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Abstract

This thesis presents key contributions towards devising highly efficient stochastic reconstruction

algorithms for solving large scale inverse problems, where a large data set is available and the

underlying physical systems is complex, e.g., modeled by partial differential equations (PDEs).

We begin by developing stochastic and deterministic dimensionality reduction methods to

transform the original large dimensional data set into the one with much smaller dimensions

for which the computations are more manageable. We then incorporate such methods in our

efficient stochastic reconstruction algorithms.

In the presence of corrupted or missing data, many of such dimensionality reduction methods

cannot be efficiently used. To alleviate this issue, in the context of PDE inverse problems, we

develop and mathematically justify new techniques for replacing (or filling) the corrupted (or

missing) parts of the data set. Our data replacement/completion methods are motivated by

theory in Sobolev spaces, regarding the properties of weak solutions along the domain boundary.

All of the stochastic dimensionality reduction techniques can be reformulated as Monte-

Carlo (MC) methods for estimating the trace of a symmetric positive semi-definite (SPSD)

matrix. In the next part of the present thesis, we present some probabilistic analysis of such

randomized trace estimators and prove various computable and informative conditions for the

sample size required for such Monte-Carlo methods in order to achieve a prescribed probabilistic

relative accuracy.

Although computationally efficient, a major drawback of any (randomized) approximation

algorithm is the introduction of “uncertainty” in the overall procedure, which could cast doubt

on the credibility of the obtained results. The last part of this thesis consist of uncertainty

quantification of stochastic steps of our approximation algorithms presented earlier. As a result,

we present highly efficient variants of our original algorithms where the degree of uncertainty

can easily be quantified and adjusted, if needed.
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Abstract

The uncertainty quantification presented in the last part of the thesis is an application of

our novel results regarding the maximal and minimal tail probabilities of non-negative linear

combinations of gamma random variables which can be considered independently of the rest of

this thesis.
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Chapter 1

Introduction

Inverse problems arise often in many applications in science and engineering. The term “inverse

problem” is generally understood as the problem of finding a specific physical property, or

properties, of the medium under investigation, using indirect measurements. This is a highly

important field of applied mathematics and scientific computing, as to a great extent, it forms

the backbone of modern science and engineering. Examples of inverse problems can be found in

various fields within medical imaging (e.g., [10, 12, 28, 100, 136]) and several areas of geophysics

including mineral and oil exploration (e.g., [20, 35, 102, 120]). For many of these problems, in

theory, having many measurements is crucial for obtaining credible reconstructions of the sought

physical property, i.e., the model. For others where there is no theory, it is a widely accepted

working assumption that having more data can only help (at worst not hurt) the quality of

the recovered model. As a consequence, there has been an exponential growth in the ability

to acquire large amounts of measurements (i.e., many data set) in short periods of time. The

availability of “big data”, in turn, has given rise to some new rather serious challenges regarding

the potentially high computational cost of solving such large scale inverse problems. As the

ability to gather larger amounts of data increases, the need to devise algorithms to efficiently

solve such problems becomes more important. Here is where randomized algorithms have

shown great success in reducing the computational costs of solving such large scale problems.

More specifically, dimensionality reduction algorithms transform the original large dimensional

problem into a smaller size problem where the effective solution methods can be used. The

challenge is to devise methods which yield credible reconstructions but at much lower costs.

The main purpose of this thesis is to propose, study and analyze various such highly efficient

reconstruction algorithms in the context of large scale least squares problems. Henceforth,

the terms “model” and “parameter function” are interchangeably used to refer to the sought
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1.1. Large Scale Data Fitting Problems

physical property or properties of the medium under investigation.

1.1 Large Scale Data Fitting Problems

Inverse problems can often be regarded as data fitting problems where the objective is to recover

an unknown parameter function such that the misfit (i.e., the distance, in some norm, between

predicted and observed data) is to within a desirable tolerance, which is mostly dictated by

some prior knowledge on measurement noise.

Generally speaking (and after possibly discretization of the continuous problem), consider

the system

di = fi(m) + ηi, i = 1, 2, . . . , s, (1.1)

where di ∈ Rl is the measured data obtained in the ith experiment, fi = fi(m) is the known

forward operator (or data predictor) for the ith experiment arising from the underlying physical

system, m ∈ Rlm is the sought-after parameter vector1, and ηi is the noise incurred in the ith

experiment. The total number of experiments, or the size of the data sets, is assumed large:

s� 1; this is what is implied by “large scale” or “large dimensional problem”. The goal of data

fitting is to find (or infer) the unknown model, m, from the measurements di, i = 1, 2, . . . , s,

such that
s∑
i=1

‖fi(m)− di‖ ≤ ρ,

where ρ is usually related to noise, and the chosen norm can be problem-dependent. Generally,

this problem can be ill-posed. Various approaches, including different regularization techniques,

have been proposed to alleviate this ill-posedness; see, e.g., [9, 52, 135]. Most regularization

methods consist of incorporating some a priori information on m. Such information may be in

the form of expected physical properties of the model in terms, for example, of constraints on

the size, value or the smoothness.

In the presence of large amounts of measurements, i.e., s� 1, and when computing fi, for

each i, is expensive, the mere evaluation of the misfit function may become computationally

prohibitive. As such any reconstruction algorithm involving (1.1) becomes intractable. The

1 The parameter vector m often arises from a parameter function in several space variables projected onto a
discrete grid and reshaped into a vector.
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goal of this thesis is to devise reconstruction methods to alleviate this problem and recover a

credible model, m, efficiently.

1.1.1 Assumptions on the Forward Operator

In this thesis, we consider a special class of data fitting problems where the forward operators,

fi in (1.1), satisfy the following assumptions.

(A.1) The forward operators, fi, have the form

fi(m) = f(m,qi), i = 1, . . . , s, (1.2)

where qi is the input in the ith experiment. In other words, the ith measurement, di, is

made after injecting the ith input (or source) qi into the system. Thus, for an input qi,

f(m,qi) predicts the ith measurement, given the underlying model m.

(A.2) For all sources, we have qi ∈ Rlq , ∀i, and f is linear in q, i.e., f(m, w1q1 + w2q2) =

w1f(m,q1) + w2f(m,q2). Alternatively, we write f(m,q) = G(m)q, where G ∈ Rl×lq is

a matrix that depends, potentially non-linearly, on the sought m.

(A.3) Evaluating f(m,qi) for each input, qi, is computationally expensive and is, in fact, the

bottleneck of computations.

1.1.2 A Practical Example

An important class of inverse problems for which Assumptions (A.1) - (A.3) are often valid,

is that of large scale partial differential equation (PDE) inverse problems with many mea-

surements. Such nonlinear parameter function estimation problems involving PDE constraints

arise often in science and engineering. The main objective in solving such inverse problems is

to find a specific model which appears as part of the underlying PDE. For several instances

of these PDE-constrained inverse problems, large amounts of measurements are gathered in

order to obtain reasonable and credible reconstructions of the sought model. Examples of such

problems include electromagnetic data inversion in mining exploration (e.g., [48, 69, 108, 110]),

seismic data inversion in oil exploration (e.g., [56, 81, 115]), diffuse optical tomography (DOT)
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(e.g., [11, 29]), quantitative photo-acoustic tomography (QPAT) (e.g., [63, 140]), direct cur-

rent (DC) resistivity (e.g., [46, 71, 72, 111, 128]), and electrical impedance tomography (EIT)

(e.g., [33, 39, 47]). For such applications, it has been suggested that many well-placed experi-

ments yield practical advantage in order to obtain reconstructions of acceptable quality.

Mathematical Model for Forward Operators

In the class of PDE-constrained inverse problems, upon discretization of the continuous prob-

lem, the sought model, m, is a discretization of the function m(x) in two or three space

dimensions. Furthermore, the forward operator involves an approximate solution of a PDE, or

more generally, a system of PDEs. We write this in discretized form as

L(m)ui = qi, i = 1, . . . , s, (1.3)

where ui ∈ IRlu is the ith field, qi ∈ IRlu is the ith source, and L is a square matrix discretizing

the PDE plus appropriate side conditions. Furthermore, there are given projection matrices Pi

such that

fi(m) = f(m,qi) = Piui = PiL
−1(m)qi (1.4)

predicts the ith data set. In other words, the matrix Pi projects the field, ui, onto the locations

in the domain where the ith measurements are made. Note that the notation (1.3) reflects

an assumption of linearity in u but not in m. Assumptions (A.1) & (A.3) can be justified

for the forward operator (1.4). However, if Pi’s are different for each i, then the linearity

assumption (A.2) does not hold. On the other hand, if the locations where the measurements

are made do not change from one experiment to another, i.e., P = Pi,∀i, then we get

f(m,qi) = PL−1(m)qi, (1.5)

and the linearity assumption (A.2) of f(m,q) in q is satisfied. It should be noted that, under

certain circumstances, if the Pi’s are different across experiments, there are methods to trans-

form the existing data set into the one where all sources share the same receivers. Different
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such methods are discussed in [70, 96] as well as Chapter 4 of this thesis.

In the sequel, the cost of any reconstruction algorithm used on a PDE constrained inverse

problem is measured by the total count of PDE solves, L(m)−1q, as solving this linear system

for each q is assumed to be the bottleneck of the computations.

1.1.3 Assumptions on the Noise

The developments of the methods and algorithms presented in this thesis are done under one

of the following assumptions on the noise. In what follows N denotes the normal distribution.

(N.1) The noise is independent and identically distributed (i.i.d) as ηi ∼ N (0,Σ),∀i, where

Σ ∈ Rl×l is the symmetric positive definite covariance matrix.

(N.2) The noise is independent but not necessarily identically distributed, satisfying instead

ηi ∼ N (0, σ2
i I), i = 1, 2, . . . , s, where σi > 0 are the standard deviations.

Henceforth, for notational simplicity, most of the algorithms and methods are presented

for the special case of Assumption (N.1) with Σ = σI. However, all of these methods and

algorithms can be readily extended to the more general cases in a completely straightforward

manner.

1.2 Least Squares Formulation & Optimization

If we may assume that the noise satisfies2 Assumption (N.1) with Σ = σI, the standard maxi-

mum likelihood (ML) approach, [123], leads to minimizing the ordinary LS misfit function

φ(m) :=
s∑
i=1

‖f(m,qi)− di‖22 = ‖F (m)−D‖2F , (1.6)

where F (m) and D are l× s matrices whose ith columns are, respectively, f(m,qi) and di, and

‖ · ‖F stands for the Frobenius norm. Hence, we obtain a misfit function for which the data

fitting can be done in `2 sense. However, since the above inverse problem is typically ill-posed, a

2 For notational simplicity, we do not distinguish between a random vector (e.g., noise) and its realization, as
they are clear within the context in which they are used.
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regularization functional, R(m), is often added to the above objective, thus minimizing instead

φR,α(m) := φ(m) + αR(m), (1.7)

where α is a regularization parameter [9, 52, 135]. In general, this regularization term can be

chosen using a priori knowledge of the desired model. The objective functional (1.7) coincides

with the maximum a posteriori (MAP) formulation, [123]. Injection of the regularization (i.e.,

a priori knowledge), R(m), on the sought-after model can also be done by formulating the

problem as

min
m

R(m) s.t. φ(m) ≤ ρ (1.8)

where ρ acts as the regularization parameter3. Note that the “meaning” of the regularization

parameter ρ in (1.8) is more intuitive than α in (1.7), as ρ usually relates to noise and the

maximum discrepancy between the measured and the predicted data. As such, determining ρ

could be easier than α. Implicit regularization also exists in which there is no explicit term

R(m) in the objective [77, 78, 113, 114, 131, 133]. Various optimization techniques can be used

on the (regularized) objective to decrease the value of the above misfit, (1.6), to a desired level

(determined, e.g., by a given tolerance which depends on the noise level), thus recovering the

sought-after model.

Let us suppose for now that the forward operators f(m,qi), each involving a PDE solution,

are given as in (1.5): see Appendix A and Section 3.3 for a specific instance, used for our

numerical experiments. Next, consider the problem of reducing the value the misfit function

φ(m) defined in (1.6) (what follows can be easily extended for the regularized objective function

φR,α(m) defined in (1.7)). With the sensitivity matrices

Ji(m) =
∂fi
∂m

, i = 1, . . . , s, (1.9)

3Though for the rest of this thesis, we will not consider algorithms for solving the contained problem (1.8),
the discussions regarding stopping criterion in the following chapters are directly relevant in any such algorithm.
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we have the gradient

∇φ(m) = 2
s∑
i=1

JTi (fi(m)− di). (1.10)

An iterative method such as modified Gauss-Newton (GN), L-BFGS, or nonlinear conjugate

gradient ([41, 57, 109]) is typically designed to decrease the value of the objective function using

repeated calculations of the gradient. Although the methods and issues under consideration

here do not require a specific optimization method we employ variants of the GN method

throughout this thesis, thus achieving a context in which to focus our attention on the new

aspects of this work and enabling comparison to past efforts. In particular, the way in which

the GN method is modified is important more generally; see Appendix A.3.

The GN iteration for (1.6) (or (1.7)) at the kth iteration with the current iterate m = mk,

calculates the correction as the solution of the linear system

(
s∑
i=1

JTi Ji

)
δm = −∇mφ, (1.11a)

followed by the update

mk+1 = mk + αkδm. (1.11b)

Here the step length, αk, 0 < αk ≤ 1, is determined by a weak line search (using, say, the

Armijo algorithm starting with αk = 1) ensuring sufficient decrease in φ(mk+1) as compared

to φ(mk).

Several nontrivial modifications are required to adapt this prototype method for our pur-

poses, and these are described in context in Appendix A.3, resulting in a method we refer to

as stabilized GN. This method replaces the solution of (1.11a) by r preconditioned conjugate

gradient (PCG) inner iterations, which costs 2r solutions of the forward problem per iteration,

for a moderate integer value r. Thus, if K outer iterations are required to obtain an acceptable

solution then the total work estimate (in terms of the number of PDE solves) is approximated

from below by

Work Estimate = 2(r + 1)Ks. (1.12)
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This indicates that for s� 1, the computational costs can be rather prohibitive. In this thesis,

we design and propose algorithms for lowering the above “Work Estimate” by reducing the size

of the data set s used in each of the K iterations.

Note that an alternative method to GN such as L-BFGS would require only r = 1 in (1.12).

However, the number of such iterations would be significantly higher. This point again does

not affect the issues addressed here and is not pursued further.

1.2.1 Generalized Least Squares Formulation

Our assumption regarding the noise distribution leading to the ordinary LS misfit function (1.6),

although standard, is quite simplistic. Under the more general assumptions (N.1) or (N.2) on

the noise, described in Section 1.1.3, we can extend the ordinary LS misfit (1.6) to obtain

generalized LS formulations. More specifically, under Assumption (N.1), the ML approach

leads to minimizing the `2 misfit function

φ(1)(m) :=
s∑
i=1

‖C−1
(
f(m,qi)− di

)
‖22 = ‖C−1

(
F (m)−D

)
‖2F , (1.13)

where C ∈ Rl×l is any invertible matrix such that Σ = CCT (e.g., C can be the Cholesky factor

of Σ). The matrices F and D are as in (1.6).

Similarly, Under Assumption (N.2), the ML approach yields the weighted LS misfit function

φ(2)(m) :=

s∑
i=1

1

σ2
i

‖f(m,qi)− di‖22 = ‖
(
F (m)−D

)
C−1‖2F . (1.14)

where C ∈ Rs×s denotes the diagonal matrix whose ith diagonal element is σi.

Although the developments of methods and algorithms in this thesis is done using the simple

misfit (1.6), they can be almost verbatim applied to the above more general misfits (1.13)

and (1.14).

1.3 Thesis Overview and Outline

This thesis is organized into nine chapters. Following the present introductory chapter, in

Chapter 2, we will review dimensionality reduction methods, both stochastic and deterministic,
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to transform the original high dimensional problem, into a smaller and manageable size one.

This is done either with approximating the misfit function (in the stochastic case) or approxi-

mating the data matrix (in the deterministic case). The common denominator in many of these

dimensionality reduction methods is that they form fewer experiments by some combination of

the original experiments, called simultaneous sources (SS). This smaller and newly formed set

of experiments is then used in optimization iterations. The method of SS is only applicable

when the linearity assumption (A.2) is justified. Under such assumption, the stochastic variants

of SS methods provide accurate approximations to the misfit. However, in the absence of the

linearity assumption (A.2), an alternative, more general and yet less accurate, approximation

method named random subset (RS) can be used and will also be discussed in Chapter 2. Part

of this chapter is taken from Roosta-Khorasani, van Den Doel and Ascher [119].

Efficient, practical and stochastic reconstruction algorithms based on these dimensionality

reduction methods are presented in Chapter 3. Such dimensionality reduction methods always

involve (random) sampling of the original measurements and as the iterations progress, this

sample size might be required to grow. For these algorithms, novel stochastic mechanisms for

controlling the growth of the number of such samples are proposed and justified. Our algorithms

employ some variants of stabilized GN method, though other iterative methods can easily be

incorporated as well. In addition to using such approximation methods in each GN iteration, we

identify and justify two different purposes for using these approximations in our algorithm. Fur-

thermore we show that these different purposes may well require different estimation methods.

We show that if the linearity assumption (A.2) is justified, the reconstruction algorithms based

on the SS methods are significantly more efficient than their counterpart using the RS method.

The comparison among different variants and the overall efficacy of these reconstruction algo-

rithms are demonstrated in the context of the famous DC resistivity problem. We present in

details our methods for solving such inverse problems. These methods involve incorporation of

a priori information such as piecewise smoothness, bounds on the sought conductivity surface,

or even a piecewise constant solution. This chapter has appeared in [119].

Reconstruction algorithms based on the efficient SS methods, presented in Chapter 3, are

only applicable if the linearity assumption (A.2) is valid. In situations where Assumption (A.2)

is violated, such as missing or highly corrupted data, among all algorithmic variants described

9
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in Chapter 3, only the one based on RS method can be used. However, as shown in Chap-

ter 3, an algorithm employing the RS method requires more evaluations of the computationally

expensive forward operators, fi’s, in order to obtain a credible reconstruction. Luckily, under

certain circumstances, it is possible to transform the problem, by constructing a new set of

measurements, for which Assumption (A.2) is restored and thus SS algorithms presented in

Chapter 3 can be used. Such transformations, described in details in Chapter 4, are done by

means of an approximation using an appropriately restricted gradient or Laplacian regulariza-

tion, filling for the missing (or replacing the corrupted) data. Our data completion/replacement

methods are motivated by theory in Sobolev spaces regarding the properties of weak solutions

along the domain boundary. Results using the method of SS with the newly formed data

set are then compared to those obtained by a more general but slower RS method which re-

quires no modifications. This chapter has appeared as as Roosta-Khorasani, van den Doel and

Ascher [118].

All of our randomized reconstruction algorithms presented in this thesis rely heavily upon

some fundamental aspects such as dimensionality reduction methods, discussed in Chapter 2.

This, within the context of LS formulations, amounts to randomized algorithms for estimating

the trace of an implicit matrix using Monte Carlo (MC) methods. Chapter 5 represents a

comprehensive study of the theory of MC implicit matrix trace estimators. Such a method

approximates the trace of an SPSD matrix A by an average of n expressions of the form

wT (Aw), with random vectors w drawn from an appropriate distribution. In Chapter 5, we

prove, discuss and experiment with bounds on the number of realizations n required in order

to guarantee a probabilistic bound on the relative error of the trace estimation upon employing

Rademacher (Hutchinson), Gaussian and uniform unit vector (with and without replacement)

probability distributions, discussed in Section 2.1.1. In total, one necessary and six sufficient

bounds are proved, improving upon and extending similar estimates obtained in the seminal

work of Avron and Toledo [22] in several dimensions. We first improve their bound on n for

the Hutchinson method, dropping a term that relates to rank(A) (hence proving a conjecture

in [22]) and making the bound comparable with that for the Gaussian estimator. We further

prove new sufficient bounds for the Hutchinson, Gaussian and the unit vector estimators, as well

as a necessary bound for the Gaussian estimator, which depend more specifically on properties
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of the matrix A. As such they may suggest for what type of matrices one distribution or

another provides a particularly effective or relatively ineffective stochastic estimation method.

This chapter has appeared as Roosta-Khorasani and Ascher [116].

Chapter 6 is a precursor of Chapter 7. Specifically, the theorems proved in Chapter 7

are applications of more general and novel results regarding extremal tail probabilities (i.e.,

maximum and minimum of the tail probabilities) of linear combinations of gamma distributed

random variables, which are presented and proved in Chapter 6. Many distributions, such

as chi-squared of arbitrary degree, exponential, and Erlang are special instances of gamma

distribution. As such these results have a wide range of applications in statistics, engineering,

insurance, actuarial science and reliability. These results have appeared as Roosta-Khorasani,

Székely and Ascher [117] and can be considered independently of the rest of this thesis.

The main advantage of an efficient randomized reconstruction algorithms presented in Chap-

ter 3 is the reduction of computational costs. However, a major drawback of any such algorithm

is the introduction of “uncertainty” in the overall procedure. The presence of uncertainty in the

approximation steps could cast doubt on the credibility of the obtained results. Hence, it may

be useful to have means which allow one to adjust the cost and accuracy of such algorithms

in a quantifiable way, and find a balance that is suitable to particular objectives and compu-

tational resources. In Chapter 7, eight variants of randomized algorithms in Chapter 3 are

presented where the uncertainties in the major stochastic steps are quantified. This is done by

incorporating similar conditions as those presented in Chapter 5 in our stochastic algorithms.

However, the sufficient bounds derived in Chapter 5 are typically not tight enough to be prac-

tically useful. As such, in Chapter 7 and for the special case of Gaussian trace estimator, we

prove tight necessary and sufficient conditions on the sample size for MC trace estimators. We

show that these conditions are practically computable and yield small sample sizes, and hence,

all variants of our proposed algorithm with uncertainty quantification are very practical and

highly efficient. This chapter has appeared in [117].

The discussion regarding the probabilistic stopping criterion in Chapter 7 lead us to observe

that issues discussed there can also arise in several other domains of numerical computations.

Namely, in practical applications a precise value for a tolerance used in the related stopping

criterion is rarely known; rather, only some possibly vague idea of the desired quality of the
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numerical approximation is at hand. There are situations where treating such a tolerance as a

“holy” constant can result in erroneous conclusions regarding the relative performance of dif-

ferent algorithms or the produced outcome of one such algorithm. Highlighting such situations

and finding ways to alleviate these issues are important. This is taken up in Chapter 8 where

we discuss three case studies from different areas of numerical computation, where uncertainty

in the error tolerance value is revealed in different ways. Within the context of large scale

problems considered in this thesis, we then concentrate on a probabilistic relaxation of the

given tolerance. A version of this chapter has been submitted for publication as Ascher and

Roosta-Khorasani [19].

Each of Chapters 3, 4, 5, and 7 of this thesis, includes a summary, conclusions and future

work section related to that specific line of research or project. In Chapter 9, an overall

summary is given and a few directions regarding possible future research, not mentioned in

earlier chapters, are presented.

This thesis contains an appendix as well. In Appendix A, certain implementation details are

given which are used throughout the thesis. Such details include discretization of the EIT/DC

resistivity problem in two and three dimensions, injection of a priori knowledge on the sought

parameter function via transformation functions in the original PDE, the overall discussion of a

(stabilized) GN algorithm for minimization of the least squares objective, a short Matlab code

which is employed in Chapter 7 to compute the Monte-Carlo sample sizes used in matrix trace

estimators, and finally the details of implementation and discretization of the total variation

functional used in several numerical examples in this thesis.
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Chapter 2

Dimensionality Reduction

Inverse problems of the form (1.1) for which the forward operators satisfy Assumptions (A.1)

& (A.3), can be very expensive to solve numerically. This is so especially when s � 1 and

many experiments, involving different combinations of sources and receivers, are employed in

order to obtain reconstructions of acceptable quality. For example, the mere evaluation of the

misfit function (the distance between predicted and observed data), φ(m) in (1.6), requires

evaluation of all f(m,qi), i = 1, . . . , s. In this chapter, we develop and assess dimensionality

reduction methods, both stochastic and deterministic, to replace the original large data set

by a smaller set of potentially modified measurements for which the computations are more

manageable. Such dimensionality reduction methods always involve random or deterministic

sampling of the experiments. In this chapter various such sampling techniques are discussed.

In problems where, in addition to (A.1) & (A.3), Assumption (A.2) also holds, efficient4

dimensionality reduction methods consisting of stochastically or deterministically combining

the experiments can be employed. In the stochastic case, this yields an unbiased estimator

(i.e., approximation) of the misfit function. However, in the deterministic case experiments are

approximated by projecting the original data set onto a smaller space where a newly formed

and smaller set of experiments capture the essence of the original data set. Since in both

of these approaches, the approximation is done through the mixing of the experiments, the

resulting method, originating from the geophysics community, is generally named the method

of simultaneous sources (SS) [25, 76].

However, in situations where Assumption (A.2) is violated, the SS method is no longer ap-

plicable. In such scenarios, an alternative approximation method can be used which essentially

4In the rest of this thesis, “efficiency” is measured with respect to the total number of evaluations of the
computationally expensive forward operator, f(m,q). For example, in PDE inverse problems, the efficiency is
measured with respect to the number of PDE solves.
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2.1. Stochastic Approximation to Misfit

boils down to selecting, uniformly at random, a subset of experiments, and this selection is

done without any mixing [46]. Such a method, in what follows, is called a random subset (RS)

method. It will be shown that RS method also provides an unbiased estimator of the misfit

and can be applied in a wider variety of situations, compared to SS method.

2.1 Stochastic Approximation to Misfit

Randomized algorithms that rely on efficiently approximating the misfit function φ(m) have

been proposed and studied in [8, 22, 46, 71, 105, 134]. In effect, they draw upon estimating the

trace of an implicit5 SPSD matrix. To see this, consider the misfit (1.6) and let B = B(m) :=

F (m)−D. It can be shown that

φ(m) = ‖B‖2F = tr(BTB) = E(‖Bw‖22), (2.1)

where w is a random vector drawn from any distribution satisfying

E(wwT ) = I, (2.2)

tr(A) denotes the trace of the matrix A, E denotes the expectation and I ∈ Rs×s is the identity

matrix. Hence, approximating the misfit function φ(m) in (1.6) is equivalent to approximating

the corresponding matrix trace (or equivalently, approximating the above expectation). The

standard approach for doing this is based on a Monte-Carlo method, where one generates n

random vector realizations, wj , from any such suitable probability distribution and computes

the empirical mean

φ̂(m, n) :=
1

n

n∑
j=1

‖B(m)wj‖22 ≈ φ(m). (2.3)

Note that φ̂(m, n) is an unbiased estimator of φ(m), as we have φ(m) = E(φ̂(m, n)). Under

Assumptions (A.1)-(A.3), if n � s then this procedure yields a very efficient algorithm for

5By “implicit matrix” we mean that the matrix of interest is not available explicitly: only information in the
form of matrix-vector products for any appropriate vector is available.
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2.1. Stochastic Approximation to Misfit

approximating the misfit (1.6), because

s∑
i=1

f(m,qi)wi = f(m,
s∑
i=1

qiwi), (2.4)

which can be computed with a single evaluation of f per realization of the random vector

w = (w1, . . . , ws)
T .

In practice, one can choose any distribution for which (2.2) is satisfied. Some popular choices

of distributions for w are described in details in Section 2.1.1.

2.1.1 Selecting a Sampling Method

There are a few possible choices of probability distributions for w, among which the most

popular ones are as follows.

(i) The Rademacher distribution [83] where the components of w are independent and iden-

tically distributed (i.i.d) with Pr(wi = 1) = Pr(wi = −1) = 1
2 (referred to in what follows

as Hutchinson estimator, in deference to [22, 86]).

(ii) The standard normal distribution, N (0, I), is another possible choice and is henceforth

referred to as Gaussian estimator.

(iii) The unit vector distribution (in deference to [22]). Here, the vectors wi in (2.3) are

uniformly drawn from the columns of the scaled identity matrix,
√
sI. Drawing these

vectors can be done with or without replacement. Such estimator is called the random

subset method.

Distributions (i) and (ii) give rise to popular methods of simultaneous random sources [53, 71,

81, 90, 115, 126]. The methods of SS, when the linearity assumption (A.2) holds, yield very

efficient estimators, as shown in (2.4). It can also be easily shown that, for a given sample size

n, the variance of the Hutchinson estimator is smaller than that of the Gaussian estimator.

However, relying solely on variance analysis can be misleading in determining the relative merit

of each of these estimators; this is discussed in more details in Chapter 5.

For an approximation using the unit vector distribution (iii), the linearity assumption (A.2)

is no longer necessary: it boils down to selecting a random subset of the given experiments at
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each iteration, rather than their weighted combination. Within the context of reconstruction

algorithms for inverse problems, this estimator was first introduced in [46]. In the absence of

Assumption (A.2), such RS estimator is the only one that can be applied. However, as will be

shown in Chapters 3 and 4, when the methods of SS apply, they provide a much more efficient

and accurate6 approximation to the misfit, compared to RS method.

The objective is to be able to generate as few realizations of w as possible for achieving

acceptable approximations to the misfit function. Estimates on how large n must be, for a given

distribution, to achieve a prescribed accuracy in a probabilistic sense are derived in Chapter 5.

2.1.2 Approximation with Generalized Noise Assumption

The stochastic approximation methods described in Section 2.1 can be similarly applied for the

more general misfit functions, described in Section 1.2.1, under the noise assumptions (N.1)

or (N.2). More specifically, the Monte-Carlo approximation, φ̂(1)(m, n), of φ(1)(m) in (1.13) is

precisely as in (2.3) but with B(m) := C−1
(
F (m) − D

)
. Similarly, with B(m) = (F (m) −

D)C−1, we can again apply (2.3) to obtain a similar Monte-Carlo approximation, φ̂(2)(m, n),

of φ(2)(m) in (1.14).

Now, if n � s then the unbiased estimators φ̂(1)(m, n) and φ̂(2)(m, n) are obtained with

a similar efficiency as φ̂(m, n). In the sequel, for notational simplicity, we just concentrate on

φ(m) and φ̂(m, n), but all the results hold almost verbatim also for (1.13) and (1.14).

2.2 Deterministic Approximation to Data

An alternative to stochastically approximating the misfit, is to abandon randomization alto-

gether, and instead select the mixing weights deterministically. Deterministic approaches for

reducing the size of the original large data set have been proposed in [62, 68], which in effect

are data compression approaches. These compression schemes remove redundancy in data, not

through eliminating redundant data, but instead through some mixing of redundant data. Sim-

ilar deterministic SS method to compress the data may be obtained upon applying truncated

6A less efficient estimator is the one for which more realizations of w are required to achieve a desirable
accuracy with the same likelihood. A less accurate estimator is the one which, given the same sample size, is
less likely to achieve a desirable accuracy.
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2.2. Deterministic Approximation to Data

singular value decomposition (TSVD) to the data re-cast as the l× s matrix D in (1.6), where

in our context we have s � l. More specifically, as a pre-processing step, one can calculate

the SVD decomposition as D = UΣV T , where U ∈ Rl×l, V ∈ Rs×l are the unitary matrices

and Σ ∈ Rl×l is the diagonal matrix of singular values. Now, one can effectively obtain an

approximation to the original D as D̂ = DV̂ ∈ Rs×n, where V̂ is a matrix consisting of the first

n columns of V . As such, we can replace the original misfit with

φ̃(m, n) :=
1

n

n∑
j=1

‖B(m)vj‖22, (2.5)

where vj is the jth column of V . It should be noted that unlike φ̂(m, n) in (2.3), the new misfit

φ̃(m, n) is not an unbiased estimator of the original misfit, φ(m), as here D is approximated

and not φ(m).

If n is large enough, this approach should bring out the essence of what is in the data,

especially when the current iterate is far from the solution of the inverse problem. This ap-

proach can also be seen as denoising the original data as it involves removing the components

corresponding to small singular values. A plot of the singular values for a typical experiment

(in the context of a DC resistivity problem) is depicted in Figure 2.1. The quick drop in the

Figure 2.1: The singular values of the data used in Example 3.2 of Section 3.3.

singular values suggests that just a few singular vectors (the first columns of the orthogonal

matrix U) represent the entire data well. This simple method is suitable when both dimensions
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2.3. GN Iteration on the Approximate Function

of the data matrix D are not too large. The SVD is performed only once prior to the inversion

computations. Then, in the kth iteration of an optimization algorithm (such as stabilized GN

in this thesis), the first few columns of V , corresponding to the largest singular values, provide

fixed and deterministic weights for this SS method. Methods for choosing the number of such

columns is discussed in Chapter 3.

2.3 GN Iteration on the Approximate Function

For the approximations (2.3) (or (2.5)), it is easy to return to a form like (1.6) and define

sensitivity matrices Ĵi = Ĵi(m, n) and gradient ∇mφ̂ = ∇mφ̂(m, n) analogously to (1.9) and

(1.10), respectively. The GN iteration for (2.3) (or (2.5)) at a current iterate m = mk with nk

random weight vectors wj in (2.3) (or deterministic weights vj in (2.5)) calculates the correction

as the solution of the linear system

(
nk∑
i=1

ĴTi Ĵi

)
δm = −∇mφ̂, (2.6a)

followed by the update

mk+1 = mk + αkδm. (2.6b)

Here, as in (1.11b), the step length, αk, 0 < αk ≤ 1, is determined by a weak line search,

ensuring sufficient decrease in approximation φ̂(mk+1, n) as compared to φ̂(mk, n).

Again, applying stabilized GN, as described in Appendix A.3, we see that, for K outer GN

iterations, the total work estimate (in terms of the number of forward operator simulations) is

approximated from below by

Work Estimate = 2(r + 1)

K∑
k=1

nk, (2.7)

which indicates how keeping nk small is important; see [46]. Comparing (2.7) with (1.12) shows

that if nk � s, ∀k, then the computational complexity is greatly reduced.

In Chapter 3, stochastic reconstruction algorithms are proposed which heavily rely on the
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dimensionality reduction methods presented in Chapter 2. We also present randomized methods

for controlling the sample size nk used in these algorithms.
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Chapter 3

Stochastic Reconstruction

Algorithms

In this chapter, we present our stochastic algorithms for approximately minimizing (1.6) or (1.7),

and discuss its novel elements. Here, we continue to make Assumptions (A.1) - (A.3); relaxation

of the linearity assumption (A.2) is done in chapter (4). All these algorithms rely heavily on the

dimensionality reduction techniques and sampling methods described in the previous chapter.

