∥ −→ 0, as h→ 0,

noting xh → x as h→ 0, and χM−1
h is bounded for all h > 0.

Induction hypothesis: assume that, for some m ∈ {M − 1, . . . , 2}, we have∣∣um−1
h (xh;u

m
h )− um−1 (x;um)

∣∣ ≤ χm−1
h , where χm−1

h is bounded, χm−1
h → 0 as h→ 0. (6.44)

Induction step: By the triangle inequality, we have
∣∣um−2

h

(
xh;u

m−1
h

)
− um−2

(
x;um−1

)∣∣ ≤ . . .

. . . ≤
∣∣um−2

h

(
xh;u

m−1
h

)
− um−2

h

(
xh;u

m−1
)∣∣+ ∣∣um−2

h

(
xh;u

m−1
)
− um−2

(
x;um−1

)∣∣ . (6.45)

By the induction hypothesis (6.44), |um−1
h − um−1| ≤ χm−1

h , where χm−1
h → 0 as h→ 0. Therefore, the

first term in (6.45) can be written as∣∣uh (xm−2
h ;um−1

h

)
− uh

(
xm−2
h ;um−1

)∣∣ (i)≤ χ′
h = K1χ

m−1
h +O(h) + |E(xm−2

h , h)| → 0 as h→ 0. (6.46)

Here, (i) follows from the local consistency of the numerical scheme established in Lemma 6.4. Next,

using the same arguments for the base case m = M (see (6.43), with M being replaced by m),

the second term in (6.45) can be bounded by χ′′
h, where χ′′

h → 0 as h → 0. Here, we note that

um−1
h is bounded for all h > 0 by Lemma 6.2 on stability. Combining this with (6.46), we have∣∣um−2
h

(
xh;u

m−1
h

)
− um−2

(
x;um−1

)∣∣ ≤ χm−2
h , where χm−2

h is bounded for all h > 0, and χm−2
h → 0 as

h→ 0. This concludes the proof.

7 Numerical examples
This section presents selected numerical results for the GLWB no-arbitrage pricing problem under the

dynamics (2.2)-(2.3)-(2.4), which, for convenience, will be referred to as the Heston model. In addition

to validation examples, we particularly focus on investigating the impact of jump-diffusion dynamics

and stochastic interest rates on the prices/the fair insurance fees, as well as on the holder’s optimal

withdrawal behaviors.

A set of GLWB parameters commonly used for subsequent experiments is given in Table 7.1. These

include expiry time T , the annual withdrawal rate Cr, the premium z0 which is also the initial balance

of the guarantee account and the personal sub-account, mortality table/payments (assuming that the

holder is a 65-year-old male at inception), and event times.

For experiments in this section, the computational domain is constructed with wmin = ln(z0) − 5,

wmax = ln(z0)+10, together with w†
min, w

†
max computed as discussed in Section 5. We also set amin = 0

and amax = ewmax . Regarding the choice of σmin and σmax, we follow the numerical procedures presented

in [11] to minimize the truncation error, which is outlined below for convenience.
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� We set initial guess of [σ
(0)
min, σ

(0)
max] using the mean and the variance of V (T ), which is assumed to

follow the dynamics (2.2), i.e.

[σ
(0)
min, σ

(0)
max] :=

[
ln (E[V (T )])− 7

V[V (T )]

E[V (T )]2
, ln (E[V (T )]) + 3

V[V (T )]

E[V (T )]2

]
,

where the mean E[V (T )] and the variance V[V (T )] can be calculated as

E[V (T )] = ν0e
−λT + θ

(
1− e−λT

)
, V[V (T )] = ν0

ξ2

λ
e−λT − e−2λT + θ

ξ2

2λ

(
1− e−λT

)2
. (7.1)

� Given the initial guess [σ
(0)
min, σ

(0)
max], we have two methods for finding the final interval [σ

(n)
min, σ

(n)
max]

with n be the index of iterative steps.

