\[AB = \{ x \in \mathbb{R} \mid f(x) \leq 0 \} \]

Let \(f(a) = 0, f(b) > 0 \). Then \(f(c) = 0 \) as \(c = \frac{a + b}{2} \).

\[\overrightarrow{AB} = (4, 5, c) \]

By definition, \(\angle A \alpha \beta \leq \angle \text{Angle between } AB \text{ and } CD \).

\[\overrightarrow{AB} = \overrightarrow{A-B} \]

\[AB = \{ A, B \} \cup \{ C \in S \mid A - C = B \} \]

\[AB = \{ A, B \} \]

Thus, \(12 \text{ AM} '08 \)
But A, B, H, so this means H, lose concern. Can we have B, H?

If } B \in H \text{, then } \emptyset \neq A \cup B \text{, so } B \neq \emptyset \text{. Can we have } B, H?

Take A, H, being A \neq H \text{, so } A \neq H \text{, or } A \neq H.

So we can say \{H, H\}, \{H, H\}, \{H, H\}, \{H, H\}, \{H, H\}.

Thus the part of body plane discontinuous by l are unincorpored.

\[\text{Let } l \subseteq I \text{ in } a \text{ normal region } \mu \text{, P} \sigma. \]

}\text{ (Extra 2)}

\[\text{Theorem (Extra 1)} \]

(Or vice versa).

And points A + B are on opposite sides of \(H \text{, A} \neq H \), \(E \text{, E} \neq H \).

Say points A + B are on same side of \(H \text{, if } A \neq H \), \(E \text{, if } E \neq H \).

Let \(l \subseteq I \), \(l \subseteq H \text{, } \mu \text{ be } H \text{'s boundary determined by } l. \]

\(D E F \) (S, I, d) is a normal geometry which satisfies P5A.

\(\text{Extra } (\text{see text note, p. 11)} \)
Continuing. Since \(N \in \mathbb{R} \setminus \{0\} \), we have \(N = f_1(x) = f_1(-x) \) since the function is even. Let \(f(x) = 0 \). Since \(f(x) = 0 \), we have \(f(x) = 0 \).

Let \(f \) be a function for \(x \), with \(f(0) = 0 \).

Now in more detail, let \(C \) be a circle, center \(P \), diameter \(\overline{AB} \).

\[
\text{Circles in More Generality}
\]

So \(H = (S \cap \overline{CH}) = H' \) so \(H' = H \).

So \(H = (S \cap \overline{CH}) = H' \).

Therefore, \(C \cap H' \), so \(H' \subseteq H \).

Summary:\(\forall C \in H' \), \(C \cap H' \). Since the function is even, we have \(H = H' \) for \(x \neq 0 \).
And
\[d(P, M) = |f(P) - f(M)| = |0 - r| = r, \text{ so } M \in C. \]
\[d(P, N) = |f(P) - f(N)| = |0 - (-r)| = r, \text{ so } N \in C. \]
So \(l \cap C \) contains at least 2 pts.

Say \(D \in l + D \in C \). Let \(f(D) = w \)

\(D \in C \) means \(d(D, P) = r \), but
\[d(D, P) = |f(D) - f(P)| = |w - 0| = |w|. \]
Hence \(|w| = r \) so \(w = \pm r \).

Since \(f \) is \(1-1 \), \(D \) is either \(M \) or \(N \). So \(l \cap C \) contains precisely 2 pts.