Under Assumption (A.2), we have, as described in Chapter 2, four methods for sampling the

original data set, which may be fused and compared.

As discussed earlier, the GN iteration (1.11) is computationally prohibitive. Consequently,

as an alternative, one can consider the GN iteration (2.6) performed on the modified objective.

If nk � s, then these iterations can be performed more efficiently. In what follows, we assume

for simplicity that the iterations are performed on the approximation (2.3) of the misfit (1.6)

using dynamic regularization (or iterative regularization [46, 78, 132]) where the regularization

is performed implicitly. We then incorporate the deterministic approximation (2.5) as well.

Extension of the resulting algorithms to the case (1.7) is straightforward. Hence, the update

direction, δmk, is calculated using the approximate misfit, φ̂(mk, nk), defined in (2.3) where

nk is the sample size used for this approximation in the kth iteration. However, since the

iterations are performed on the modified objective function, the value of the original misfit

might not necessarily be reduced. As such, any recovered model might not fit the original data

appropriately. Thus, in each iteration, we need to check or assess whether the value of the

original objective is also decreased using this new iterate. The challenge is to do this as well

as check for termination of the iteration process with a minimal number of evaluations of the

prohibitively expensive original misfit function (1.6).
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The papers cited in Section 2.1.1 appear to assume one purpose for the approximate eval-

uation of the misfit function φ(m), and that is solely in (1.11a). In contrast, in Section 3.1,

we identify two additional purposes for this task, and furthermore we show that these different

purposes may well require different estimation methods. An additional fourth purpose will be

introduced in Chapter 4 and further modified in Chapter 7.

The question of selecting the sample size nk is addressed in Section 3.2. We propose two new

algorithms which allow nk to be very small for small k, and potentially significantly increase

as the iteration approaches a solution. Algorithm 1 in Section 3.2.1 has the advantage of being

simple, and it generates an exponentially increasing sequence of nk values. Algorithm 2 in Sec-

tion 3.2.2 uses cross validation in a manner similar to but not the same as that proposed in [46],

and it generates a potentially more moderately increasing sequence of nk values. The latter

algorithm is particularly useful when s is “too large” in the sense that even near a satisfactory

solution for the given inverse problem, far fewer than s experiments are required to satisfy

the given error tolerances, a situation we qualitatively refer to as embarrassing redundancy.

Within the context of these two algorithms, we compare the resulting weighting methods of

Section 2.1.1 against the more generally applicable random subset method proposed in [46],

and find that the three simultaneous sources methods are roughly comparable and are better

than the random subset method by a factor of roughly 2 or more.

The computational work in Section 3.3 is done in the context of a DC resistivity problem.

This is a simpler forward problem than low-frequency Maxwell’s equations, and yet it reflects

a similar spirit and general behaviour, allowing us to concentrate on the issues in focus here.

A description of the implementation details is given in Appendices A.1, A.2, and A.3.

3.1 Two Additional Reasons for Unbiased Estimators

As described in Chapter 2, the original expensive misfit can be replaced by a computationally

cheaper one, either stochastically or deterministically. One purpose of forming such a modified

objective function is to be used in the iterations (2.6). Here we identify and justify two additional

reasons for which stochastic approximate misfit (i.e., unbiased estimators) is used. A fourth

purpose will be introduced in Chapter 4 and further modified in Chapter 7.
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3.1.1 Cross Validation

It is desirable that after every iteration of any optimization method (such as GN), the value

of the misfit (1.6) (or the regularized objective (1.7)) decreases (perhaps sufficiently). The

mechanisms such as line-search are used to enforce such desired property. More specifically, it

is desired that at the kth iteration and after the update, we get

φ(mk+1) ≤ κφ(mk), (3.1)

for some κ ≤ 1, which indicates sufficient decrease in the misfit (or the objective φR,α in the case

of (1.7)). unfortunately, as argued before, such a test using the evaluation of the entire misfit is

computationally prohibitive. However, since φ̂(mk+1, nk) is an unbiased estimator of φ(mk+1)

with nk � s, we can approximate the assessment of the updated iterate in terms of sufficient

decrease in the objective function using a control set of random combinations of measurements.

More specifically, at the kth iteration with the new iterate mk+1, we test whether the condition

φ̂(mk+1, nk) ≤ κφ̂(mk, nk) (3.2)

(cf. (2.3)) holds for some κ ≤ 1; The condition (3.2) is an independent, unbiased indicator

of (3.1), and the success of (3.2) is an indicator that (3.1) is likely to be satisfied as well.

However, for now, the test (3.2) is only left as a heuristic indicator of (3.1). As such, for the

rest of this chapter, the sample size nk used in (3.2) is chosen heuristically, but in Chapter (7),

we will make this choice mathematically rigorous where the uncertainty in the test (3.2) is

quantified. For example, we will develop tools to assess the probability of the success of (3.1),

given the success of (3.2).

3.1.2 Stopping Criterion and Uncertainty Check

The usual stopping criterion for terminating the iterative process for data fitting (cf. Section 1.1)

is to check, after the update in the kth iteration, whether

φ(mk+1) ≤ ρ, (3.3)
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for a given tolerance ρ, with φ(mk+1) not being much smaller than ρ. This is done either to

avoid under-fitting/over-fitting of the noise, or as part of the explicit constraint such as in (1.8).

For instance, consider the simplest case where for all experiments there is a Gaussian noise

distribution for which the (same) standard deviation σ is known. Thus D = D∗ + σN , where

D∗ = F (m∗), with N an l × s matrix of i.i.d Gaussians. We wish to terminate the algorithm

when (1.6) falls below some multiple η ' 1 of the noise level squared, i.e. σ2‖N‖2F . Since the

noise is not known, following the celebrated Morozov discrepancy principle [52, 91, 107, 135],

we replace ‖N‖2F by its expected value, sl, obtaining

ρ = ησ2sl.

Unfortunately, however, the mere calculation of φ(mk+1) requires s evaluations of the com-

putationally expensive forward operators. We therefore wish to perform this check as rarely as

possible. Fortunately, as discussed before, we have in φ̂(mk+1, nk) a good, unbiased estimator

of φ(mk+1) with nk � s. Thus, in the course of an iteration we can perform the relatively

inexpensive uncertainty check whether

φ̂(mk+1, nk) ≤ ρ. (3.4)

This is like the stopping criterion, but in expectation. If (3.4) is satisfied, it is an indication

that (3.3) is likely to be satisfied as well, so we check the expensive (3.3) only then. Similarly

to the condition (3.2), for the rest of this chapter, the sample size nk used in (3.4) is chosen

heuristically, but its selection is made mathematically rigorous in Chapter 7.

Note that, for uncertainty check and cross validation steps, since we want an unbiased

estimator of the objective, the approximation should not be constructed deterministically, as

described in Section 2.1.

3.2 Adaptive Selection of Sample Size

In this section we describe two algorithms for determining the sample size nk in the kth stabilized

GN iteration. Algorithm 1 adapts nk in a brute force manner. Algorithm 2 uses a cross
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validation technique to avoid situations in which nk grows too rapidly or becomes larger than

necessary.

3.2.1 Sample Size Selection Using Uncertainty Checks

While the management strategy of nk in this algorithm is simply to increase it so long as (3.3)

is not met, its novelty lies in the fusion of different strategies for selecting the weight matrices

at different stages of each iteration. Our algorithm consists of three main steps: (i) data fitting

– a stabilized GN outer iteration (2.6); (ii) uncertainty check – a check for condition (3.4); and

(iii) depending on the outcome of the uncertainty check, perform either sample size adjustment

or stopping criterion check for termination.

Algorithm 1 Solve inverse problem using uncertainty check

Given: sources Q = [q1q2 · · ·qs], measurements D = [d1d2 · · ·ds], stopping criterion level ρ
(i.e. the desired misfit) and initial guess m0.
Initialize: m = m0 , n0 = 1.
for k = 0, 1, 2, · · · until termination do

- Choose nk wight vectors stochastically (or deterministically ) as described in Section 2.1
(or Section 2.2).
- Fitting: Perform one stabilized GN iteration approximating (2.6), with n = nk.
- Choose nk wight vectors stochastically as described in Section 2.1.
- Uncertainty Check: Compute (3.4) using mk+1 and the above nk wight vectors.
if Uncertainty Check holds then

- Stopping Criterion: Compute (3.3) with mk+1. Terminate if it holds.
else

- Sample Size Increase: Increase nk+1, for example set nk+1 = min(2nk, s).
end if

end for

The exponential growth of the sample size in Algorithm 1 can be theoretically appealing,

as such a schedule (unlike keeping nk fixed) enables the general convergence theory of [60].

However, in cases where there is embarrassing redundancy in the set of experiments, it may not

be desirable for the sample size to grow so rapidly and in an unchecked manner, as we could

end up using far more experiments than what is actually needed. Some mechanism is required

to control the growth of sample size, and one such is proposed next.
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3.2.2 Adaptive Selection of Sample Size Using Cross Validation

For monitoring the growth of nk more closely, one strategy is to compare the objective function φ

at the current iterate to its value in the previous iterate, effectively checking for the test (3.1),

and increase the sample size if there is no sufficient decrease. Unfortunately, evaluating the

test (3.1) exactly defeats the purpose (in Section 3.3 typically the total cost of the reconstruction

algorithm is small multiples of just one evaluation of φ). Fortunately, however, using the cross

validation test (3.2), described in Section 3.1.1, we can get a handle of how the objective

function is likely to behave. In other words, the role of the cross validation step within an

iteration is to assess whether the true objective function at the current iterate has (sufficiently)

decreased compared to the previous one. If this test fails, we deem that the current sample size

is not sufficiently large to yield an update that decreases the original objective, and the fitting

step needs to be repeated using a larger sample size. A method of this sort, based on “cross

validation”, is proposed in [46] together with a Random Subset method. Here we generalize

and adapt this technique in the present context.

Thus, the following algorithm involves the steps of Algorithm 1, with an additional check for

a sufficient decrease in the estimate (2.3) using another, independently selected weight matrix.

Only in case that this test is violated, we increase the sample size.

Algorithm 2 Solve inverse problem using uncertainty check and cross validation

Given: sources Q = [q1q2 · · ·qs], measurements D = [d1d2 · · ·ds], stopping criterion level ρ
(i.e. the desired misfit) and initial guess m0.
Initialize: m = m0 , n0 = 1.
for k = 0, 1, 2, · · · until termination do

- Choose nk wight vectors stochastically (or deterministically ) as described in Section 2.1
(or Section 2.2).
- Fitting: Perform one stabilized GN iteration approximating (2.6), with n = nk.
- Choose nk wight vectors stochastically as described in Section 2.1.
if φ̂(mk+1, nk) ≤ κφ̂(mk, nk), i.e., Cross Validation is satisfied then

- Uncertainty Check: Compute (3.4) using mk+1 and the above nk wight vectors.
if Uncertainty Check holds then

- Stopping Criterion: Compute (3.3) with mk+1. Terminate if it holds.
end if

else
- Sample Size Increase: Increase nk+1, for example set nk+1 = min(2nk, s).

end if
end for
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Note that our use of the term “cross validation” does not necessarily coincide with its

usual meaning in statistics. But the procedure retains the sense of a control set and this

name is convenient. The performance of Algorithm 2 is not automatically better than that of

Algorithm 1. Indeed, it is possible to generate examples where cross validation is not necessary,

as the computations in Section 3.3 demonstrate. However, it provides an important safety

mechanism.

3.3 Numerical Experiments

3.3.1 The EIT/DC Resistivity Inverse Problem

Our experiments are performed in the context of solving the EIT/DC resistivity problem

(e.g., [33, 39, 46, 47, 71, 72, 111, 128]). We have made this choice since exploiting many

data sets currently appears to be particularly popular in exploration geophysics, and our ex-

amples, in this thesis, can be viewed as mimicking a DC resistivity setup. Note that the PDE

model for EIT is identical to that of DC resistivity and the main difference is in experimental

setup.

Consider a linear PDE of the form

∇ · (µ(x)∇u) = q(x), x ∈ Ω, (3.5a)

where Ω ⊂ IRd, d = 2 or 3, and µ is a conductivity function which may be rough (e.g.,

discontinuous) but is bounded away from 0: there is a constant µ0 > 0 such that µ(x) ≥

µ0, ∀x ∈ Ω. This elliptic PDE is subject to the homogeneous Neumann boundary conditions

∂u

∂n
= 0, x ∈ ∂Ω. (3.5b)

For Ω, we will consider a unit square or a unit cube. The inverse problem is to recover µ in

Ω from sets of measurements of u on the domain’s boundary for different sources q. This is a

notoriously difficult problem in practice, so it may be useful to inject some a priori information

on µ, when such is available, via a parametrization of µ(x) in terms of m(x) using an appropriate
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transfer function ψ as µ(x) = ψ(m(x)). For example, ψ can be chosen so as to ensure that

the conductivity stays positive and bounded away from 0, as well as to incorporate bounds,

which are often known in practice, on the sought conductivity function. Some possible choices

of function ψ are described in Appendix A.2.

3.3.2 Numerical Experiments Setup

The experimental setting we use is as follows: for each experiment i there is a positive unit point

source at xi1 and a negative sink at xi2, where xi1 and xi2 denote two locations on the boundary

∂Ω. Hence in (3.5) we must consider sources of the form qi(x) = δ(x− xi1)− δ(x− xi2), i.e., a

difference of two δ-functions.

For our experiments in 2D, when we place a source on the left boundary, we place the

corresponding sink on the right boundary in every possible combination. Hence, having p

locations on the left boundary for the source would result in s = p2 experiments. The receivers

are located at the top and bottom boundaries. No source or receiver is placed at the corners.

In 3D we use an arrangement whereby four boreholes are located at the four edges of the

cube, and source and sink pairs are put at opposing boreholes in every combination, except

that there are no sources on the point of intersection of boreholes and the surface, i.e., at the

top four corners, since these four nodes are part of the surface where data values are gathered.

In the sequel we generate data di by using a chosen true model (or ground truth) and a

source-receiver configuration as described above. Since the field u from (3.5) is only determined

up to a constant, only voltage differences are meaningful. Hence we subtract for each i the

average of the boundary potential values from all field values at the locations where data is

measured. As a result each row of the projection matrix P has zero sum. This is followed

by peppering these values with additive Gaussian noise to create the data di used in our

experiments. Specifically, for an additive noise of 3%, say, denoting the “clean data” l × s

matrix by D∗, we reshape this matrix into a vector d∗ of length sl, calculate the standard

deviation sd = .03‖d∗‖/
√
sl, and define D = D∗ + sd ∗ randn(l, s) using Matlab’s random

generator function randn.

For all numerical experiments, the “true field” is calculated on a grid that is twice as fine

as the one used to reconstruct the model. For the 2D examples, the reconstruction is done on
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a uniform grid of size 642 with s = 961 experiments in the setup described above, and we used

η = 1.2. For our 3D examples, the reconstruction is done on a uniform grid of size 173 with

s = 512 experiments, and we set η = 1.5.

In Section 3.3.3 below, for the first three examples we use the transfer function (A.5) with

µmax = 1.2 maxµ(x), and µmin = .83 minµ(x). In the ensuing calculations we then “forget”

what the exact µ(x) is. Further, we set the PCG iteration limit to r = 20, and the PCG

tolerance to 10−3. The initial guess is m0 = 0. Our last example is carried out using the level

set method (A.6). Here we can set r = 5, significantly lower than above. The initial guess for

the level set examples is displayed in Figure 3.1.

Figure 3.1: Example 3.4 – initial guess for the level set method.

In addition to displaying the log conductivities (i.e., log(µ)) for each reconstruction, we also

show the log-log plot of misfit on the entire data (i.e. ‖F (m)−D‖F ) vs. PDE count. A table

of total PDE counts (not including what extra is required for the plots) for each method is

displayed. In this table, as a point of reference, we also include the total PDE count using the

“plain vanilla” stabilized Gauss-Newton method which employs the entire set of experiments

at every iteration.

We emphasize that, much as the rows in the work-unit table are easier to examine in order

to determine which method is more efficient, it is important to also consult the corresponding

data misfit plots, especially when the comparison is between relatively close quantities. This is

so because one evaluation of the stopping criterion consumes a significant fraction of the total

PDE count in each case, so an extra check that can randomly occur for a given experiment in
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one method and not another may affect the work table far more than the misfit figures. In

particular, the performance of the Hutchinson vs. Gauss estimators was found to be comparable

in almost all experiments below.

Finally, before we turn to the numerical results let us comment on the expected general

quality of such reconstructions. The quantifiers “good” and “acceptable” are relative concepts

here. Our 3D experiments mimic DC geophysics surveys, where a reconstruction is considered

good and acceptable if it generally looks like the true model, even remotely so. This is very

different from the meaning of similar quantifiers in image denoising, for instance.

3.3.3 Numerical Experiments Comparing Eight Method Variants

In each of the four examples below we apply Algorithm 1 and Algorithm 2 with κ = 1; smaller

values of κ would result in more aggressive increases of the sample size between one stabilized

GN iteration and the next.

Furthermore, for convenience of cross reference, we gather all resulting eight work counts

in Table 3.1 below. The corresponding entries of this table should be read together with the

misfit plots for each example, though.

Example Alg Vanilla Rand. Sub. Hutch. Gauss. TSVD

3.1 1 86,490 3,788 1,561 1,431 2,239
2 3,190 2,279 1,618 2,295

3.2 1 128,774 5,961 3,293 3,535 3,507
2 3,921 2,762 2,247 2,985

3.3 1 36,864 6,266 1,166 1,176 1,882
2 11,983 3,049 2,121 2,991

3.4 1 45,056 1,498 1,370 978 1,560
2 2,264 1,239 896 1,656

Table 3.1: Work in terms of number of PDE solves for Examples 3.1–3.4. The “Vanilla” count
is independent of the algorithms described in Section 3.2.

Example 3.1. In this example, we place two target objects of conductivity µI = 1 in a back-

ground of conductivity µII = 0.1, and 3% noise is added to the data: see Figure 3.2(a). The

reconstructions in Figures 3.2 and 3.3 are comparable.

From Table 3.1 we see that all our methods offer vast improvements over the plain Vanilla

method. Furthermore, the Random Subset method reduces the objective (i.e., misfit) function
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(a) True model (b) Rand. Sub. (c) Gaussian (d) Hutchinson (e) TSVD

Figure 3.2: Example 3.1 – reconstructed log conductivity using Algorithm 1 and the four
methods of Section 2.1.1.

(a) True model (b) Rand. Sub. (c) Gaussian (d) Hutchinson (e) TSVD

Figure 3.3: Example 3.1 – reconstructed log conductivity using Algorithm 2 and the four
methods of Section 2.1.1.

at a slower rate, requiring roughly twice as many PDE solves compared to the other methods of

Section 2.1.1. Consulting also Figure 3.4, observe in addition that although the final PDE count

for TSVD is slightly larger than for Hutchinson and Gaussian, it reduces the misfit at a faster,

though comparable, rate. In fact, if we were to stop the iterations at higher noise tolerances

then the TSVD method would have outperformed all others. In repeated similar tests, we have

observed that the performance of Hutchinson and Gaussian is comparable.

Finally, comparing the first two rows of Table 3.1 and the subplots of Figure 3.4, it is clear

(a) Algorithm 1 (b) Algorithm 2

Figure 3.4: Data misfit vs. PDE count for Example 1.
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that the performance of Algorithms 1 and 2 is almost the same.

Example 3.2. For this example, we merely swap the conductivities of the previous one, see

Figure 3.5(a), and add the lower amount of 1% noise to the “exact data”. The reconstruction

results in Figures 3.5 and 3.6 are comparable. The performance indicators are gathered in

Table 3.1 and Figure 3.7.

(a) True model (b) Rand. Sub. (c) Gaussian (d) Hutchinson (e) TSVD

Figure 3.5: Example 3.2 – reconstructed log conductivity using Algorithm 1 and the four
methods of Section 2.1.1.

(a) True model (b) Rand. Sub. (c) Gaussian (d) Hutchinson (e) TSVD

Figure 3.6: Example 3.2 – reconstructed log conductivity using Algorithm 2 and the four
methods of Section 2.1.1.

(a) Algorithm 1 (b) Algorithm 2

Figure 3.7: Data misfit vs. PDE count for Example 3.2.

Note that since in this example the noise is reduced compared to the previous one, more PDE

solves are required. Similar observations to all those made for Example 3.1 apply here as well,
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except that using the cross validation algorithm results in a notable reduction in PDE solves.

Figure 3.8: True Model for Examples 3.3 and 3.4. The left panel shows 2D equi-distant slices
in the z direction from top to bottom, the right panel depicts the 3D volume.

Example 3.3. In this 3D example, we place a target object of conductivity µI = 1 in a back-

ground with conductivity µII = 0.1. See Figure 3.8, whose caption also explains what other

plots for 3D runs depict. A 2% noise is added to the “exact” data.

(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Figure 3.9: Example 3.3 – reconstructed log conductivity for the 3D model using Algorithm 1
and (a,b) Random Subset, (c,d) Gaussian, (e,f) Hutchinson, and (g,h) TSDV.

The reconstruction quality for all eight method variants, see Figures 3.9 and 3.10, appears

less clean than in our other examples; however, the methods are comparable in this regard, which

allows us to concentrate on their comparative efficiency. It should be noted that no attempt was

made here to “beautify” these results by post-processing, a practice not unheard of for hard

geophysical inverse problems. Better reconstructions are obtained in the next example which
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employs more a priori information and higher contrast.

In cases where more experiments are needed, the differences among the sampling methods

are even more pronounced. This 3D example is one such case. All of the methods (excluding

Vanilla) ended up using half of the experiments (i.e., nk ≈ .5s) before termination. Clearly, the

Random Subset method is far outperformed by the other three, see Table 3.1 and Figure 3.13.

This is one example where Algorithm 1 achieves reconstructions of similar quality but more

cheaply than Algorithm 2. This is so because in this case there is little embarrassing redundancy,

i.e., larger sample sizes are needed to achieve the desired misfit, hence growing the sample size

at a faster rate leads to an efficient algorithm. The sample size using cross validation grows

more slowly, and relatively many GN iterations are performed using small sample sizes where

each iteration decreases the misfit only slightly. These added iterations result in larger total

PDE solve count.

Example 3.4. This one is the same as Example 3.3, except that we assume that additional prior

information is given, namely, that the sought model consists of piecewise constant regions with

conductivity values µI and µII . This mimics a common situation in practice. So we reconstruct

using the level set method (A.6), which significantly improves the quality of the reconstructions:

compare Figures 3.11 and 3.12 to Figures 3.9 and 3.10.

Here we observe less difference among the various methods. Specifically, in repeated experi-

ments, the Random Subset method is no longer clearly the worst, see Table 3.1 and Figure 3.14.

The numbers in the last row of Table 3.1 might be deceiving at first glance, as Random Sub-

set seems to be worse than the rest; however, the graph of the misfit in Figure 3.14 reflects

a more complete story. At some point in between the final PDE counts for Hutchinson and

TSVD, the Random Subset misfit falls below the desired tolerance; however, the uncertainty

check at that iterate results in a “false negative” which in turn does not trigger the stopping

criterion. This demonstrates the importance of having a very good and reliable trace estimator

in the uncertainty check. For all our eight algorithm variants and in all of our examples, we

used the Hutchinson trace estimator for this purpose, as it has the smallest variance. And yet,

one wrong estimate could result in additional, unnecessary GN iterations, leading to more PDE

solves. False positives, on the other hand, trigger an unnecessary stopping criterion evaluation,
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(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Figure 3.10: Example 3.3 – reconstructed log conductivity for the 3D model using Algorithm 2
and (a,b) Random Subset, (c,d) Gaussian, (e,f) Hutchinson, and (g,h) TSDV.

(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Figure 3.11: Example 3.4 – reconstructed log conductivity for the 3D model using the level set
method with Algorithm 1 and with (a,b) Random Subset, (c,d) Gaussian, (e,f) Hutchinson,
and (g,h) TSDV.
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(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Figure 3.12: Example 3.4 – reconstructed log conductivity for the 3D model using the level set
method with Algorithm 2 and with (a,b) Random Subset, (c,d) Gaussian, (e,f) Hutchinson,
and (g,h) TSDV.

which results in more PDE solves to calculate the misfit on the entire data set. For this example

it was also observed that typically the Gaussian method outperforms Hutchinson by a factor of

roughly 1.5.

3.4 Conclusions

In this chapter we have developed and compared several highly efficient stochastic algorithms

for the solution of inverse problems involving computationally expensive forward operators de-

(a) Algorithm 1 (b) Algorithm 2

Figure 3.13: Data misfit vs. PDE count for Example 3.3.
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(a) Algorithm 1 (b) Algorithm 2

Figure 3.14: Data misfit vs. PDE count for Example 4.

scribed in Section 1.1 in the presence of many measurements or experiments s. Two algorithms

for controlling the size nk ≤ s of the data set in the kth stabilized GN iteration have been

proposed and tested. For each, four methods of sampling the original data set, three stochastic

and one deterministic, discussed in Chapter 2, can be used, making for a total of eight algo-

rithm variants. Our algorithms are known to converge under suitable circumstances because

they satisfy the general conditions in [36, 60]. The numerical experiments are done specifically,

in the context of DC resistivity.

It is important to emphasize that any of these algorithms is far better than a straightforward

utilization of all experiments at each GN iteration. This is clearly borne out in Table 3.1. Note

further that in order to facilitate a fair comparison we chose a fixed number of PCG inner

iterations, ignoring the adaptive Algorithm 1 of [46], even though that algorithm can impact

performance significantly. We also utilized for the sake of fair comparison a rather rigid (and

expensive) stopping criterion; this will be eased off in future chapters. Further, we use the

Hutchinson estimator for the uncertainty check in all methods, thus making them all stochastic.

In particular, TSVD may not be used in (3.4) because it does not lead to an unbiased estimator

for the objective function φ.

Inverse problems with many measurements arise in different applications which may have

very different solution sensitivity to changes in the data (e.g., the full waveform inversion,

although having other big difficulties in its solution process, is far less sensitive in this sense

than DC resistivity). But in any case, it is an accepted working assumption that more data
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can only help and not hurt the conditioning of the problem being solved. This then gives rise

to the question whether our model reduction techniques may worsen the conditioning of the

given problem. We have not observed any such effect in our experiments (and our “Vanilla”

reconstructions in Section 3.3 are never better, or sharper, than the other, cheaper ones). In a

sense it could be argued that a good model reduction algorithm actually covers approximately

the same grounds as the full data problem, so it achieves a similar level of solution sensitivity

to data.

As demonstrated in Examples 3.2 and 3.3, neither Algorithm 1 nor Algorithm 2 is always

better than the other, and they often both perform well. Their relative performance depends on

circumstances that can occasionally be distinguished before committing to calculations. Specif-

ically, if there are relatively few data sets, as in Example 3.3, then Algorithm 1 is preferable,

being both simpler and occasionally faster. On the other hand, if s is very large, the data

having been massively calculated without much regard to experimental design considerations

(as is often the case in geophysical exploration applications), then this may naturally lead to a

case of embarrassing redundancy, and caution alone dictates using Algorithm 2.

The three methods of simultaneous sources, namely, Hutchinson, Gaussian and TSVD, are

comparable (ignoring the cost of SVD computation), and no definitive answer can be given

as to which is better for the model reduction. Further, especially when the level set method

may not be used, we have found the methods of simultaneous sources to be consistently more

efficient than the Random Subset method of [46], roughly by a factor of two or more. However,

as mentioned before, SS methods can only be applied when the linearity assumption (A.2) is

justified. In the absence of the Assumption (A.2), one is restricted to use the less efficient

method of RS. Within the context of PDE constrained inverse problem (1.4), this means that

the projection matrices Pi depend on i. That, in turn, raises the question whether the linearity

assumption (A.2)can somehow be relaxed, thus allowing use of the faster methods of SS. This

is the subject of Chapter 4.
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Data Completion

In Chapter 3, for the case where Assumptions (A.1) - (A.3) are valid, different methods of

simultaneous sources are obtained by using different algorithms for this model and data reduction

process. There, we have discussed and compared three such methods: (i) a Hutchinson random

sampling, (ii) a Gaussian random sampling, and (iii) the deterministic truncated singular value

decomposition (TSVD). We have found that, upon applying these methods, their performance

was roughly comparable (although for just estimating the misfit function by (2.3), only the

stochastic methods work well).

However, in situations where Assumption (A.2) is violated, none of the SS methods apply.

Such situations arise, for example, when parts of measurements are missing or data is partially

corrupted. In these cases, the random subset method can still be considered, where a random

subset of the original experiments is selected at each iteration k, as the application of this

method does not require the linearity assumption (A.2). However, as it was shown in Chapter 3,

its performance is generally worse than the methods of simultaneous sources, roughly by a factor

between 1 and 4, and on average about 2.7 It is, in fact, possible to construct examples where

a reconstruction algorithm using the RS method performs remarkably worse (much more than

a factor of 4) than a similar SS based algorithm.

This brings us to the quest of the present Chapter, namely, to seek methods for the general

case where Assumption (A.2) does not hold, which are as efficient as the simultaneous sources

methods. The tool employed for this is to “fill in missing or replace corrupted data”, thus

restoring the linearity assumption (A.2). More specifically, the problem is transformed such

that the original forward operators, f(m,qi), are extended to the ones, which are linear in

q. For example, in PDE constrained inverse problems with the forward operators defined as

7 The relative efficiency factor further increases if a less conservative criterion is used for algorithm termination,
see Section 4.3.
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in (1.4), i.e., Pi does depend on i, the goal is to replace Pi, for each i, by a common projection

matrix P to the union of all receiver locations, i = 1, . . . , s, effectively transforming the problem

into the one with forward operators of the form (1.5). For the rest of the this chapter, we only

consider the case of data completion, but application to data replacement is almost identical.

The prospect of such data completion, like that of casting a set of false teeth based on a few

genuine ones, is not necessarily appealing, but is often necessary for reasons of computational

efficiency. Moreover, applied mathematicians do a virtual data completion automatically when

considering a Dirichlet-to-Neumann map, for instance, because such maps assume knowledge

of the field u (see, e.g., (3.5)) or its normal derivative on the entire spatial domain boundary,

or at least on a partial but continuous segment of it. Such knowledge of noiseless data at

uncountably many locations is never the case in practice, where receivers are discretely located

and some noise, including data measurement noise, is unavoidable. On the other hand, it can

be argued that any practical data completion must inherently destroy some of the “integrity”

of the statistical modeling underlying, for instance, the choice of iteration stopping criterion,

because the resulting “generated noise” at the false points is not statistically independent of

the genuine ones where data was collected.

Indeed, the problem of proper data completion is far from being a trivial one, and its inherent

difficulties are often overlooked by practitioners. In this chapter we consider this problem in

the context of the DC-resistivity problem (Section 4.1.3), with the sources and receivers for

each data set located at segments of the boundary ∂Ω of the domain on which the forward

PDE is defined. Forward operators are as defined in (1.4). Our data completion approach is to

approximate or interpolate the given data directly in smooth segments of the boundary, while

taking advantage of prior knowledge as to how the fields ui must behave there. We emphasize

that the sole purpose of our data completion algorithms is to allow the set of receivers to

be shared among all experiments. This can be very different from traditional data completion

efforts that have sought to obtain extended data throughout the physical domain’s boundary or

even in the entire physical domain. Our “statistical crime” with respect to noise independence

is thus far smaller, although still existent.

We have tested several regularized approximations on the set of examples of Section 4.3,

including several DCT [92], wavelet [101] and curvelet [49] approximations (for which we had
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hoped to leverage the recent advances in compressive sensing and sparse `1 methods [50, 58]) as

well as straightforward piecewise linear data interpolation. However, the latter is well-known

not to be robust against noise, while the former methods are not suitable in the present context,

as they are not built to best take advantage of the known solution properties. The methods

which proved winners in the experimentation ultimately use a Tikhonov-type regularization in

the context of our approximation, penalizing the discretized L2 integral norm of the gradient or

Laplacian of the fields restricted to the boundary segment surface. They are further described

and theoretically justified in Section 4.2, providing a rare instance where theory correctly pre-

dicts and closely justifies the best practical methods. We believe that this approach applies to

a more general class of PDE-based inverse problems.

In Section 4.1 we describe the inverse problem and the algorithm variants used for its

solution. Several aspects arise with the prospect of data completion: which data – the original

or the completed – to use for carrying out the iteration, which data for controlling the iterative

process, what stopping criterion to use, and more. These aspects are addressed in Section 4.1.1.

The resulting algorithm, based on Algorithm 2 of Chapter 3, is given in Section 4.1.2. The

specific EIT/DC resistivity inverse problem described in Section 4.1.3 then leads to the data

completion methods developed and proved in Section 4.2.

In Section 4.3 we apply the algorithm variants developed in the two previous sections to

solve test problems with different receiver locations. The purpose is to investigate whether the

SS algorithms based on completed data achieve results of similar quality at a cheaper price, as

compared to the RS method applied to the original data. Overall, very encouraging results are

obtained even when the original data receiver sets are rather sparse. Conclusions are offered in

Section 4.4.

4.1 Stochastic Algorithms for Solving the Inverse Problem

The first two subsections below apply more generally than the third subsection. The latter

settles on one application and leads naturally to Section 4.2.

Let us recall the acronyms for random subset (RS) and simultaneous sources (SS), used

repeatedly in this section.
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4.1.1 Algorithm Variants

To compare the performance of our model recovery methods with completed data, D̃, against

corresponding ones with the original data, D, we use the framework of Algorithm 2 of Chapter 3.