– When the Feller’s condition for the variance process is satisfied, we update the [σ
(n)
min, σ

(n)
max]

by subtracting and adding the approximated value for V[V (T )] given in (7.1).

– When the Feller’s condition for the variance process is not satisfied, we apply the Newton

iteration, for which we need the first derivative of p(·) given in (3.9).

Unless otherwise stated, relevant details about the refinement levels are given in Table 7.2. Here,

the timestep M = 57 corresponds to the case of T = 57 in Table 7.1. Since we apply the similarity

reduction results from [25, 34], there is no need to discretize along a-dimension in practice. Based on

the choices of N , we have N † = 2N as in (5.4). We emphasize that, increasing |wmin|, wmax, |σmin|,
or σmax virtually does not change the no-arbitrage prices/fair insurance fees. Therefore, for practical

purposes, with P † ≡ w†
max − w†

min chosen sufficiently large as above, it can be kept constant for all

refinement levels (as we let h→ 0).

For user-defined tolerances ϵ and ϵα in Algorithm 5.1, we use ϵ = ϵα = 10−6 for all experiments and

all refinement levels. We note that using smaller ϵ or ϵα produces virtually identical numerical results.

Parameter Value

Expiry time (T ) 57 years

Annual withdrawal rate (Cr) 0.05

Init. lump-sum premium (z0) 100

Mortality DAV 2004R

Mortality payments At year end

Event times Yearly

Table 7.1: GLWB parameters for numerical ex-

periments.

Refinement N J K M

level (w) (a) (ν) (t)

0 29 29 24 57

1 210 210 25 57

2 211 211 26 57

3 212 212 27 57

4 213 213 28 57

Table 7.2: Grid and timestep refinement

levels for numerical experiments.

7.1 Validation

We compare our numerical results with those obtained in the literature. When reference prices or

insurance fees are not available for the dynamics considered in this work, for validation purposes, we

compare no-arbitrage prices obtained by the proposed numerical method, hereafter referred to as “ϵ-

mF”, with those obtained by MC simulation. It is straightforward to carry out Monte Carlo validation

for the case of deterministic withdrawal, which means that the holder withdraws at the pre-determined

contractual rate at each event time.

To carry out Monte Carlo validation for the case of optimal withdrawal, we proceed in two steps as

follows. In Step 1, we solve the GLWB pricing problem using the “ϵ-mF” method on a relatively fine

computational grid (Refinement Level 2 in Table 7.2). During this step, the optimal control γmn,j,k is

stored for each computational grid point. In Step 2, we carry out Monte Carlo simulation of dynamics

(2.3), (2.4), and (2.2), for Z(t), A(t), and V (t), respectively, following the stored optimal strategies

{(xm
n,j,k, γ

m
n,j,k)} obtained in Step 1. For Step 2, a total of 105 paths and a timestep size ∆t/20 is

used between event dates for the simulation of the dynamics. The antithetic variate technique is also

employed to reduce the variance of MC simulation.
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We consider the GLWB pricing problem under the Heston model with both the deterministic and

optimal withdrawal strategies. The set of input parameters is summarized in Table 7.3, which is also

used for numerical tests in [29]. As presented in Table 7.4, all the numerical results have a good

agreement with the benchmark results obtained from a finite difference method in [29], as well as

those obtained by MC simulation. We observe that second-order convergence is attained for the “ϵ-

mF” method, even when the Feller’s condition is not satisfied (compared with Monte Carlo simulation

results). This indicates that the finite computational domain is chosen sufficiently large. Also see

Remark 6.2.

