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Abstract Recently, observed departures from the classical Gaussian mixture model

in real datasets motivated the introduction of mixtures of skew t, and remarkably

widened the application of model based clustering and classification to great many

real datasets. Unfortunately, when data contamination occurs, classical inference for

these models could be severely affected. In this paper we introduce robust estimation

of mixtures of skew normal, to resist sparse outliers and even pointwise contamina-

tion that may arise in data collection. Hence, in each component, the skewed nature

of the data is explicitly modeled, while any departure from it is dealt by the robust

approach. Some applications on real data show the effectiveness of the proposal.

Sommario Recentemente, a fronte di dataset reali multimodali con asimmetria e

code pesanti, è stato introdotto il modello mistura di t asimmetriche, ampliando

considerevolmente il campo di applicazione delle classiche misture di distribuzioni

Gaussiane. La stima di questi modelli non è però robusta rispetto a contaminazioni

e/o errori che possano accadere nella raccolta dei dati. In questo lavoro si introduce

uno stimatore robusto per le misture di normali asimmetriche, in grado di resistere

a valori anomali e a contaminazione puntuale. La natura asimmetrica dei dati è es-

plicitamente modellata in ciascuna componente, mentre la stima robusta consente
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di gestire ogni allontanamento dal modello. Applicazioni su dati reali documentano

l’efficacia della proposta.

Key words: Clustering, Robustness, Trimming, Constrained estimation, Skew data,

model-based classification, Finite mixture models.

1 Introduction

Finite mixtures of distributions have been widely used as a powerful tool to model

heterogeneous data and to approximate complex probability densities, presenting

multimodality, skewness and heavy tails. During the last decade, there has been an

increasing interest in finding more flexible methods to accurately represent observed

data and to reduce unrealistic assumptions. This very active and stimulating context

has seen the appearance of many contributions. Among the available proposals in

the literature, mixtures of skew normal can incorporate asymmetry in components

(see f.i., [2]). On the other hand, mixtures of t distributions can model heavier tails

by down-weighting the contribution of extremal observations, as shown in [4, 7].

Mixtures of skew t may accomodate for both asymmetry and leptokurtosis in the

grouped data, and therefore remarkably widened the application of model based

clustering and classification (see, for example, [6]).

When dealing with model fitting, the elegant theory of likelihood inference pro-

vides estimators with desirable properties such as consistency and efficiency. How-

ever, these estimators are not robust and there is usually a trade-off between ro-

bustness and efficiency. Hence, due to the possible presence of contaminating data

(background noise, pointwise contamination, unexpected minority patterns, etc.) a

small fraction of outliers, (located far from the groups and, even, between them)

could severely affect the model fitting, and a robust approach is needed. Surely,

considering skew t distributions is an interesting proposal to achieve robustness

with respect to uniform noise or a few sparse outliers. However, Hennig (2004)

noted that they are not effective against gross outliers or pointwise contamination

that may arise in data collection, their asymptotic breakdown point being zero.

In view of all these considerations, we introduce here a new proposal. To gain

effective protection against all type of outliers we jointly use trimming and con-

strained estimation along the estimation of mixtures of skew Gaussian distributions.

We apply our robust estimation to skew Gaussian components (instead of skew t)

because they are more parsimonious in parameters and easier in estimation. Indeed

the flexibility inherited by trimming does not require any assumption on the heavi-

ness of the tails. The asymptotic breakdown point of the resulting method is strictly

positive, an indication of robustness even against gross outliers. As final remark,

due to its properties, our methods is offered as a very general tool for clustering

heterogeneous skew populations.
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2 Finite Mixtures of Canonical Fundamental Skew Normal

We consider here the location-scale variant of the Canonical Fundamental Skew

Normal (CFUSN)[1], whose parameters allow to separately govern location, scale,

correlation, and skewness. The model arises from a p+ q multivariate normal r.v.

(U,V), such that
[

U

V

]

∼ Nq+p

([

0

0

]

,

[

Iq 0

0 Σ

])

where Σ is a positive definite scale matrix and 0 is a vector of zeros with appropriate

dimension. Then, given a p×q matrix ∆ and a p-dimensional vector µ , we arrive at

a stochastic representation for Y, obtained via a convolution, i.e.

Y = µ +∆ |U|+V,

which follows the CFUSN distribution, whose density is given by

f (y; µ ,Σ ,∆) = 2qφp(y; µ ,Ω)Φq

(

∆ T Ω−1(y− µ);0,Λ
)

, (1)

where Ω = Σ + ∆∆ T and Λ = Iq − ∆ T Ω−1∆ . As usual, φp(y; µ ,Σ ) denotes the

p-dimensional density of the multivariate Gaussian with mean µ and scale Σ evalu-

ated at y, while Φq(·) denotes the cumulative distribution function. The probability

density function for a g-component mixture model of CFUSNs can be written as

g

∑
h=1

πh f (y; µh,Σ h,∆ h), πh ≥ 0,
g

∑
h=1

πh = 1, (2)

where f (y; µh,Σh,∆ h) denotes the hth skew normal component with location pa-

rameter µh, scale matrix Σh and skew parameter ∆ h, given in (1). We denote the

unknown parameter by θ = (θ 1, . . . ,θ g), with θ h = (πh,µh,Σ h,∆ h) related to com-

ponent h, πh being the group weights, and adopt the acronym FM-CFUSN for (2).