This algorithm consists of two stages within each GN iteration. The first stage produces a

stabilized GN iterate, for which we use data denoted by D̂. The second involves assessment

of this iterate in terms of improvement and algorithm termination, using data D̄. This second

stage consists of evaluations of (2.3), in addition to (1.6). We consider three variants:

(i) D̂ = D, D̄ = D;

(ii) D̂ = D̃, D̄ = D̃;

(iii) D̂ = D̃, D̄ = D;

Note that only the RS method can be used in variant (i), whereas any of the SS methods as well

as the RS method can be employed in variant (ii). In variant (iii) we can use a more accurate SS

method for the stabilized GN stage and an RS method for the convergence checking stage, with

the potential advantage that the evaluations of (2.3) do not use our “invented data”. However,

the disadvantage is that RS is potentially less suitable than Gaussian or Hutchinson precisely

for tasks such as those in this second stage; see Chapter 3.

A major source of computational expense is the algorithm stopping criterion, which in

Chapter 3 was taken to be (3.3), namely

φ(mk+1) ≤ ρ,

for a specified tolerance ρ. In Chapter 3, we deliberately employed this criterion in order to

be able to make fair comparisons among different methods. However, the evaluation of φ for

this purpose is very expensive when s is large, and in practice ρ is hardly ever known in a rigid

sense. In any case, this evaluation should be carried out as rarely as possible. In Chapter 3,

we addressed this by proposing a safety check, called “uncertainty check”, which uses (2.3) as

an unbiased estimator of φ(m) with nk � s realizations of a random vector from one of the

distributions described in Section 2.1.1. Thus, in the course of an iteration we can perform the
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relatively inexpensive uncertainty check (3.4), namely

φ̂(mk+1, nk) ≤ ρ.

This is like the stopping criterion, but in expectation. If (3.4) is satisfied, it is an indication

that (3.3) is likely to be satisfied as well, so we check the expensive (3.3) only then.

In the present chapter, we propose an alternative heuristic method of replacing (3.3) with

another uncertainty check evaluation as in (3.4) with tk realizations of the Rademacher random

vector (NB the Hutchinson estimator has smaller variance than Gaussian). The sample size tk

can be heuristically set as

tk = min
(
s,max (t0, nk)

)
, (4.1)

where t0 > 1 is some preset minimal sample size for this purpose. Thus, for each algorithm

variant (i), (ii) or (iii), we consider two stopping criteria, namely,

(a) the hard (3.3), and

(b) the more relaxed (3.4)+(4.1).

When using the original dataD in the second stage of our general algorithm, as in variants (i)

and (iii) above, since the linearity assumption (A.2) does not hold in the setting considered here,

for efficiency reasons, one is restricted to the RS method as an unbiased estimator. However,

when the completed data is used and, as a result, the linearity assumption (A.2) is restored,

we can freely use the stochastic SS methods and leverage their rather better accuracy in order

to estimate the true misfit φ(m). This is indeed an important advantage of data completion

methods.

However, when using the completed data D̃ in the second stage of our general algorithm,

as in variant (ii), an issue arises: when the data is completed, the given tolerance ρ loses its

meaning and we need to take into account the effect of the additional data to calculate a new

tolerance. Our proposed heuristic approach is to replace ρ with a new tolerance ρ := (1 + c)ρ,

where c is the percentage of the data that needs to be completed expressed as a fraction. For

example, if 30% of data is to be completed then we set ρ := 1.3ρ. Since the completed data

after using (4.2) or (4.6) is smoothed and denoised, we only need to add a small fraction of the
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initial tolerance to get the new one, and in our experience, 1 + c is deemed to be a satisfactory

factor. We experiment with this less rigid stopping criterion in Section 4.3.

4.1.2 General Algorithm

Our general algorithm utilizes a stabilized Gauss-Newton (GN) method (see Chapter A.3

and [46]), where each iteration consists of two stages as described in Section 4.1.1. In ad-

dition to combining the elements described above, this algorithm also provides a schedule for

selecting the sample size nk in the kth stabilized GN iteration. In Algorithm 3, variants (i), (ii)

and (iii), and criteria (a) and (b), are as specified in Section 4.1.1.

Algorithm 3 Solve inverse problem using variant (i), (ii) or (iii), cross validation, and stopping
criterion (a) or (b)

Given: sources Q, measurements D̂, measurements D̄, stopping tolerance ρ, decrease factor
κ < 1, and initial guess m0.
Initialize: m = m0 , n0 = 1.
for k = 0, 1, 2, . . . until termination do

- Choose nk wight vectors stochastically as described in Section 2.1.
- Fitting: Perform one stabilized GN iteration, based on D̂ and above weight, on (2.3).
- Choose two independent sets of nk wight vectors stochastically as described in Section 2.1.

if φ̂(mk+1, nk) ≤ κφ̂(mk, nk), based on D̄, using the above two sets of weights for each
side of the inequality. i.e., Cross Validation holds then

- Choose nk wight vectors stochastically as described in Section 2.1.
- Uncertainty Check: Compute (2.3) based on D̄ using mk+1 and the above weights.
if (3.4) holds then

- Stopping Criterion:
if Option (a) selected and (3.3) holds then

terminate; otherwise set nk+1 = nk.
else

Set tk = min
(
s,max (t0, nk)

)
.

Choose tk wight vectors stochastically as described in Section 2.1. Terminate if
(3.4) holds using D̄; otherwise set nk+1 = nk.

end if
end if

else
- Sample Size Increase: for example, set nk+1 = min(2nk, s).

end if
end for
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4.1.3 The DC Resistivity Inverse Problem

For the forward problem, we consider the DC resistivity problem with a linear PDE of the form

described in Section 3.3.1. In our numerical examples we again consider the simple domain

Ω ⊂ IRd to be the unit square or unit cube, and the sources q to be the differences of δ-

functions; see details in Section 3.3. Since the receivers (where data values are measured) lie

in ∂Ω, in our data completion algorithms we approximate data along one of four edges in the

2D case or within one of six square faces in the 3D case. The setting of our experiments, which

follows that used in Chapter 3, is more typical of DC resistivity than of the EIT problem.

For the inverse problem we introduce additional a priori information, when such is available,

via a point-wise parametrization of µ(x) in terms of m(x). For details of this, as well as the

PDE discretization and the stabilized GN iteration used, we refer to Chapter 3, Appendix A

and [46] and references therein.

4.2 Data Completion

Let Λi ⊂ ∂Ω denote the point set of receiver locations for the ith experiment. Our goal here is to

extend the data for each experiment to the union Λ =
⋃
i Λi ⊆ ∂Ω, the common measurement

domain. To achieve this, we choose a suitable boundary patch Γ ⊆ ∂Ω, such that Λ ⊂ Γ̄, where

Γ̄ denotes the closure of Γ with respect to the boundary subspace topology. For example, one

can choose Γ to be the interior of the convex hull (on ∂Ω) of Λ. We also assume that Γ can be

selected such that it is a simply connected open set. For each experiment i, we then construct

an extension function vi on Γ̄ which approximates the measured data on Λi. The extension

method can be viewed as an inverse problem, and we select a regularization based on knowledge

of the function space that vi (which represents the restriction of potential ui to Γ) should live

in. Once vi is constructed, the extended data, d̃i, is obtained by restricting vi to Λ, denoted in

what follows by vΛ
i . Specifically, for the receiver location xj ∈ Λ, we set [d̃i]j = vi(xj), where

[d̃i]j denotes the jth component of vector d̃i corresponding to xj . Below we show that the trace

of potential ui to the boundary is indeed continuous, thus point values of the extension function

vi make sense.

In practice, the conductivity µ(x) in (3.5a) is often piecewise smooth with finite jump
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discontinuities. As such one is faced with two scenarios leading to two approximation methods

for finding vi: (a) the discontinuities are some distance away from Γ; and (b) the discontinuities

extend all the way to Γ. These cases result in a different a priori smoothness of the field vi

on Γ. Hence, in this section we treat these cases separately and propose an appropriate data

completion algorithm for each.

Consider the problem (3.5). In what follows we assume that Ω is a bounded open domain

and ∂Ω is Lipschitz. Furthermore, we assume that µ is continuous on a finite number of disjoint

subdomains, Ωj ⊂ Ω, such that
⋃N
j=1 Ωj = Ω and ∂Ωj ∩ Ω ∈ C2,α, for some 0 < α ≤ 1, i.e.,

µ ∈ C2(Ωj), j = 1, . . . , N .8 Moreover, assume that q ∈ L∞(Ω) and q ∈ Lip(Ωj ∩ Ω), i.e.,

it is Lipschitz continuous in each subdomain; this assumption will be slightly weakened in

Subsection 4.2.4.

Under these assumptions and for the Dirichlet problem with a C2(∂Ω) boundary condition,

there is a constant γ, 0 < γ ≤ 1, such that u ∈ C2,γ(Ωj) [88, Theorem 4.1]. In [98, Corollary

7.3], it is also shown that the solution on the entire domain is Hölder continuous, i.e., u ∈ Cβ(Ω)

for some β, 0 < β ≤ 1. Note that the mentioned theorems are stated for the Dirichlet problem,

and here we assume a homogeneous Neumann boundary condition. However, in this case we

have infinite smoothness in the normal direction at the boundary, i.e., C∞ Neumann condition,

and no additional complications arise; see for example [127]. So the results stated above would

still hold for (3.5).

4.2.1 Discontinuities in Conductivity Are Away from Common

Measurement Domain

This scenario corresponds to the case where the boundary patch Γ can be chosen such that

Γ ⊂ (∂Ωj ∩ ∂Ω) for some j. Then we can expect a rather smooth field at Γ; precisely, u ∈

C2,γ(Γ). Thus, u belongs to the Sobolev space H2(Γ), and we can impose this knowledge in

our continuous completion formulation. For the ith experiment, we define our data completion

function vi ∈ H2(Γ) ∩ C(Γ) as

vi = arg min
v

1

2
‖vΛi − di‖22 + λ ‖∆Sv‖2L2(Γ) , (4.2)

8X denotes the closure of X with respect to the appropriate topology.
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where ∆S is the Laplace-Beltrami operator ([89, 124]) for the Laplacian on the boundary surface

and vΛi is the restriction of the continuous function v to the point set Λi. The regularization

parameter λ depends on the amount of noise in our data; see Section 4.2.3.

We next discretize (4.2) using a mesh on Γ as specified in Section 4.3, and solve the resulting

linear least squares problem using standard techniques.

Figure 4.1 shows an example of such data completion. The true field and the measured data

correspond to an experiment described in Example 4.3 of Section 4.3. We only plot the profile

of the field along the top boundary of the 2D domain. As can be observed, the approximation

process imposes smoothness which results in an excellent completion of the missing data, despite

the presence of noise at a fairly high level.

Figure 4.1: Completion using the regularization (4.2), for an experiment taken from Example 4.3
where 50% of the data requires completion and the noise level is 5%. Observe that even in the
presence of significant noise, the data completion formulation (4.2) achieves a good quality field
reconstruction.

We hasten to point out that the results in Figure 4.1, as well as those in Figure 4.2 below,

pertain to differences in field values, i.e., the solutions of the forward problem ui, and not those

in the inverse problem solution shown, e.g., in Figure 4.5. The good quality approximations in

Figures 4.1 and 4.2 generally form a necessary but not sufficient condition for success in the

inverse problem solution.
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4.2.2 Discontinuities in Conductivity Extend All the Way to Common

Measurement Domain

This situation corresponds to the case in which Γ can only be chosen such that it intersects

more than just one of the (∂Ω ∩ ∂Ωj)’s. More precisely, assume that there is an index set

J ⊆ {1, 2, · · ·N} with |J | = K ≥ 2 such that {Γ ∩ (∂Ω ∩ ∂Ωj)
◦ , j ∈ J } forms a set of

disjoint subsets of Γ such that Γ =
⋃
j∈J Γ ∩ (∂Ω ∩ ∂Ωj)◦, where X◦ denotes the interior of

the set X, and that the interior is with respect to the subspace topology on ∂Ω. In such a

case u, restricted to Γ, is no longer necessarily in H2(Γ). Hence, the smoothing term in (4.2)

is no longer valid, as ‖∆Su‖L2(Γ) might be undefined or infinite. However, as described above,

we know that the solution is piecewise smooth and overall continuous, i.e., u ∈ C2,γ(Ωj) and

u ∈ Cβ(Ω). The following theorem shows that the smoothness on Γ is not completely gone: we

may lose one degree of regularity at worst.

Theorem 4.1. Let U and {Uj | j = 1, 2, . . . ,K} be open and bounded sets such that the Uj are

pairwise disjoint and U =
⋃K
j=1 U j. Further, let u ∈ C(U) ∩H1(Uj) ∀j. Then u ∈ H1(U).

Proof. It is easily seen that since u ∈ C(U) and U is bounded, then u ∈ L2(U). Now, let

φ ∈ C∞0 (U) be a test function and denote ∂i ≡ ∂
∂xi

. Using the assumptions that the Uj ’s form

a partition of U , u is continuous in U , φ is compactly supported inside U , and the fact that the

∂Uj ’s have measure zero, we obtain

∫
U
u∂iφ =

∫
U
u∂iφ

=

∫
∪Kj=1Uj

u∂iφ

=

∫
(∪Kj=1Uj)

⋃
(∪Kj=1∂Uj)

u∂iφ

=

∫
∪Kj=1Uj

u∂iφ

=

K∑
j=1

∫
Uj

u∂iφ

=
K∑
j=1

∫
∂Uj

uφνji −
K∑
j=1

∫
Uj

∂iuφ,
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where νji is the ith component of the outward unit surface normal to ∂Uj . Since u ∈ H1(Uj) ∀j,

the second part of the rightmost expression makes sense. Now, for two surfaces ∂Um and ∂Un

such that ∂Um ∩ ∂Un 6= ∅, we have νmi (x) = −νni (x) ∀x ∈ ∂Um ∩ ∂Un. This fact, and noting

in addition that φ is compactly supported inside U , makes the first term in the right hand side

vanish, i.e.,
K∑
j=1

∫
∂Uj

uφνji = 0.

We can now define the weak derivative of u with respect to xi to be

v(x) =
K∑
j=1

∂iuXUj , (4.3)

where XUj denotes the characteristic function of the set Uj . This yields

∫
U
u∂iφ = −

∫
U
vφ. (4.4)

Also

‖v‖L2(U) ≤
K∑
j=1

‖∂iu‖L2(Uj) <∞, (4.5)

and thus we conclude that u ∈ H1(U).

If the assumptions stated at the beginning of this section hold then we can expect a field u ∈

H1(Γ)∩C(Γ̄). This is obtained by invoking Theorem 4.1 with U = Γ and Uj = Γ∩ (∂Ω∩∂Ωj)
◦

for all j ∈ J .

Now we can formulate the data completion method as

vi = arg min
v

1

2
‖vΛi − di‖22 + λ ‖∇Sv‖2L2(Γ) , (4.6)

where vΛi and λ are as in Section 4.2.1.

Figure 4.2 shows an example of data completion using the formulation (4.6), depicting the

profile of vi along the top boundary. The field in this example is continuous and only piecewise

smooth. The approximation process imposes less smoothness along the boundary as compared

to (4.2), and this results in an excellent completion of the missing data, despite a nontrivial
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level of noise.

Figure 4.2: Completion using the regularization (4.6), for an experiment taken from Example 4.2
where 50% of the data requires completion and the noise level is 5%. Discontinuities in the
conductivity extend to the measurement domain and their effect on the field profile along
the boundary can be clearly observed. Despite the large amount of noise, data completion
formulation (4.6) achieves a good reconstruction.

To carry out our data completion strategy, the problems (4.2) or (4.6) are discretized. This

is followed by a straightforward linear least squares technique, which can be carried out very

efficiently. Moreover, this is a preprocessing stage performed once, which is completed before the

algorithm for solving the nonlinear inverse problem commences. Also, as the data completion

for each experiment can be carried out independently of others, the preprocessing stage can be

done in parallel if needed. Furthermore, the length of the vector of unknowns vi is relatively

small compared to those of ui because only the boundary is involved. All in all the amount of

work involved in the data completion step is dramatically less than one full evaluation of the

misfit function (1.6).

49



4.2. Data Completion

4.2.3 Determining the Regularization Parameter

Let us write the discretization of (4.2) or (4.6) as

min
v

1

2
‖P̂iv − di‖22 + λ‖Lv‖22, (4.7)

where L is the discretization of the surface gradient or Laplacian operator, v is a vector whose

length is the size of the discretized Γ, P̂i is the projection matrix from the discretization of Γ

to Λi, and di is the ith original measurement vector.

Determining λ in this context is a textbook problem; see, e.g., [135]. Viewing it as a

parameter, we have a linear least squares problem for v in (4.7), whose solution can be denoted

v(λ) as

vi(λ) = (P̂ Ti P̂i + λLTL)−1P̂ Ti ui

Now, in the simplest case, which we assume in our experiments, the noise level for the ith

experiment, ηi, is known, so one can use the discrepancy principle to pick λ such that

∥∥∥P̂iv(λ)− di

∥∥∥2

2
≤ ηi. (4.8)

Numerically, this is done by setting equality in (4.8) and solving the resulting nonlinear equation

for λ using a standard root finding technique.

If the noise level is not known, one can use the generalized cross validation (GCV) method

([65]) or the L-curve method ([79]). For example, GCV function can be written as

GCV (λ) =
‖P̂iv − ui‖22

tr(I− P̂i(P̂ Ti P̂i + λLTL)−1P̂ Ti )2
,

where tr denotes the standard matrix trace. Now the best λ is the minimizer of GCV (λ). We

need not dwell on this longer here.

4.2.4 Point Sources and Boundaries with Corners

In the numerical examples of Section 4.3, as in Section 3.3 and following [46], we use delta

function combinations as the sources qi(x), in a manner that is typical in exploration geophysics
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(namely, DC resistivity as well as low-frequency electromagnetic experiments), less so in EIT.

However, these are clearly not honest L∞ functions. Moreover, our domains Ω are a square or

a cube and as such they have corners.

However, the theory developed above, and the data completion methods that it generates,

can be extended to our experimental setting because we have control over the experimental

setup. The desired effect is obtained by simply separating the location of each source from any

of the receivers, and avoiding domain corners altogether.

Thus, consider in (3.5a) a source function of the form

q(x) = q̂(x) + δ(x− x∗)− δ(x− x∗∗),

where q̂ satisfies the assumptions previously made on q. Then we select x∗ and x∗∗ such

that there are two open balls B(x∗, r) and B(x∗∗, r) of radius r > 0 each and centered at

x∗ and x∗∗, respectively, where (i) no domain corner belongs to B(x∗, r) ∪ B(x∗∗, r), and (ii)

(B(x∗, r) ∪ B(x∗∗, r)) ∩ Γ is empty. Now, in our elliptic PDE problem the lower smoothness

effect of either a domain corner or a delta function is local! In particular, the contribution of

the point source to the flux µ∇u is the integral of δ(x − x∗) − δ(x − x∗∗), and this is smooth

outside the union of the two balls.

4.3 Numerical Experiments

The PDE problem used in our experiments is described in Sections 4.1.3 and 3.3. The exper-

imental setting is also very similar to that in Section 3.3.2. Here again, in 2D, the receivers

are located at the top and bottom boundaries (except the corners). As such, the completion

steps (4.2) or (4.6) are carried out separately for the top and bottom 1D manifold of bound-

aries. In 3D, since the receivers are placed on the top surface, hence completion is done on the

corresponding 2D manifold.

For all of our numerical experiments, the “true field” is calculated on a grid that is twice as

fine as the one used to reconstruct the model. For the 2D examples, the reconstruction is done

on a uniform grid of size 1292 with s = 961 experiments in the setup described above. For the
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3D examples, we set s = 512 and employ a uniform grid of size 333, except for Example 4.3

where the grid size is 173.

In the numerical examples considered below, we use true models with piecewise constant

levels, with the conductivities bounded away from 0. For further discussion of such models

within the context of EIT, see [64].

Numerical examples are presented for both cases described in Sections 4.2.1 and 4.2.2. For all

of our numerical examples except Examples 4.5 and 4.6, we use the transfer function (A.5) with

µmax = 1.2 maxµ(x), and µmin = 1
1.2 minµ(x). In the ensuing calculations we then “forget”

what the exact µ(x) is. Further, in the stabilized GN iteration we employ preconditioned

conjugate gradient (PCG) inner iterations, setting as described in Section A.3 the PCG iteration

limit to r = 20, and the PCG tolerance to 10−3. The initial guess is m0 = 0. Examples 4.5

and 4.6 are carried out using the level set method (A.6). Here we can set r = 5, significantly

lower than above. The initial guess for the level set example is a cube with rounded corners

inside Ω as in Figure 3.1.

For Examples 4.1, 4.2, 4.3 and 4.5, in addition to displaying the log conductivities (i.e.,

log(µ)) for each reconstruction, we also show the log-log plot of misfit on the entire data (i.e.,

‖F (m) − D‖F ) vs. PDE count. A table of total PDE counts (not including what extra is

required for the plots) for each method is displayed. In order to simulate the situation where

sources do not share the same receivers, we first generate the data fully on the entire domain

of measurement and then knock out at random some percentage of the generated data. This

setting roughly corresponds to an EMG experiment with faulty receivers.

For each example, we use Algorithm 1 with one of the variants (i), (ii) or (iii) paired with one

of the stopping criteria (a) or (b). For instance, when using variant (ii) with the soft stopping

criterion (b), we denote the resulting algorithm by (ii, b). For the relaxed stopping rule (b) we

(conservatively) set t0 = 100 in (4.1). A computation using RS applied to the original data,

using variant (i,x), is compared to one using SS applied to the completed data through variant

(ii,x) or (iii,x), where x stands for a or b.

For convenience of cross reference, we gather all resulting seven algorithm comparisons

and corresponding work counts in Table 4.1 below. For Examples 4.1, 4.2, 4.3 and 4.5, the
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corresponding entries of this table should be read together with the misfit plots for each example.

Example Algorithm Random Subset Data Completion

4.1 (i, a) | (iii, a) 3,647 1,716

4.2 (i, a) | (iii, a) 6,279 1,754

4.3 (i, a) | (iii, a) 3,887 1,704

4.4 (i, b) | (ii, b) 4,004 579

4.5 (i, a) | (iii, a) 3,671 935

4.6 (i, b) | (ii, b) 1,016 390

4.7 (i, b) | (ii, b) 4,847 1,217

Table 4.1: Algorithm and work in terms of number of PDE solves, comparing RS against data
completion using Gaussian SS.

Example 4.1. In this example, we place two target objects of conductivity µI = 1 in a back-

ground of conductivity µII = 0.1, and 5% noise is added to the data as described above. Also,

25% of the data requires completion. The discontinuities in the conductivity are touching the

measurement domain, so we use (4.6) to complete the data. The hard stopping criterion (a) is

employed, and iteration control is done using the original data, i.e., variants (i, a) and (iii, a)

are compared: see the first entry of Table 4.1 and Figure 4.6(a).

(a) True model (b) Random Subset (c) Data Completion

Figure 4.3: Example 4.1 – reconstructed log conductivity with 25% data missing and 5% noise.
Regularization (4.6) has been used to complete the data.

The corresponding reconstructions are depicted in Figure 4.3. It can be seen that roughly

the same quality reconstruction is obtained using the data completion method at less than half

the price.

Example 4.2. This example is the same as Example 4.1, except that 50% of the data is missing

and requires completion. The same algorithm variants as in Example 4.1 are compared. The
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reconstructions are depicted in Figure 4.4, and comparative computational results are recorded

in Table 4.1 and Figure 4.6(b).

(a) True model (b) Random Subset (c) Data Completion

Figure 4.4: Example 4.2 – reconstructed log conductivity with 50% data missing and 5% noise.
Regularization (4.6) has been used to complete the data.

Similar observations to those in Example 4.1 generally apply here as well, despite the smaller

amount of original data.

Example 4.3. This is the same as Example 4.2 in terms of noise and the amount of missing

data, except that the discontinuities in the conductivity are some distance away from the common

measurement domain, so we use (4.2) to complete the data. The same algorithm variants

as in the previous two examples are compared, thus isolating the effect of a smoother data

approximant.

(a) True model (b) Random Subset (c) Data Completion

Figure 4.5: Example 4.3 – reconstructed log conductivity with 50% data missing and 5% noise.
Regularization (4.2) has been used to complete the data.

Results are recorded in Figure 4.5, the third entry of Table 4.1 and Figure 4.6(c).

Figures 4.3, 4.4 and 4.5 in conjunction with Figure 4.6 as well as Table 4.1, reflect superiority

of the SS method combined with data completion over the RS method with the original data.

From the first three entries of Table 4.1, we see that the SS reconstruction with completed data
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(a) Example 4.1 (b) Example 4.2

(c) Example 4.3

Figure 4.6: Data misfit vs. PDE count for Examples 1, 2 and 3.

can be done more efficiently by a factor of more than two. The quality of reconstruction is also

very good. Note that the graph of the misfit for Data Completion lies mostly under that of

Random Subset. This means that, given a fixed number of PDE solves, we obtain a lower (thus

better) misfit for the former than for the latter.

Next, we consider examples in 3D.

Example 4.4. In this example, the discontinuities in the true, piecewise constant conductivity

extend all the way to the common measurement domain, see Figure 4.7. We therefore use (4.6)

to complete the data. The target object has the conductivity µI = 1 in a background with

conductivity µII = 0.1. We add 2% noise and knock out 50% of the data. Furthermore,

we consider the relaxed stopping criterion (b). With the original data (hence using RS), the
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variant (i, b) is employed, and this is compared against the variant (ii, b) with SS applied

to the completed data. For the latter case, the stopping tolerance is adjusted as discussed in

Section 4.1.1.

Figure 4.7: True Model for Example 4.4.

(a) RS slices
(b) 3D view

(c) DC slices
(d) 3D view

Figure 4.8: Example 4.4 – reconstructed log conductivity for the 3D model with (a,b) Random
Subset, (c,d) Data Completion for the case of 2% noise and 50% of data missing. Regulariza-
tion (4.6) has been used to complete the data.

Reconstruction results are depicted in Figure 4.8, and work estimates are gathered in the

4th entry of Table 4.1. It can be seen that the results using data completion, obtained at about

1/7th the cost, are comparable to those obtained with RS applied to the original data.

Example 4.5. The underlying model in this example is the same as that in Example 4.4 except

that, since we intend to plot the misfit on the entire data at every GN iteration, we decrease the

reconstruction mesh resolution to 173. Also, 30% of the data requires completion, and we use

the level set transfer function (A.6) to reconstruct the model. With the original data, we use

the variant (i, a), while the variant (iii, a) is used with the completed data. The reconstruction

results are recorded in Figure 4.9, and performance indicators appear in Figure 4.10 as well as

Table 4.1.

The algorithm proposed here produces a better reconstruction than RS on the original data.

A relative efficiency observation can be made from Table 4.1, where a factor of roughly 4 is
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(a) RS slices
(b) 3D view

(c) DC slices
(d) 3D view

Figure 4.9: Example 4.5 – reconstructed log conductivity for the 3D model using the level set
method with (a,b) Random Subset, (c,d) Data Completion for the case of 2% noise and 30% of
data missing. Regularization (4.6) has been used to complete the data.

Figure 4.10: Data misfit vs. PDE count for Example 4.5.

revealed.

Example 4.6. This is exactly the same as Example 4.4, except that we use the level set transfer

function (A.6) to reconstruct the model. The same variants of Algorithm 1 as in Example 4.4

are employed.

It is evident from Figure 4.11 that employing the level set formulation allows a significantly

better quality reconstruction than in Example 4.4. This is expected, as much stronger assump-

tions on the true model are utilized. It was shown in [131] as well as Chapter 3 that using level

set functions can greatly reduce the total amount of work, and this is observed here as well.

Whereas in all previous examples convergence of the modified GN iterations from a zero

initial guess was fast and uneventful, typically requiring fewer than 10 iterations, the level set

result of this example depends on m0 in a more erratic manner. This reflects the underlying

uncertainty of the inversion, with the initial guess m0 playing the role of a prior.
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(a) RS slices
(b) 3D view

(c) DC slices
(d) 3D view

Figure 4.11: Example 4.6 – reconstructed log conductivity for the 3D model using the level set
method with (a,b) Random Subset, (c,d) Data Completion for the case of 2% noise and 50% of
data missing. Regularization (4.6) has been used to complete the data.

It can be clearly seen from the results of Examples 4.4, 4.5 and 4.6 that Algorithm 1 does

a great job recovering the model using the completed data plus the SS method as compared

to RS with the original data. This is so both in terms of total work and the quality of the

recovered model. Note that for all reconstructions, the conductive object placed deeper than

the ones closer to the surface is not recovered well. This is due to the fact that we only measure

on the surface and the information coming from this deep conductive object is majorized by

that coming from the objects closer to the surface.

Example 4.7. In this 3D example, we examine the performance of our data completion ap-

proach for more severe cases of missing data. For this example, we place a target object of

conductivity µI = 1 in a background with conductivity µII = 0.1, see Figure 4.12, and 2% noise

is added to the “exact” data. Then we knock out 70% of the data and use (4.2) to complete it.

The algorithm variants employed are the same as in Examples 4.4 and 4.6.

Figure 4.12: True Model for Example 4.7.

Results are gathered in Figures 4.13 as well as Table 4.1. The data completion plus simul-

taneous sources algorithm again does well, with an efficiency factor ≈ 4.
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(a) RS slices
(b) 3D view

(c) DC slices
(d) 3D view

Figure 4.13: Example 4.7 – reconstructed log conductivity for the 3D model with (a,b) Random
Subset, (c,d) Data Completion for the case of 2% noise and 70% data missing. Regulariza-
tion (4.2) has been used to complete the data.

4.4 Conclusions

This chapter is a sequel to Chapter 3 in which we studied the case that the linearity assump-

tion (A.2) holds. In the context of PDE constrained inverse problem, this translates to the

case where sources share the same receivers. Here we have focused on the very practical case

where arise more often in practice, i.e., the linearity assumption (A.2) is violated. Such sce-

narios arise, for example, where there are parts of data missing or heavily corrupted. For PDE

constrained inverse problems, this case corresponds to the situation where, unlike Chapter 3,

sources do not share the same receivers. In this chapter, we assumed that the experimental

setting is “suitable” enough to allow for the use of our proposed data completion techniques

based on appropriate regularization. Our data completion methods are motivated by theory

in Sobolev spaces, [54], regarding the properties of weak solutions along the domain boundary.

The resulting completed data allows an efficient use of the methods developed in Chapter 3 as

well as utilization of a relaxed stopping criterion. Our approach shows great success in cases

of moderate data completion, say up to 60-70%. In such cases we have demonstrated that,

utilizing some variant of Algorithm 3, an execution speedup factor of at least 2 and often much

more can be achieved while obtaining excellent reconstructions.

It needs to be emphasized that a blind employment of some interpolation/approximation

method would not take into account available a priori information about the sought signal. In

contrast, the method developed in this chapter, while being very simple, is in fact built upon

such a priori information, and is theoretically justified.

Note that with the methods of Section 4.2 we have also replaced the original data with new,
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approximate data. Alternatively we could keep the original data, and just add the missing data

sampled from vi at appropriate locations. The potential advantage of doing this is that fewer

changes are made to the original problem, so it would seem plausible that the data extension will

produce results that are close to the more expensive inversion without using the simultaneous

sources method, at least when there are only a few missing receivers. However, we found in

practice that this method yields similar or worse reconstructions for moderate or large amounts

of missing data as compared to the methods of Section 4.2.

For severe cases of missing data, say 80% or more, we do not recommend data completion

in the present context as a safe approach. With so much completion the bias in the completed

field could overwhelm the given observed data, and the recovered model may not be correct. In

such cases, one can use the RS method applied to the original data. A good initial guess for this

method may still be obtained with the SS method applied to the completed data. Thus, one can

always start with the most daring variant (ii, b) of Algorithm 3, and add a more conservative

run of variant (i, b) on top if necessary.

If the forward problem is very diffusive and has a strong smoothing effect, as is the case

for the DC-resistivity and EIT problems, then data completion can be attempted using a

(hopefully) good guess of the sought model m by solving the forward problem and evaluating

the solution wherever necessary [70]. The rationale here is that even relatively large changes

in m(x) produce only small changes in the fields ui(x). However, such a prior might prove

dominant, hence risky, and the data produced in this way, unlike the original data, no longer

have natural high frequency noise components. Indeed, a potential advantage of this approach

is in using the difference between the original measured data and the calculated prior field at

the same locations for estimating the noise level ε for a subsequent application of the Morozov

discrepancy principle [52, 135].

In this chapter we have focused on data completion, using whenever possible the same

computational setting as in Chapter 3, which is our base reference. Other approaches to reduce

the overall computational costs are certainly possible. These include adapting the number of

inner PCG iterations in the modified GN outer iteration (see [46]) and adaptive gridding for

m(x) (see, e.g., [72] and references therein). Such techniques are essentially independent of the

focus here. At the same time, they can be incorporated or fused together with our stochastic
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algorithms, further improving efficiency: effective ways for doing this form a topic for future

research.

The specific data completion techniques proposed in this chapter have been justified and

used in our model DC resistivity problem. However, the overall idea can be extended to

other PDE based inverse problems as well by studying the properties of the solution of the

forward problem. One first needs to see what the PDE solutions are expected to behave like on

the measurement domain, for example on a portion of the boundary, and then imposing this

prior knowledge in the form of an appropriate regularizer in the data completion formulation.

Following that, the rest can be similar to our approach here. Investigating such extensions to

other PDE models is a subject for future studies.
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Chapter 5

Matrix Trace Estimation

As shown in Section 2.1, stochastic approximations to the misfit are closely related to Monte-

Carlo estimations of the trace of the corresponding implicit matrix. So far, in this thesis, all

these estimators have been used rather heuristically and no attempt to better mathematically

understanding them has been made. In this chapter, we present a rigorous mathematical

analysis of Monte-Carlo methods for the estimation of the trace, tr(A), of an implicitly given

matrix A whose information is only available through matrix-vector products. Such a method

approximates the trace by an average of n expressions of the form wT (Aw), with random

vectors w drawn from an appropriate distribution. We prove, discuss and experiment with

bounds on the number of realizations n required in order to guarantee a probabilistic bound on

the relative error of the trace estimation upon employing Rademacher (Hutchinson), Gaussian

and uniform unit vector (with and without replacement) probability distributions, discussed in

Section 2.1.1.

In total, one necessary and six sufficient bounds are proved, improving upon and extending

similar estimates obtained in the seminal work of Avron and Toledo [22] in several dimensions.

We first improve their bound on n for the Hutchinson method, dropping a term that relates to

rank(A) and making the bound comparable with that for the Gaussian estimator.

