1. (4 marks)
 (i) Find the unique factorization (up to order of factors) of the integer 6840.
 (ii) Find integers \(q \) and \(r \), with \(0 \leq r < d \), so that \(n = dq + r \) in the case that \(n = -78 \) and \(d = 11 \).
 (iii) Evaluate \(38 \text{ div } 11 \) and \(38 \text{ mod } 11 \).

 (i) \[6840 = 10 \times 4 \times 171 = 5 \times 8 \times 3 \times 57 = 5 \times 8 \times 3 \times 3 \times 19 = 2^3 \times 3^2 \times 5^1 \times 19^1. \]

 (ii) \((-78) = 11q + r\). We want \(r \geq 0 \) (and \(r < 11 \)).
 So take \(-78 = 11(-8) + 10\).
 So \(q = -8 \) and \(r = 10 \).

 (iii) \(38 \text{ div } 11 = 3 \) (because \(11 \times 3 = 33 \) and \(38 = 33 + 5 \)).
 \(38 \text{ mod } 11 = 5 \) (because \(38 = 11 \times 3 + 5 \)).

2. (4 marks)
 (i) An integer \(n \) divided by 7 leaves the remainder 4. What is the remainder (between 0 and 6) when \(3n \) is divided by 7?
 (ii) When the integer \(m \) is divided by 11, it leaves the remainder 9. What is the remainder when \(4m \) is divided by 22?

 (i) We have \(n = 7t + 4 \) where \(t \in \mathbb{Z} \).
 So \(3n = 7 \cdot 3t + 12 = 7(3t + 1) + 5 \).
 So the remainder now, when \(3n \) is divided by 7, is 5.

 (ii) Now \(m = 11s + 9 \) for some \(s \in \mathbb{Z} \).

 \[4m = 44s + 36 \]
 \[= 22(2s + 1) + 14. \]

 So when \(4m \) is divided by 22, it leaves remainder 14.

3. (8 marks) Prove carefully each of the following statements.

 (i) The quotient \(r/s \) of any two rational numbers, with \(s \neq 0 \), is a rational number.

 SOLUTION:
 We have \(r \) and \(s \) are rational and \(s \neq 0 \). So let
 \[r = \frac{a}{b}, \quad s = \frac{c}{d}, \]
 where \(b, d \neq 0 \) and \(c \neq 0 \), and \(a, b, c, d \in \mathbb{Z} \).
 Then \(\frac{r}{s} = \frac{a/b}{c/d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc} \), and \(bc \neq 0 \) because \(b \neq 0 \) and \(c \neq 0 \).
 Here \(ad \in \mathbb{Z} \), and \(bc \in \mathbb{Z} \) and \(bc \neq 0 \).
 Hence \(\frac{r}{s} = \frac{ad}{bc} \in \mathbb{Q} \), the rationals.
(ii) The difference between the cube of two consecutive integers leaves the remainder 1 when divided by 6.
Solution:
Take the consecutive integers to be \(n \) and \(n+1 \). Then the difference between their cubes is
\[
(n+1)^3 - n^3 = (n^3 + 3n^2 + 3n + 1) - n^3 = 3n^2 + 3n + 1 = 3n(n+1) + 1.
\]
Now \(n(n+1) \) is the product of two consecutive integers, and so ONE of \(n \) or \(n+1 \) must be even; so \(n(n+1) \) is even. Thus \(3n(n+1) \) is \(3 \times \) even number, so is divisible by 6. Hence \(3n(n+1) + 1 \) leaves remainder 1 when divided by 6.

(iii) For any odd integer \(n \), the number \(n^2 - 1 \) is divisible by 8.
Solution:
Here \(n \) is odd, so let \(n = 2k + 1 \). Then
\[
n^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k(k + 1).
\]
Now \(k(k + 1) \) is even (because ONE of \(k \) and \(k + 1 \) must be even, so their product is). Hence \(4k(k + 1) \) is \(4 \times \) even number; say \(k(k + 1) = 2w \) for some \(w \in \mathbb{Z} \). That is, \(4k(k + 1) = 4 \times 2w = 8w \), with \(w \in \mathbb{Z} \). Hence when \(n \) is odd, \(n^2 - 1 \) is a multiple of 8, that is, \(n^2 - 1 \) is divisible by 8.

(iv) If the integers \(k, m \) and \(n \) satisfy \(k \mid m \) and \(k \mid n \), then it follows that \(k \mid (m - 2n) \).
Solution:
Given \(k \mid m \) and \(k \mid n \). Must prove that \(k \mid (m - 2n) \).
Now \(k \mid m \) means that \(m = kr \) for some \(r \in \mathbb{Z} \).
And \(k \mid n \) means that \(n = ks \) for some \(s \in \mathbb{Z} \).
So \(m - 2n = kr - 2ks = k(r - 2s) \), where \(r - 2s \in \mathbb{Z} \).
Hence \(m - 2n = k \times \) integer; thus \(k \mid (m - 2n) \), as required.

4. (4 marks) For each of the following statements about the positive integers \(m, n, q \) and prime \(p \), if the statement is true, prove it carefully, and if the statement is false, give a counter-example.

(i) If \(m \mid n \) and \(n \mid q \), then \(m^2 \mid nq \).
(ii) If \(\gcd(m, n) = d \) and \(\gcd(n, q) = 1 \), then \(\gcd(m, q) = 1 \).

Solution:
(i) This is true: \(m \mid n \) means that there exists some \(r \in \mathbb{Z} \) with \(n = rm \).
And \(n \mid q \) means that there exists some \(s \in \mathbb{Z} \) with \(q = ns \).
So \(nq = rnm = rms.n = rms.rm = m^2.r^2s \), where \(r^2s \in \mathbb{Z} \).
So \(nq = m^2 \times \) integer, and so \(m^2 \mid nq \).

(ii) This is false; one counter-example suffices.
For example take \(m = 6 \), \(n = 2 \), \(q = 3 \). Then \(\gcd(m, n) = d = 2 \), and \(\gcd(n, q) = \gcd(2, 3) = 1 \).
But \(\gcd(m, q) = \gcd(6, 3) = 3 \), NOT 1.