3 Robust estimation for FM-CFUSN

Aiming at achieving robustness and obtaining good breakdown properties for the

ML estimators, a constructive way to obtain a robust estimation is given by provid-

ing a feasible EM algorithm for model fitting, where we incorporate impartial trim-

ming, just before the E-step, and constrained estimation along the M-step. The key

idea in trimming is that a small portion of observations, which are highly unlikely

to occur under the current fitted model, is discarded from contributing to the mix-

ture estimates. In the maximization, therefore, we consider the following trimmed

log-likelihood function [3, 8]
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ℓtrim =
n

∑
j=1

ζ (y j) log

[

g

∑
h=1

φp(y j; µh,Ω h)Φq(∆
T
h Ω−1

h (y j − µh);0,Λ h)πh

]

. (3)

By ζ (·) we denote a 0-1 trimming indicator function that indicates whether observa-

tion y j is trimmed off: ζ (y j)=0, or not: ζ (y j)=1. A fixed fraction α of observations,

whose contributions to the likelihood are lower than their α-quantile, will be unas-

signed by setting ∑n
j=1 ζ (y j) = [n(1−α)] just before each E-step, in such a way

that they do not influence the parameter estimation (by [·] we denote the integer part

of the argument). Hence α denotes the trimming level.

Furthermore - and this will be our second step - we implement a constrained ML

estimation for the Σ h matrices in the components of the mixture. The ML estimates

θ̂ based on a set of i.i.d. observations y = (y1, . . . ,yn) is now rephrased into

θ̂ = argmax
θ

ℓtrim(θ |y), for θ ∈Θ , (4)

where Θ denotes the parameter space. Also in this case - the same happens for the

non-robust case - the defining problem is ill-posed because the log-likelihood tends

to ∞ when either µh = y j and |Σh| → 0. As a trivial consequence, the EM algorithm

can be trapped into non-interesting local maximizers, called “spurious” solutions.

For this reason, we set a constraint on the maximization of ℓtrim, by imposing

λl,h ≤ cλm,k for 1 ≤ l 6= m ≤ p and 1 ≤ h 6= k ≤ g (5)

where {λl,h}l=1,...,p are the eigenvalues of Σh, for h = 1, . . . ,g and 1 ≤ c <+∞.

We will denote by Θ c the constrained parameter space under requirement (5).

4 Applications to real data

We consider here the Australian Institute of Sports (AIS) dataset, consisting of p =
11 physical and hematological measurements on 202 athletes (100 females and 102

males) in different sports, and available within the R package sn. Our purpose is to

provide a model for the entire dataset, and since the group labels (athletes gender)

are provided in advance, the aim is to classify athletes by this feature. By applying

the robust FM-CFUSN, with p = 11, q = 1, 50 starting values and stopping the EM

after a maximum of 100 iterations, we got the results shown in Figure 1 (left panel).

After the robust estimation, also the 20 trimmed observations can be classified, by

using the Bayes’ rule and assigning each unit to the component with maximum a

posteriori probability, yielding finally to 4 misclassified units (Figure 1, right panel).

Notice that this is a very encouraging result when compared to similar approaches

available in the literature (see also [5], where a detailed analysis has been done), as

the use of an ordinary normal mixture model yields 8 misclassifications, and the t-

version of the FM-CFUSN model yields 4 misclassifications.
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Fig. 1 Classification of the AIS dataset (left panel) by using robust FM-CFUSN (c=16, α=0.1,

female data in red, male in green, represented as filled circles when right classification takes

place, otherwise as stars; trimmed units are denoted by diamonds). Bivariate plots refer to vari-

ables weight/height2 (BMI) and sum of skin folds (SSF)

A second application has been developed on annual financial data of 66 Ameri-

can firms, considering the Ratio of Retained Earnings (RE) to total assets, and ratio

of earnings before interest an taxes (EBiT) to total assets. The purpose is to classify

firms who filed for bankruptcy. The bivariate sample is plotted in Figure 2, where

bimodality and skewness are apparent, thus we fit a two component mixture to the

data. We set α = 0.10 and c=16. After estimating the model without the contribu-

tion of the 7 trimmed units (which are apparently located far from the cores of the

components), we classified them as well, arriving at only 4 misclassified firms. This

compares to 2 misclassifications with using the t-version of the FM-CFUSN model.

A third application has been done on real world natural images from the Berkeley’s

image segmentation dataset, where the aim is to segment pixels into background and

foreground. We also applied our method to perform automated high-dimensional

flow cytometric data analysis on real data. All results show that our method provides

an effective approach for asymmetric, heavy tailed data in the mixture components.

Simulated results show that the estimation is able to resist to noise as well as to the

more dangerous pointwise contamination.

In conclusion, even if further study should be devoted along the lines of the

present proposal, we introduced a very general robust tool for clustering heteroge-

neous skew populations, by using the parsimonious and well-known skew Gaussian

model and by flexibly dealing with any departure from the skewed components’

cores via the trimming approach.
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Fig. 2 Classification of the Bankruptcy dataset by using robust FM-CFUSN (bankrupted firms

in red, solvent firms in green, represented as filled circles when right classification takes place,

otherwise as crosses; In the left panel trimmed units are denoted by diamonds, while in the right

panel also trimmed observations have been classified)
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