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Mixtures of factor analyzers with common factor
loadings:

applications to the clustering and visualisation of
high-dimensional data

Jangsun Baek, Geoffrey J. McLachlan and Lloyd K. Flack

Abstract—Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data, where the
number of observations � is not very large relative to their dimension � . In practice, there is often the need to reduce further the number
of parameters in the specification of the component-covariance matrices. To this end, we propose the use of common component-factor
loadings, which considerably reduces further the number of parameters. Moreover, it allows the data to be displayed in low-dimensional
plots.

Index Terms—Normal mixture models, mixtures of factor analyzers, common factor loadings, model-based clustering.
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1 INTRODUCTION

Finite mixture models are being increasingly used to
model the distributions of a wide variety of random
phenomena and to cluster data sets; see, for example,
[1]. Let � �����	��
������
�������� (1)

be a � -dimensional vector of feature variables. For con-
tinuous features ��� , the density of

�
can be modelled

by a mixture of a sufficiently large enough number � of
multivariate normal component distributions,� ��������� � !" # $ �&% #(' �)�*�,+ # 
.- # �/
 (2)

where

' ���0�,+1
.-2� denotes the � -variate normal density
function with mean + and covariance matrix - . Here the
vector � of unknown parameters consists of the mixing
proportions % # , the elements of the component means + # ,
and the distinct elements of the component-covariance
matrices - # �)34�65(
	������
 � � .

The parameter vector � can be estimated by max-
imum likelihood. For an observed random sample,� � 
&������
7�98 , the log likelihood function for � is given
by :<;�=0> �?��� � 8"� $ � :<;�= � �)� � �����.� (3)
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The maximum likelihood estimate (MLE) of �A
 B� , is
given by an appropriate root of the likelihood equation,C :D;(=�> �E���GF C �H�JI&� (4)

Solutions of (4) corresponding to local maximizers
of

:<;�=�> �?�K� can be obtained via the expectation-
maximization (EM) algorithm [2]; see also [3].

Besides providing an estimate of the density function
of
�

, the normal mixture model (2) provides a proba-
bilistic clustering of the observed data � � 
������
��L8 into �
clusters in terms of their estimated posterior probabilities
of component membership of the mixture. The posterior
probability M # �)� � ����� that the N th feature vector with
observed value � � belongs to the 3 th component of the
mixture can be expressed by Bayes’ theorem asM # �)� � �O�K�P� % #E' �)� � �,+ # 
.- # �Q ! R $ � % R ' ��� � ��+ R 
S- R � (5)��34�65(
	�����/
 � � N �T5(
	������
,U&�.�

An outright assignment of the data is obtained by
assigning each data point � � to the component to which
it has the highest estimated posterior probability of
belonging.

The � -component normal mixture model (2) with
unrestricted component-covariance matrices is a highly
parameterized model with V � �W � � �YX 5�� parameters
for each component-covariance matrix - # �)3Z�[5�
	������
� � . Banfield and Raftery [4] introduced a parameter-
ization of the component-covariance matrix - # based
on a variant of the standard spectral decomposition of- # �)3���5(
	������
 � � . But if � is large relative to the sample
size U , it may not be possible to use this decomposi-
tion to infer an appropriate model for the component-
covariance matrices. Even if it is possible, the results
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may not be reliable due to potential problems with near-
singular estimates of the component-covariance matrices
when � is large relative to U .

In this paper, we focus on the use of mixtures of factor
analyzers to reduce the number of parameters in the
specification of the component-covariance matrices, as
discussed in [1, 5, 6]; see also [7]. With the factor-analytic
representation of the component-covariance matrices, we
have that - # �]\ # \ �# X_^ # �)34�65(
	������
 � �/
 (6)

where \ # is a ��`ba matrix and ^ # is a diagonal matrix.
As

�W a � aOc 5d� constraints are needed for \ # to be uniquely
defined, the number of free parameters in (6) is�eafXg�hc �W a � a1c 5��.� (7)

Thus with this representation (6), the reduction in the
number of parameters for - # isi � �W � � �jX 5d� c��ea1cK�jX �W a � a1c 5��� �W�k � �hcla � W c � �jXma �Sno
 (8)

assuming that a is chosen sufficiently smaller than �
so that this difference is positive. The total number of
parameters isV � ��� �2c 5d� Xmp����jXZ� k �eaqc �W a � a1c 5��Sno� (9)

We shall refer to this approach as MFA (mixtures of
factor analyzers).

