DUE DATE: 5pm Friday 19th September in the designated Assignment box in the Mathematics (Priestley) building (67), for the tutorial group in which you’ve enrolled. Please USE A COVER SHEET!

1. (5 marks) Let G, H and K be the graphs below.

(a) Answer the following questions with yes/no, and also give a one line brief explanation for each of your answers.
 (i) G is a simple graph.
 (ii) The total degree of G is 18.
 (iii) H is a subgraph of G.
 (iv) K is a subgraph of G.
 (v) H is a tree.
 (vi) G contains an Euler circuit.
 (vii) H contains an Euler path.
 (viii) H is bipartite.

(b) Now draw any one subgraph of G which contains all five vertices of G and which is a tree.

2. (4 marks) For each of the following, state whether or not there exists a simple graph with vertices having degrees as stated. If there is no such simple graph, explain why; if a simple graph does exist with the given degrees, then draw such a graph.
 (a) Seven vertices with degrees 6, 5, 4, 3, 2, 2, 1.
 (b) Five vertices with degrees 3, 3, 2, 1, 1.

3. (5 marks)
 (a) If a tree contains exactly 9 vertices, how many edges does it contain? (Explain your answer very briefly.)
 (b) A tree T has 9 vertices. The degrees of its vertices are

 $1, 1, 1, 1, 1, 2, 2, r, s.$

 If $3 \leq r \leq s$, find r and s.

4. (6 marks) Which of the following graphs contains an Euler circuit, which contains an Euler path, and which contains neither? (Explain your answers briefly, and give any conditions on n, q and r.)

 $K_4, \; K_5, \; K_n, \; K_{2,4}, \; K_{2,q}, \; K_{3,r}.$

This assignment is worth 2%. Marked out of 20; marks allocated as indicated above.