We further prove new sufficient bounds for the Hutchinson, Gaussian and the unit vec-

tor estimators, as well as a necessary bound for the Gaussian estimator, which depend more

specifically on properties of the matrix A. As such they may suggest for what type of matrices

one distribution or another provides a particularly effective or relatively ineffective stochastic

estimation method.

By the novel results in this chapter, it is hoped to correct some existing misconceptions

regarding the relative performance of different estimators that have resulted due to an unsatis-
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factory state of the theory. The theory developed in the present chapter sheds light on several

questions which had remained open for some time. Using these results, practitioners can better

choose appropriate estimators for their applications.

5.1 Introduction

The need to estimate the trace of an implicit square matrix is of fundamental importance [126]

and arises in many applications; see for instance [5, 6, 21–23, 43, 46, 66, 71, 86, 104, 121, 134, 138]

and references therein. By “implicit” we mean that the matrix of interest is not available

explicitly: only probes in the form of matrix-vector products for any appropriate vector are

available. The standard approach for estimating the trace of such a matrix A ∈ Rs×s is based

on a Monte-Carlo method, where one generates n random vector realizations wi from a suitable

probability distribution D and computes

trnD(A) :=
1

n

n∑
i=1

wT
i Awi. (5.1)

For the popular case where A is symmetric positive semi-definite (SPSD), the original method

for estimating its trace, is due to Hutchinson [86] and uses the Rademacher distribution for D.

Until the work by Avron and Toledo [22], the main analysis and comparison of such methods

was based on the variance of one sample. It is known that compared to other methods the

Hutchinson method has the smallest variance, and as such it has been extensively used in many

applications. In [22] so-called (ε, δ) bounds are derived in which, using Chernoff-like analysis,

a lower bound is obtained on the number of samples required to achieve a probabilistically

guaranteed relative error of the estimated trace. More specifically, for a given pair (ε, δ) of

small (say, < 1) positive values and an appropriate probability distribution D, a lower bound

on n is provided such that

Pr (|trnD(A)− tr(A)| ≤ ε tr(A)) ≥ 1− δ. (5.2)

These authors further suggest that minimum-variance estimators may not be practically best,

and conclude based on their analysis that the method with the best bound is the one using the
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Gaussian distribution. Let us denote

c = c(ε, δ) := ε−2 ln(2/δ), (5.3a)

r = rank(A). (5.3b)

Then [22] showed that, provided A is real SPSD, (5.2) holds for the Hutchinson method if

n ≥ 6(c+ ε−2 ln r) and for the Gaussian distribution if n ≥ 20c.

In the present chapter we continue to consider the same objective as in [22], and our first

task is to improve on these bounds. Specifically, in Theorems 5.1 and 5.3, respectively, we show

that (5.2) holds for the Hutchinson method if

n ≥ 6c(ε, δ), (5.4)

and for the Gaussian distribution if

n ≥ 8c(ε, δ). (5.5)

The bound (5.4) removes a previous factor involving the rank of the matrix A, conjectured in [22]

to be indeed redundant. Note that these two bounds are astoundingly simple and general: they

hold for any SPSD matrix, regardless of size or any other matrix property. Thus, we cannot

expect them to be tight in practice for many specific instances of A that arise in applications.

However, as was recently shown in [137], these two bounds are asymptotically tight.

Although practically useful, the bounds on n given in (5.4) and (5.5) do not provide insight

into how different types of matrices are handled with each probability distribution. Our next

contribution is to provide different bounds for the Gaussian and Hutchinson trace estimators

which, though generally not computable for implicit matrices, do shed light on this question.

Furthermore, for the Gaussian estimator we prove a practically useful necessary lower bound

on n, for a given pair (ε, δ).

A third probability distribution we consider was called the unit vector distribution in [22].

Here, the vectors wi in (5.1) are uniformly drawn from the columns of a scaled identity matrix,

√
sI, and A need not be SPSD. Such a distribution is used in obtaining the random subset
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method discussed in Chapter 2. We slightly generalize the bound in [22], obtained for the case

where the sampling is done with replacement. Our bound, although not as simply computed as

(5.4) or (5.5), can be useful in determining which types of matrices this distribution works best

on. We then give a tighter bound for the case where the sampling is done without replacement,

suggesting that when the difference between the bounds is significant (which happens when

n is large), a uniform random sampling of unit vectors without replacement may be a more

advisable distribution to estimate the trace with.

This chapter is organized as follows. Section 5.2 gives two bounds for the Hutchinson method

as advertised above, namely the improved bound (5.4) and a more involved but potentially

more informative bound. Section 5.3 deals likewise with the Gaussian method and adds also a

necessary lower bound, while Section 5.4 is devoted to the unit vector sampling methods.

In Section 5.5 we give some numerical examples verifying that the trends predicted by the

theory are indeed realized. Conclusions and further thoughts are gathered in Section 5.6.

In what follows we use the notation trnH(A), trnG(A), trnU1
(A), and trnU2

(A) to refer, respec-

tively, to the trace estimators using Hutchinson, Gaussian, and uniform unit vector with and

without replacement, in lieu of the generic notation trnD(A) in (5.1) and (5.2). We also de-

note for any given random vector of size n, wi = (wi1, wi2, . . . , win)T . We restrict attention to

real-valued matrices, although extensions to complex-valued ones are possible, and employ the

2-norm by default.

5.2 Hutchinson Estimator Bounds

In this section we consider the Hutchinson trace estimator, trnH(A), obtained by setting D = H

in (5.1), where the components of the random vectors wi are i.i.d Rademacher random variables

(i.e., Pr(wij = 1) = Pr(wij = −1) = 1
2).

5.2.1 Improving the Bound in [22]

Theorem 5.1. Let A be an s× s SPSD matrix. Given a pair (ε, δ), the inequality (5.2) holds

with D = H if n satisfies (5.4).
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Proof. Since A is SPSD, it can be diagonalized by a unitary similarity transformation as A =

UTΛU . Consider n random vectors wi, i = 1, . . . , n, whose components are i.i.d and drawn

from the Rademacher distribution, and define zi = Uwi for each. We have

Pr (trnH(A) ≤ (1− ε)tr(A)) = Pr

(
1

n

n∑
i=1

wT
i Awi ≤ (1− ε)tr(A)

)

= Pr

(
1

n

n∑
i=1

zTi Λzi ≤ (1− ε)tr(A)

)

= Pr

 n∑
i=1

r∑
j=1

λjz
2
ij ≤ n(1− ε)tr(A)


= Pr

 r∑
j=1

λj
tr(A)

n∑
i=1

z2
ij ≤ n(1− ε)


≤ exp{tn(1− ε)}E

exp{
r∑
j=1

λj
tr(A)

n∑
i=1

−tz2
ij}

 ,

where the last inequality holds for any t > 0 by Markov’s inequality.

Next, using the convexity of the exp function and the linearity of expectation, we obtain

E

exp{
r∑
j=1

λj
tr(A)

n∑
i=1

−tz2
ij}

 ≤
r∑
j=1

λj
tr(A)

E

(
exp{

n∑
i=1

−tz2
ij}

)

=
r∑
j=1

λj
tr(A)

E

(
n∏
i=1

exp{−tz2
ij}

)

=
r∑
j=1

λj
tr(A)

n∏
i=1

E
(
exp{−tz2

ij}
)
,

where the last equality holds since, for a given j, zij ’s are independent with respect to i.

Now, we want to have that

exp{tn(1− ε)}
n∏
i=1

E
(
exp{−tz2

ij}
)
≤ δ/2.

For this we make use of the inequalities in the end of the proof of Lemma 5.1 of [2]. Following
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inequalities (15)–(19) in [2] and letting t = ε/(2(1 + ε)), we get

exp{tn(1− ε)}
n∏
i=1

E
(
exp{−tz2

ij}
)
< exp{−n

2
(
ε2

2
− ε3

3
)}.

Next, if n satisfies (5.4) then exp{−n
2 ( ε

2

2 −
ε3

3 )} < δ/2, and thus it follows that

Pr (trnH(A) ≤ (1− ε)tr(A)) < δ/2.

By a similar argument, making use of inequalities (11)–(14) in [2] with the same t as above,

we also obtain with the same bound for n so that

Pr (trnH(A) ≥ (1 + ε)tr(A)) ≤ δ/2.

So finally using the union bound yields the desired result.

It can be seen that (5.4) is the same bound as the one in [22] with the important exception

that the factor r = rank(A) does not appear in the bound. Furthermore, the same bound on

n holds for any SPSD matrix.

5.2.2 A Matrix-Dependent Bound

Here we derive another bound for the Hutchinson trace estimator which may shed light as to

what type of matrices the Hutchinson method is best suited for.

For k, j = 1, . . . , s, let us denote by ak,j the (k, j)th element of A and by aj its jth column.

Theorem 5.2. Let A be an s× s symmetric positive semi-definite matrix, and define

KjH :=
‖aj‖2 − a2

j,j

a2
j,j

=
∑
k 6=j

a2
k,j / a

2
j,j , KH := max

j
KjH . (5.6)

Given a pair of positive small values (ε, δ), the inequality (5.2) holds with D = H if

n > 2KHc(ε, δ). (5.7)
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Proof. Elementary linear algebra implies that since A is SPSD, aj,j ≥ 0 for each j. Furthermore,

if aj,j = 0 then the jth row and column of A identically vanish, so we may assume below that

aj,j > 0 for all j = 1, . . . , s. Note that

trnH(A)− tr(A) =
1

n

s∑
j=1

n∑
i=1

s∑
k=1
k 6=j

aj,kwijwik.

Hence

Pr (trnH(A) ≤ (1− ε)tr(A)) = Pr

 s∑
j=1

n∑
i=1

s∑
k=1
k 6=j

−aj,kwijwik ≥ nε tr(A)



= Pr

 s∑
j=1

aj,j
tr(A)

n∑
i=1

s∑
k=1
k 6=j

−
aj,k
aj,j

wijwik ≥ nε



≤ exp{−tnε}E

exp{
s∑
j=1

aj,j
tr(A)

n∑
i=1

s∑
k=1
k 6=j

−
aj,kt

aj,j
wijwik}

 ,

where the last inequality is again obtained for any t > 0 by using Markov’s inequality. Now,

again using the convexity of the exp function and the linearity of expectation, we obtain

Pr (trnH(A) ≤ (1− ε)tr(A)) ≤ exp{−tnε}
s∑
j=1

aj,j
tr(A)

E

exp{
n∑
i=1

s∑
k=1
k 6=j

−
aj,kt

aj,j
wijwik}



= exp{−tnε}
s∑
j=1

aj,j
tr(A)

n∏
i=1

E

exp{
s∑

k=1
k 6=j

−
aj,kt

aj,j
wijwik}


by independence of wijwik with respect to the index i.

Next, note that

E

exp{
s∑

k=1
k 6=j

aj,kt

aj,j
wik}

 = E

exp{
s∑

k=1
k 6=j

−
aj,kt

aj,j
wik}

 .
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Furthermore, since Pr(wij = −1) = Pr(wij = 1) = 1
2 , and using the law of total expectation,

we have

E

exp{
s∑

k=1
k 6=j

−
aj,kt

aj,j
wijwik}

 = E

exp{
s∑

k=1
k 6=j

aj,kt

aj,j
wik}


=

s∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
,

so

Pr (trnH(A) ≤ (1− ε)tr(A)) ≤ exp{−tnε}
s∑
j=1

aj,j
tr(A)

n∏
i=1

s∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
.

We want to have the right hand side expression bounded by δ/2.

Applying Hoeffding’s lemma we get

E
(

exp{
aj,kt

aj,j
wik}

)
≤ exp{

a2
j,kt

2

2a2
j,j

},

hence

exp{−tnε}
n∏
i=1

s∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
≤ exp{−tnε+KjHnt

2/2} (5.8a)

≤ exp{−tnε+KHnt2/2}. (5.8b)

The choice t = ε/KH minimizes the right hand side. Now if (5.7) holds then

exp(−tnε)
n∏
i=1

s∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
≤ δ/2,

hence we have

Pr(trnH(A) ≤ (1− ε)tr(A)) ≤ δ/2.
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Similarly, we obtain that

Pr(trnH(A) ≥ (1 + ε)tr(A)) ≤ δ/2,

and using the union bound finally gives desired result.

Comparing (5.7) to (5.4), it is clear that the bound of the present subsection is only worthy

of consideration if KH < 3. Note that Theorem 5.2 emphasizes the relative `2 energy of the

off-diagonals: the matrix does not necessarily have to be diagonally dominant (i.e., where a

similar relationship holds in the `1 norm) for the bound on n to be moderate. Furthermore,

a matrix need not be “nearly” diagonal for this method to require small sample size. In fact

a matrix can have off-diagonal elements of significant size that are far away from the main

diagonal without automatically affecting the performance of the Hutchinson method. However,

note also that our bound can be pessimistic, especially if the average value or the mode of KjH
in (5.6) is far lower than its maximum, KH . This can be seen in the above proof where the

estimate (5.8b) is obtained from (5.8a). Simulations in Section 5.5 show that the Hutchinson

method can be a very efficient estimator even in the presence of large outliers, so long as the

bulk of the distribution is concentrated near small values.

The case KH = 0 corresponds to a diagonal matrix, for which the Hutchinson method

yields the trace with one shot, n = 1. In agreement with the bound (5.7), we expect the actual

required n to grow when a sequence of otherwise similar matrices A is envisioned in which KH

grows away from 0, as the energy in the off-diagonal elements grows relatively to that in the

diagonal elements.

5.3 Gaussian Estimator Bounds

In this section we consider the Gaussian trace estimator, trnG(A), obtained by setting D = G

in (5.1), where the components of the random vectors wi are i.i.d standard normal random

variables. We give two sufficient and one necessary lower bounds for the number of Gaussian

samples required to achieve an (ε, δ) trace estimate. The first sufficient bound (5.5) improves

the result in [22] by a factor of 2.5. Our bound is only worse than (5.4) by a fraction, and
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it is an upper limit of the potentially more informative (if less available) bound (5.10), which

relates to the properties of the matrix A. The bound (5.10) provides an indication as to what

matrices may be suitable candidates for the Gaussian method. Then we present a practically

computable, necessary bound for the sample size n.

5.3.1 Sufficient Bounds

The proof of the following theorem closely follows the approach in [22].

Theorem 5.3. Let A be an s×s SPSD matrix and denote its eigenvalues by λ1, . . . , λs. Further,

define

KjG :=
λj

tr(A)
, KG := max

j
KjG =

‖A‖
tr(A)

. (5.9)

Then, given a pair of positive small values (ε, δ), the inequality (5.2) holds with D = G provided

that (5.5) holds. This estimate also holds provided that

n > 8KGc(ε, δ). (5.10)

Proof. Since A is SPSD, we have ‖A‖ ≤ tr(A), so if (5.5) holds then so does (5.10). We next

concentrate on proving the result assuming the tighter bound (5.10) on the actual n required

in a given instance.

Writing as in the previous section A = UTΛU , consider n random vectors wi, i = 1, . . . , n,

whose components are i.i.d and drawn from the normal distribution, and define zi = Uwi.

Since U is orthogonal, the elements zij of zi are i.i.d Gaussian random variables. We have as

before,

Pr (trnG(A) ≤ (1− ε)tr(A)) = Pr

 n∑
i=1

r∑
j=1

λjz
2
ij ≤ n(1− ε)tr(A)


≤ exp{tn(1− ε)tr(A)}E

exp{
n∑
i=1

r∑
j=1

−tλjz2
ij}


≤ exp{tn(1− ε)tr(A)}

n∏
i=1

r∏
j=1

E
(
exp{−tλjz2

ij}
)
.
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Here z2
ij is a χ2 random variable of degree 1 (see [106]), and hence for the characteristics

we have

E
(
exp{−tλjz2

ij}
)

= (1 + 2λjt)
− 1

2 .

This yields the bound

Pr (trnG(A) ≤ (1− ε)tr(A)) ≤ exp{tn(1− ε)tr(A)}
r∏
j=1

(1 + 2λjt)
−n

2 .

Next, it is easy to prove by elementary calculus that given any 0 < α < 1, the following

holds for all 0 ≤ x ≤ 1−α
α ,

ln(1 + x) ≥ αx. (5.11)

Setting α = 1− ε/2, then by (5.11) and for all t ≤ (1−α)/(2α‖A‖), we have that (1 + 2λjt) >

exp{2αλj}t, so

Pr (trnG(A) ≤ (1− ε)tr(A)) ≤ exp{tn(1− ε)tr(A)}
r∏
j=1

exp(−nαλjt)

= exp{tn(1− ε− α)tr(A)}.

We want the latter right hand side to be bounded by δ/2, i.e., we want to have

n ≥
ln
(
2/δ
)

(α− (1− ε))tr(A)t
=

2εc(ε, δ)

tr(A)t
,

where t ≤ (1− α)/(2α‖A‖). Now, setting

t = (1− α)/(2α‖A‖) = ε/(2(2− ε)‖A‖),

we obtain

n ≥ 4(2− ε)c(ε, δ)KG,

so if (5.10) holds then

Pr (trnG(A) ≤ (1− ε)tr(A)) ≤ δ/2.
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Using a similar argument we also obtain

Pr (trnG(A) ≥ (1 + ε)tr(A)) ≤ δ/2,

and subsequently the union bound yields the desire result.

The matrix-dependent bound (5.10), proved to be sufficient in Theorem 5.3, provides ad-

ditional information over (5.5) about the type of matrices for which the Gaussian estimator

is (probabilistically) guaranteed to require only a small sample size: if the eigenvalues of an

SPSD matrix are distributed such that the ratio ‖A‖/tr(A) is small (e.g., if they are all of

approximately the same size), then the Gaussian estimator bound requires a small number of

realizations. This observation is reaffirmed by looking at the variance of this estimator, namely

2‖A‖2F . It is easy to show that among all the matrices with a fixed trace and rank, those with

equal eigenvalues have the smallest Frobenius norm.

It is easy to see that the stable rank (see [130] and references therein) of any real rectan-

gular matrix C which satisfies A = CTC equals 1/KG. Thus, the bound constant in (5.10) is

inversely proportional to this stable rank, suggesting that estimating the trace using the Gaus-

sian distribution may become inefficient if the stable rank of the matrix is low. Furthermore,

the ratio

eRank := 1/KG = tr(A)/‖A‖

is known as the effective rank of the matrix (see [51]), which is, similar to stable rank, a

continuous relaxation and a stable quantity compared with the usual rank. Using the concept

of effective rank, we can establish a connection between efficiency of the Gaussian estimator

and the effective rank of matrices: Theorem 5.3 indicates that the true sample size, i.e., the

minimum sample size for which (5.2) holds, is in fact in O(1/eRank). Hence as the effective

rank of a matrix grows larger, it becomes easier (i.e., smaller sample size is required) to estimate

its trace, with the same probabilistic accuracy. Theorem 5.5 in Section 5.3.2 below establishes a

different relationship between the inefficiency of the Gaussian estimator and a rank of a matrix.

As an example of an application of the above results, let us consider finding the minimum

number of samples required to compute the rank of a projection matrix using the Gaussian
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5.3. Gaussian Estimator Bounds

estimator [22, 26]. Recall that a projection matrix is SPSD with only 0 and 1 eigenvalues.

Compared to the derivation in [22], here we use Theorem 5.3 directly to obtain a similar bound

with a slightly better constant.

Corollary 5.4. Let A be an s× s projection matrix with rank r > 0, and denote the rounding

of any real scalar x to the nearest integer by round(x). Then, given a positive small value δ,

the estimate

Pr (round(trnG(A)) 6= r) ≤ δ (5.12a)

holds if

n ≥ 8 r ln
(
2/δ
)
. (5.12b)

Proof. The result immediately follows using Theorem 5.3 upon setting ε = 1/r, ‖A‖ = 1 and

tr(A) = r.

5.3.2 A Necessary Bound

Below we provide a rank-dependent, almost tight necessary condition for the minimum sample

size required to obtain (5.2). This bound is easily computable in case that r = rank(A) is

known.

Before we proceed, recall the definition of the regularized Gamma functions

P (α, β) :=
γ (α, β)

Γ (α)
, Q (α, β) :=

Γ (α, β)

Γ (α)
,

where γ (α, β) ,Γ (α, β) and Γ (α) are, respectively, the lower incomplete, the upper incomplete

and the complete Gamma functions, see [1]. We also have that Γ (α) = Γ (α, β) + γ (α, β).

Further, define

Φθ(x) := P

(
x

2
,
τ(1− θ)x

2

)
+Q

(
x

2
,
τ(1 + θ)x

2

)
, (5.13a)
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where

τ =
ln(1 + θ)− ln(1− θ)

2θ
. (5.13b)

Theorem 5.5. Let A be a rank-r SPSD s× s matrix, and let (ε, δ) be a tolerance pair. If the

inequality (5.2) with D = G holds for some n, then necessarily

Φε(nr) ≤ δ. (5.14)

Proof. As in the proof of Theorem 5.3 we have

Pr (|trnG(A)− tr(A)| ≤ ε tr(A)) = Pr

| n∑
i=1

r∑
j=1

λjz
2
ij − ntr(A)| ≤ εntr(A)


= Pr

(1− ε) ≤
n∑
i=1

r∑
j=1

λj
tr(A) n

z2
ij ≤ (1 + ε)

 .

Next, applying Theorem 3 of [129] gives

Pr (|trnG(A)− tr(A)| ≤ ε tr(A)) ≤ Pr
(
c(1− ε) ≤ 1

nr
X 2
nr ≤ c(1 + ε)

)
,

where X 2
M denotes a chi-squared random variable of degree M with the cumulative distribution

function (CDF)

CDFX 2
M

(x) = Pr
(
X 2
M ≤ x

)
=
γ
(
M
2 ,

x
2

)
Γ
(
M
2

) .

A further straightforward manipulation yields the stated result.

Using the condition (5.14), we can establish a connection between inefficiency of the Gaus-

sian estimator and the rank of matrices: Theorem 5.5 indicates that the true sample size, i.e.,

the minimum sample size for which (5.2) holds, is in fact in Ω(1/r). Hence, as the rank of a

matrix becomes smaller, it becomes harder (i.e., a larger sample size is necessarily required) to

estimate its trace, with the same probabilistic accuracy.
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Having a computable necessary condition is practically useful: given a pair of fixed sample

size n and error tolerance ε, the failure probability δ cannot be smaller than δ0 = Φε(nr).

Since our sufficient bounds are not tight, it is not possible to make a direct comparison

between the Hutchinson and Gaussian methods based on them. However, using this necessary

condition can help for certain matrices. Consider a low rank matrix with a rather small KH

in (5.7). For such a matrix and a given pair (ε, δ), the condition (5.14) will probabilistically

necessitate a rather large n, while (5.7) may give a much smaller sufficient bound for n. In this

situation, using Theorem 5.5, the Hutchinson method is indeed guaranteed to require a smaller

sample size than the Gaussian method.

The condition in Theorem 5.5 is almost tight in the following sense. Note that in (5.13b),

τ ≈ 1 for θ = ε sufficiently small. So,

1− Φε(nr)

would be very close to

Pr ((1− ε) ≤ trnG(A∗) ≤ (1 + ε)) ,

where A∗ is an SPD matrix of the same rank as A whose eigenvalues are all equal to 1/r. Next

note that the condition (5.14) should hold for all matrices of the same rank; hence it is almost

tight. Figures 5.1 and 5.4 demonstrate this effect.

Notice that for a very low rank matrix and a reasonable pair (ε, δ), the necessary n given

by (5.14) could be even larger than the matrix size s, i.e., n ≥ s, rendering the Gaussian method

useless for such instances; see Figure 5.1.

Both of the conditions given in (5.5) and (5.14) are sharpened in Chapter 7, where tight

(i.e., exact for some class of matrices) necessary and sufficient conditions are derived.

5.4 Random Unit Vector Bounds, with and without

Replacement, for General Square Matrices

An alternative to the Hutchinson and Gaussian estimators is to draw the vectors wi from

among the s columns of the scaled identity matrix
√
sI, i.e., we use a random subset of the

vectors forming the scaled identity matrix. Note that if wi is the ith (scaled) unit vector then
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(a) ε = δ = 0.02 (b) n = 10, 000, ε = δ = 0.1

Figure 5.1: Necessary bound for the Gaussian estimator: (a) the log-scale of n according
to (5.14) as a function of r = rank(A): larger ranks yield smaller necessary sample size. For
very low rank matrices, the necessary bound grows significantly: for s = 1000 and r ≤ 30,
necessarily n > s and the Gaussian method is practically useless; (b) tightness of the necessary
bound demonstrated by an actual run as described for Example 5.4 in Section 5.5 where A has
all eigenvalues equal.

wT
i Awi = naii. Hence the trace can be recovered in n = s deterministic steps upon setting in

(5.1) i = j, j = 1, 2, . . . , s. However, our hope is that for some matrices a good approximation

for the trace can be recovered in n� s such steps, with wi’s drawn as mentioned above.

There are typically two ways one can go about drawing such samples: with or without

replacement. The first of these has been studied in [22]. However, in view of the exact procedure,

we may expect to occasionally require smaller sample sizes by using the strategy of sampling

without replacement. In this section we make this intuitive observation more rigorous.

In what follows, U1 and U2 refer to the uniform distribution of unit vectors with and without

replacement, respectively. We first find expressions for the mean and variance of both strategies,

obtaining a smaller variance for U2.
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Lemma 5.6. Let A be an s× s matrix and let n denote the sample size. Then

E
(
trnU1

(A)
)

= E
(
trnU2

(A)
)

= tr(A), (5.15a)

V ar
(
trnU1

(A)
)

=
1

n

s s∑
j=1

a2
jj − tr(A)2

 , (5.15b)

V ar
(
trnU2

(A)
)

=
(s− n)

n(s− 1)

s s∑
j=1

a2
jj − tr(A)2

 , n ≤ s. (5.15c)

Proof. The results for U1 are proved in [22]. Let us next concentrate on U2, and group the

randomly selected unit vectors into an s× n matrix W . Then

E
(
trnU2

(A)
)

=
1

n
E
(
tr
(
W TAW

))
=

1

n
E
(
tr
(
A WW T

))
=

1

n
tr
(
A E

(
WW T

))
.

Let yij denote the (i, j)th element of the random matrix WW T . Clearly, yij = 0 if i 6= j. It is

also easily seen that yii can only take on the values 0 or s. We have

E (yii) = sPr (yii = s) = s

(
s−1
n−1

)(
s
n

) = n,

so E(WW T ) = n · I, where I stands for the identity matrix. This, in turn, gives E
(
trnU2

(A)
)

=

tr(A).

For the variance, we first calculate

E
[(
trnU2

(A)
)2]

=
1

n2
E

 n∑
i=1

n∑
j=1

(
wT
i Awi

) (
wT
j Awj

)

=
1

n2

 n∑
i=1

E
[(

wT
i Awi

)2]
+

n∑
i=1

n∑
j=1
j 6=i

E
[(

wT
i Awi

) (
wT
j Awj

)] (5.16)

Let ej denote the jth column of the scaled identity matrix,
√
sI. Using the law of total
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expectation (i.e., the tower rule), we have for any two random vectors wi and wj with i 6= j,

E
[(

wT
i Awi

) (
wT
j Awj

)]
=

s∑
k=1

E
[(

wT
i Awi

) (
wT
j Awj

)
|wi = ek

]
· Pr (wi = ek)

=

s∑
k=1

sakk · E
[(

wT
j Awj

)
|wi = ek

]
· 1

s

=

s∑
k=1

akk

s∑
l=1
l 6=k

E
[(

wT
j Awj

)
|wj = el

]
· Pr (wj = el|wi = ek)

=

s∑
k=1

akk

s∑
l=1
l 6=k

sall
1

s− 1

=
s

s− 1

s∑
k=1

s∑
l=1
k 6=l

akkall

=
s

s− 1
(tr(A)2 −

s∑
j=1

a2
jj).

Substituting this in (5.16) gives

E
[(
trnU2

(A)
)2]

=
1

n2

sn s∑
j=1

a2
jj +

sn(n− 1)

s− 1

tr(A)2 −
s∑
j=1

a2
jj

 .

Next, the variance is

V ar
(
trnU2

(A)
)

= E
[(
trnU2

(A)
)2]− [E (trnU2

(A)
)]2

,

which gives (5.15c).

Note that V ar
(
trnU2

(A)
)

= s−n
s−1V ar

(
trnU1

(A)
)
. The difference in variance between these

sampling strategies is small for n � s, and they coincide if n = 1. Moreover, in case that the

diagonal entries of the matrix are all equal, the variance for both sampling strategies vanishes.

We now turn to the analysis of the sample size required to ensure (5.2) and find a slight

improvement over the bound given in [22] for U1. A similar analysis for the case of sampling

without replacement shows that the latter may generally be a somewhat better strategy.
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Theorem 5.7. Let A be a real s× s matrix, and denote

K(i,j)
U =

s

tr(A)
|aii − ajj | , KU = max

1≤i,j≤s
i 6=j

K(i,j)
U . (5.17)

Given a pair of positive small values (ε, δ), the inequality (5.2) holds with D = U1 if

n >
K2
U

2
c(ε, δ) ≡ F , (5.18)

and with D = U2 if

n ≥ s+ 1

1 + s−1
F
. (5.19)

Proof. This proof is refreshingly short. Note first that every sample of these estimators takes

on a Rayleigh value in [sminj ajj , smaxj ajj ].

The proof of (5.18), for the case with replacement, uses Hoeffding’s inequality in exactly

the same way as the corresponding theorem in [22]. We obtain directly that if (5.18) is satisfied

then (5.2) holds with D = U1.

For the case without replacement we use Serfling’s inequality [125] to obtain

Pr
(
|trnU2

(A)− tr(A)| ≥ εtr(A)
)
≤ 2 exp

{
−2nε2

(1− fn−1)K2
U

}
,

where fn is the sampling fraction defined as

fn =
n− 1

s− 1
.

Now, for the inequality (5.2) to hold, we need

2 exp

{
−2nε2

(1− fn−1)K2
U

}
≤ δ,

so we require that

n

1− fn−1
≥ F .
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The stated result (5.19) is obtained following some straightforward algebraic manipulation.

Looking at the bounds (5.18) for U1 and (5.19) for U2 and observing the expression (5.17)

for KU , one can gain insight as to the type of matrices which are handled efficiently using this

estimator: this would be the case if the diagonal elements of the matrix all have similar values.

In the extreme case where they are all the same, we only need one sample. The corresponding

expression in [22] does not reflect this result.

An illustration of the relative behaviour of the two bounds is given in Figure 5.2.

Figure 5.2: The behaviour of the bounds (5.18) and (5.19) with respect to the factor K = KU
for s = 1000 and ε = δ = 0.05. The bound for U2 is much more resilient to the distribution of
the diagonal values than that of U1. For very small values of KU , there is no major difference
between the bounds.

5.5 Numerical Examples

In this section we experiment with several examples, comparing the performance of different

methods with regards to various matrix properties and verifying that the bounds obtained in

our theorems indeed agree with the numerical experiments.

Example 5.1. In this example we do not consider δ at all. Rather, we check numerically

for various values of ε what value of n is required to achieve a result respecting this relative

tolerance. We have calculated maximum and average values for n over 100 trials for several

special examples, verifying numerically the following considerations.
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Figure 5.3: Example 5.1. For the matrix of all 1s with s = 10, 000, the plot depicts the numbers
of samples in 100 trials required to satisfy the relative tolerance ε = .05, sorted by increasing n.
The average n for both Hutchinson and Gauss estimators was around 50, while for the uniform
unit vector estimator always n = 1. Only the best 90 results (i.e., lowest resulting values of n)
are shown for reasons of scaling. Clearly, the unit vector method is superior here.

� The matrix of all 1s (in Matlab, A=ones(s,s)) has been considered in [22]. Here tr(A) =

s, KH = s − 1, and a very large n is often required if ε is small for both Hutchinson

and Gauss methods. For the unit vector method, however, KU = 0 in (5.17), so the

latter method converges in one iteration, n = 1. This fact yields an example where the

unit vector estimator is far better than either Hutchinson or Gaussian estimators; see

Figure 5.3.

� Another extreme example, where this time it is the Hutchinson estimator which requires

only one sample whereas the other methods may require many more, is the case of a diag-

onal matrix A. For a diagonal matrix, KH = 0, and the result follows from Theorem 5.2.

� If A is a multiple of the identity then, since KU = KH = 0, only the Gaussian estimator

from among the methods considered requires more than one sample; thus, it is worst.

� Examples where the unit vector estimator is consistently (and significantly) worst are

obtained by defining A = QTDQ for a diagonal matrix D with different positive elements

which are of the same order of magnitude and a nontrivial orthogonal matrix Q.

� We have not been able to come up with a simple example of the above sort where the Gaus-
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sian estimator shines over both others, although we have seen many occasions in practice

where it slightly outperforms the Hutchinson estimator with both being significantly better

than the unit vector estimators.

Example 5.2. Consider the matrix A = xxT /‖x‖2, where x ∈ Rs, and for some θ > 0,

xj = exp(−jθ), 1 ≤ j ≤ s. This extends the example of all 1s of Figure 5.3 (for which θ = 0)

to instances with rapidly decaying elements.

It is easy to verify that

tr(A) = 1, r = 1, KG = 1,

KjH = ‖x‖2x−2
j − 1, KH = ‖x‖2x−2

s − 1,

K(i,j)
U =

s

‖x‖2
|x2
i − x2

j |, KU =
s

‖x‖2
(x2

1 − x2
s),

‖x‖2 =
exp(−2θ)− exp(−2(s+ 1)θ)

1− exp(−2θ)
.

Figure 5.4: Example 5.2. For the rank-1 matrix arising from a rapidly-decaying vector with
s = 1000, this log-log plot depicts the actual sample size n required for (5.2) to hold with
ε = δ = 0.2, vs. various values of θ. In the legend, “Unit” refers to the random sampling
method without replacement.

Figure 5.4 displays the “actual sample size” n for a particular pair (ε, δ) as a function of θ

for the three distributions. The values n were obtained by running the code 100 times for each

θ to calculate the empirical probability of success.
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In this example the distribution of KjH values gets progressively worse with heavier tail values

as θ gets larger. However, recall that this matters in terms of the sufficient bounds (5.4) and

(5.7) only so long as KH < 3. Here the crossover point happens roughly when θ ∼ 1/(2s).