Even with this MFA approach, the number of param-
eters still might not be manageable, particularly if the
number of dimensions � is large and/or the number of
components (clusters) � is not small.

In this paper, we therefore consider how this factor-
analytic approach can be modified to provide a greater
reduction in the number of parameters. As considered
initially in [8], we extend the model of [9, 10] to propose
the normal mixture model (2) with the restrictions+ # �]rts # ��34�65(
	������
 � � (10)

and - # �urKv # r � X_^ �)3w�T5�
	������
 � �.
 (11)

where r is a �x`ga matrix, s # is a a -dimensional vector,v # is a ay`�a positive definite symmetric matrix, and ^
is a diagonal �g`y� matrix.

As to be made more precise in the next section, r
is a matrix of loadings on a unobservable factors. The
representation (10) and (11) is not unique, as it still
holds if r were to be postmultiplied by any nonsingular
matrix. Hence the number of free parameters in r is��a1cza W � (12)

Thus with the restrictions (10) and (11) on the component
mean + # and covariance matrix - # , respectively, the total
number of parameters is reduced toV W ��� �jc 5�� Xg�jX_a � �yXZ� � X �W �{a � aqX 5�� cza W � (13)

We shall refer to this approach as MCFA (mixtures
of common factor analyzers). We shall show for this
approach how the EM algorithm can be implemented
to fit this normal mixture model under the constraints
(10) and (11). We shall also illustrate how it can be
used to provide lower-dimensional plots of the data� � � N �65(
	������
7U&�/� It provides an alternative to canonical
variates which are calculated from the clusters under the
assumption of equal component-covariance matrices.

In our implementation of this procedure, we postmul-
tiply the solution Br for r by the nonsingular matrix as
defined in the Appendix that achieves the resultBr � Br|�~}	��
 (14)

where }�� denotes the af`ya identity matrix. That is, the �
columns of Br are taken to be orthonormal. This solution
is unique up to postmultiplication by an orthogonal
matrix.

2 MIXTURES OF COMMON FACTOR ANALYZ-
ERS (MCFA)

In this section, we examine the motivation underlying
the MCFA approach with its constraints (10) and (11) on
the � component means and covariance matrices + # and- # �)3���5�
	������
 � �.� We shall show that it can be viewed
as a special case of the MFA approach.

To see this we first note that the MFA approach with
the factor-analytic representation (6) on - # is equivalent
to assuming that the distribution of the difference

� � c + #
can be modelled as� � c + # �u\ #���# � X_� # � with prob. % # �)34�65(
	������
 � �

(15)
for N � 5�
	�����/
�U , where the (unobservable) factors
� # � 
������
 � # 8 are distributed independently � ��I&
�}	��� ,
independently of the � # � , which are distributed inde-
pendently � ��I&
 ^ # � , where ^ # is a diagonal matrix�)3w��5�
�����/
 � � .

As noted in the introductory section, this model may
not lead to a sufficiently large enough reduction in the
number of parameters, particularly if � is not small.
Hence if this is the case, we propose the MCFA approach
whereby the distribution of

� � is modelled as� � �ur � # � X�� # � with prob. % # �)3w�T5�
	������
 � �
(16)

for N � 5�
	�����/
�U , where the (unobservable) factors
� # � 
������
 � # 8 are distributed independently � �)s # 
,v # � ,
independently of the � # � , which are distributed inde-
pendently � ��I&
 ^ � , where ^ is a diagonal matrix �)3 �5(
	������
 � � . Here r is a ��`Za matrix of factor loadings,
which we take to satisfy the relationship (14).