Parameter Deterministic withdrawal Optimal withdrawal

Constant interest rate (r) 0.04 0.04

Speed of mean reversion (λ) 1.0 1.0

Volatility of variance (ξ) 0.2 0.2

Correlation (ρ) -0.5 -0.5

Long time mean of variance (θ) 0.0225 0.0225

Initial variance (ν0) 0.0225 0.0225

Penalty rate (µ(t)) N/A 0 < t ≤ 1 : 5%, 1 < t ≤ 2 : 4%,

2 < t ≤ 3 : 3%, 3 < t ≤ 4 : 2%,

4 < t ≤ 5 : 1%, t > 5 : 0%

Bonus rate (b) N/A 0.05

Ratchet cycle (fr) N/A or every year N/A or every three years

Withdrawal strategy CrA(t) Optimal

Table 7.3: Input parameters used for the case of deterministic withdrawal in [29, Table 2], and the

case of optimal withdrawal in [29, Table 2].

Level

Deterministic withdrawal Optimal withdrawal

Ratchet No ratchet Ratchet No Ratchet

Value Ratio Value Ratio Value Ratio Value Ratio

0 100.1485 100.1357 100.1178 100.1079

1 100.0334 100.0284 100.0216 100.0193

2 100.0083 4.57 100.0073 5.08 100.0052 5.87 100.0047 6.04

3 100.0026 4.47 100.0020 4.04 100.0013 4.20 100.0011 4.11

4 100.0012 3.95 100.0007 4.00 100.0004 4.20 100.0002 4.10

95%-CI [99.9995, 100.1225] [99.9483, 100.0883] [99.9679, 100.1073] [99.9557, 100.0791]

Table 7.4: Results from validation test under the Heston model. Regarding the case of deterministic

withdrawal, we set insurance fee β = 61.77 bps for ratchet case, while β = 37.06 bps for no ratchet case.

Regarding the case of optimal withdrawal, we set insurance fee β = 70.89 bps for ratchet case, while

β = 64.28 bps for no ratchet case.

7.2 Modeling impact

In this subsection, we investigate the impact of stochastic volatility dynamics on quantities of central

importance to GLWBs, namely no-arbitrage prices and fair insurance fees. The set of input parameters

for the Heston model is given in Table 7.5. For comparison purposes, a GBM model is used with the

comparable constant instantaneous volatility, denoted by σc, being square root of the long time mean

θ of the variance process, and the constant interest rate being the same as the Heston dynamics. Since

θ = 0.0225 (Table 7.3), σc = 0.15. The numerical results presented below are obtained using the level 2

grid. Unless otherwise stated, the difference between the numerical results under the GBM and Heston

model, denoted by ∆%, is computed by ∆% = (xH − xG)/xG, where xH and xG are numerical results
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under the GBM and Heston model, respectively.

Parameter GBM Heston

Constant interest rate (r) 0.04 0.04

Constant volatility (σc) 0.2 N/A

Speed of mean reversion (λ) N/A 1.0

Volatility of variance (ξ) N/A 0.2

Correlation (ρ) N/A -0.5

Long time mean of variance (θ) N/A 0.04

Initial variance (ν0) N/A 0.04

Penalty rate (µ(t)) 0 < t ≤ 1 : 3%, 1 < t ≤ 2 : 2%,

2 < t ≤ 3 : 1%, t > 3 : 0%

Same with GBM model

Withdrawal rate (Cr) 0.05 0.05

Bonus rate (b) 0.06 0.06

Ratchet cycle (fr) Every three years Every three years

Table 7.5: Input parameters of the base case used for the comparison between constant volatility and

stochastic volatility.

7.2.1 Contractual parameters

We present numerical results on contractual parameters, namely the annual withdrawal rate Cr (Ta-

ble 7.6), the annual bonus rate b (Table 7.7), ratchet cycle fr (Table 7.8), and the penalty rate µ(t)

(Table 7.9). We make the observations below.

� Overall, although the differences in no-arbitrage prices of GLWBs tend to be negligible between

the models, the differences in fair insurance fees can be relatively significant in certain cases, e.g.

with a large annual withdrawal rate (Table 7.6, compare Cr = 0.04 vs Cr = 0.07) or bonus rate

(Table 7.7, compare b = 0.0 vs b = 0.09). We now primarily focus on fair insurance fees.