Indeed, for large values of θ the required sample size actually drops when using the Hutchinson

method: Theorem 5.2, being only a sufficient condition, merely distinguishes types of matrices

for which Hutchinson is expected to be efficient, while making no claim regarding those matrices

for which it is an inefficient estimator.

On the other hand, Theorem 5.5 clearly distinguishes the types of matrices for which the

Gaussian method is expected to be inefficient, because its condition is necessary rather than

sufficient. Note that n (the red curve in Figure 5.4) does not change much as a function of θ,

which agrees with the fact that the matrix rank stays fixed and low at r = 1.

The unit vector estimator, unlike Hutchinson, deteriorates steadily as θ is increased, because

this estimator ignores off-diagonal elements. However, for small enough values of θ the K(i,j)
U ’s

are spread tightly near zero, and the unit vector method, as predicted by Theorem 5.7, requires

a very small sample size.

For Examples 5.3 and 5.5 below, given (ε, δ), we plot the probability of success, i.e.,

Pr (|trnD(A)− tr(A)| ≤ ε tr(A)) for increasing values of n, starting from n = 1. We stop when

for a given n, the probability of success is greater than or equal to 1− δ. In order to evaluate

this for each n, we run the experiments 500 times and calculate the empirical probability.

In the figures below, ‘With Rep.’ and ‘Without Rep.’ refer to uniform unit sampling with

and without replacement, respectively. In all cases, by default, ε = δ = .05. We also provide

distribution plots of the quantities KjH , K
j
G and K(i,j)

U appearing in (5.6), (5.9) and (5.17),

respectively. These quantities are indicators for the performance of the Hutchinson, Gaussian

and unit vector estimators, respectively, as evidenced not only by Theorems 5.2, 5.3 and 5.7,

but also in Examples 5.1 and 5.2, and by the fact that the performance of the Gaussian and

unit vector estimators is not affected by the energy of the off-diagonal matrix elements.

Example 5.3 (Data fitting with many experiments). A major source of applications where

trace estimation is central arises in problems involving least squares data fitting with many

experiments (cf. Chapter 1). In its simplest, linear form, we look for m ∈ IRm so that the
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misfit function

φ(m) =
s∑
i=1

‖Jim− di‖2, (5.20a)

for given data sets di ∈ IRl and sensitivity matrices Ji, is either minimized or reduced below

some tolerance level. The l×m matrices Ji are very expensive to calculate and store, so this is

avoided altogether, but evaluating Jim for any suitable vector m is manageable. Moreover, s is

large. Next, writing (5.20a) using the Frobenius norm as

φ(m) = ‖C‖2F , (5.20b)

where C is l× s with the jth column Cj = Jjm−dj, and defining the SPSD matrix A = CTC,

we have

φ(m) = tr(A(m)). (5.20c)

Cheap estimates of the misfit function φ(m) are then sought by approximating the trace in

(5.20c) using only n (rather than s) linear combinations of the columns of C, which naturally

leads to expressions of the form (5.1). Hutchinson and Gaussian estimators in a similar or

more complex context were considered in [71, 134, 138].

Drawing the wi as random unit vectors instead is a method proposed in [46] and compared to

others in Chapter 3, where it is called “random subset”: this latter method can have efficiency

advantages that are beyond the scope of the presentation here. Typically, l � s, and thus the

matrix A is dense and often has low rank.

Furthermore, the signs of the entries in C can be, at least to some extent, considered random.

Hence we consider below matrices A = CTC whose entries are Gaussian random variables,

obtained using the Matlab command C = randn(l,s). We use l = 200 and hence the rank

is, almost surely, r = 200.

It can be seen from Figure 5.5(a) that the Hutchinson and the Gaussian methods perform

similarly here. The sample size required by both unit vector estimators is approximately twice

that of the Gaussian and Hutchinson methods. This relative behaviour agrees with our observa-
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(a) Convergence Rate (b) KjH distribution

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5.5: Example 5.3. A dense SPSD matrix A is constructed using Matlab’s randn. Here
s = 1000, r = 200, tr(A) = 1,KG = 0.0105, KH = 8.4669 and KU = 0.8553. The method
convergence plots in (a) are for ε = δ = .05.

tions in the context of actual application as described above, see Chapter 3. From Figure 5.5(d),

the eigenvalue distribution of the matrix is not very badly skewed, which helps the Gaussian

method perform relatively well for this sort of matrix. On the other hand, by Figure 5.5(b) the

relative `2 energies of the off-diagonals are far from being small, which is not favourable for the

Hutchinson method. These two properties, in combination, result in the similar performance

of the Hutchinson and Gaussian methods despite the relatively low rank. The contrast between

K(i,j)
U ’s is not too large according to Figure 5.5(c), hence a relatively decent performance of both

unit vector (or, random sampling) methods is observed. There is no reason to insist on avoiding

repetition here either.
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Example 5.4 (Effect of rank and KG on the Gaussian estimator). In this example we plot

the actual sample size n required for (5.2) to hold. In order to evaluate (5.2), we repeat the

experiments 500 times and calculate the empirical probability. In all experiments, the sample

sizes predicted by (5.4) and (5.5) were so pessimistic compared with the true n that we simply

did not include them in the plots.

(a) sprandn, s = 5, 000 (b) diagonal, s = 10, 000

Figure 5.6: Example 5.4. The behaviour of the Gaussian method with respect to rank and KG.
We set ε = δ = .05 and display the necessary condition (5.14) as well.

In order to concentrate only on rank and KG variation, we make sure that in all experiments

KH � 1. For the results displayed in Figure 5.6(a), where r is varied for each of two values

of KG, this is achieved by playing with Matlab’s normal random generator function sprandn.

For Figure 5.6(b), where KG is varied for each of two values of r, diagonal matrices are utilized:

we start with a uniform distribution of the eigenvalues and gradually make this distribution more

skewed, resulting in an increased KG. The low KH values cause the Hutchinson method to look

very good, but that is not our focus here.

It can be clearly seen from Figure 5.6(a) that as the matrix rank gets lower, the sample

size required for the Gaussian method grows significantly. For a given rank, the matrix with a

smaller KG requires smaller sample size. From Figure 5.6(b) it can also be seen that for a fixed

rank, the matrix with more skewed KjG’s distribution (marked here by a larger KG) requires a

larger sample size.

Example 5.5 (Method performance for different matrix properties). Next we consider a much
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(a) Convergence Rate (b) KjH distribution (KjH ≤ 100)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5.7: Example 5.5. A sparse matrix (d = 0.1) is formed using sprandn. Here r =
50, KG = 0.0342, KH = 15977.194 and KU = 4.8350.

more general setting than that in Example 5.4, and compare the performance of different methods

with respect to various matrix properties. The matrix A is constructed as in Example 5.3, except

that also a uniform distribution is used. Furthermore, a parameter d controlling denseness of the

created matrix is utilized. This is achieved in Matlab using the commands C=sprandn(l,s,d)

or C=sprand(l,s,d). By changing l and d we can change the matrix properties KH , KG and

KU while keeping the rank r fixed across experiments. We maintain s = 1000, tr(A) = 1 and

ε = δ = .05 throughout. In particular, the four figures related to this example are comparable to

Figure 5.5 but for a lower rank.

By comparing Figures 5.7 and 5.8, as well as 5.9 and 5.10, we can see how not only the

values of KH , KG and KU , but also the distribution of the quantities they maximize matters.
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(a) Convergence Rate (b) KjH distribution (KjH ≤ 100)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5.8: Example 5.5. A sparse matrix (d = 0.1) is formed using sprand. Here r =
50,KG = 0.0919, KH = 11624.58 and KU = 3.8823.

Note how the performance of both unit vector strategies is negatively affected with increasing

average values of K(i,j)
U ’s. From the eigenvalue (or KjG) distribution of the matrix, it can also

be seen that the Gaussian estimator is heavily affected by the skewness of the distribution of

the eigenvalues (or KjG’s): given the same r and s, as this eigenvalue distribution becomes

increasingly uneven, the Gaussian method requires larger sample size.

Note that comparing the performance of the methods on different matrices solely based on

their values KH , KG or KU can be misleading. This can be seen for instance by considering the

performance of the Hutchinson method in Figures 5.7, 5.8, 5.9 and 5.10 and comparing their

respective KjH distributions as well as KH values. Indeed, none of our 6 sufficient bounds can

be guaranteed to be generally tight. As remarked also earlier, this is an artifact of the generality
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(a) Convergence Rate (b) KjH distribution (KjH ≤ 50)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5.9: Example 5.5. A very sparse matrix (d = 0.01) is formed using sprandn. Here
r = 50, KG = 0.1186, KH = 8851.8 and KU = 103.9593.

of the proved results.

Note also that rank and eigenvalue distribution of a matrix have no direct effect on the

performance of the Hutchinson method: by Figures 5.9 and 5.10 it appears to only depend on

the KjH distribution. In these figures, one can observe that the Gaussian method is heavily

affected by the low rank and the skewness of the eigenvalues. Thus, if the distribution of KjH ’s

is favourable to the Hutchinson method and yet the eigenvalue distribution is rather skewed,

we can expect a significant difference between the performance of the Gaussian and Hutchinson

methods.
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5.6 Conclusions

In this chapter, we have proved six sufficient bounds for the minimum sample size n required

to reach, with probability 1 − δ, an approximation for tr(A) to within a relative tolerance ε.

Two such bounds apply to each of the three estimators considered in Sections 5.2, 5.3 and 5.4,

respectively. In Section 5.3 we have also proved a necessary bound for the Gaussian estimator.

These bounds have all been verified numerically through many examples, some of which are

summarized in Section 5.5.

(a) Convergence Rate (b) KjH distribution (KjH ≤ 50)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5.10: Example 5.5. A very sparse matrix (d = 0.01) is formed using sprand. Here
r = 50, KG = 0.1290, KH = 1611.34 and KU = 64.1707.

Two of these bounds, namely, (5.4) for Hutchinson and (5.5) for Gaussian, are immediately

computable without knowing anything else about the SPSD matrix A. In particular, they are
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independent of the matrix size s. As such they may be very pessimistic. And yet, in some

applications (for instance, in exploration geophysics) where s can be very large and ε need not

be very small due to uncertainty, these bounds may indeed provide the comforting assurance

that n � s suffices (say, s is in the millions and n in the thousands). Generally, these two

bounds have the same quality.

The underlying objective in this work, which is to seek a small n satisfying (5.2), is a natural

one for many applications and follows that of other works. But when it comes to comparing

different methods, it is by no means the only performance indicator. For example, variance can

also be considered as a ground to compare different methods. However, one needs to exercise

caution to avoid basing the entire comparison solely on variance: it is possible to generate

examples where a linear combination of X 2 random variables has smaller variance, yet higher

tail probability.

The lower bound (5.14) that is available only for the Gaussian estimator may allow better

prediction of the actual required n, in cases where the rank r is known. At the same time

it also implies that the Gaussian estimator can be inferior in cases where r is small. The

Hutchinson estimator does not enjoy a similar theory, but empirically does not suffer from the

same disadvantage either.

The matrix-dependent quantities KH , KG and KU , defined in (5.6), (5.9) and (5.17), re-

spectively, are not easily computable for any given implicit matrix A. However, the results

of Theorems 5.2, 5.3 and 5.7 that depend on them can be more indicative than the general

bounds. In particular, examples where one method is clearly better than the others can be

isolated in this way. At the same time, the sufficient conditions in Theorems 5.2, 5.3 and 5.7,

merely distinguish the types of matrices for which the respective methods are expected to be

efficient, and make no claims regarding those matrices for which they are inefficient estimators.

This is in direct contrast with the necessary condition in Theorem 5.5.

It is certainly possible in some cases for the required n to go over s. In this connection, it is

important to always remember the deterministic method which obtains tr(A) in s applications

of unit vectors: if n grows above s in a particular stochastic setting then it may be best to

abandon ship and choose the safe, deterministic way.
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Chapter 6

Extremal Probabilities of Linear

Combinations of Gamma Random

Variables

This chapter prepares us for Chapter 7, in the sense that two pivotal results, given in The-

orems 6.1 and 6.2 below, are subsequently used there. However, the development here is

significantly more general than what is needed for Chapter 7, and the results are novel. Hence

we describe them in a separate chapter, as they can be considered independently of the rest of

this thesis.

The gamma distribution forms an important family of distributions, and gamma random

variables (r.v’s) appear in many practical applications. For example, linear combinations (i.e.,

convolutions) of independent gamma r.v’s often naturally arise in many applications in statistics,

engineering, insurance, actuarial science and reliability. As such, in the literature, there has

been extensive study of the stochastic properties of gamma r.v’s and their convolutions. For

examples of such theoretical studies as well as applications see [7, 30–32, 44, 61, 93–95, 99, 103,

129, 139, 141, 142] and references therein.

In what follows, let X ∼ Gamma(α, β) denote a gamma distributed random variable (r.v)

parametrized by shape α and rate β parameters with the probability density function (PDF)

f(x) =


βα

Γ(α)x
α−1e−βx x ≥ 0

0 x < 0
. (6.1)

An important stochastic property of gamma r.v is that of the monotonicity of regularized

gamma function (see Section 5.3.2), i.e., cumulative distribution function (CDF) of gamma r.v,
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with respect to different shape α and rate β parameters. Theorems 6.1 gives conditions which

allow one to obtain certain important monotonicity results for the regularized gamma function

(cf. (5.13)).

Theorem 6.1 (Monotonicity of cumulative distribution function of gamma r.v).

Given parameters 0 < α1 < α2, let Xi ∼ Gamma(αi, αi), i = 1, 2, be independent r.v’s, and

define

∆(x) := Pr(X2 < x)− Pr(X1 < x).

Then we have that

(i) there is a unique point x(α1, α2) such that ∆(x) < 0 for 0 < x < x(α1, α2) and ∆(x) > 0

for x > x(α1, α2),

(ii) 1 ≤ x(α1, α2) ≤ 2
√
α1(α2−α1)+1

2
√
α1(α2−α1)

.

Another important stochastic property, is that of the maximum and minimum of tail proba-

bilities of linear combinations of i.i.d gamma r.v’s. More specifically, let Xi ∼ Gamma(α, β) for

i = 1, 2, . . . , n, be n i.i.d gamma r.v’s. Consider the following non-negative linear combinations

of such r.v’s
n∑
i=1

λiXi,

where λi ≥ 0, i = 1, 2, . . . , n, are real numbers. The goal is to find conditions allowing one to

determine the maximum and minimum of tail probability

Pr

(
n∑
i=1

λiXi < x

)
,

with respect to the mixing weights λi, i = 1, . . . , n for various values of x. Theorem 6.2

describes these conditions.

Theorem 6.2 (Extremal probabilities of linear combination of gamma r.v’s). Given

shape and rate parameters α, β > 0, let Xi ∼ Gamma(α, β), i = 1, 2, . . . , n, be i.i.d gamma

r.v’s, and define

Θ := {λ =
(
λ1, λ2, . . . , λn

)T | λi ≥ 0 ∀i,
n∑
i=1

λi = 1}.
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Then we have

mn(x) := min
λ∈Θ

Pr

(
n∑
i=1

λiXi < x

)
=


Pr
(

1
n

∑n
i=1Xi < x

)
, x < α

β

Pr
(
X1 < x

)
, x > 2α+1

2β ,

Mn(x) := max
λ∈Θ

Pr

(
n∑
i=1

λiXi < x

)
=


Pr
(
X1 < x

)
, x < α

β

Pr
(

1
n

∑n
i=1Xi < x

)
, x > 2α+1

2β

.

Results similar to Theorem 6.2 were obtained in [129] for the special case where the Xi’s are

chi-squared r.v’s of degree 1 (corresponding to α = β = 1/2). Theorem 6.2 extends those results

to arbitrary gamma random variables, including chi-squared of arbitrary degree, exponential,

Erlang, etc.

In what follows, for a gamma r.v X, we use the notation fX for its PDF and FX for its

CDF.

The objective in the proof of Theorem 6.2 is to find the extrema (with respect to λ ∈ Θ)

of the CDF of r.v
∑n

i=1 λiXi. This is mainly achieved by perturbation arguments, employing

a key identity which is derived using Laplace transforms. Using our perturbation arguments

with this identity and employing Lemma 6.4, we obtain that at any extremum, we must have

either λ1, λ2 > 0 and λ3 = · · · = λn = 0 or for some i ≤ n we must get λ1 = · · · = λi > 0 and

λi+1 = · · · = λn = 0. (Note that this latter case covers the “corners” as well.). In the former

case, Lemma 6.5 is used to distinguish between the minima and maxima for different values of

x. These results along with Theorem 6.1 are then used to prove Theorem 6.2.

Three lemmas are used in the proofs of our two theorems. Lemma 6.3 describes some

properties of the PDF of non-negative linear combinations of arbitrary gamma r.v’s, such as

analyticity and vanishing derivatives at zero. Lemma 6.4 describes the monotonicity property

of the mode of the PDF of non-negative linear combinations of a particular set of gamma

r.v’s, which is useful for the proof of Theorem 6.2. Lemma 6.5 gives some properties regarding

the mode of the PDF of convex combinations of two particular gamma r.v’s, which is used in

proving Theorem 6.1 and Theorem 6.2.
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6.1 Lemmas

We next state and prove the lemmas summarized above.

Lemma 6.3 (Generalization of [129, Lemma A]). Let Xi ∼ Gamma(αi, βi), i = 1, 2, . . . , n,

be independent r.v’s, where αi, βi > 0 ∀i. Define Yn :=
∑n

i=1 λiXi for λi > 0, ∀i and ρj :=∑j
i=1 αi. Then for the PDF of Yn, fYn, we have

(i) fYn > 0, ∀x > 0,

(ii) fYn is analytic on R+ = {x|x > 0},

(iii) f
(k)
Yn

(0) = 0, if 0 ≤ k < ρn − 1, where f
(k)
Yn

denotes the kth derivative of fYn.

Proof. The proof is done by induction on n. For n = 2 we have

fY2(x) =

∫ ∞
0

fλ1X1(y)fλ2X2(x− y)dy

=

∫ x

0

(β1/λ1)α1

Γ(α1)
yα1−1e

−β1y
λ1

(β2/λ2)α2

Γ(α2)
(x− y)α2−1e

−β2(x−y)
λ2 dy

=
(β1/λ1)α1(β2/λ2)α2

Γ(α1)Γ(α2)

∫ x

0
yα1−1(x− y)α2−1e

−β1y
λ1
−β2(x−y)

λ2 dy.

Now the change of variable y → x cos2 θ1 would yield

fY2(x) = 2
(β1/λ1)α1(β2/λ2)α2

Γ(α1)Γ(α2)
x(α1+α2−1)

∫ π
2

0
(cos θ1)2α1−1(sin θ1)2α2−1e

−x(
β1 cos2 θ1

λ1
+
β2 sin2 θ1

λ2
)
dθ1.

By induction on n, one can show that for arbitrary n ≥ 2

fYn(x) = 2n−1

(
n∏
i=1

(βi/λi)
αi

Γ(αi)

)
xρn−1

∫
Dn−1

Pn(Θn−1)Qn(Θn−1)e−xRn(Θn−1)dΘn−1, (6.2a)

where

Pn(Θn−1) :=
n−1∏
j=1

(cos θj)
2ρj−1, (6.2b)

Qn(Θn−1) :=

n−1∏
j=1

(sin θj)
2αj+1−1, (6.2c)
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the function Rn(Θn−1) satisfies the following recurrence relation

Rn(Θn−1) := cos2 θn−1Rn−1(Θn−2) + βnλ
−1
n sin2 θn−1, ∀n ≥ 2 (6.2d)

R1(Θ0) := β1/λ1, (6.2e)

and dΘn−1 denotes the n− 1 dimensional Lebesgue measure with the domain of integration

Dn−1 := (0, π/2)× (0, π/2)× . . .× (0, π/2) = (0, π/2)n−1 ⊂ Rn−1. (6.2f)

Now the claims in Lemma 6.3 follow from (6.2).

Lemma 6.4 (Generalization of [129, Lemma 1]). Let Xi ∼ Gamma(αi, α), i = 1, 2, . . . , n,

be independent r.v’s, where αi > 0 ∀i and α > 0. Also let ψ ∼ Gamma(1, α) be another r.v

independent of all Xi’s. If
∑n

i=1 αi > 1, then the mode, x̄(λ), of the r.v W (λ) = Y + λψ is

strictly increasing in λ > 0, where Y =
∑n

i=1 λiXi with λi > 0, ∀i.

Proof. The proof is almost identical to that of Lemma 1 in [129] and we give it here for com-

pleteness. By Lemma 6.3, x̄(λ) > 0 for λ ≥ 0. By the unimodality of W (λ), for any λ > λ0 > 0,

it is enough to show that

J
(
λ, x̄(λ0)

)
:=

[
d2

dx2
Pr (W (λ) ≤ x)

]
x=x̄(λ0)

> 0. (6.3)

Note that J
(
λ0, x̄(λ0)

)
= 0 and since

∑n
i=1 αi > 1, by Lemma 6.3(iii), fY (0) = 0. So we have

J
(
λ, x̄(λ0)

)
=

[
d

dx

∫ x

0
fY (x− z)α

λ
e−

α
λ
zdz

]
x=x̄(λ0)

=

[∫ x

0

d

dx
fY
(
x− z

)α
λ
e−

α
λ
zdz

]
x=x̄(λ0)

=

∫ x̄(λ0)

0
f
′
Y (z)

α

λ
e−

α
λ

(
x̄(λ0)−z

)
dz.

Therefore, ∫ x̄(λ0)

0
f
′
Y (z)e

αz
λ0 dz =

λ0

α
e
αx̄(λ0)
λ0 J

(
λ0, x̄(λ0)

)
= 0.
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Thus for λ > λ0 > 0, we have

λ

α
e
αx̄(λ)
λ J

(
λ, x̄(λ0)

)
=

∫ x̄(λ0)

0
f
′
Y (z)e

αz
λ dz

=

∫ x̄(λ0)

0
f
′
Y (z)e

αz
λ − f ′Y (z)e

αz
λ0 e

αx̄(0)
(

1
λ
− 1
λ0

)
dz

=

∫ x̄(λ0)

0
f
′
Y (z)

(
e
αz
λ − e

αz
λ0

+αx̄(0)
(

1
λ
− 1
λ0

))
dz

=

∫ x̄(λ0)

0
f
′
Y (z)

(
e
αz
λ − e

αz
λ

+Φ
(
z,x̄(0)

))
dz,

where x̄(0) > 0 is the mode of r.v Y and

Φ
(
z, x̄(0)

)
:= α

(
z − x̄(0)

)( 1

λ0
− 1

λ

)
.

Now if z < x̄(0) then Φ
(
z, x̄(0)

)
< 0 and f

′
Y (z) > 0 so we get J

(
λ, x̄(λ0)

)
> 0. Similarly if

z > x̄(0) then Φ
(
z, x̄(0)

)
> 0 and f

′
Y (z) < 0 and again we have J

(
λ, x̄(λ0)

)
> 0.

Lemma 6.5 (Generalization of [129, Lemma 2]). For some α2 ≥ α1 > 0, let ξ1 ∼ Gamma(1 +

α1, α1) and ξ2 ∼ Gamma(1 + α2, α2) be independent gamma r.v’s. Also let x̄ = x̄(λ) denote

the mode of the r.v ξ(λ) = λξ1 + (1− λ)ξ2 for 0 ≤ λ ≤ 1. Then

(i) for a given λ, x̄(λ) is unique,

(ii) 1 ≤ x̄(λ) ≤ 2
√
α1α2+1

2
√
α1α2

, ∀0 ≤ λ ≤ 1, with x̄(0) = x̄(1) = 1 and, in case of αi = αj = α,

x̄(1
2) = 2α+1

2α , otherwise the inequalities are strict, and

(iii) there is a λ∗ ∈
( √

α1√
α2+
√
α1
, 1
)

such that the mode x̄(λ) is a strictly increasing function of

λ on (0, λ∗) and it is a strictly decreasing function on (λ∗, 1) and, for α1 = α2, we have

λ∗ = 1
2 .

Proof. Uniqueness claim (i) has already been proven in [129, Theorem 4]. We prove (iii) since (ii)

is implied from within the proof. For 0 < λ < 1, the PDF of ξ(λ) can be written as

fξ(λ)(x) =

∫ x

0
fλξ1(y)f(1−λ)ξ2(x− y)dy.
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Since fλξ1(0) = f(1−λ)ξ2(0) = 0 we have

∂

∂x
fξ(λ)(x) =

∫ x

0
fλξ1(y)

∂

∂x
f(1−λ)ξ2(x− y)dy

= −
∫ x

0
fλξ1(y)

∂

∂y
f(1−λ)ξ2(x− y)dy

=

∫ x

0

∂

∂y
(fλξ1(y)) f(1−λ)ξ2(x− y)dy

where for the second equality we use the fact that ∂
∂xf(x− y) = − ∂

∂yf(x− y), and for the third

equality we used integration by parts. Let α = α1 and α2 = cα for some c ≥ 1. So now we have

∂

∂x
fξ(λ)(x) =

(αλ )1+α( cα
1−λ)1+αc

Γ(1 + α)Γ(1 + αc)

∫ x

0

∂
(
yαe−

αy
λ

)
∂y

(x− y)αce−
cα(x−y)

1−λ dy

=
α2+α(cα)1+cα

Γ(1 + α)Γ(1 + cα)
λ−2−α (1− λ)−1−αc e

− cαx
(1−λ)

∫ x

0
(λ− y)yα−1(x− y)αce−αy(

1
λ
− c

1−λ)dy

= C(x, λ)A(x, λ),

where

C(x, λ) :=
α2+α(cα)1+cα

Γ(1 + α)Γ(1 + cα)
λ−2−α (1− λ)−1−αc e

− cαx
(1−λ) ,

A(x, λ) :=

∫ x

0
(λ− y) yα−1 (x− y)αc e−φ(λ)ydy,

φ(λ) := α

(
1

λ
− c

1− λ

)
.

Now if x̄ is the mode of ξ(λ), then we have

∂

∂x
fξ(λ)(x̄) = C(x̄, λ)A(x̄, λ) = 0,

which implies that A(x̄, λ) = 0 since C(x̄, λ) > 0. Let us define the linear functional L : G → R,

where G = {g : (0, x̄)→ R |
∫ x̄

0 g(y)yα−1 <∞}, as

L(g) :=

∫ x̄

0
g(y)yα−1 (x̄− y)αc e−φ(λ)ydy.
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We have

∂

∂λ
A(x, λ) =

∫ x

0

[
1− φ′(λ)y(λ− y)

]
yα−1(x− y)αce−φ(λ)ydy

=

∫ x

0

[
1− λφ′(λ)y + φ

′
(λ)y2

]
yα−1(x− y)αce−φ(λ)ydy,

so [
∂

∂λ
A(x, λ)

]
x=x̄

= L
(

1− λφ′(λ)f + φ
′
(λ)f2

)
, (6.4)

where f ∈ G is such that f(y) = y. On the other hand since A(x̄, λ) = 0, we get

L(λ) = L(f) =

∫ x̄

0
yα(x̄− y)αce−φ(λ)ydy

=

∫ x̄

0
yαe−φ(λ)yd

(
−(x̄− y)αc+1

αc+ 1

)
= (αc+ 1)−1

∫ x̄

0
(x̄− y)αc+1 d

(
yαe−φ(λ)y

)
= (αc+ 1)−1

∫ x̄

0
(x̄− y)αc+1(αyα−1e−φ(λ)y − φ(λ)yαe−φ(λ)y)dy

= (αc+ 1)−1

∫ x̄

0
(x̄− y) (α− φ(λ)y) yα−1 (x̄− y)αc e−φ(λ)ydy

= (αc+ 1)−1L
(

(x̄− f) (α− φ(λ)f)
)

= (αc+ 1)−1L
(
αx̄− αf − φ(λ)x̄f + φ(λ)f2

)
,

where the second integral is Lebesgue-Stieltjes, and the third integral follows from Lebesgue-

Stieltjes integration by parts. So, for λ ∈ (0, 1
c+1) ∪ ( 1

c+1 , 1), we get

L(f2) =
1

φ(λ)

[
(αc+ 1)L(f)− L

(
αx̄− αf − φ(λ)x̄f

)]
=

1

φ(λ)

[
L
(

(αc+ 1)f − αx̄

λ
f + αf + φ(λ)x̄f

)]
=

1

φ(λ)

[(
(αc+ 1) + α+ φ(λ)x̄− αx̄

λ

)
L(f)

]
=

1

φ(λ)

[(
(α+ αc+ 1) + (φ(λ)− α

λ
)x̄
)
L(f)

]
=

1

φ(λ)

[(
(1 + c)α+ 1− cαx̄

1− λ

)
L(f)

]
,
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where we used the fact that L(αx̄) = αx̄
λ L(λ) = αx̄

λ L(f). Now substituting L(f2) in (6.4) yields

[
∂

∂λ
A(x, λ)

]
x=x̄

= L
( 1

λ
f − λφ′(λ)f + φ

′
(λ)f2

)
=

(
1

λ
− λφ′(λ) +

φ
′
(λ)

φ(λ)

[
(1 + c)α+ 1− cαx̄

1− λ

])
L(f),

=

(
1

λ
− φ′(λ)

(
λ+

1

φ(λ)

[
(1 + c)α+ 1− cαx̄

1− λ

]))
L(f)

=

(
1

λ
− φ

′
(λ)

φ(λ)

(
λφ(λ) + (1 + c)α+ 1− cαx̄

1− λ

))
L(f)

which after some tedious but routine computations gives

[
∂

∂λ
A(x, λ)

]
x=x̄

= R(λ)
x̄− Φ(λ)

1− (c+ 1)λ
, λ ∈

(
0,

1

1 + c

)
∪
( 1

1 + c
, 1
)

where R(λ) > 0, for all 0 < λ < 1, and

Φ(λ) :=
α+ (1− 2α)λ+ (α− 1 + αc)λ2

α
(

(c+ 1)λ2 − 2λ+ 1
) .

Since

dΦ(λ)

dλ
=
(

(1− c)λ2 − 2λ+ 1
)/(

α
(
(c+ 1)λ2 − 2λ+ 1

))2
,

we have that

dΦ(λ)

dλ
= 0 at λ =

1

(1 +
√
c)
.

Note that the other root, 1/(1−
√
c), falls outside of (0, 1) for any c ≥ 1. It readily can be seen

that Φ(λ) is increasing on 0 < λ < 1
1+
√
c

and decreasing on 1
1+
√
c
< λ < 1, and so

1 ≤ Φ(λ) ≤ 2α
√
c+ 1

2α
√
c

, ∀0 ≤ λ ≤ 1.

The differentiability of x̄(λ) with respect to λ follows from implicit function theorem:

dx̄(λ)

dλ
= −

∂
∂λA(x̄, λ)
∂
∂x̄A(x̄, λ)

,
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and for that we need to show that ∂A(x̄,λ)
∂x̄ 6= 0 for all 0 < λ < 1. If we assume the contrary for

some λ, we get

αcA(x̄, λ) = αc

∫ x̄

0
(λ− y)yα−1(x̄− y)αce−φ(λ)ydy = 0,

(x̄− λ)
∂

∂x̄
A(x̄, λ) = αc

∫ x̄

0
(λ− y)(x̄− λ)yα−1(x̄− y)αc−1e−φ(λ)ydy = 0,

which is impossible since the integrand in the first equality is strictly larger than the one in the

second equality: we can see this by looking at the two cases 0 < y < λ and λ < y < x̄. From

this we can also note that ∂
∂x̄A(x̄, λ) < 0 for all 0 < λ < 1. To see this, first consider the case

x̄ > λ, and it follows directly as above that ∂
∂x̄A(x̄, λ) < [αc/(x̄− λ)]A(x̄, λ) = 0. Now assume

that x̄ ≤ λ, but since the integrand in the first equality is strictly positive for all 0 < y < x̄,

then A(x̄, λ) > 0 which is impossible. So we get

dx̄(λ)

dλ
= S(λ)

x̄− Φ(λ)

1− (c+ 1)λ
, λ ∈ [0, 1] (6.5)

where S(λ) > 0 for all 0 < λ < 1. We also defined dx̄(λ)
dλ for λ = 0, 1, 1

2 using l’Hôpital’s rule

(with one-sided differentiability for λ = 0, 1). It is easy to see that

x̄(0) = x̄(1) = Φ(0) = Φ(1) = 1,

x̄
( 1

c+ 1

)
= Φ

( 1

c+ 1

)
=

(c+ 1)α+ 1

(c+ 1)α
.

Next we show that x̄ is strictly increasing on (0, 1
c+1). We first show that on this interval, we

must have x̄(λ) ≥ Φ(λ), otherwise there must exist a λ̂ ∈ (0, 1
c+1) such that x̄(λ̂) < Φ(λ̂). But

this contradicts x̄( 1
c+1) = Φ( 1

c+1) by (6.5), increasing property of Φ and continuity of x̄. So x̄

is non-decreasing on (0, 1
c+1). We must also have that x̄(λ) > Φ(λ) for λ ∈ (0, 1

c+1), otherwise

if there is a λ̂ ∈ (0, 1
c+1) such that x̄(λ̂) = Φ(λ̂), then, by (6.5), it must be a saddle point of

x̄. But since Φ is strictly increasing and x̄ is non-decreasing on this interval, this would imply

that for an ε arbitrarily small, we must have x̄(λ̂ + ε) < Φ(λ̂ + ε) but this would contradict

the non-decreasing property of x̄ on this interval by (6.5). The same reasoning shows that we

must have x̄(λ) < Φ(λ) on ( 1
c+1 , λ

∗) (i.e. x̄ is strictly increasing on ( 1
c+1 , λ

∗)) and x̄(λ) > Φ(λ)
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on (λ∗, 1) (i.e. x̄ is strictly decreasing on (λ∗, 1)). Now we show that λ∗ ≥ 1
1+
√
c
. For c = 1 we

have 1
c+1 = 1√

c+1
, hence λ∗ = 1

2 . For c > 1, Since x̄(λ) is increasing for 0 < λ < λ∗, decreasing

for λ∗ < λ < 1, and x̄(λ∗) = Φ(λ∗), then by (6.5), this implies that λ∗ is where the maximum

of x̄(λ) occurs. Now if we assume that λ∗ < 1
1+
√
c
, since Φ is increasing on (0, 1

1+
√
c
), this would

contradict x̄(λ) > Φ(λ) on (λ∗, 1). Lemma 6.5 is proved.

