Binary relation R on a set A is a subset of $A \times A$.

A relation is reflexive if aRa, for all $a \in A$.

It is symmetric if aRa, then bRb, for all $a, b \in A$.

1-1 means both 1-1 onto.

If f is onto B, then $f(A) = B$.

If $f(a) = b$, then $a = a_2$.

Consider $f: A \rightarrow B$, f^{-1}. Then $a_1 = a_2$.
\[\{2\} = \{3k+2 \mid k \in \mathbb{Z}\} = \{-4, -1, 2, 5, \ldots\} \]
\[\{1\} = \{3k+1 \mid k \in \mathbb{Z}\} = \{-2, 1, 4, 7, \ldots\} \]
\[\{0\} = \{3k \mid k \in \mathbb{Z}\} = \{0, \pm 3, \pm 6, \ldots\} \]

\[\frac{1}{2} \equiv 7 \pmod{3} \]

\[\| \overline{A} \| \text{ and } \parallel \overline{B} \parallel \]

\[\{0\} \text{ is the equivalence class of } 0. \]

\[P \text{ is the relation where } a \parallel b \text{ if } a + b \text{ is even.} \]
Given: \(E \) is in \(\ang{ABC} \)

Prove: \(A, B, C, D, E \) are collinear.

1. For any \(A, B, E \), \(A, B \) lies on \(\ell_1 \).
2. Every line has at least 2 points.

Construct: \(\ell_1 \) through points \(A, B, E \).

Prove: \(A, B, C, D, E \) are collinear.

Given: \(\ell_1 \); \(E \) is in \(\ang{ABC} \)

Prove: \(A, B, C, D, E \) are collinear.
\[(x - c)^2 + y^2 = r^2\]
E is an incidence geom. $E = (R^2, \mathcal{L})$

So $L = \{a, b, c\}$

(1) Say $P, Q \in \mathcal{L}$, $P \neq Q$. Assume P, Q are on 2 lines.

(2) Say $P \in L_a$ and $Q \in L_b$.

Then $x_1 = x_2 = a$. And $y_1 = y_2 = b$.

So $x_1 = x_2 = a$. And $y_1 = y_2 = b$.

So $L = L_a$.
So \(r = s \) so these are squares.

And \(l_2 = (x_1 - c)^2 + y_1^2 = (x'_2 - c)^2 + y_2^2 \) which implies \(c = \frac{x_1 + x'_2}{2} \).

Summing, we get \(P \leq \frac{(x_2 - x_1)}{2} \) on one.

So \(y_1 = y_2 \) (since \(h > 0 \)).

So \(x'_1 = x_2 = a \), so \(y_1 = y_2 = (a - c)^2 + h^2 \).

(2) Say \(P \notin \mathbb{L} \) and \(\mathbb{L} \) and \(\mathbb{L} \) and \(\mathbb{L} \).

(3) Say \(P \notin \mathbb{L} \) and \(\mathbb{L} \) and \(\mathbb{L} \) and \(\mathbb{L} \).

(1) Say \(P \notin \mathbb{L} \) and \(\mathbb{L} \) and \(\mathbb{L} \) and \(\mathbb{L} \).

So \((x_1, y_1) = (a, h) \).

Short: \(P = (a, h) \).

(1) \(\mathbb{L} = (1, 1) \) or \(\mathbb{L} = (2, 2) \).

(2) \(\mathbb{L} = (1, 1) \) or \(\mathbb{L} = (2, 2) \).

(3) \(\mathbb{L} = (1, 1) \) or \(\mathbb{L} = (2, 2) \).

(4) \(\mathbb{L} = (1, 1) \) or \(\mathbb{L} = (2, 2) \).

(5) \(\mathbb{L} = (1, 1) \) or \(\mathbb{L} = (2, 2) \).
\[l = 5 \]

\[a = -2, \quad c = -1 \]

\[V \Rightarrow 2c = -2 \quad \Rightarrow \quad r^2 = c + h = (c-1)^2 + 1 \]

AC is on \(x \)-axis since \(r^2 = c + h = (c-1)^2 + 1 \)

BC is on \(y \)-axis.

\[AB \parallel x \]

\[\text{If } A = (0, 2), \quad B = (0, 1), \quad C = (1, 1) \]

There are no common points.
a) The line $c = 3.2$.

b) All lines $c \perp 4$ and pass through $(0,2)$.

c) $c = 3.2$.

If the line passes through $(4,0)$, set $16 - 8c + 0 = 4$.

Thus, parallel to 4, no point on C or can have $x = 4$.

Graph:

Type II line at $y = 0$.

One variable line is 0. (Type I)