� For both GBM and Heston models, the fair insurance fees increase as the annual withdrawal rate

Cr increases. This is because of the additional cost of larger contractual withdrawal amounts. To

measure sensitivity, we compute the sensitivity of the fair insurance fee with respect to Cr using

finite differencing, i.e. (βCr=0.07
f − βCr=0.04

f )/(0.07 − 0.04). For the GBM model, the sensitivity

quantity is around 2.58, which is higher than that of the Heston model (around 2.28). It is

interesting to observe from Table 7.6 that, when Cr increases the fair insurance fees under the

Heston model become significantly less than those under the GBM model.

� For both GBM and Heston models, the fair insurance fees go up as the annual bonus rate b goes

up, which is due to extra bonus for zero withdrawals. To measure sensitivity, we approximate

the sensitivity of the fair insurance fee with respect to b using finite differencing, i.e. (βb=0.09
f −

βb=0.0
f )/(0.09− 0.0). For the GBM model, the sensitivity quantity is around 0.13, which is higher

than that of the Heston model (around 0.11).

� The differences in insurance fees between the GBM and Heston models seem relatively insensitive

to the ratchet cycle and the penalty rate (Table 7.8 and Table 7.9).

7.2.2 Dynamics parameters

We present numerical results on dynamics parameters, namely speed of mean reversion rate λ (Ta-

ble 7.10), volatility of the variance ξ (Table 7.11), correlation coefficient ρ (Table 7.12), and the long

term mean of the variance θ (Table 7.13). We have the following observations.

� When the speed of mean reversion λ goes up, the difference in fair insurance fees between the

GBM and Heston models becomes more and more insignificant.
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Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

Cr = 0.04 106.2254 106.5504 0.31% 0.0070 0.0072 3.31%

Cr = 0.06 117.9638 117.7306 -0.20% 0.0329 0.0305 -7.30%

Cr = 0.07 126.0965 125.4281 -0.53% 0.0843 0.0756 -10.27%

Table 7.6: Comparison of no-arbitrage prices u and fair insurance fees βf between the GBM and

Heston models under different annual withdrawal rates Cr. No-arbitrage prices u are computed with the

insurance fee β = 0 bps. Other input parameters are given in Table 7.5.

Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

b = 0.0 108.7413 108.8670 0.12% 0.0142 0.0139 -1.74%

b = 0.03 109.0018 109.1995 0.18% 0.0142 0.0139 -1.74%

b = 0.09 119.0236 118.5356 -0.41% 0.0254 0.0236 -7.19%

Table 7.7: Comparison of no-arbitrage prices u and fair insurance fees βf between the GBM and Heston

models under different annual bonus rates b. No-arbitrage prices u are computed with the insurance fee

β = 0 bps. Other input parameters are given in Table 7.5.

Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

fr = ∞ 108.5294 108.7951 0.24% 0.0143 0.0140 -2.23%

fr = 3 111.2943 111.4136 0.11% 0.0149 0.0146 -2.21%

fr = 1 113.2096 113.0171 -0.17% 0.0173 0.0165 -4.33%

Table 7.8: Comparison of no-arbitrage prices u and fair insurance fees βf between the GBM and

Heston models under different ratchet cycles fr. For instance, fr = ∞ implies Tr = ∅. No-arbitrage

prices u are computed with the insurance fee β = 0 bps. Other input parameters are given in Table 7.5.

Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

µ(t) = µ1(t) 111.2943 111.4136 0.11% 0.0156 0.0153 -1.96%

µ(t) = µ2(t) 111.2943 111.4136 0.11% 0.0149 0.0146 -2.21%

µ(t) = µ3(t) 111.2943 111.4136 0.11% 0.0144 0.0140 -2.59%

µ(t) = µ4(t) 111.2943 111.4136 0.11% 0.0138 0.0134 -2.73%

Table 7.9: Comparison of no-arbitrage prices u and fair insurance fees βf between the GBM and

Heston models under different penalty rate µ(t), where µ1(t) is defined to be 2% if 0 < t ≤ 1, 1% if

1 < t ≤ 2, otherwise 0%; µ2(t) is defined to be 3% if 0 < t ≤ 1, 2% if 1 < t ≤ 2, 1% if 2 < t ≤ 3,

otherwise 0%; µ3(t) is defined to be 4% if 0 < t ≤ 1, 3% if 1 < t ≤ 2, 2% if 2 < t ≤ 3, 1% if 3 < t ≤ 4,

otherwise 0%; µ4(t) is defined to be 5% if 0 < t ≤ 1, 4% if 1 < t ≤ 2, 3% if 2 < t ≤ 3, 2% if 3 < t ≤ 4,

1% if 4 < t ≤ 5, otherwise 0%. No-arbitrage prices u are computed with the insurance fee β = 0 bps.

Other input parameters are given in Table 7.5.

� The difference in insurance fees between the GBM and Heston models seems a bit insensitive to

the coefficient of correlation.

� When the volatility of variance goes up, the difference in fair insurance fees between the GBM

and Heston models becomes more and more significant.

� The difference in insurance fees between the GBM and Heston models seems quite sensitive to

the level of the long-term mean of variance, specially when the level of the long-term mean is

relatively small.
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Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

λ = 0.5

111.2943

111.0473 -0.22%

0.0149

0.0142 -4.80%

λ = 1.0 111.4136 0.11% 0.0146 -2.21%

λ = 1.5 111.4639 0.15% 0.0147 -1.17%

λ = 2.0 111.4614 0.15% 0.0148 -0.70%

Table 7.10: Comparison of no-arbitrage prices u and fair insurance fees βf between the GBM and

Heston models under different speeds of mean reversion rate λ. No-arbitrage prices u are computed with

the insurance fee β = 0 bps. Other input parameters are given in Table 7.5.

Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

ξ = 0.1

111.2943

111.4068 0.10%

0.0149

0.0148 -0.45%

ξ = 0.2 111.4136 0.11% 0.0146 -2.21%

ξ = 0.3 111.3190 0.02% 0.0142 -4.95%

ξ = 0.4 111.1416 -0.14% 0.0137 -8.35%

Table 7.11: Comparison of no-arbitrage prices u and fair insurance fees βf between the GBM and

Heston models under different volatilities of the variance ξ. No-arbitrage prices u are computed with the

insurance fee β = 0 bps. Other input parameters are given in Table 7.5.

Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

ρ = −0.1

111.2943

111.2398 -0.05%

0.0149

0.0146 -2.09%

ρ = −0.3 111.3343 0.04% 0.0146 -2.08%

ρ = −0.5 111.4136 0.11% 0.0146 -2.21%

ρ = −0.7 111.4782 0.17% 0.0145 -2.46%

Table 7.12: Comparison of no-arbitrage prices u and fair insurance fees β between the GBM and

Heston models under different coefficients of correlation ρ. No-arbitrage prices u are computed with the

insurance fee β = 0 bps. Other input parameters are given in Table 7.5.

Cases
No-arbitrage price (u) Fair insurance fee (βf )

GBM Heston ∆% GBM Heston ∆%

θ = 0.01 102.8228 103.1047 0.27% 0.0033 0.0036 7.58%

θ = 0.04 111.2943 111.4136 0.11% 0.0149 0.0146 -2.08%

θ = 0.09 123.1994 122.9584 -0.20% 0.344 0.0329 -4.21%

θ = 0.16 137.2857 136.5932 -0.50% 0.0607 0.0583 -3.93%

Table 7.13: Comparison of no-arbitrage prices u and fair insurance fees β between the GBM and

Heston models under different long time mean of the variance θ, with σ2
c = ν0 = θ. No-arbitrage prices

u are computed with the insurance fee β = 0 bps. Other input parameters are given in Table 7.5.