6.2 Proofs of Theorems 6.1 and 6.2

We now give the detailed proofs for our main theorems stated at the beginning of this chapter

and used in Chapter 7.

Proof of Theorem 6.1

For proving (i), we first show that ∆(x) = 0 at exactly one point on R+ = {x|x > 0}

denoted by x(α1, α2). Since α2 > α1, let α2 = α1 + c, for some c > 0. We have

d∆(x)

dx
= C(α2)xα2−1e−α2x − C(α1)xα1−1e−α1x

= C(α2)xα1−1e−α1x

(
xce−cx − C(α1)

C(α2)

)

where C(α) = (α)α/Γ(α). The constant C(α1)/C(α2) cannot be larger than xce−cx, for all

x ∈ R+, otherwise d∆(x)/dx would be negative for all x ∈ R+, and this is impossible since

∆(0) = ∆(∞) = 0. The function xce−cx is increasing on (0, 1) and decreasing on (1,∞), and

since C(α1)/C(α2) is constant, there must exist an interval (a, b) containing x = 1 such that

d∆(x)/dx > 0 for x ∈ (a, b) and d∆(x)/dx < 0 for x ∈ (0, a) ∪ (b,∞). Now since ∆(x) is

continuous and ∆(0) = ∆(∞) = 0, then there must exist a unique x(α1, α2) ∈ (0,∞) such

that ∆(x) crosses zero (i.e., ∆(x) = 0 at the unique point x(α1, α2)) and that ∆(x) < 0 for

0 < x < x(α1, α2) and ∆(x) > 0 for x > x(α1, α2).

We now prove (ii). The desired inequality is equivalent to

∆(x) < 0, ∀x < 1
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and

∆(x) > 0, ∀x >
(
2
√
α1(α2 − α1) + 1

)
/
(
2
√
α1(α2 − α1)

)
.

Without loss of generality consider α = α1, and α2 = (1 + c)α, for c = (α2 − α)/α. Define

X̃ ∼ Gamma(cα, cα) and let

Y (t) := tX1 + (1− t)X̃.

Note that

Y (1) = X1

and

Y (
1

1 + c
) = X2,

so it suffices to show that the CDF of Y (t) is increasing in t ∈ [ 1
1+c , 1] for x < 1 and decreasing

for x > (2α
√
c+ 1)/(2α

√
c). Now, we take the Laplace transform of Y (t) as

L[Y (t)](z) =
(
1 +

tz

α

)−α(
1 +

(1− t)z
cα

)−cα
, Re(z) > max {−α/t,−cα/(1− t)} .

The Laplace transform of FY is

L[FY ](z) =

∫ ∞
0

e−zxFY (x)dx

=
1

z

∫ ∞
0

e−zxdFY (x)

=
1

z
L[Y ](z).

Note that in the second equality we applied integration by parts and the fact that FY (0) = 0.

Defining

J(z) := L[FY ](z)
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and differentiating with respect to t gives

dJ

dt
= J

d

dt
(ln(J))

= J
d

dt

(
− ln(z)− α ln(1 +

tz

α
)− cα ln

(
1 +

(1− t)z
cα

))

=
z2

cα
J
(

(1 + c)t− 1
)(

1 +
tz

α

)−1(
1 +

(1− t)z
cα

)−1

.

Taking the inverse transform yields

d

dt
Pr (Y (t) ≤ x) =

(1 + c)t− 1

cα

d2

dx2
Pr

(
Y (t) + tψ1 +

1− t
c

ψ2 < x

)
,

where ψi ∼ Gamma(1, α) , i = 1, 2, are i.i.d gamma r.v’s which are also independent of all X1

and X2. Now applying Lemma 6.5 yields the desired results. 2

Proof of Theorem 6.2 It is enough to prove the theorem for the special case where α = β

and the general statement follows from the scaling properties of gamma r.v.

Introduce the random variable

Y :=
n∑
i=1

λiXi

with CDF FY (x) = Pr(Y < x). As in the proof of Theorem 6.1, define

J(z) := L[FY ](z) =
1

z
L[Y ](z),

where L[FY ] and L[Y ] denote the Laplace transform of FY and Y , respectively and

L[Y ](z) =
n∏
i=1

(1 + λiz/α)−α , Re(z) > −α/λi, i = 1, 2, . . . , n.

Now consider a vector λ ∈ Θ for which λiλj 6= 0 for some i 6= j. We keep all λk, k 6= i, j

fixed and vary λi and λj under the condition that λi + λj = const. We may assume without

loss of generality that i = 1 and j = 2. Vectors for which λi = 1 for some i, i.e. the “corners”
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of Θ, are considered at the end of this proof. Differentiating J , we get

dJ

dλ1
= J

d

dλ1
(ln J) = J

d

dλ1

(
− ln(z)− α

n∑
i=1

ln(1 +
λiz

α
)
)

= Jα
z2

α2

λ1 − λ2

(1 + λ1z
α )(1 + λ2z

α )

=
1

α
(λ1 − λ2)zL[λ1ψ1](z)L[λ2ψ2](z)L[Y ](z) (6.6)

where ψi ∼ Gamma(1, α) , i = 1, 2 are i.i.d gamma r.v’s which are also independent of all Xi’s.

Letting

W (λ) := Y + λ1ψ1 + λψ2

with the CDF FW (λ)(x), it can be shown that since λ1λ2 6= 0, then by Lemma 6.3(iii),

FW (λ)(0) = F
′

W (λ)(0) = 0, ∀λ ≥ 0. Defining

L(Y, λ, x) := F
′′

W (λ) =
d2

dx2
Pr (W (λ) < x) =

d2

dx2
Pr
(
Y + λ1ψ1 + λψ2 < x

)
(6.7)

and noting that

L[W (λ)](z) = L[λ1ψ1](z)L[λψ2](z)L[Y ](z),

we get

L
[
L(Y, λ, .)

]
(z) =

∫ ∞
0

e−zxL(Y, λ, x)dx

=

∫ ∞
0

e−zxF
′′

W (λ)(x)dx

= z

∫ ∞
0

e−zxF
′

W (λ)(x)dx

= z2

∫ ∞
0

e−zxFW (λ)(x)dx

= z

∫ ∞
0

e−zxdFW (λ)(x)

= zL
[
W (λ)

]
(z)

= zL
[
λ1ψ1

]
(z)L

[
λψ2

]
(z)L

[
Y
]
(z).
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Inverting (6.6) yields

dFY (x)

dλ1
=

1

α
(λ1 − λ2)L(Y, λ2, x). (6.8)

So a necessary condition for the extremum of FY (x) is either λ1λ2(λ1−λ2) = 0 or L(λ2, x) =

0. Since λ1λ2 6= 0 then by Lemma 6.3, the PDF, fW (λ)(x), of the linear form W (λ) = Y +

λ1ψ1 + λψ2, for λ > 0, is differentiable everywhere and fW (λ)(0) = 0. In addition, on the

positive half-line, f ′W (λ)(x) = 0 holds at a unique point because fW (λ)(x) is a unimodal analytic

function (its graph contains no line segment). The unimodality of fW (λ)(x) was already proven

for all gamma random variables in [129, Theorem 4].

Now we can prove that, for any x > 0, if FY (x) has an extremum then the nonzero λi’s

can take at most two different values. Suppose that λ1λ2(λ1 − λ2) 6= 0, then by (6.8) we have

L(Y, λ2, x) = 0. Now we show that, for every λj 6= 0, (6.8) implies that λi = λ1 or λi = λ2. For

this, we assume the contrary that λi 6= λ1, λi 6= λ2, and by using the same reasoning that led

to (6.8), we can show that

L(Y, λ2, x) = L(Y, λj , x) = 0

for every λj 6= 0, i.e. the point x > 0 is simultaneously the mode of the PDF of W λ2
Y and W

λj
Y

which contradicts Lemma 6.4. So we get that λi = λ1 or λ2 = λj . Thus the extrema of FY (x)

are taken for some λ1 = λ2 = . . . = λk, λk+1 = λk+2 = . . . = λk+m, and λk+m+1 = λk+m+2 =

. . . = λn = 0 where k +m ≤ n, i.e.,

extremum Pr
( n∑
i=1

λiXi ≤ x
)

= extremum Pr
(λ
k

k∑
i=1

Xi +
1− λ
m

k+m∑
i=k+1

Xi ≤ x
)
.

Here without loss of generality we can assume k ≥ m ≥ 1. Now the same reasoning as in the

end of the proof of [129, Theorem 1] shows an extremum is taken either at k = m = 1, or at

λ1 = λ2 = . . . = ... = λk+m. In the former case, by Lemma 6.5, for any x ∈ (0, 1) ∪ (2α+1
2α ,∞),

the extremum can only be taken at λ ∈ {0, 1
2 , 1}. However, for any x ∈ [1, 2α+1

2α ], in addition

to λ ∈ {0, 1
2 , 1}, the extremum can be achieved for some λ∗ such that x = x̄(λ∗) where x̄(λ)

denotes the mode of the distribution of λX1 +(1−λ)X2 +λψ1 +(1−λ)ψ2. But for such λ∗ and

x, using (6.8) and Lemma 6.5(iii) with α1 = α2 = α, one can show that Pr(λX1+(1−λ)X2 ≤ x)

achieves a local maximum. Now including the case where λ1 = 1 mentioned earlier in the proof,
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we get

mn(x) = min
1≤d≤n

Pr

(
1

d

d∑
i=1

Xi < x

)
∀x > 0,

Mn(x) = max
1≤d≤n

Pr

(
1

d

d∑
i=1

Xi < x

)
∀x ∈

(
0, 1
)
∪
(2α+ 1

2α
,∞
)
,

where mn(x) and Mn(x) are defined in the statement of Theorem 6.2 in Section 7.1. Now

applying Theorem 6.1 by considering the collection αi = iα, i = 1, 2, . . . , n, would yield the

desired results. 2
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Chapter 7

Uncertainty Quantification of

Stochastic Reconstruction

Algorithms

In the present chapter, we continue to consider the stochastic algorithms, presented in Chap-

ters 3 and 4, for efficiently solving the class of large scale non-linear least squares (NLS) problems

described in Chapter 1. We will continue to make Assumptions (A.1) - (A.3) (Assumption (A.2)

can be, if necessary, restored by employing similar techniques as in Chapter 4). In Chapters 3

and 4, practical and randomized reconstruction algorithms were discussed and their efficiency

was demonstrated by various numerical examples. However, all randomized steps in these al-

gorithms were left to heuristics and as such the amount of uncertainty in each stochastic step

remained unchecked. One advantage of leaving these steps heuristic is the great simplicity

in the design and high efficiency in the performance of such algorithms. However, the mere

existence of uncertainty in the overall procedure can cast doubt on the credibility of the re-

constructions. In many applications, one might be willing to sacrifice the simplicity and even

compromise slightly on the efficiency in order to have a handle on the amount of uncertainty

in the algorithm. Hence, it may be desirable to have means which allow one to adjust the

cost and accuracy of such algorithms in a quantifiable way, and find a balance that is suitable

to particular objectives and computational resources. Here, we propose eight variants of Al-

gorithm 2 where the uncertainties in the major stochastic steps are quantified (adjustment of

Algorithms 1 and 3 in a similar way is straightforward). Quantifying the uncertainty in these

stochastic steps, again, involves approximating the NLS objective function using Monte-Carlo

(MC) methods as discussed in Section 2.1. There, it was shown that such approximation is,
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in fact, equivalent to estimating the trace of the corresponding SPSD matrices. In Chapter 5,

these estimators were analyzed and conditions on the MC sample size (which translates to cost)

to satisfy the prescribed probabilistic relative accuracy were given. However, these conditions,

though asymptotically tight, are pessimistic and are typically not sufficiently tight to be prac-

tically useful. On the other hand, as discussed in Chapter 3, the objective is to be able to

generate as few random samples as possible for achieving acceptable approximations to the ob-

jective function. Hence, in the present chapter, and for the case of the Gaussian estimator, we

prove tight necessary and sufficient conditions on the MC sample size and we show that these

conditions are practically computable and yield small sample sizes. They are then incorporated

in our stochastic algorithm to quantify the uncertainty in each randomized step. The bounds

we use are applications of the main results of Chapter 6 presented in Theorems 6.1 and 6.2.

This chapter is organized as follows. In Section 7.1, we develop and state theorems regarding

the tight tail bounds promised above. In Section 7.2 we present our stochastic algorithm variants

for approximately minimizing (1.6) or (1.7) and discuss their novel elements. Subsequently in

Section 7.3, the efficiency of the proposed algorithm variants is numerically demonstrated. This

is followed by conclusions and further thoughts in Section 7.4.

7.1 Tight Conditions on Sample Size for Gaussian MC Trace

Estimators

Let the matrix A = BTB ∈ Rs×s be implicit SPSD, and denote its trace by tr(A). As described

in Chapter 5, the Gaussian Monte-Carlo estimator of tr(A) is defined by (cf. (5.1) with D = G)

trnG(A) :=
1

n

n∑
i=1

wT
i Awi, (7.1)

where wj ∈ Rs ∼ N (0, I).

Now, given a pair of small positive real numbers (ε, δ), consider finding an appropriate
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sample size n such that

Pr
(
trnG(A) ≥ (1− ε)tr(A)

)
≥ 1− δ, (7.2a)

Pr
(
trnG(A) ≤ (1 + ε)tr(A)

)
≥ 1− δ. (7.2b)

In Chapter 5 we showed that the inequalities (7.2) hold if

n > 8c, where c = c(ε, δ) = ε−2 ln(1/δ). (7.3)

However, this bound on n can be rather pessimistic and yields sample sizes which may not

be practically appealing. Theorems 7.1 and 7.2 and Corollary 7.3 below provide tighter and

hopefully more useful bounds on n. For the proof of these, we make use of Theorems 6.1 and

6.2 of Chapter 6.

Let us define

Q(n) :=
1

n
Qn,

where Qn ∼ χ2
n denotes a chi-squared r.v of degree n. Note that Q(n) ∼ Gamma(n/2, n/2),

i.e., a gamma r.v, parametrized by shape α = n/2 and rate β = n/2 parameters with PDF

given as (6.1). In case of several i.i.d gamma r.v’s of this sort, we refer to the jth r.v by Qj(n).

Theorem 7.1 (Necessary and sufficient condition for (7.2a)). Given an SPSD matrix A

of rank r and tolerances (ε, δ) as above, the following hold:

(i) Sufficient condition: there exists some integer n0 ≥ 1 such that

Pr
(
Q(n0) < (1− ε)

)
≤ δ. (7.4)

Furthermore, (7.2a) holds for all n ≥ n0.

(ii) Necessary condition: if (7.2a) holds for some n0 ≥ 1, then for all n ≥ n0

P−ε,r(n) := Pr
(
Q(nr) < (1− ε)

)
≤ δ. (7.5)

(iii) Tightness: if the r positive eigenvalues of A are all equal (NB this always happens if
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r = 1), then there is a positive integer n0 satisfying (7.5), such that (7.2a) holds iff

n ≥ n0.

Proof. Since A is SPSD, it can be diagonalized by a unitary similarity transformation as A =

UTΛU , where Λ is the diagonal matrix of eigenvalues sorted in non-increasing order. Consider

n random vectors wi, i = 1, . . . , n, whose components are i.i.d and drawn from the standard

normal distribution, and define zi = Uwi for each i. Note that since U is unitary, the entries

of zi are i.i.d standard normal variables, like the entries of wi. We have

trnG(A)

tr(A)
=

1

n tr(A)

n∑
i=1

wT
i Awi

=
1

n tr(A)

n∑
i=1

zTi Λzi

=
1

n tr(A)

n∑
i=1

r∑
j=1

λjz
2
ij

=

r∑
j=1

λj
n tr(A)

n∑
i=1

z2
ij

=

r∑
j=1

λj
tr(A)

Qj(n),

where the λj ’s appearing in the sums are positive eigenvalues of A. Now, noting that

r∑
j=1

λj
tr(A)

= 1,

Theorem 6.2 yields

Pr

 r∑
j=1

λj
tr(A)

Qj(n) ≤ (1− ε)

 ≤ Pr
(
Q(n) ≤ (1− ε)

)
= P−ε,1(n), (7.6a)

Pr

 r∑
j=1

λj
tr(A)

Qj(n) ≤ (1− ε)

 ≥ Pr
(
Q(nr) ≤ (1− ε)

)
= P−ε,r(n). (7.6b)

In addition, for any given r > 0 and ε > 0, the function P−ε,r(n) is monotonically decreasing on

integers n ≥ 1. This can be seen by Theorem 6.1 using the sequence αi = (n0+(i−1))r/2, i ≥ 1.
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The claims now easily follow by combining (7.6) and this decreasing property.

Theorem 7.2 (Necessary and sufficient condition for (7.2b)). Given an SPSD matrix A

of rank r and tolerances (ε, δ) as above, the following hold:

(i) Sufficient condition: if the inequality

Pr
(
Q(n0) ≤ (1 + ε)

)
≥ 1− δ (7.7)

is satisfied for some n0 > ε−1, then (7.2b) holds with n = n0. Furthermore, there is

always an n0 > ε−2 such that (7.7) is satisfied and, for such n0, it follows that (7.2b)

holds for all n ≥ n0.

(ii) Necessary condition: if (7.2b) holds for some n0 > ε−1, then

P+
ε,r(n) := Pr

(
Q(nr) ≤ (1 + ε)

)
≥ 1− δ, (7.8)

with n = n0. Furthermore, if n0 > ε−2r−2, then (7.8) holds for all n ≥ n0.

(iii) Tightness: if the r positive eigenvalues of A are all equal, then there is a smallest n0 >

ε−2r−2 satisfying (7.8) such that for any n ≥ n0, (7.2b) holds, and for any ε2r−2 <

n < n0, (7.2b) does not hold. If δ is small enough so that (7.8) does not hold for any

n ≤ ε2r−2, then n0 is both necessary and sufficient for (7.2b).

Proof. The same unitary diagonalization argument as in the proof of Theorem 7.1 shows that

Pr
(
trnG(A) < (1 + ε)tr(A)

)
= Pr

 r∑
j=1

λj
tr(A)

Qj(n) < (1 + ε)

 .

Now we see that if n > ε−1, Theorem 6.2 with α = n/2 yields

Pr

 r∑
j=1

λj
tr(A)

Qj(n) ≤ (1 + ε)

 ≥ Pr
(
Q(n) ≤ (1 + ε)

)
= P+

ε,1(n), (7.9a)

Pr

 r∑
j=1

λj
tr(A)

Qj(n) ≤ (1 + ε)

 ≤ Pr
(
Q(nr) ≤ (1 + ε)

)
= P+

ε,r(n). (7.9b)
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In addition, for any given r > 0 and ε > 0, the function P+
ε,r(n) is monotonically increasing

on integers n > ε−2r−2. This can be seen by Theorem 6.1 using the sequence αi = (n0 + (i −

1))r/2, i ≥ 1. The claims now easily follow by combining (7.9) and this increasing property.

(a) (b)

Figure 7.1: The curves of P−ε,r(n) and P+
ε,r(n), defined in (7.5) and (7.8), for ε = 0.1 and r = 1:

(a) P−ε,r(n) decreases monotonically for all n ≥ 1; (b) P+
ε,r(n) increases monotonically only for

n ≥ n0, where n0 > 1: according to Theorem 7.2, n0 = 100 is safe, and this value does not
disagree with the plot.

Remarks:

(i) Part (iii) of Theorem 7.2 states that if δ is not small enough, then n0 might not be a

necessary and sufficient sample size for the special matrices mentioned there, i.e., matrices

with λ1 = λ2 = · · · = λr. This can be seen from Figure 7.1(b): for r = 1, ε = 0.1, if

δ = 0.33, say, there is an integer 10 < n ≤ 100 such that (7.2b) holds, so n = 101 is no

longer a necessary sample size (although it is still sufficient).

(ii) Simulations show that the sufficient sample size obtained using Theorems 7.1 and 7.2,

amounts to bounds of the form O (c(ε, δ)g(δ)), where g(δ) < 1 is a decreasing function

of δ and c(ε, δ) is as defined in (7.3). As such, for larger values of δ, i.e., when larger

uncertainty is allowed, one can obtain significantly smaller sample sizes than the one

predicted by (7.3); see Figures 7.2 and 7.3. In other words, the difference between the

above tighter conditions and (7.3) is increasingly more prominent as δ gets larger.

(iii) Note that the results in Theorems 7.1 and 7.2 are independent of the size of the matrix.
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In fact, the first items (i) in both theorems do not require any a priori knowledge about

the matrix, other than it being SPSD. In order to compute the necessary sample sizes,

though, one is required to also know the rank of the matrix.

(iv) The conditions in our theorems, despite their potentially ominous look, are actually simple

to compute. Appendix A.4 contains a short Matlab code which calculates these necessary

or sufficient sample sizes to satisfy the probabilistic accuracy guarantees (7.2), given a pair

(ε, δ) (and the matrix rank r in case of necessary sample sizes). This code was used for

generating Figures 7.2 and 7.3.

(a) (b)

Figure 7.2: Comparing, as a function of δ, the sample size obtained from (7.4) and denoted
by “tight”, with that of (7.3) and denoted by “loose”, for ε = 0.1 and 0.01 ≤ δ ≤ 0.3: (a)
sufficient sample size, n, for (7.2a), (b) ratio of sufficient sample size obtained from (7.3) over
that of (7.4). When δ is relaxed, our new bound is tighter than the older one by an order of
magnitude.

Combining Theorems 7.1 and 7.2, we can easily state conditions on the sample size n for

which the condition

Pr
(
|trnG(A)− tr(A)| ≤ ε tr(A)

)
≥ 1− δ (7.10)

holds. We have the following immediate corollary:

Corollary 7.3 (Necessary and sufficient condition for (7.10)). Given an SPSD matrix A

of rank r and tolerances (ε, δ) as above, the following hold:
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(a) (b)

Figure 7.3: Comparing, as a function of δ, the sample size obtained from (7.7) and denoted
by “tight”, with that of (7.3) and denoted by “loose”, for ε = 0.1 and 0.01 ≤ δ ≤ 0.3: (a)
sufficient sample size, n, for (7.2b), (b) ratio of sufficient sample size obtained from (7.3) over
that of (7.7). When δ is relaxed, our new bound is tighter than the older one by an order of
magnitude.

(i) Sufficient condition: if the inequality

Pr
(
(1− ε) ≤ Q(n0) ≤ (1 + ε)

)
≥ 1− δ (7.11)

is satisfied for some n0 > ε−1, then (7.10) holds with n = n0. Furthermore, there is

always an n0 > ε−2 such that (7.11) is satisfied and, for such n0, it follows that (7.10)

holds for all n ≥ n0.

(ii) Necessary condition: if (7.10) holds for some n0 > ε−1, then

Pr
(
(1− ε) ≤ Q(nr) ≤ (1 + ε)

)
≥ 1− δ, (7.12)

with n = n0. Furthermore, if n0 > ε−2r−2, then (7.12) holds for all n ≥ n0.

(iii) Tightness: if the r positive eigenvalues of A are all equal then there is a smallest n0 >

ε−2r−2 satisfying (7.12) such that for any n ≥ n0, (7.10) holds, and for any ε−2r−2 <

n < n0, (7.10) does not hold. If δ is small enough so that (7.12) does not hold for any

n ≤ ε−2r−2, then n0 is both necessary and sufficient for (7.10).
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Remark: The necessary condition in Corollary 7.3(ii) is only valid for n > ε−1 (this is a

consequence of the condition (7.12) being tight, as shown in part (iii)). In Section 5.3.2, an

“almost tight” necessary condition is given that works for all n ≥ 1.

7.2 Quantifying the Uncertainty in Randomized Algorithms

As described in Section 1.2, consider the problem of decreasing the value of the original objec-

tive (1.6) to a desired level (e.g., satisfying a given tolerance) to recover the sought model, m.

Namely, consider an iterative method such as modied Gauss-Newton (GN), using sensitivity

matrices

Ji(m) =
∂f(m,qi)

∂m
, i = 1, . . . , s

and the gradient

∇φ(m) = 2

s∑
i=1

JTi (m)(f(m,qi)− di).

As in Chapter 3, what is special in our context here is that the update direction, δmk,

is calculated using the approximate misfit, φ̂(mk, nk), defined as described in (2.3) (nk is the

sample size used for this approximation in the kth iteration). However, since the ultimate goal

is to fit the original data, we need to assess whether the value of the original objective is also

decreased using this new iterate. The challenge is to do this as well as check for termination

of the iteration process with a minimal number of evaluations of the prohibitively expensive

original misfit function φ.

In this section, we extend the algorithms introduced in Chapters 3 and 4. Variants of

modified stochastic steps in the original algorithms are presented, and using Theorems 7.1

and 7.2, the uncertainties in these steps are quantified. More specifically, in Algorithm 2

introduced in Chapter 3, following a stabilized GN iteration on the approximated objective

function using the approximated misfit, the iterate is updated, and some (or all) of the following

steps are performed:

(i) cross validation (see Section 3.1.1) – approximate assessment of this iterate in terms of
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sufficient decrease in the objective function using a control set of random combinations of

measurements. More specifically, at the kth iteration with the new iterate mk+1, we test

whether the condition (3.2), namely

φ̂(mk+1, nk) ≤ κφ̂(mk, nk)

(cf. (2.3)) holds for some κ ≤ 1, employing an independent set of weight vectors used in

both approximations of φ;

(ii) uncertainty check (see Section 3.1.2) – upon success of cross validation, an inexpensive

plausible termination test is performed where, given a tolerance ρ, we check for the con-

dition (3.4), namely

φ̂(mk+1, nk) ≤ ρ

using a fresh set of random weight vectors; and

(iii) stopping criterion (see Section 3.1.2) – upon success of the uncertainty check, an additional

independent and potentially more rigorous termination test against the given tolerance ρ

is performed (possibly using the original misfit function).

The role of the cross validation step within an iteration is to assess whether the true objective

function at the current iterate has (sufficiently) decreased compared to the previous one. If this

test fails, we deem that the current sample size is not sufficiently large to yield an update that

decreases the original objective, and the fitting step needs to be repeated using a larger sample

size, see [46]. In Chapter 3, this step was used heuristically, so the amount of uncertainty in

such validation of the current iterate was not quantified. Consequently, there was no handle

on the amount of false positives/negatives in such approximate evaluations (e.g., a sample size

could be deemed too small while the stabilized GN iteration has in fact produced an acceptable

iterate). In addition, in Chapter 3 the sample size for the uncertainty check was heuristically

chosen. So this step was also performed with no control over the amount of uncertainty.

For the stopping criterion step in Chapter 3 as well as [46], the objective function was

accurately evaluated using all s experiments, which is clearly a very expensive choice for an

algorithm termination check. This was a judicious decision made in order to be able to have
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a fairer comparison of the new and different methods proposed there. Replacement of this

termination criterion by another independent heuristic “uncertainty check” is experimented

with in Chapter 4.

In this section, we address the issues of quantifying the uncertainty in the validation, un-

certainty check and stopping criterion steps within a nonlinear iteration. In what follows we

continue to assume, for simplicity, that the iterations are performed on the objective (1.6) us-

ing dynamic regularization (or iterative regularization [45, 78, 132]) where the regularization is

performed implicitly. Extension to the case (1.7) is straightforward. Throughout, we assume

to be given a pair of positive and small probabilistic tolerance numbers, (ε, δ).

7.2.1 Cross Validation Step with Quantified Uncertainty

The condition (3.2) is an independent, unbiased indicator of (3.1), which indicates sufficient

decrease in the objective. If (3.2) is satisfied then the current sample size, nk, is considered

sufficiently large to capture the original misfit well enough to produce a valid iterate, and

the algorithm continues using the same sample size. Otherwise, the sample size is deemed

insufficient and is increased. Using Theorems 7.1 and 7.2, we can now remove the heuristic

characteristic as to when this sample size increase has been performed hitherto, and present

two variants of (3.2) where the uncertainties in the validation step are quantified.

Assume we have a sample size nc such that

Pr
(
φ̂(mk, nc) ≤ (1 + ε)φ(mk)

)
≥ 1− δ, (7.13a)

Pr
(
φ̂(mk+1, nc) ≥ (1− ε)φ(mk+1)

)
≥ 1− δ. (7.13b)

If in the procedure outlined above, after obtaining the updated iterate mk+1, we verify that

φ̂(mk+1, nc) ≤ κ
(

1− ε
1 + ε

)
φ̂(mk, nc), (7.14)

then it follows from (7.13) that φ(mk+1) ≤ κφ(mk) with a probability of, at least, (1 − δ)2.

In other words, success of (7.14) indicates that the updated iterate decreases the value of the

original misfit (1.6) with a probability of, at least, (1− δ)2.
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Alternatively, suppose that we have

Pr
(
φ̂(mk, nc) ≥ (1− ε)φ(mk)

)
≥ 1− δ, (7.15a)

Pr
(
φ̂(mk+1, nc) ≤ (1 + ε)φ(mk+1)

)
≥ 1− δ. (7.15b)

Now, if instead of (7.14) we check whether or not

φ̂(mk+1, nc) ≤ κ
(

1 + ε

1− ε

)
φ̂(mk, nc), (7.16)

then it follows from (7.15) that if the condition (7.16) is not satisfied, then φ(mk+1) > κφ(mk)

with a probability of, at least, (1 − δ)2. In other words, failure of (7.16) indicates that the

updated iterate results in an insufficient decrease in the original misfit (1.6) with a probability

of, at least, (1− δ)2.

We can replace (3.2) with either of the conditions (7.14) or (7.16) and use the conditions (7.4)

or (7.7) to calculate the cross validation sample size, nc. If the relevant check (7.14) or (7.16)

fails, we deem the sample size used in the fitting step, nk, to be too small to produce an iterate

which decreases the original misfit (1.6), and consequently consider increasing the sample size,

nk. Note that since 1−ε
1+ε < 1 < 1+ε

1−ε , the condition (7.14) results in a more aggressive strategy

for increasing the sample size used in the fitting step than the condition (7.16). Figure 7.8 in

Section 7.3 demonstrates this within the context of an application.

Remarks:

(i) Larger values of ε result in more aggressive (or relaxed) descent requirement by the con-

dition (7.14) (or (7.16)).

(ii) As the iterations progress and we get closer to the solution, the decrease in the original

objective could be less than what is imposed by (7.14). As a result, if ε is too large, we

might never successfully pass the cross validation test. One useful strategy to alleviate this

is to start with a larger ε, decreasing it as we get closer to the solution. A similar strategy

can be adopted for the case when the condition (7.16) is used as a cross validation: as

the iterations get closer to the solution, one can make the condition (7.16) less relaxed by

decreasing ε.

120



7.2. Quantifying the Uncertainty in Randomized Algorithms

7.2.2 Uncertainty Check with Quantified Uncertainty and Efficient

Stopping Criterion

The usual test for terminating the iterative process is to check for condition (3.3), namely

φ(mk+1) ≤ ρ,

for a given tolerance ρ. However, this can be very expensive in our current context; see Sec-

tion 7.3 and Tables 7.1 and 7.2 for examples of a scenario where one misfit evaluation using

the entire data set can be as expensive as the entire cost of an efficient, complete algorithm.

In addition, if the exact value of the tolerance ρ is not known (which is usually the case in

practice), one should be able to reflect such uncertainty in the stopping criterion and perform

a softer version of (3.3). Hence, it could be useful to have an algorithm which allows one to

adjust the cost and accuracy of such an evaluation in a quantifiable way, and find the balance

that is suitable to particular objectives and computational resources.

Regardless of the issues of cost and accuracy, this evaluation should be carried out as rarely

as possible and only when deemed timely. In Chapter 3, we addressed this by employing an

“uncertainty check” (3.4) as described earlier in this section, heuristically. Using Theorems 7.1

and 7.2, we now devise variants of (3.4) with quantifiable uncertainty. Subsequently, again

using Theorems 7.1 and 7.2, we present a much cheaper stopping criterion than (3.3) which, at

the same time, reflects our uncertainty in the given tolerance.

Assume that we have a sample size nu such that

Pr
(
φ̂(mk+1, nu) ≥ (1− ε)φ(mk+1)

)
≥ 1− δ. (7.17)

If the updated iterate, mk+1, successfully passes the cross validation test, then we check for

φ̂(mk+1, nu) ≤ (1− ε)ρ. (7.18)

If this holds too then it follows from (7.17) that φ(mk+1) ≤ ρ with a probability of, at least,

(1 − δ). In other words, success of (7.18) indicates that the misfit is likely to be below the
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tolerance with a probability of, at least, (1− δ).

Alternatively, suppose that

Pr
(
φ̂(mk+1, nu) ≤ (1 + ε)φ(mk+1)

)
≥ 1− δ, (7.19)

and instead of (7.18) we check for

φ̂(mk+1, nu) ≤ (1 + ε)ρ. (7.20)

then it follows from (7.19) that if the condition (7.20) is not satisfied, then φ(mk+1) > ρ with

a probability of, at least, (1 − δ). In other words, failure of (7.20) indicates that using the

updated iterate, the misfit is likely to be still above the desired tolerance with a probability of,

at least, (1− δ).

We can replace (3.4) with the condition (7.18) (or (7.20)) and use the condition (7.4)

(or (7.7)) to calculate the uncertainty check sample size, nu. If the test (7.18) (or (7.20))

fails then we skip the stopping criterion check and continue iterating. Note that since (1− ε) <

1 < (1 + ε), the condition (7.18) results in fewer false positives than the condition (7.20). On

the other hand, the condition (7.20) is expected to results in fewer false negatives than the

condition (7.18). The choice of either alternative is dependent on one’s requirements, resources

and the application on hand.

The stopping criterion step can be performed in the same way as the uncertainty check but

potentially with higher certainty in the outcome. In other words, for the stopping criterion we

can choose a smaller δ, resulting in a larger sample size nt satisfying nt > nu, and check for

satisfaction of either

φ̂(mk+1, nt) ≤ (1− ε)ρ, (7.21a)

or

φ̂(mk+1, nt) ≤ (1 + ε)ρ. (7.21b)

Clearly the condition (7.21b) is a softer than (7.21a): a successful (7.21b) is only necessary

and not sufficient for concluding that (3.3) holds with the prescribed probability.

