A simple graph has no loops.

If G is a subgraph of G'. If G' has edges e_1, e_2, \ldots, e_n, and G has edges e_1', e_2', \ldots, e_m', then the edges e_1, e_2, \ldots, e_n between G and G' are removed if G' and G are not isomorphic. A few days later, choose a few values. Make-up test will be taken on student. No calculator.

Family Name: A - K: 7 - 234

Physics 24-5304

NEXT: Wed. 10th Sept., Mid-Semester Test: Two pages
The degree $A = 4 \times 3 = 12$.

$d_{G}(a) = 6$.

$d_{G}(v) = 10$.

There are 4 edges incident with v.

$H : 6 \rightarrow 0$.
Peter's Graph:

Find an Eulerian (Lot: 21 vertices)

all 4 degree 3
16 vertices
Simple proof: $a \equiv c \ (e_4 d)$

$e_3 \ c, \ e_4 d$

$a, \ e_1 \ e_2, \ e_3, \ e_4$

Move from a to d