7.3 Optimal withdrawals

We now turn our attention to optimal withdrawal strategies. In this study, we use the fair insurance

fees for the GBM and Heston models, respectively denoted by βGf and βHf . We again use the input

parameters reported in Table 7.5, and βGf = 0.0149 and βHf = 0.0146. In Figure 7.1, we present plots

of optimal withdrawals for (calendar) time t ∈ {1, 2, 4} (years) under the GBM model and the Heston

model. Here, to ensure a fair comparison between the two models, since σc =
√
θ =

√
0.04 = 0.2, for
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t = 1, t = 2 t = 4

(a) GBM, σc = 0.2

t = 1 t = 2 t = 4

(b) Heston, σk = 0.196, k ∈ K

Figure 7.1: The holder’s optimal withdrawals at (calendar year) time t ∈ {1, 2, 4}; parameters specified

in Table 7.5; fair insurance fees are βG
f = 0.0149 and βH

f = 0.0146; refinement level 2.

the Heston model, we use the optimal withdrawals corresponding to the discretized σ closest to 0.2.

In this case, the closest one is σk = 0.196, for some k ∈ K. It is observed from Figure 7.1 that the

optimal withdrawals at t = 1 under the two models are quite different in the full surrender decision;

however, they are similar for t = 2 and t = 4. The holder should be more cautious about full surrender

under stochastic volatility early year, possibly due to an early crash of the sub-account balance might

significantly reduce the present value of the whole cash flow.

In Figure 7.2, we present plots of optimal withdrawals for (calendar) time t ∈ {1, 2, 4} (years) under

the Heston model corresponding to different discretized σ values, in particular for two extreme volatility

scenarios, namely very low in which case σk = 0.0013, and very high in which case σk = 0.6324, for

some k ∈ K. Comparing across Figure 7.1 and Figure 7.2 for the same year, it observed that the

optimal withdrawals tend to dictate that the policy holder should be more cautious under stochastic

variance dynamics than he/she is under GBM dynamics where the volatility is constant, especially

with the full surrender decision. We also observe that early in the policy t = 1, the holder should

be extremely careful with the full surrender decision. Compare Figure 7.1 GBM, Figure 7.1 Heston,

Figure 7.2 Heston σk = 0.0013 (low volatility) and Figure 7.2 Heston σk = 0.6324 (high volatility), all

at t = 1.

8 Conclusion

In this paper, we develop an ϵ-monotone numerical integration method for the no-arbitrage price of

GLWB contracts with discrete withdrawals and the CIR dynamics for the variance of the personal sub-

account. The pricing problem is formulated as a double integral, the inner of which is a convolution
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t = 1 t = 2 t = 4

(a) Heston, σk = 0.013, k ∈ K

t = 1 t = 2 t = 4

(b) Heston, σk = 0.6324, k ∈ K

Figure 7.2: The holder’s optimal withdrawals at (calendar year) time t ∈ {1, 2, 4}; parameters specified

in Table 7.5; fair insurance fee βH
f = 0.0146; refinement level 2.

integral involving a conditional density of the balance of the sub-account taking the form of a convolution

kernel, while the outer one is a definite integral that involves a conditional density of the variance. We

propose an efficient implementation of the inner integral via FFT, including proper handling of boundary

conditions and padding techniques. We rigorously prove the convergence of the proposed scheme to the

unique solution to the GLWB pricing problem as the discretization parameter and the monotonicity

tolerance ϵ approach zero. Although we focus specifically on GLWB, our comprehensive and systematic

approach could serve as a numerical and convergence analysis framework for the development of similar

weakly monotone integration methods for control problems in finance.
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[29] L. Goudenége, A. Molent, and A. Zanette. Pricing and hedging GLWB in the Heston and in the Black-Scholes
with stochastic interest rate models. Insurance: Mathematics and Economics, 70:38–57, 2016.

