If \(r = \varnothing \), let \(P \) and \(Q \) be any two points on any line in \(x \).

Establish \(A \in \varnothing \).

Conclude \(x = A \).

Thus \(A \in Z \). Let \(AB \) be any line in \(Z \).

Prove \(\varnothing \) to be any affine plane.
EX: $\Delta 5, 6, 7$.

Theorem:

To prove that ΔABC is a right triangle, we need to show that one of its angles is 90°.

1. **Construct a Triangle:**
 - Draw a triangle ABC with sides AB, BC, and AC.
 - Draw a perpendicular line from A to BC at point D.
 - Label the length of AD as x and the length of BD as y.
 - Label the length of AC as z.

2. **Prove Right Angle:**
 - Use the Pythagorean theorem: $x^2 + y^2 = z^2$.
 - If this equation holds true, then $\angle BAC$ is a right angle.

3. **Conclusion:**
 - If $\angle BAC = 90^\circ$, then ΔABC is a right triangle.

Proof:

- **Step 1:** Draw a line from A perpendicular to BC at point D.
- **Step 2:** Label the distances as x and y.
- **Step 3:** Measure the length of AC as z.
- **Step 4:** Use the Pythagorean theorem to prove $\angle BAC = 90^\circ$.

So, ΔABC is a right triangle.
If C is a parallel class in x, then C contains the point set X.

From Exercise 2, we have $|C| = 2$. Hence, C contains the point set X.

For any line x, let X be the complement point set. So, x is a line in C. By the complement point set, E is unique. Thus, E is parallel to x (since all lines are parallel).

Say E is not on any line in C. Use x to get y. Since $|C| = 2$, and $|C| > 2$, there exists a line x parallel to x, such that x is contained in C.
By ax (A2), since \(A \neq BC \), there are at least 3 lines through \(A \) and \(3 \) points in \(\mathbb{R}^2 \).

So \(A, B, C \), \(X \) are 4 points.
\text{Parallel to } AZ,
\text{line BD and XD through C, hence get coordinates ax (A2) because get X on } x \text{ axis parallel to } AZ \text{ as well as } A, \text{ be } \perp \text{to } BD \text{ at } C.

Have \perp \text{ in } \triangle ABC.

\text{If } |AC| = 2 \text{ (so } \perp \text{ a paralell class with coordinate } 2 \text{ line),}

\text{So } X, A, B, C \text{ are } 4 \text{ non-collinear pts.}

X \neq A + X \neq B, C \text{ since } A \perp BC.

\text{If } \text{ have at least } 2 \text{ points, so } A + X \neq Y.
In any finite affine plane \mathbb{A}_n, every line has $n+2$ points.