Theorem 2.1. (Kuratowski's Theorem) A graph G is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Proof: Let G be a graph. If G does not contain a subdivision of K_5 or $K_{3,3}$, then by Kuratowski's Theorem, G is planar.

Conversely, let G be a planar graph. We need to show that G does not contain a subdivision of K_5 or $K_{3,3}$.

Consider a cycle C in G. If C contains a subdivision of K_5 or $K_{3,3}$, then G contains a subdivision of K_5 or $K_{3,3}$.

Therefore, G is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

\[\text{Q.E.D.}\]
\[Q = D - A = \begin{bmatrix} 3 & -1 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 2 \end{bmatrix} \]

Delete one row and column (last chosen row and col). Then solve for determinants (can replace by col + row). Then expand by row 3.

\[G = \begin{bmatrix} 3 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

(Assume row 3 is the row to expand by.)

\[G_{e} = \begin{bmatrix} 3 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

\[G - e = H \]

2(b) G
(6) If G is hamiltonian, then certainly $G + uv$ is hamiltonian. (For all we've done is add one edge — no new vertices!) Conversely, say $G + uv$ is hamiltonian, with $\deg u + \deg v > p$. If a ham. cycle in $G + uv$ does not include the edge uv, then it is also a ham. cycle in G. So say a ham. cycle in $G + uv$ does include edge uv. Delete edge uv, and we have a ham. $u - v$ path in G: $u = u_1, u_2, u_3, \ldots, u_{p-1}, u_p = v$. (These are the p vertices in G.)

We must have some u_i with $u \sim u_i$, $v \sim u_{i-1}$, or else, if no removing the $(\deg u)$ vertices in $\{u_2, \ldots, u_p\}$ adjacent to u leaves $(p-1) - (\deg u)$ vertices, and we'd have to have $(p-1) - (\deg u) \geq \deg v$,

ie. $\deg u + \deg v \leq p-1 < p$, a contradiction!

So \exists u_i with $u \sim u_i$ and $v \sim u_{i-1}$:

Now $u, u_2, \ldots, u_i, u_{i+1}, \ldots, u_{p-1}, u_p = v$ is a ham. cycle in G. This completes the proof.