[30] X. Guo and G. Wu. Smooth fit principle for impulse control of multidimensional diffusion processes. SIAM
Journal on Control and Optimization, 48(2):594–617, 2009.

[31] Michael T Heath. Scientific computing: an introductory survey, revised second edition. SIAM, 2018.
[32] S. Heston. A closed form solution for options with stochastic volatility with applications to bond and

currency options. Review of Financial Studies, 6:327–343, 1993.
[33] Daniela Holz, Alexander Kling, and Jochen Russ. Gmwb for life an analysis of lifelong withdrawal guarantees.

Zeitschrift für die gesamte Versicherungswissenschaft, 101:305–325, 2012.
[34] Y.T. Huang and Y.K. Kwok. Regression-based Monte Carlo methods for stochastic control models: variable

annuities with lifelong guarantees. Quantitative Finance, 16(6):905–928, 2016.
[35] Y.T. Huang, P. Zeng, and Y.K. Kwok. Optimal initiation of guaranteed lifelong withdrawal benefit with

dynamic withdrawals. SIAM Journal on Financial Mathematics, 8:804–840, 2017.
[36] K. Ignatieva, A. Song, and J. Ziveyi. Fourier space time-stepping algorithm for valuing guaranteed minimum

withdrawal benefits in variable annuities under regime-switching and stochastic mortality. ASTIN Bulletin,
48(1):139—-169, 2018.

[37] Zongxia Liang and Wenlong Sheng. Valuing inflation-linked death benefits under a stochastic volatility
framework. Insurance: Mathematics and Economics, 69:45–58, 2016.

33

https://www.wtwco.com/en-US/insights/2018/12/variable-annuities-market-pressures-push-the-case-for-model-sophistication
https://www.wtwco.com/en-US/insights/2018/12/variable-annuities-market-pressures-push-the-case-for-model-sophistication


[38] Y. Lu and D.M. Dang. A semi-Lagrangian ϵ-monotone Fourier method for continuous withdrawal GMWBs
under jump-diffusion with stochastic interest rate. https://people.smp.uq.edu.au/Duy-MinhDang/
papers/epsilon_GMWB_interest_rate.pdf, 10 2022. Submitted.

[39] Y. Lu, D.M. Dang, P.A. Forsyth, and G. Labahn. An ϵ-monotone Fourier method for Guaranteed Minimum
Withdrawal Benefit (GMWB) as a continuous impulse control problem. https://people.smp.uq.edu.au/
Duy-MinhDang/papers/epsilon_GMWB.pdf, 06 2022. Submitted.

[40] X. Luo and P.V. Shevchenko. Valuation of variable annuities with guaranteed minimum withdrawal and
death benefits via stochastic control optimization. Insurance: Mathematics and Economics, 62(3):5–15,
2015.

[41] K. Ma and P.A. Forsyth. An unconditionally monotone numerical scheme for the two-factor uncertain
volatility model. IMA Journal of Numerical Analysis, 37(2):905–944, 2017.

[42] Patrick Kandege Mwanakatwe, Lixin Song, Emmanuel Hagenimana, and Xiaoguang Wang. Management
strategies for a defined contribution pension fund under the hybrid stochastic volatility model. Computational
and Applied Mathematics, 38:1–19, 2019.

[43] A.M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–
Jacobi Equations and free boundary problems. SIAM Journal Numerical Analysis, 44(2):879–895, 2006.

[44] H. Pham. On some recent aspects of stochastic control and their applications. Probability Surveys, 2:506–549,
2005.

[45] D.M. Pooley, P.A. Forsyth, and K.R. Vetzal. Numerical convergence properties of option pricing PDEs with
uncertain volatility. IMA Journal of Numerical Analysis, 23:241–267, 2003.

[46] M. Puterman. Markov Decison Processes: Discrete Stochastic Dynamic Programming. Wiley, New York,
1994.

