so in line n+1 meets m.

So E,n+1 have 4 points.

and one line that p II to L.

Lines through P to each other.

E not on L.

Say E x, y, z in points.

27/808

(!) x

(!) x

(!)

E x, y, z in line outside.

E, n+1 parallel class.

E in line parallel class.

E in point.

Every point lies on n+1 line.

E not line lies in points.

In any finite affine plane \(E \), \(E \) is finite, \(n \geq 2 \) so that
If \(F \not\in G \) not here, then \(E \not\in F \) also.

Find \(P \), \(E \) not here.

(Continued from previous page)

Take \(F \) as \(A \) +1 line on \(E \) so \(P_1 \) is in \(A \).

Let \(l \) + \(A \) be a straight line.

\(l \) is in \(P_1 \) on \(E \) in \(B \).

If \(P \) is \(\not\in F \), then \(P \) is on \(F \).

If \(P \not\in E \), then \(P \) is not on \(E \).

If \(P \not\in G \), then \(P \not\in F \).

\(A \) +1 line on \(P \) at \(B \), \(E \), \(F \).
So \(n \) is an integer.

Have a chosen \(p \), \(q \), and \(r + 1 \) classes such that

\[
\begin{aligned}
&\text{Have a chosen } p, q, \text{ and } r + 1 \text{ classes such that} \\
&\text{so that } \frac{n}{q} + 1 \text{ otherwise.} \\
\end{aligned}
\]

Since every \(p \) is in each class, \(n \) divides \(p \). Hence \(n + 1 \) must also divide \(p + 1 \).

Any such \(p \) has \(n + 1 \) terms therefor. \(E \) has \(n + 1 \) parallel classes. So \(E \) has a unique.

I choose \(p \) to have a unique.

Each line in \(L \) has a parallel class.

Let \(E \) be a parallel class.
Any 2 PES in \(\Pi \) are on a unique line:

\[
\text{Line is: } n_2 + (n+1) + 1.
\]

The line is: \(n_2 + (n+1) + 1 \).

\[\text{Line: } n_2 + (n+1) + 1.\]

Lies: arranged like \(\phi \) & other, 3rd, C1, C2, C3, C4, etc. (11 times).

\(\phi \) : Pr: These of \(\phi \) and C1, C2, C3, C4, etc.

If \(\phi \) exists, then \(\phi \) in \#10.

\(\phi \) is unique if \#10 with \(\phi = \#10 \).

Thus, prove \(\phi \).

7.8.4.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Any 2 lines meet in unique pt.

If 3 pts, no 3 collinear.

If 4 pts, no 3 collinear.

C1, C2, X, Z are no 3 collinear.

In k have 3 noncollinear pts. X
Def. A subplane Π' of a fpp Π is a proj. plane whose pts are subsets of pts of Π and lines "lines of Π.

(Ex: order 2 inside order 4).

Theorem (Bruck, 1963) If Π' is a subplane of fpp Π and if orders are m and n, then $n = m^2$ or $m^2 + m \leq n$.

\[\text{Diagram:} \]