122



7.2. Quantifying the Uncertainty in Randomized Algorithms

In practice, when the value of the stopping criterion threshold, ρ, is not exactly known (it

is often crudely estimated using the measurements), one can reflect such uncertainty in ρ by

choosing an appropriately large δ. Smaller values of δ reflect a higher certainty in ρ and a more

rigid stopping criterion.

Remarks:

(i) If ε is large then using (7.21a), one might run the risk of over-fitting. Similarly, us-

ing (7.21b) with large ε, there is a risk of under-fitting. Thus, appropriate values of ε

need to be considered in accordance with the application and one’s computational re-

sources and experience.

(ii) The same issues regarding large ε arise when employing the uncertainty check condi-

tion (7.18) (or (7.20)): large ε might increase the frequency of false negatives (or posi-

tives).

7.2.3 Algorithm

We now present an extension of Algorithm 2 for approximately solving NLS formulations of (1.6)

or (1.7). By performing cross validation, uncertainty check and stopping criterion as descried

in Section 7.2.1 and Section 7.2.2, we can devise 8 variants of Algorithm 4 below. Depending

on the application, the variant of choice can be selected appropriately. More specifically, cross

validation, uncertainty check and stopping criterion can, respectively, be chosen to be one of

the following combinations (referring to their equation numbers):

(i) (7.14 - 7.18 - 7.21a) (ii) (7.14 - 7.18 - 7.21b)

(iii) (7.14 - 7.20 - 7.21a) (iv) (7.14 - 7.20 - 7.21b)

(v) (7.16 - 7.18 - 7.21a) (vi) (7.16 - 7.18 - 7.21b)

(vii) (7.16 - 7.20 - 7.21a) (viii) (7.16 - 7.20 - 7.21b)

Remark:

(i) The sample size, nk, used in the fitting step of Algorithm 4 could in principle be de-

termined by Corollary 7.3, using a pair of tolerances (εf , δf ). If cross validation (7.14)

(or (7.16)) fails, the tolerance pair (εf , δf ) is reduced to obtain, in the next iteration, a
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larger fitting sample size, nk+1. This would give a sample size which yields a quantifiable

approximation with a desired relative accuracy. However, in the presence of all the added

safety steps described in this section, we have found in practice that Algorithm 4 is capa-

ble of producing a satisfying recovery, even with a significantly smaller nk than the one

predicted by Corollary 7.3. Thus, the “how” of the fitting sample size increase is left to

heuristic (as opposed to its “when”, which is quantified as described in Section 7.2.1).

(ii) In the algorithm below, we only consider fixed values (i.e., independent of k) for ε and δ.

One can easily modify Algorithm 4 to incorporate non-stationary values which adapt to

the iteration process, as mentioned in the closing remark of Section 7.2.1.

In Algorithm 4, when we draw vectors wi for some purpose, we always draw them independently

from the standard normal distribution.

7.3 Numerical Experiments

In this section, we numerically demonstrate the efficacy of Algorithm 4 by applying it to the

important class of problems described in Section 1.1.2: large scale PDE constrained inverse

problems with many measurements. We show below the capability of our method by applying

it to such examples in the context of the DC resistivity/EIT problem (see Section 3.3.1), as in

Chapters 3 and 4 as well as [46, 70, 71, 111].

We consider the forward operators as defined in (1.5) where the linearity assumption (A.2)

is satisfied (i.e., the locations where data are measured do not change from one experiment

to another, i.e., P = Pi,∀i). Hence, we can use Algorithm 4 to efficiently recover m and be

quantifiably confident in the recovered model. If the Pi’s are different across experiments, it

might be possible to use methods such as the ones introduced in Chapter 4 or [70] to extend

the existing data set to one where all sources share the same receivers. Using these methods

(when they apply!), one can effectively restore the linearity assumption (A.2) and transform

the problem (1.4) to (1.5), for which Algorithm 4 can be employed.

Considering the inverse problem with the PDE model (3.5), below we give two examples,

each having a piecewise constant “exact solution”, or “true model”, used to synthesize data:
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Algorithm 4 Solve NLS formulation of (1.6) (or (1.7)) using uncertainty check, cross validation
and cheap stopping criterion

Given: sources qi , i = 1, . . . , s, measurements di , i = 1, . . . , s, stopping criterion level ρ,
objective function sufficient decrease factor κ ≤ 1, pairs of small numbers (εc, δc), (εu, δu),
(εt, δt), and initial guess m0.
Initialize:
- m = m0 , n0 = 1
- Calculate the cross validation sample size, nc, as described in Section 7.2.1 with (εc, δc).
- Calculate the sample sizes for uncertainty check, nu, and stopping criterion, nt, as described
in Section 7.2.2 with (εu, δu) and (εt, δt), respectively.
for k = 0, 1, 2, · · · until termination do

Fitting:
- Draw wi , i = 1, . . . , nk.
- Approximate the misfit term and potentially its gradient in (1.6) or (1.7) using (2.3) with
the above weights and n = nk.
- Find an update for the objective function using the approximated misfit (2.3).
Cross Validation:
- Draw wi , i = 1, . . . , nc.
if (7.14) (or (7.16)) holds then

Uncertainty Check:
- Draw wi , i = 1, . . . , nu.
if (7.18) (or (7.20)) holds then

Stopping Criterion:
- Draw wi , i = 1, . . . , nt.
if (7.21a) (or (7.21b)) holds then

- Terminate
end if

end if
- Set nk+1 = nk.

else
- Sample Size Increase: for example, set nk+1 = min(2nk, s).

end if
end for

125



7.3. Numerical Experiments

(E.1) in our simpler model a target object with conductivity µt = 1 has been placed in a

background medium with conductivity µb = 0.1 (see Figure 7.4(a)); and

(E.2) in a slightly more complex setting a conductive object with conductivity µc = 0.01, as well

as a resistive one with conductivity µr = 1, have been placed in a background medium

with conductivity µb = 0.1 (see Figure 7.6(a)). Note that the recovery of the model in

Example (E.2) is more challenging than Example (E.1) since here the dynamic range of

the conductivity is much larger.

Details of the numerical setup for the following examples are given in Section 3.3.2.

Example (E.1)

We carry out the 8 variants of Algorithm 4 for the parameter values (εc, δc) = (0.05, 0.3),

(εu, δu) = (0.1, 0.3), (εt, δt) = (0.1, 0.1), and κ = 1. The resulting total count of PDE solves,

which is the main computational cost of the iterative solution of such inverse problems, is

reported in Tables 7.1 and 7.2. As a point of reference, we also include the total PDE count

using the “plain vanilla” stabilized Gauss-Newton method which employs the entire set of s

experiments at every iteration and misfit estimation task. The recovered conductivities are

displayed in Figures 7.5 and 7.7, demonstrating that employing Algorithm 4 can drastically

reduce the total work while obtaining equally acceptable reconstructions.

Vanilla (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

436,590 4,058 4,028 3,764 3,282 4,597 3,850 3,734 3,321

Table 7.1: Example (E.1). Work in terms of number of PDE solves for all variants of Algo-
rithm 4, described in Section 7.2.3 and indicated here by (i)–(viii). The “vanilla” count is also
given, as a reference.

For the calculations displayed here we have employed dynamical regularization [45, 132]. In

this method there is no explicit regularization term R(m) in (1.7) and the regularization is

done implicitly and iteratively.

The quality of reconstructions obtained by the various variants in Figure 7.5 is comparable

to that of the “vanilla” with s = 3, 969 in Figure 7.4(b). In contrast, employing only s = 49

data sets corresponding to similar experiments distributed over a coarser grid yields an inferior
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(a) (b) (c)

Figure 7.4: Example (E.1). Plots of log-conductivity: (a) True model; (b) Vanilla recovery with
s = 3, 969; (c) Vanilla recovery with s = 49. The vanilla recovery using only 49 measurement
sets is clearly inferior, showing that a large number of measurement sets can be crucial for
better reconstructions.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 7.5: Example (E.1). Plots of log-conductivity of the recovered model using the 8 variants
of Algorithm 4, described in Section 7.2.3 and indicated here by (i)–(viii). The quality of
reconstructions is generally comparable to that of plain vanilla with s = 3, 969 and across
variants.

reconstruction in Figure 7.4(c). The cost of this latter run is 5, 684 PDE solves, which is more

expensive than our randomized algorithms for the much larger s. Furthermore, comparing

Figures 7.4(b) and 7.5 to Figures 4.3 and 4.4 in Chapter 4, which shows similar results for

s = 961 data sets, we again see a relative improvement in reconstruction quality. All of this

goes to show that a large number of measurements s can be crucial for better reconstructions.

Thus, it is not the case that one can dispense with a large portion of the measurements and still

expect the same quality reconstructions. Hence, it is indeed useful to have algorithms such as

Algorithms 1, 2, 3, or 4 that, while taking advantage of the entire available data, can efficiently

carry out the computations and yet obtain credible reconstructions.
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We have resisted the temptation to make comparisons between values of φ(mk+1) and

φ̂(mk+1) for various iterates. There are two major reasons for that. The first is that φ̂ values

in bounds such as (7.14), (7.16), (7.18), (7.20) and (7.21) are different and are always compared

against tolerances in context that are based on noise estimates. In addition, the sample sizes

that we used for uncertainty check and stopping criteria, since they are given by Theorems 7.1

and 7.2, already determine how far the estimated misfit is from the true misfit. The second (and

more important) reason is that in such a highly diffusive forward problem as DC resistivity,

misfit values are typically far closer to one another than the resulting reconstructed models m

are. A good misfit is merely a necessary condition, which can fall significantly short of being

sufficient, for a good reconstruction; see [69] and Chapter 4.

Example (E.2)

Here we have imposed prior knowledge on the “discontinuous” model in the form of total

variation (TV) regularization [34, 38, 47]. Specifically, R(m) in (1.7) is the discretization of

the TV functional
∫

Ω |∇m(x)|. For implementation details of TV functional see Appendix A.5.

For each recovery, the regularization parameter, α, has been chosen by trial and error within

the range [10−6, 10−3] to visually yield the best quality recovery.

Vanilla (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

476,280 5,631 5,057 5,011 3,990 6,364 4,618 4,344 4,195

Table 7.2: Example (E.2). Work in terms of number of PDE solves for all variants of Algo-
rithm 4, described in Section 7.2.3 and indicated here by (i)–(viii). The “vanilla” count is also
given, as a reference.

Table 7.2 and Figures 7.6 and 7.7 tell a similar story as in Example (E.1). The quality of

reconstructions with s = 3, 969 by the various variants, displayed in Figure 7.7, is comparable

to that of the “vanilla” version in Figure 7.6(b), yet is obtained at only at a fraction (about

1%) of the cost. The “vanilla” solution for s = 49 displayed in Figure 7.6(c), costs 5, 978 PDE

solves, which again is a higher cost for an inferior reconstruction compared to our Algorithm 4.

It is clear from Tables 7.1 and 7.2 that for most of these examples, variants (i)–(iv) which

use the more aggressive cross validation (7.14) are at least as efficient as their respective coun-

terparts, namely, variants (v)–(viii) which use (7.16). This suggests that, sometimes, a more
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(a) (b) (c)

Figure 7.6: Example (E.2). Plots of log-conductivity: (a) True model; (b) Vanilla recovery with
s = 3, 969; (c) Vanilla recovery with s = 49. The vanilla recovery using only 49 measurement
sets is clearly inferior, showing that a large number of measurement sets can be crucial for
better reconstructions.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 7.7: Example (E.2). Plots of log-conductivity of the recovered model using the 8 variants
of Algorithm 4, described in Section 7.2.3 and indicated here by (i)–(viii). The quality of
reconstructions is generally comparable to each other and that of plain vanilla with s = 3, 969.

aggressive sample size increase strategy may be a better option; see also the numerical examples

in Chapter 3. Notice that for all variants, the entire cost of the algorithm is comparable to one

single evaluation of the misfit function φ(m) using the full data set!

7.4 Conclusions

In this chapter, we have proved tight necessary and sufficient conditions for the sample size,

n, required to reach, with a probability of at least 1 − δ, (one-sided) approximations, using

Gaussian estimator, for tr(A) to within a relative tolerance ε. All of the sufficient conditions

are computable in practice and do not assume any a priori knowledge about the matrix. If the
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Figure 7.8: Example (E.2). Growth of the fitting sample size, nk, as a function of the iteration
k, upon using cross validation strategies (7.14) and (7.16). The graph shows the fitting sample
size growth for variants (ii) and (vi) of Algorithm 4, as well as their counterparts, namely,
variants (vi) and (viii). Observe that for variants (ii) and (iv) where (7.14) is used, the fitting
sample size grows at a more aggressive rate than for variants (vi) and (viii) where (7.16) is
used.

rank of the matrix is known then the necessary bounds can also be computed in practice.

Subsequently, using these conditions, we have presented eight variants of a general-purpose

algorithm for solving an important class of large scale non-linear least squares problems. These

algorithms can be viewed as an extended version of those in Chapters 3 and 4, where the

uncertainty in most of the stochastic steps is quantified. Such uncertainty quantification allows

one to have better control over the behavior of the algorithm and have more confidence in the

recovered solution. The resulting algorithm is presented in Section 7.2.3.

Furthermore, we have demonstrated the performance of our algorithm using an important

class of problems which arise often in practice, namely, PDE inverse problems with many

measurements. By examining our algorithm in the context of the DC resistivity problem as an

instance of such class of problems, we have shown that Algorithm 4 can recover solutions with

remarkable efficiency. This efficiency is comparable to similar heuristic algorithms proposed in

Chapters 3 and 4. The added advantage here is that with the uncertainty being quantified, the

user can have more confidence in the approximate solution obtained by our algorithms.

Tables 7.1 and 7.2 show the amount of work (in PDE solves) of the 8 variants of our

algorithm. Compared to a similar algorithm which uses the entire data set, an efficiency im-
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provement by two orders of magnitude is observed. For most of the examples considered, the

same tables also show that the more aggressive cross validation strategy (7.14) is, at least, as

efficient as the more relaxed strategy (7.16). A thorough comparison of the behavior of these

cross validation strategies (and all of the variants, in general) on different examples and model

problems is left for future work.
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Chapter 8

Algorithms That Satisfy a Stopping

Criterion, Probably

Iterative numerical algorithms are typically equipped with a stopping criterion, where the iter-

ation process is terminated when some error or misfit measure is deemed to be below a given

tolerance. This is a useful setting for comparing algorithm performance, among other purposes.

However, in practical applications a precise value for such a tolerance is rarely known; rather,

only some possibly vague idea of the desired quality of the numerical approximation is at hand.

We discuss three case studies from different areas of numerical computation, where uncertainty

in the error tolerance value and in the stopping criterion is revealed in different ways. This

leads us to think of approaches to relax the notion of exactly satisfying a tolerance value.

We then concentrate on a probabilistic relaxation of the given tolerance. Relaxing the notion

of an error tolerance in such a way allows the development of theory towards an uncertainty

quantification of Monte Carlo methods (e.g., [2, 22, 84, 87, 138]). For example, this allows

derivation of proven bounds on the sample size of certain Monte Carlo methods, as in Chapters 5

and 7. Such error relaxation was introduced in Chapter 7 and was incorporated in Algorithm 4.

We show that Algorithm 4 becomes more efficient in a controlled way as the uncertainty in

the tolerance increases, and we demonstrate this in the context of a class of inverse problems

discussed in Section 1.1.2.

8.1 Introduction

A typical iterative algorithm in numerical analysis and scientific computing requires a stopping

criterion. Such an algorithm involves a sequence of generated iterates or steps, an error toler-

ance, and a method to compute (or estimate) some quantity related to the error. If this error
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quantity is below the tolerance then the iterative procedure is stopped and success is declared.

The actual manner in which the error in an iterate is estimated can vary all the way from

being rather complex to being as simple as the normed difference between two consecutive

iterates. Further, the “tolerance” may actually be a set of values involving combinations of

absolute and relative error tolerances. There are several fine points to this, often application-

dependent, that are typically incorporated in mathematical software packages (see for instance

Matlab’s various packages for solving ordinary differential equation (ODE) or optimization

problems). That makes some authors of introductory texts devote significant attention to the

issue, while others attempt to ignore it as much as possible (cf. [14, 40, 80]). Let us choose here

the middle way of considering a stopping criterion in a general form

error estimate(k) ≤ ρ, (8.1)

where k is the iteration or step counter, and ρ > 0 is the tolerance, assumed given.

But now we ask, is ρ really given?! Related to this, we can also ask, to what extent is the

stopping criterion adequate?

� The numerical analyst would certainly like ρ to be given. That is because their job

is to invent new algorithms, prove various assertions regarding convergence, stability,

efficiency, and so on, and compare the new algorithm to other known ones for a similar

task. For the latter aspect, a rigid deterministic tolerance for a trustworthy error estimate

is indispensable.

Indeed, in research areas such as image processing where criteria of the form (8.1) do not

seem to capture certain essential features and the “eye norm” rules, a good comparison

between competing algorithms can be far more delicate. Moreover, accurate comparisons

of algorithms that require stochastic input can be tricky in terms of reproducing claimed

experimental results.

� On the other hand, a practitioner who is the customer of numerical algorithms, applying

them in the context of some complicated practical application that needs to be solved,

will more often than not find it very hard to justify a particular choice of a precise value
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for ρ in (8.1).

Our first task in what follows is to convince the reader that often in practice there is a

significant uncertainty in the actual selection of a meaningful value for the error tolerance ρ, a

value that must be satisfied. Furthermore, numerical analysts are also subconsciously aware of

this fact of life, even though in most numerical analysis papers such a value is simply given, if

at all, in the numerical examples section. Three typical yet different classes of problems and

methods are considered in Section 8.2.

Once we are all convinced that there is usually a considerable uncertainty in the value of

ρ (hence, we only know it “probably”), the next question is what to do with this notion. The

answer varies, depending on the particular application and the situation at hand. In some cases,

such as that of Section 8.2.1, the effective advice is to be more cautious, as mishaps can happen.

In others, such as that of Section 8.2.2, we are simply led to acknowledge that the value of ρ

may come from thin air (though one then concentrates on other aspects). But there are yet

other classes of applications and algorithms, such as in Section 8.2.3, for which it makes sense

to attempt to quantify the uncertainty in the error tolerance ρ using a probabilistic framework.

We are not proposing here to propagate an entire probability distribution for ρ: that would be

excessive in most situations. But we do show, by studying an instance extended to a wide class

of problems, that employing such a framework can be practical and profitable.

Following Section 8.2.3 we therefore consider in Section 8.3 a particular manner of relaxing

the notion of a deterministic error tolerance, introduced in Chapter 7, by allowing an estimate

such as (8.1) to hold only within some given probability. Some numerical examples are given

to illustrate these ideas. Conclusions and some additional general comments are offered in

Section 8.4.

8.2 Case Studies

In this section we consider three classes of problems and associated algorithms, in an attempt

to highlight the use of different tests of the form (8.1) and in particular the implied level of

uncertainty in the choice of ρ.
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8.2.1 Stopping Criterion in Initial Value ODE Solvers

Using a case study, we show in this section that numerical analysts, too, can be quick to not

consider ρ as a “holy constant”: we adapt to weaker conditions in different ways, depending on

the situation and the advantage to be gained in relaxing the notion of an error tolerance.

Let us consider an initial value ODE system in “time” t, written as

du

dt
= f(t,u), 0 ≤ t ≤ b, (8.2a)

u(0) = v0, (8.2b)

with v0 a given initial value vector. A typical adaptive algorithm proceeds to generate pairs

(ti,vi), i = 0, 1, 2, . . . , N , in N consecutive steps, thus forming a mesh π such that

π : 0 = t0 < t1 < · · · < tN−1 < tN = b,

and vi ≈ u(ti), i = 1, . . . , N .

Denoting the numerical solution on the mesh π by vπ, and the restriction of the exact ODE

solution to this mesh by uπ, there are two general approaches for controlling the error in such

an approximation.

� Given a tolerance value ρ, keep estimating the global error and refining the mesh (i.e., the

gamut of step sizes) until roughly

‖vπ − uπ‖∞ ≤ ρ. (8.3)

Details of such methods can be found, for instance, in [17, 37, 74, 82].

In (8.3) we could replace the absolute tolerance by a combination of absolute and relative

tolerances, perhaps even different ones for different ODE equations. But that aspect is

not what we concentrate on in this chapter.

� However, most general-purpose ODE codes estimate a local error measure for (8.1) instead,

and refine the step size locally. Such a procedure advances one step at a time, and

estimates the next step size using local information related to the local truncation error,
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or simply the difference between two approximate solutions for the next time level, one

of which presumed to be significantly more accurate than the other.9 For details see [17,

74, 75] and many references therein. In particular, the popular Matlab codes ode45 and

ode23s use such a local error control.

The reason for employing local error control is that this allows for developing a much cheaper

and yet more sensitive adaptive procedure, an advantage that cannot be had, for instance, for

general boundary value ODE problems; see, e.g., [16].

But does this always produce sensible results?! The answer to this question is negative. A

simple example to the contrary is the problem

du

dt
= 100(u− sin t) + cos t, u(0) = 0, b = 1.

Local truncation (or discretization) errors for this unstable initial value ODE propagate like

exp(100t), a fact that is not reflected in the local behaviour of the exact solution u(t) = sin t

on which the local error control is based. Thus, we may have a large error ‖vπ − uπ‖∞ even if

the local error estimate is bounded by ρ for a small value of ρ.

Local error control can be dangerous even for a stable ODE system

Still one can ask, are we safe with local error control in case that we know that our ODE

problem is stable? Here, by “safe” we mean that the global error will not be much larger than

the local truncation error in scaled form. The answer to this more subtle question turns out to

be negative as well. The essential point is that the global error consists of an accumulation of

contributions of local errors from previous time steps. If the ODE problem is asymptotically

stable (typically, because it describes a damped motion) then local error contributions die away

as time increases, often exponentially fast, so at some fixed time only the most recent local

error contributions dominate in the sum of contributions that forms the global error. However,

if the initial value ODE problem is merely marginally stable (which is the case for Hamiltonian

9 Recall that the local truncation error at some time t = ti is the amount by which the exact solution uπ

fails to satisfy the scheme that defines vπ at this point. Furthermore, if at ti, using the known vi and a guess
for ti+1, we apply one step of two different Runge-Kutta methods of orders 4 and 5, say, then the difference of
the two results at ti+1 gives an estimate for the error in the lower order method over this mesh subinterval.
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systems) then local error contributions propagate undamped, and their accumulation over many

time steps can therefore be significantly larger than just one or a few such errors.10

For a simple concrete example, consider applying ode45 with default tolerances to find the

linear oscillator with a slowly varying frequency that satisfies the following initial value ODE

for p(t):

dq

dt
= λ2p, q(0) = 1,

dp

dt
= −(1 + t)2q, p(0) = 0.

Here λ > 0 is a given parameter. Thus, u = (q, p)T in the notation of (8.2). This is a

Hamiltonian system, with the Hamiltonian function given by

H(q, p, t) =
1

2

[
((1 + t)q)2 + (λp)2

]
.

Now, since the ODE is not autonomous, the Hamiltonian is not constant in time. However, the

adiabatic invariant

J(q, p, t) = H(q, p, t)/(1 + t)

(see, e.g., [18, 97]) is almost constant for large λ, satisfying

[J(t)− J(0)]/J(0) = O(λ−1)

over the interval [0, 1]. This condition means in particular that for λ� 1 and the initial values

given above, J(1) = J(0) +O(λ−1) ≈ J(0).

Figure 8.1 depicts two curves approximating the adiabatic invariant for λ = 1000. Displayed

are the calculated curve using ode45 with default tolerances (absolute=1.e-6, relative=1.e-3),

as well as what is obtained upon using ode45 with the stricter relative tolerance RelTol=1.e-6.

From the figure it is clear that when using the looser tolerance, the resulting approximation for

J(1) differs from J(0) by far more than what λ−1 =1.e-3 and RelTol=1.e-3 would indicate, while

the stricter tolerance gives a qualitatively correct result, using the “eye norm”. Annoyingly,

10The local error control basically seeks to equalize the magnitude of such local errors at different time steps.
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Figure 8.1: Adiabatic invariant approximations obtained using Matlab’s package ode45 with
default tolerances (solid blue) and stricter tolerances (dashed magenta).

the qualitatively incorrect result does not look like “noise”: while not being physical, it looks

downright plausible, and hence could be misleading for an unsuspecting user. Adding to the

pain is the fact that this occurs for default tolerance values, an option that a vast majority of

users would automatically select. �

A similar observation holds when trying to approximate the phase portrait or other prop-

erties of an autonomous Hamiltonian ODE system over a long time interval using ode45 with

default tolerances: this may produce qualitatively wrong results. See for instance Figures 16.12

and 16.13 in [14]: the Fermi-Pasta-Ulam problem solved there is described in detail in Chapter 1

of [73]. What we have just shown here is that the phenomenon can arise also for a very modest

system of two linear ODEs that do not satisfy any exact invariant.

We hasten to add that the documentation of ode45 (or other such codes) does not propose

to deliver anything like (8.3). Rather, the tolerance is just a sort of a knob that is turned to

control local error size. However, this does not explain the popularity of such codes despite

their limited offers of assurance in terms of qualitatively correct results.

Our key point in the present section is the following: we propose that one reason for the

popularity of ODE codes that use only local error control is that in applications one rarely
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knows a precise value for ρ as used in (8.3) anyway. (Conversely, if such a global error tolerance

value is known and is important then codes employing a global error control, and not ode45,

should be used.) Opting for local error control over global error control can therefore be seen

as one specific way of adjusting mathematical software in a deterministic sense to realistic

uncertainties regarding the desired accuracy.

8.2.2 Stopping Criterion in Iterative Methods for Linear Systems

In this case study, extending basic textbook material, we argue not only that tolerance values

used by numerical analysts are often determined solely for the purpose of the comparison of

methods (rather than arising from an actual application), but also that this can have unexpected

effects on such comparisons.

Consider the problem of finding u satisfying

Au = b, (8.4)

where A is a given s× s symmetric positive definite matrix such that one can efficiently carry

out matrix-vector products Av for any suitable vector v, but decomposing the matrix directly

(and occasionally, even looking at its elements) is too inefficient and as such is “prohibited”.

We relate to such a matrix as being given implicitly. The right hand side vector b is given as

well.

An iterative method for solving (8.4) generates a sequence of iterates u1,u2, . . . ,uk, . . . for

a given initial guess u0. Denote by rk = b−Auk the residual in the kth iterate. The MINRES

method, or its simpler version Orthomin(2), can be applied to reduce the residual norm so that

‖rk‖2 ≤ ρ‖r0‖2 (8.5)

in a number of iterations k that in general is at worst O
(√

κ(A)
)

, where κ(A) = ‖A‖2‖A−1‖2

is the condition number of the matrix A. Below in Table 8.1 we refer to this method as MR.

The more popular conjugate gradient (CG) method generally performs comparably in practice.

We refer to [67] for the precise statements of convergence bounds and their proofs.
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A well-known and simpler-looking family of gradient descent methods is given by

uk+1 = uk + αkrk, (8.6)

where the scalar αk > 0 is the step size. Such methods have recently come under intense

scrutiny because of applications in stochastic programming and sparse solution recovery. Thus,

it makes sense to evaluate and understand them in the simplest context of (8.4), even though

it is commonly agreed that for the strict purpose of solving (8.4) iteratively, CG cannot be

significantly beaten. Note that (8.6) can be viewed as forward Euler for the artificial time ODE

du

dt
= −Au + b, (8.7)

with “time” step size αk. Next we consider two choices of this step size.

The steepest descent (SD) variant of (8.6) is obtained by the greedy (exact) line search for

the function

f(u) =
1

2
uTAu− bTu,

which gives

αk = αSDk =
rTk rk

rTkArk
≡ (rk, rk)

(rk, Ark)
≡ ‖rk‖

2
2

‖rk‖2A
.

However, SD is very slow, requiring k in (8.5) to be proportional to κ(A); see, e.g., [3].11

A more enigmatic choice in (8.6) is the lagged steepest descent (LSD) step size

αk = αLSDk =
(rk−1, rk−1)

(rk−1, Ark−1)
.

It was first proposed in [24] and practically used for instance in [27, 42]. To the best of our

knowledge, there is no known a priori bound on how many iterations as a function of κ(A) are

11 The precise statement of error bounds for CG and SD in terms of the error ek = u− uk uses the A-norm,
or “energy norm”, and reads

‖ek‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖e0‖A, for CG,

‖ek‖A ≤
(
κ(A)− 1

κ(A) + 1

)k
‖e0‖A, for SD.

See [67].
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required to satisfy (8.5) with this method [24, 45, 59, 112].

We next compare these four methods in a typical fashion for a typical PDE example, where

we consider the model Poisson problem

−∆u = 1, 0 < x, y < 1,

subject to homogeneous Dirichlet BC, and discretized by the usual 5-point difference scheme

on a
√
s ×
√
s uniform mesh. Denote the reshaped vector of mesh unknowns by u ∈ IRs. The

largest eigenvalue of the resulting matrix A in (8.4) is λmax = 4h−2(1 + cos(πh)), and the

smallest is λmin = 4h−2(1 − cos(πh)), where h = 1/(
√
s + 1). Hence by Taylor expansion of

cos(πh), for h� 1 the condition number is essentially proportional to s:

κ(A) =
λmax

λmin
≈
(

2

π

)2

s.

In Table 8.1 we list iteration counts required to satisfy (8.5) with ρ = 10−7, starting with

u0 = 0.

s MR CG SD LSD

72 9 9 196 45
152 26 26 820 91
312 54 55 3,337 261
632 107 109 13,427 632

1272 212 216 53,800 1,249

Table 8.1: Iteration counts required to satisfy (8.5) for the Poisson problem with tolerance
ρ = 10−7 and different mesh sizes s.

But now, returning to the topic of the present chapter, we ask, why insist on ρ = 10−7?

Indeed, the usual observation that one draws from the columns of values for MR, CG and SD

in a table such as Table 8.1, is that the first two grow like
√
κ(A) ∝

√
s while the latter grows

like κ(A) ∝ s. The value of ρ, so long as it is not too large, does not matter at all!

And yet, this is not quite the case for the LSD iteration counts. These do not decrease in

the same orderly fashion as the others, even though they are far better (in the sense of being

significantly smaller) than those for SD. Indeed, this method is chaotic [45], and the residual
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(a) Residuals (b) Step sizes

Figure 8.2: Relative residuals and step sizes for solving the model Poisson problem using LSD
on a 15× 15 mesh. The red line in (b) is the forward Euler stability limit.

norm decreases rather non-monotonically, see Figure 8.2(a). Thus, the iteration counts in

Table 8.1 correspond to the iteration number k = k∗ where the rough-looking relative residual

norm first records a value below the tolerance ρ. Unlike the other three methods, here the

particular value of the tolerance, picked out of nowhere, does play an unwanted role in the

relative values, as a function of s, or κ(A), of the listed iteration counts.

8.2.3 Data Fitting and Inverse Problems

In the previous two case studies we have encountered cases where the intuitive use of an error

tolerance within a stopping criterion could differ widely (and wildly) from the notion that is

embodied in (8.1) for the consumer of numerical analysts’ products. We next consider a family

of problems where the value of ρ in a particular criterion (8.1) is more directly relevant.

Suppose we are given observed data d ∈ IRl and a forward operator fi(m), i = 1, . . . , l, which

provides predicted data for each instance of a distributed parameter function m. The (unknown)

function m is defined in some domain Ω in physical space and possibly time. We are particularly

interested here in problems where f involves the solution u in Ω of some linear PDE system,

sampled in some way at the points where the observed data are provided; see Section 1.1.2.

Further, for a given mesh π discretizing Ω, we consider a corresponding discretization (i.e.,

nodal representation) of m and u, as well as the differential operator. Reshaping these mesh

functions into vectors we can write the resulting approximation of the forward operator as (1.5),

142



8.2. Case Studies

namely

f(m,q) = Pu = PL−1(m)q, (8.8)

where the right hand side vector q is commonly referred to as a source, L is a square matrix

discretizing the PDE operator plus appropriate side conditions, u = L−1(m)q is the field (i.e.,

the PDE solution, here an interim quantity), and P is a projection matrix that projects the

field to the locations where the data values d are given.

This setup is typical in the thriving research area of inverse problems; see, e.g., [52, 135]. A

specific example is provided in Section 8.3.

The inverse problem is to find m such that the predicted and observed data agree to within

noise η: ideally,

d = f(m,q) + η. (8.9)

To obtain such a model m that satisfies (8.9) we need to estimate the misfit function φ(m),

i.e., the normed difference between observed data d and predicted data f(m). An iterative

algorithm is then designed to sufficiently reduce this misfit function. But, which norm should

we use to define the misfit function?

It is customary to conveniently assume that the noise satisfies η ∼ N (0, σI), i.e., that the

noise is normally distributed with a scaled identity for the covariance matrix, where σ is the

standard deviation. Then the maximum likelihood (ML) data misfit function is simply the

squared `2-norm12

φ(m) = ‖f(m)− d‖22. (8.10)

In this case, the celebrated Morozov discrepancy principle yields the stopping criterion

φ(m) ≤ ρ, where ρ = σ2l, (8.11)

see, e.g., [52, 91, 107]. So, here is a class of problems where we do have a meaningful and

12 For a more general symmetric positive definite covariance matrix Σ, such that η ∼ N (0,Σ), we get weighted
least squares, or an “energy norm”, with the weight matrix Σ−1 for φ. But let’s not go there in this chapter.
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directly usable tolerance value!

Assuming that a known tolerance ρ must be satisfied as in (8.11) is often too rigid in

practice, because realistic data do not quite satisfy the assumptions that have led to (8.11)

and (8.10). Well-known techniques such as L-curve and GCV (see, e.g., [65, 79, 135]) are

specifically designed to handle more general and practical cases where (8.11) cannot be used or

justified. Also, if (8.11) is used then a typical algorithm would try to find m such that φ(m)

is (smaller but) not much smaller than ρ, because having φ(m) too small would correspond to

fitting the noise – an effect one wants to avoid. The latter argument and practice do not follow

from (8.11).