[47] C. Reisinger and P.A. Forsyth. Piecewise constant Policy approximations to Hamilton-Jacobi-Bellman
equations. Applied Numerical Mathematics, 103:27–47, 2016.

[48] M.J. Ruijter, C.W. Oosterlee, and R.F.T. Aalbers. On the Fourier cosine series expansion (COS) method
for stochastic control problems. Numerical Linear Algebra with Applications, 20:598–625, 2013.

[49] R.C. Seydel. Existence and uniqueness of viscosity solutions for QVI associated with impulse control of
jump-diffusions. Stochastic Processes and Their Applications, 119:3719–3748, 2009.

[50] P.V. Shevchenko and X. Luo. A unified pricing of variable annuity guarantees under the optimal stochastic
control framework. Risks, 4(3):1–31, 2016.

[51] P. Steinorth and O.S. Mitchell. Valuing variable annuities with guaranteed minimum life time withdrawal
benefits. Insurance: Mathematics and Economics, 64:246–258, 2015.

[52] Paul N Swarztrauber. On computing the points and weights for Gauss–Legendre quadrature. SIAM Journal
on Scientific Computing, 24(3):945–954, 2003.

[53] P. M. Van Staden, D.M. Dang, and P.A. Forsyth. Time-consistent mean-variance portfolio optimization: a
numerical impulse control approach. Insurance: Mathematics and Economics, 83(C):9–28, 2018.

[54] Pieter M Van Staden, Duy-Minh Dang, and Peter A Forsyth. Mean-quadratic variation portfolio optimiza-
tion: A desirable alternative to time-consistent mean-variance optimization? SIAM Journal on Financial
Mathematics, 10(3):815–856, 2019.

[55] Pieter M van Staden, Duy-Minh Dang, and Peter A Forsyth. On the distribution of terminal wealth under
dynamic mean-variance optimal investment strategies. SIAM Journal on Financial Mathematics, 12(2):566–
603, 2021.

[56] J. Wang and P.A. Forsyth. Maximal use of central differencing for Hamilton-Jacobi-Bellman PDEs in finance.
SIAM Journal on Numerical Analysis, 46:1580–1601, 2008.

[57] X. Warin. Some non-monotone schemes for time dependent Hamilton-Jacobi-Bellman equations in stochastic
control. Journal of Scientific Computing, 66:1122–1147, 03 2016.

[58] George Neville Watson. A treatise on the theory of Bessel functions, volume 3. The University Press, 1922.

34

https://people.smp.uq.edu.au/Duy-MinhDang/papers/epsilon_GMWB_interest_rate.pdf
https://people.smp.uq.edu.au/Duy-MinhDang/papers/epsilon_GMWB_interest_rate.pdf
https://people.smp.uq.edu.au/Duy-MinhDang/papers/epsilon_GMWB.pdf
https://people.smp.uq.edu.au/Duy-MinhDang/papers/epsilon_GMWB.pdf

	Introduction
	Modelling
	Underlying processes
	Mortality risk
	Contractual features
	Withdrawals
	Ratchets
	Bonuses
	Death benefit


	Formulation
	Localization
	Numerical methods
	Discretization
	Numerical schemes
	bold0mu mumu 0.7in0.7in2005/06/28 ver: 1.3 subfig package0.7in0.7in0.7in0.7in: a monotone scheme
	bold0mu mumu 0.7in0.7in2005/06/28 ver: 1.3 subfig package0.7in0.7in0.7in0.7in: approximation of bold0mu mumu n-l()n-l()2005/06/28 ver: 1.3 subfig packagen-l()n-l()n-l()n-l()
	Convergence of truncated Fourier series
	Efficient implementation via FFT and algorithms


	Pointwise convergence
	Stability
	Consistency

	Numerical examples
	Validation
	Modeling impact
	Contractual parameters
	Dynamics parameters

	Optimal withdrawals

	Conclusion