Moreover, keeping the misfit function φ(m) in check does not necessarily imply a quality

reconstruction (i.e., an acceptable approximation m for the “true solution” m∗, which can be

an elusive notion in itself). However, φ(m), and not direct approximations of ‖m∗−m‖, is what

one typically has to work with.13 So any additional a priori information is often incorporated

through some regularization.

Still, despite all the cautious comments in the preceding two paragraphs, we have in (8.11)

in a sense a more meaningful practical expression for stopping an iterative algorithm than

hitherto.

Typically there is a need to regularize the inverse problem, and often this is done by adding

a regularization term to (8.10). Thus, one attempts to approximately solve the Tikhonov-type

problem

min
m

φ(m) + αR(m),

where R(m) ≥ 0 is a prior (we are thinking of some norm or semi-norm of m), and α ≥ 0 is a

regularization parameter.

A fourth case study is the one that this thesis concentrates on, namely, the extension of

Case Study 8.2.3 to problems with many data sets to which the additional approximation

using Monte-Carlo sampling is applied. Of course, our uncertainty in the error criterion and

13 The situation here is different from that in Section 8.2.1, where the choice of local error criterion over a
global one was made based on convenience and efficiency considerations. Here, although controlling φ(m) is
merely a necessary and not sufficient condition for obtaining a quality reconstruction m, it is usually all we have
to work with.
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specifically the error tolerance, if anything, increases even further here. On the other hand,

unlike in the previous case studies where we only call for increased alertness and additional

caution regarding the error tolerance, here we have the framework to quantify uncertainty

and as such we can obtain more efficient algorithms for problems with more such uncertainty.

Satisfying the tolerance only probably thus leads to cheaper computations in a disciplined

manner.

8.3 Probabilistic Relaxation of a Stopping Criterion

The previous section details three different case studies which highlight the fact of life that in

applications an error tolerance for stopping an algorithm is rarely known with absolute certainly.

Thus, we can say that such a tolerance is only “probably” known. Yet in some situations, it

is also possible to assign it a more precise meaning in terms of statistical probability. This

holds true for the problems considered in this thesis, namely extensions of Case Study 8.2.3 to

problems with many data. Thus, one can consider a way to relax (8.1), which is more systematic

and also allows for further theoretical developments. Specifically, we consider satisfying a

tolerance in a probabilistic sense, as proposed in Section 7.2.2.

Thus, according to (7.2), in the check for termination of our iterative algorithm at the next

iterate mk+1, we consider replacing the condition (3.3), namely

φ(mk+1) ≤ ρ

by either (7.21a) or (7.21b), namely

φ̂(mk+1, nt) ≤ (1− ε)ρ, or

φ̂(mk+1, nt) ≤ (1 + ε)ρ,

for a suitable n = nt that is governed by Theorems 7.1 or 7.2 with a prescribed pair (ε, δ).

If (7.21a) holds, then it follows with a probability of at least (1 − δ) that (3.3) holds. On the

other hand, if (7.21b) does not hold, then we can conclude with a probability of at least (1− δ)

that (3.3) is not satisfied. In other words, unlike (7.21a), a successful (7.21b) is only necessary
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and not sufficient for concluding that (3.3) holds with the prescribed probability 1− δ.

What are the connections among these three parameters, ρ, δ and ε?! The parameter ρ is

the deterministic but not necessarily too trustworthy error tolerance appearing in (3.3), much

like the tolerance in Section 8.2.1. Next, we can reflect the uncertainty in the value of ρ by

choosing an appropriately large δ (≤ 1). Smaller values of δ reflect a higher certainty in ρ

and a more rigid stopping criterion (translating into using a larger nt). For instance, success

of (7.21a) is equivalent to making a statement on the probability that a positive “test” result

will be a “true” positive. This is formally given by the conditional probability statement

Pr
(
φ(mk+1) ≤ ρ | φ̂(mk+1, nt) ≤ (1− ε)ρ

)
≥ 1− δ.

Note that, once the condition in this statement is given, the rest only involves ρ and δ. So the

tolerance ρ is augmented by the probability parameter δ. The third parameter ε governs the

false positives/negatives (i.e., the probability that the test will yield a positive/negative result,

if in fact (3.3) is false/true), where a false positive is given by

Pr
(
φ̂(mk+1, nt) ≤ (1− ε)ρ | φ(mk+1) > ρ

)
,

while a false negative is

Pr
(
φ̂(mk+1, nt) > (1− ε)ρ | φ(mk+1) ≤ ρ

)
.

Such probabilistic stopping criterion is incorporated in Algorithm 4 in Chapter 7 and, there,

various numerical examples are given to illustrate these ideas on a concrete application. Here,

employing Algorithm 4 again, we give some more examples with the same setup as that of

Example (E.2) in Chapter (7), but instead of TV, we use dynamical regularization. Note again

that the large dynamical range of the conductivities, together with the fact that the data is

available only on less than half of the boundary, contribute to the difficulty in obtaining good

quality reconstructions. The term “Vanilla” refers to using all s available data sets for each

task during the algorithm. This costs 527,877 PDE solves14 for s = 3, 969 (b) and 5,733 PDE

14Fortunately, the matrix L does not depend on i in (1.4). Hence, if the problem is small enough that a direct
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(a) (b) (c)

(d)

Figure 8.3: Plots of log-conductivity: (a) True model; (b) Vanilla recovery with s = 3, 969; (c)
Vanilla recovery with s = 49; (d) Monte Carlo recovery with s = 3, 969. The vanilla recovery
using only 49 measurement sets is clearly inferior, showing that a large number of measurement
sets can be crucial for better reconstructions. The recovery using our algorithm, however, is
comparable in quality to Vanilla with the same s. The quantifier values used in our algorithm
were: (εc, δc) = (0.05, 0.3), (εu, δu) = (0.1, 0.3) and (εt, δt) = (0.1, 0.1).

solves for s = 49 (c). However, the quality of reconstruction using the smaller number of data

sets is clearly inferior. On the other hand, using our algorithm yields a recovery (d) that is

comparable to Vanilla but at the cost of only 5,142 PDE solves. The latter cost is about 1%

that of Vanilla and is comparable in order of magnitude to that of evaluating φ(m) once!

8.3.1 TV and Stochastic Methods

This section is not directly related to the main theme of this chapter, but it arises from the

present discussion and should have merit on its own (in addition to being mercifully short).

The specific example considered above is used also in Chapter 7, except that the objective

function there includes a total variation (TV) regularization. This represents usage of additional

a priori information (namely, that the true model is discontinuous with otherwise flat regions),

whereas here an implicit `2-based regularization has been employed without such knowledge

regarding the true solution. The results in Figures 7.6(b) and 7.7(vi) there correspond to

method can be used to construct G, i.e., perform one LU decomposition at each iteration k, then the task of
solving half a million PDEs just for comparison sake becomes less daunting.
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our Figures 8.3(b) and 8.3(d), respectively, and as expected, they look sharper in Chapter 7.

On the other hand, a comparative glance at Figure 7.6(c) there vs the present Figure 8.3(c)

reveals that the `1-based technique can be inferior to the `2-based one, even for recovering

a piecewise constant solution! Essentially, even for this special solution form TV shines only

with sufficiently good data, and here “sufficiently good” translates to “many data sets”. This

intuitively obvious observation does not appear to be as well-known today as it used to be [47].

8.4 Conclusions

Mathematical software packages typically offer a default option for the error tolerances used

in their implementation. Users often select this default option without much further thinking,

at times almost automatically. This in itself suggests that practical occasions where the prac-

titioner does not really have a good hold of a precise tolerance value are abundant. However,

since it is often convenient to assume having such a value, and convenience may breed compla-

cency, surprises may arise. We have considered in Section 8.2 three case studies which highlight

various aspects of this uncertainty in a tolerance value for a stopping criterion.

Recognizing that there can often be a significant uncertainty regarding the actual tolerance

value and the stopping criterion, we have subsequently considered the relaxation of the setting

into a probabilistic one, and demonstrated its benefit in the context of large scale problems

considered in this thesis. The environment defined by probabilistic relative accuracy, such

as (7.2), although well-known in other research areas, is relatively new (but not entirely untried)

in the numerical analysis community. It allows, among other benefits, specifying an amount of

trust in a given tolerance using two parameters that can be tuned, as well as the development of

bounds on the sample size of certain Monte Carlo methods. In Section 8.3, following Chapter 7,

we have applied this setting in the context of a particular inverse problem involving the solution

of many PDEs, and we have obtained some uncertainty quantification for a rather efficient

algorithm solving a large scale problem.

There are several aspects of our topic that remain untouched in this chapter. For instance,

there is no discussion of the varying nature of the error quantity that is being measured (which

strongly differs across the subsections of Section 8.2, from solution error through residual error
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through data misfit error for an ill-posed problem to stochastic quantities that relate even less

closely to the solution error). Also, we have not mentioned that complex algorithms often involve

sub-tasks such as solving a linear system of equations iteratively, or employing generalized cross

validation (GCV) to obtain a tolerance value, or invoking some nonlinear optimization routine,

which themselves require some stopping criterion: thus, several occurrences of tolerances in

one solution algorithm are common. In the probabilistic sections, we have made the choice of

concentrating on bounding the sample size n and not, for example, on minimizing the variance

as in [86].

What we have done here is to highlight an often ignored yet rather fundamental issue from

different angles. Subsequently, we have pointed at and demonstrated a promising approach (or

direction of thought) that is not currently common in the scientific computing community.
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Chapter 9

Summary and Future Work

Efficiently solving large scale non-linear inverse problems of the form described in Section 1.1 is

indeed a challenging problem. Large scale, within the context we aimed to study in this thesis,

implies that we are given a very large number of measurement vectors, i.e., s � 1. For many

instances of such problems, there are theoretical reasons for requiring large amounts of data for

obtaining any credible reconstruction. For many others, it is an accepted working assumption

that having more data can only help and not hurt the conditioning of the problem being solved.

As such, methods for efficiently solving such problems are highly sought after in practice. In

this thesis, we have proposed highly efficient randomized reconstruction algorithms for solving

such problems. we have also demonstrated both the efficacy and the efficiency of the proposed

algorithms in the context of an important class of such problems, namely PDE inverse problems

with many measurements. As a specific instance, we used the famous and notoriously difficult

DC resistivity problem.

Each chapter of this thesis contains conclusions and future research directions specic to that

particular line of research; here we present an overall summary and some more topics for future

research, not mentioned earlier.

9.1 Summary

In Chapter 2, various dimensionality reduction (i.e., approximation) methods were presented to

deal with computational challenges arising from evaluating the misfit (1.6). All these methods

consist of sampling the large dimensional data and creating a new set of lower dimensional data

for which computations can be done more efficiently. Such sampling can be done either (i)

stochastically or (ii) deterministically. We showed that stochastic sampling results in an unbi-

ased estimator of the original misfit (1.6), and as such, the misfit itself is approximated. Main
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examples of appropriate distributions for stochastic estimations were discussed: Rademacher,

Gaussian and Random Subset. In cases where the underlying forward operators satisfy Assump-

tions (A.1) - (A.3), we showed that the stochastic methods using the Rademacher or Gaussian

distribution result in the method of simultaneous sources (SS) and indeed yield very efficient

approximations (recall our definition of efficiency, in footnotes 4 and 6, in Chapter 2). In situ-

ations where Assumption (A.2) is violated, however, the method of random subset (RS) is the

only applicable estimator. On the other hand, our proposed method for deterministic sampling

is based on TSVD approximation of the matrix consisting of all measurement vectors. As such,

unlike the stochastic methods which approximate the misfit, the TSVD approach approximates

the data matrix, D in (1.6). If Assumptions (A.1) - (A.3) hold, such deterministic method,

similar to stochastic ones, yields another instance of SS methods.

In Chapter 3, continuing to make Assumptions (A.1) - (A.3), we developed and compared

several highly efficient stochastic iterative reconstruction algorithms for approximately solving

the (regularized) NLS formulation of aforementioned large scale data fitting problems. All

these iterative algorithms involve employing the dimensionality reduction techniques discussed

in Chapter 2. As such, at iteration k of our algorithms, the original s measurement vectors

are sampled and a new, yet smaller, set of nk measurement vectors with nk � s are formed.

Two reconstruction algorithms for controlling the size nk of the data set in the kth iteration

have been proposed and tested. We identified and justified three different purposes for such

the dimensionality reduction methods within various steps of our proposed algorithms, namely

fitting, cross validation and uncertainty check. Using the four methods of sampling the data

(i.e., three stochastic and one deterministic introduced in Chapter 2), our two algorithms make

for a total of eight algorithm variants. All of our algorithms are known to converge under

suitable circumstances because they satisfy the general conditions in [36, 60].

Chapter 4 is a sequel to Chapter 3 in which we relax the linearity assumption (A.2) and

propose methods that, where applicable, transform the problem into one where the linearity

assumption (A.2) is restored. Hence, efficient dimensionality reduction methods introduced in

Chapter 2 can be applied. In Chapter 4, we focus on a particular case where the linearity

assumption (A.2) is violated due to missing or corrupted data. Such situations arise often in

practice, and hence, it is desired to have methods to be able to apply variants of the efficient
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reconstruction algorithms presented in Chapter 3. The transformation methods presented in

Chapter 4 involve completion/replacement of the missing/corrupted portion of the data. These

methods are presented in the context of EIT/DC resistivity as an important class of PDE in-

verse problems; however, we believe that similar ideas can be applied in many more instances of

such problems. Our data completion/replacement methods are motivated by theory in Sobolev

spaces, regarding the properties of weak solutions along the domain boundary. Our methods

prove to be capable of effectively reconstructing the data in the presence of large amounts of

missing or corrupted data. Variants of efficient reconstruction algorithms, presented in Chap-

ter 3, are proposed and numerically verified. In addition to completion/replacement methods,

a heuristic and efficient alternative to the rigid stopping criterion (3.3) is given.

All of our proposed randomized dimensionality reduction methods rely heavily upon the

fundamental concept of estimating the trace of an implicit symmetric positive semi-definite

matrices using Monte Carlo methods. As such the question of accuracy and efficiency of our

stochastic approximation methods are tied with those of such trace estimators. In Chapter 5

this task is visited, and accuracy and efficiency of the randomized trace estimators are analyzed

using a suitable and intuitive probabilistic framework. Under such probabilistic framework, one

seeks conditions on the sample size required for these Monte-Carlo methods to probabilistically

guarantee estimate’s desired relative accuracy. In this chapter, conditions for all the distribu-

tions discussed in Section 2.1.1 are derived. In addition to practically computable conditions,

we also provide some uncomputable, yet informative, conditions which shed light on questions

regarding the type of matrices a particular distribution is best/least suited for. Part of the

theory presented in Chapter 5 is, subsequently, further improved in Chapter 7.

Chapter 6 is a precursor of Chapter 7. Specifically, the improvements in theoretical studies

of MC trace estimators presented in Chapter 7 are applications of more general results regarding

the extremal probabilities (i.e., maxima and minima of the tail probabilities) of non-negative

linear combinations (i.e., convolutions) of gamma random variables, which are proved in Chap-

ter 6. In addition, in Chapter 6, we prove results regarding the monotonicity of the regularized

gamma function. All these results are very general and have many applications in economics,

actuarial science, insurance, reliability and engineering.

The main advantage of any efficient (randomized) approximation algorithm is the reduction
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of computational costs. However, a major drawback of any such algorithm is the introduction of

“uncertainty” in the overall procedure. The presence of uncertainty in the approximation steps

could cast doubt on the credibility of the obtained results. Hence, it may be useful to have means

which allow one to adjust the cost and accuracy of such algorithms in a quantifiable way, and find

a balance that is suitable to particular objectives and computational resources. Chapter 7 offers

the uncertainty quantification of the major stochastic steps of our reconstruction algorithms

presented in Chapters 3 and 4. Such steps include the fitting, uncertainty check, cross validation

and stopping criterion. This results in highly efficient variants of our original algorithms where

the degree of uncertainty can easily be quantified and adjusted, if needed. Using the resulting

algorithm, one could, in a quantifiable way, obtain a desirable balance between the amount

of uncertainty and the computational complexity of the reconstruction algorithm. In order

to achieve this, we make use of similar probabilistic analysis as in Chapter 5. However, the

conditions presented in Chapter 5 are typically not sufficiently tight to be useful in many

practical situations. In Chapter 7, using the results of Chapter 6, we improve upon some of

the theory presented in Chapter 5. Specifically, in Chapter 7, we prove tight bounds for tail

probabilities for such Monte-Carlo approximations employing the standard normal distribution.

These tail bounds are then used to obtain necessary and sufficient bounds on the required sample

size, and we demonstrate that these bounds can be practically small and computable. Numerical

examples demonstrate the efficiency of our proposed uncertainty-quantified algorithm.

Numerical algorithms are typically equipped with a stopping criterion where the calculation

is terminated when some error or misfit measure is deemed to be below a given tolerance.

However, in practice such a tolerance is rarely known; rather, only some possibly vague idea

of the desired quality of the numerical approximation is available. In Chapter 8, we discuss

several case studies, from different areas of numerical analysis, where a rigid interpretation of

error criterion and tolerance may result in erroneous outcomes and conclusions. We discuss,

for instance, fast codes for initial value ODEs and DAEs, which heavily rely on the underlying

philosophy that satisfying a tolerance for the global error is too rigid a task; such codes proceed

to control just the local error. Another instance of soft error control is when a large, complicated

model for fitting data is reduced, say by a Monte Carlo sampling method as in previous chapters.

If calculating the misfit norm is in itself very expensive then the option of satisfying the stopping
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criterion only in a probabilistic sense naturally arises. This leads one to think of devising

approaches, where they are possible, to relax the notion of exactly satisfying a tolerance value.

In Chapter 8, we discuss this in the context of large scale PDE inverse problems described in

Section 1.1.2. Such probabilistic relaxation of the given tolerance in this context, allows, for

instance, for the use of the proven bounds in Chapters 5 and 7.

This thesis also includes an appendix. In Appendix A, certain implementation details are

given which are used throughout the thesis. Such details include discretization of the EIT/DC

resistivity problem in two and three dimensions, injection of a priori knowledge on the sought

parameter function via transformation functions in the original PDE, an overall discussion of

the (stabilized) Gauss-Newton algorithm for minimization of a least squares objective, a short

Matlab code which is used in Chapter 7 to compute the Monte-Carlo sample sizes employed

in matrix trace estimators, and finally the details of implementation and discretization of the

total variation functional used in some of the numerical examples in this thesis.

9.2 Future Work

At the end of each of Chapters 3, 4, 5, and 7, some general directions for future research,

related to the specific topics presented in the respective chapter, are discussed. In this section,

we present few more directions and ideas for further research, which arose as a result of the

work in this thesis. Time constraints did not allow for their full investigation in the present

study and they are left for future work. Some of these ideas are presented in their most general

form, while others are described more specifically.

9.2.1 Other Applications

The success of randomized approximation algorithms have only been thoroughly evaluated in

a handful of applications. However, it is widely believed that the application range of such

stochastic algorithms can be extended. There are many more important medical and geophys-

ical applications where the study of efficient randomized approximation algorithms requires

more concentrated effort. Such applications include large scale seismic data inversion in oil

exploration and medical imaging such as quantitative photoacoustic tomography, among many
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others. For many of these applications, one typically makes large amounts of measurements

and, hence, the model recovery is computationally very challenging. In addition, there are

unique challenges that arise as a result of the nature of each individual application. Within

the context of approximation algorithms, these challenges need to be individually investigated.

These might impose a wide range of difficulties, from a simple modification to the algorithms

in this thesis to devising completely new approaches.

9.2.2 Quasi-Monte Carlo and Matrix Trace Estimation

As shown in this thesis, within the context of large scale non-linear least squares problems,

efficiency in estimating the objective function (or the trace of the corresponding implicit matrix)

directly translates to efficiency in solving such large scale problems. In this thesis, it was shown

that, for such problems, naive randomized approximation techniques using simple Monte-Carlo

methods can have great success in designing highly efficient algorithms. Such Monte-Carlo

methods for estimating the trace of an implicit matrix was thoroughly studied in Chapters 5

and 7. As shown, the analysis is based on a probabilistic framework for which, given two

small tolerances (ε, δ), one obtains sufficient conditions on sample size in order to guarantee

that the probability of the relative accuracy being below ε is more than 1 − δ. However, it

has been shown in [137] that using simple Monte-Carlo methods, the true sample size grows

like Ω(ε−2). As such, for scenarios where an accurate estimation is required, such algorithms

might be completely inefficient and computationally expensive. And yet, it might be possible

to improve the bound Ω(ε−2) through the application of Quasi-Monte Carlo (QMC) methods,

where careful design of a sequence of correlated samples yields more accurate approximations,

at lower costs. The application of such QMC methods for efficiently solving large scale inverse

problems has not been greatly studied in the literature. Hence, the analysis and the practical

implementation of such new algorithms is an interesting topic for future research.

9.2.3 Randomized/Deterministic Preconditioners

In Chapter 5, it was shown that the “skewness” of eigenvalue distribution of a symmetric

positive semi-definite matrix greatly affects the performance and efficiency of the Gaussian

trace estimation. In other words, estimating the trace of a matrix whose eigenvalues are similar
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can be done more efficiently (i.e., with smaller sample size) than that for which the discrepancy

between the eigenvalues is large (i.e., eigenvalues are more skewed). A question arises whether

it is possible to find a randomized preconditioning scheme to balance the skewed eigenvalues of

a matrix while preserving the value of the trace. In other words, one may seek to find a random

matrix P such that PAP T has a more balanced eigenvalue distribution than A, yet we have

tr(A) = tr(PAP T ) (or tr(A) = E
[
tr(PAP T )

]
). Alternatively, one could look at deterministic

constructions such as the following formulation

min
P∈P
‖PAP T ‖22

s.t. tr(PAP T ) = tr(A)

where P is an appropriate space of non-orthogonal matrices. Minimizing ‖PAP T ‖22 translates

to minimizing the largest eigenvalue of PAP T , which given the constraint for the sum of eigen-

values, forces the eigenvalue distribution to be less skewed. If such a preconditioner exists, it

can, in addition, be adopted for preconditioning matrices in linear system solvers.
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Appendix A

Implementation Details

Here we describe the forward problem that yields the operators fi(m) of (1.4), and provide some

details on the stabilized GN iteration used in our numerical experiments. We also provide details

of discretization of the EIT/DC resistivity problem in two and three dimensions, injection of a

priori knowledge on the sought parameter function via transformation functions in the original

PDE, a short Matlab code which is used in Chapter 7 to compute the Monte-Carlo sample sizes

used in matrix trace estimators, and finally the details of implementation and discretization of

the total variation functional used in numerical examples in this thesis.

There is nothing strictly new here, and yet some of the details are both tricky and very

important for the success of an efficient code for computing reasonable reconstructions for this

highly ill-posed problem. It is therefore convenient to gather all these details in one place for

further reference.

A.1 Discretizing the Forward Problem

The PDE (3.5) is discretized on a staggered grid as described in [15] and in Section 3.1 of [13].

The domain is divided into uniform cells of side length h, and a cell-nodal discretization is

employed, where the field unknowns ui,j (or ui,j,k in 3D) are perceived to be located at the cell

corners (which are cell centers of the dual grid) while µi+1/2,j+1/2 values are at cell centers (cell

corners of the dual grid). For the finite volume derivation, the PDE (3.5a) is written first as

j = µ(x)∇u, x ∈ Ω, (A.1a)

∇ · j = q(x), x ∈ Ω, (A.1b)
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and then both first order PDEs are integrated prior to discretization. A subsequent, standard

removal of the constant null-space then results in the discretized problem (1.3).

In 2D, let us assume here for notational simplicity that the source q is a δ-function centred

at a point in the finite volume cell (i∗, j∗). The actual sources used in our experiments are

combinations of such functions, as detailed in Section 3.3.2, and the discretization described

below is correspondingly generalized in a straightforward manner. We write for the flux, v =

(vx, vy)T , expressions such as ux = µ−1vx at the eastern cell face x = xi+1/2. Setting

µ−1(xi+1/2, y) ≈ µ−1
i+1/2,j =

1

2

(
µ−1
i,j + µ−1

i+1,j

)
,

vxi+1/2,j = h−1

∫ yj+1/2

yj−1/2

vx(xi+1/2, y)dy,

and integrating yields

vxi+1/2,j = µi+1/2,j
ui+1,j − ui,j

h
.

Similar expressions are obtained at the other three faces of the cell. Then integrating (A.1b)

over the cell yields

[
µi+1/2,j(ui+1,j − ui,j)− µi−1/2,j(ui,j − ui−1,j)

+µi,j+1/2(ui,j+1 − ui,j)− µi,j−1/2(ui,j − ui,j−1)
]

=


1 if i = i∗ and j = j∗

0 otherwise

, 1 ≤ i, j ≤ 1/h. (A.2)

Repeating the process in 3D (with an obvious notational extension for the source location)
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yields the formula

h
[
µi+1/2,j,k(ui+1,j,k − ui,j,k)− µi−1/2,j,k(ui,j,k − ui−1,j,k)

+ µi,j+1/2,k(ui,j+1,k − ui,j,k)− µi,j−1/2,k(ui,j,k − ui,j−1,k)

+ µi,j,k+1/2(ui,j,k+1 − ui,j,k)− µi,j,k−1/2(ui,j,k − ui,j,k−1)
]

=


1 if i = i∗ and j = j∗ and k = k∗

0 otherwise

, 1 ≤ i, j, k ≤ 1/h, (A.3)

where, e.g.,

µ−1
i+1/2,j,k =

1

4

(
µ−1
i+1/2,j+1/2,k+1/2 + µ−1

i+1/2,j+1/2,k−1/2

+ µ−1
i+1/2,j−1/2,k+1/2 + µ−1

i+1/2,j−1/2,k−1/2

)
.

The derivation is entirely parallel to the 2D case, although note the extra factor h multiplying

the left hand side in (A.3), which arises due to the special nature of the source q.

The boundary conditions are discretized by applying, say, (A.2) at i = 1 and utilizing (3.5b)

to set u0,j = u2,j and µ−1/2,j = µ1/2,j . Combining all this results in a linear system of the

form (1.3) which is positive semi-definite and has a constant null space, as does the PDE

problem (3.5). This null-space is removed using standard techniques.

The method employed for solving the resulting linear system does not directly affect our

considerations in this thesis. For the sake of completeness, however, let us add that given the

large number of right hand sides in problems such as (1.3) that must be solved, a direct method

which involves one Cholesky decomposition followed by forward and backward substitution for

each right hand side is highly recommended. If the program runs out of memory (on our system

this happens in 3D for h = 2−6) then we use a preconditioned conjugate gradient method with

an incomplete Cholesky decomposition for a preconditioner.
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A.2 Taking Advantage of Additional A Priori Information

In general, we wish to recover µ(x) based on measurements of the field u(x) such that (3.5)

approximately holds. Note that, since the measurements are made only at relatively few lo-

cations, e.g., the domain’s boundary rather than every point in its interior, the matrices Pi

(whether or not they are all equal) all have significantly more columns than rows. Moreover,

this inverse problem is notoriously ill-posed and difficult in practice, especially for cases where

µ has large-magnitude gradients. Below we introduce additional a priori information, when

such is available, via a parametrization of µ(x) in terms of m(x) (see also [47]). To this end let

us define the transfer function

ψ(τ) = ψ(τ ; θ, α1, α2) = α tanh
( τ
αθ

)
+
α1 + α2

2
, α =

α2 − α1

2
. (A.4)

This maps the real line into the interval (α1, α2) with the maximum slope θ−1 attained at τ = 0.

1. In practice, often there are reasonably tight bounds available, say µmin and µmax, such

that µmin ≤ µ(x) ≤ µmax. Such information may be enforced using (A.4) by defining

µ(x) = ψ(m(x)), with ψ(τ) = ψ(τ ; 1, µmin, µmax). (A.5)

2. Occasionally it is reasonable to assume that the sought conductivity function µ(x) takes

only one of two values, µI or µII , at each x. Viewing one of these as a background value,

the problem is that of shape optimization. Such an assumption greatly stabilizes the

inverse problem [4]. In [46, 131, 132] we considered an approximate level set function

representation for the present problem. We write µ(x) = limh→0 µ(x;h), where

µ(x;h) = ψ(m(x);h, µI , µII). (A.6)

The function ψ(τ ;h) depends on the resolution, or grid width h. It is a scaled and mollified

version of the Heaviside step function, and its derivative magnitude is at most O( |µI−µII |h ).
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Thus, as h→ 0 the sought function m(x) satisfying

∇ · (ψ(m(x))∇ui) = qi, i = 1, . . . , s, (A.7)

∂ui
∂n

∣∣
∂Ω

= 0,

has bounded first derivatives, whereas µ(x) is generally discontinuous.

Establishing the relationship between µ and m completes the definition of the forward

operators fi(m) by (1.4).

A.3 Stabilized Gauss-Newton

Here we briefly describe the modifications made to the GN method (1.11), turning it into the

stabilized GN method used in our experiments. The matrix at the left hand side of (1.11a) is

singular in the usual case where l < lm, and therefore this linear system requires regularization.

Furthermore, δm also requires smoothing, because there is nothing in (1.11) to prevent it

from forming a non-smooth grid function. These regularization tasks are achieved by applying

only a small number of PCG iterations towards the solution of (1.11a), see [131, 133]. This

dynamic regularization (or iterative regularization [78]) is also very efficient, and results in a

stabilized GN iteration. An adaptive algorithm for determining a good number of such inner

iterations is proposed in [46]. However, here we opt to keep this number fixed at r PCG

iterations independently of n, in order to be able to compare other aspects of our algorithms

more fairly. Further, the task of penalizing excessive non-smoothness in the correction δm is

achieved by choosing as the preconditioner a discrete Laplacian with homogeneous Neumann

boundary conditions. This corresponds to a penalty on
∫
|∇m(x)|2 (i.e., least squares but not

total variation).

The modified GN iteration described above is our outer iteration, and the entire regulariza-

tion method is called dynamical regularization [77, 78, 113, 114, 131, 133]. The essential cost

in terms of forward operator simulations comes through (1.11a) from multiplying Ji or JTi by a

vector. Each such multiplication costs one forward operator simulation, hence 2rs simulations

for the left hand side of (1.11a) (or 2rnk in case of (2.6a)). The evaluation of the gradient
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costs another 2s forward operator evaluations per outer iteration. Considering K GN outer

iterations, this gives the work under-estimate formula (1.12). This still neglects, for clarity, the

additional line search costs, although the additional forward operator simulations necessitated

for determining αk in (1.11b) have of course been counted and included in the work tallies

reported in all the tables in this thesis.

A.4 Matlab Code

Here we provide a short Matlab code, promised in Section 7.1, to calculate the necessary or

sufficient sample sizes to satisfy the probabilistic accuracy guarantees (7.2) for a SPSD matrix

using the Gaussian trace estimator. This code can be easily modified to be used for (7.10) as

well.

1 function [N1,N2] = getSampleSizes(epsilon,delta,maxN,r)

2 % INPUT:

3 % @ epsilon: Accuracy of the estimation .

4 % @ delta: Uncertainty of the estimation.

5 % @ r: Rank of the matrix (Use r = 1 for obtaining the sufficient sample sizes).

6 % @ maxN: Maximum allowable sample size

7 % OUTPUT:

8 % @ N1: The sufficient (or necessary) sample size for (7.2a).

9 % @ N2: The sufficient (or necessary) sample size for (7.2b).

10 Ns = 1:1:maxN;

11 P1 = gammainc(Ns*r*(1−epsilon)/2,Ns*r/2);

12 I1 = find(P1 <= delta,1,"first");

13 N1 = Ns(I1); % Necessary/Sufficient sample size obtained for (7.2a).

14 Ns = (floor(1/epsilon)+1):1:maxN;

15 P2 = gammainc(Ns*r*(1+epsilon)/2,Ns*r/2);

16 I2 = find(P2 >= 1−delta,1,"first");

17 N2 = Ns(I2); % Necessary/Sufficient sample size obtained for (7.2b).

18 end
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A.5 Implementation of Total Variation Functional

For the Total Variation (TV) regularization, R(m) in (1.7) is the discretization of the TV

functional

TV (m) =

∫
Ω
|∇m(x)|,

where Ω is the domain under investigation. Consider a 2D square domain, which is divided

into uniform cells of side length h, resulting in N2 cells. Let (xi, xj) be the center of the cell

(i, j). A usual discretization of this TV integral, using this mesh, is obtained as

TV (m) ≈
N∑

i,j=1

h2

(∣∣∣∣∂m(xi, xj)

∂x

∣∣∣∣+

∣∣∣∣∂m(xi, xj)

∂y

∣∣∣∣) ,
where ∂m(xi, xj)/∂x is the value of ∂m/∂x at the center of the cell (i, j). The standard approach

for obtaining |∂m(xi, xj)/∂x| is by “averaging the square of the differences” among cell values.

More specifically, for i, j = 1, · · · , N , letting mi,j denote the grid value of m(x) at cell (i, j), we

get

∣∣∣∣∂m(xi, xj)

∂x

∣∣∣∣ ≈ 1

h

√
(mi+1,j −mi,j)2 + (mi,j −mi−1,j)2

2
, (A.8a)∣∣∣∣∂m(xi, xj)

∂y

∣∣∣∣ ≈ 1

h

√
(mi,j+1 −mi,j)2 + (mi,j −mi,j−1)2

2
. (A.8b)

Next, we form the vector m consisting of mi,j values. Let Dx and Dy be the matrices that

implement the difference operations in (A.8) in x and y directions, respectively. Similarly,

let Ax and Ay be the matrices that implement the averaging operations in (A.8) in x and y

directions, respectively. Now we can write (A.8) in vectorized form as

R(m) = 1T
√
Ax(Dxm)2 +Ay(Dym)2,

where 1 is a vector of 1’s, and the square and absolute value are taken pointwise.

One can introduce differentiability to R(m) by

Rε(m) = 1T
√
Ax(Dxm)2 +Ay(Dym)2 + ε1,
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for some ε� 1. An alternative is to use the Huber switching function [55, 85, 122]. Extensions

of the above procedure to 3D is straightforward.
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