To see that the MCFA model as specificed by (16) is
a special case of the MFA approach as specified by (15),
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we note that we can rewrite (16) as� � � r � # � X_� # �� rhs # X rA� � # � c s # � X_� # �� + # X r�� # ��� �# � � # � c s # � X_� # �� + # X \ # �x�# � X_� # � 
 (17)

where + # � rhs # 
 (18)\ # � rK� # 
 (19)� �# � � � � �# � � # � c s # �/
 (20)

and where the

� �# � are distributed independently� ��I&
,} � � . The covariance matrix of

� �# � is equal to } � ,
since � #

can be chosen so that��� �# v # ��� �G�# �~} � �)3w�T5�
	������
 � �/� (21)

On comparing (17) with (15), it can be seen that the
MCFA model is a special case of the MFA model with
the additional restrictions that+ # �Jrhs # �)3w��5�
�����/
 � �.
 (22)\ # �]r�� # �)3w�T5�
	������
 � �.
 (23)

and ^ # � ^ �)3w��5(
&������
 � �/
 (24)

The latter restriction of equal diagonal covariance matri-
ces for the component-specific error terms � ^ # � ^ �
is sometimes imposed with applications of the MFA
approach to avoid potential singularities with small
clusters (see [5]).

Concerning the restriction (23) that the matrix of factor
of loadings is equal to r�� #

for each component, it
can be viewed as adopting common factor loadings
before the use of the transformation � #

to transform
the factors so that they have unit variances and zero
covariances. Hence this is why we call this approach
mixtures of common factor analyzers. It is also different
to the MFA approach in that it considers the factor-
analytic representation of the observations

� � directly,
rather than the error terms

� � c + # .
As the MFA approach allows a more general represen-

tation of the component-covariance matrices and places
no restrictions on the component means it is in this sense
preferable to the MCFA approach if its application is
feasible given the values of � and � . If the dimension� and/or the number of components � is too large, then
the MCFA provides a more feasible approach at the
expense of more distributional restrictions on the data.
In empirical results some of which are to be reported in
the sequel we have found the performance of the MCFA
approach is usually at least comparable to the MFA
approach for data sets to which the latter is practically
feasible. The MCFA approach also has the advantage in
that the latent factors in its formulation are allowed to
have different means and covariance matrices and are
not white noise as with the formulation of the MFA

approach. Thus the (estimated) posterior means of the
factors corresponding to the observed data can be used
to portray the latter in low-dimensional spaces.

3 SOME RELATED APPROACHES

The MCFA approach is similar in form to the approach
proposed by Yoshida et al. [9, 10], who also imposed the
additional restriction that the common diagonal covari-
ance matrix ^ of the error terms is spherical,^ �~� W },�{
 (25)

and that the component-covariance matrices of the
factors are diagonal. We shall call this approach
MCUFSA (mixtures of common uncorrelated factors
with spherical-error analyzers). The total number of
parameters with this approach isVo� ��� �2c 5d� Xx�eaqX 5 X_p��{a�c �W a � aqX 5d�.� (26)

In our experience, we have found that this restriction
of sphericity of the errors and of diagonal covariance
matrices in the component distributions of the factors
can have an adverse effect on the clustering of high-
dimensional data sets. The relaxation of these restrictions
does considerably increase the complexity of the prob-
lem of fitting the model. We shall show how it can be
effected via the EM algorithm with the E- and M-steps
being able to be carried out in closed form.

In Table 1, we have listed the number of parameters
to be estimated for the models with the MFA, MCFA,
and MCUFSA approaches when � �����,
�5d�(��� a � p ;
and � ���,
G� . For example, when we cluster � ���(�
dimensional gene expression data into � ��� groups
using a � p dimensional factors, the MFA model requires
799 parameters to be estimated, while the MCUFSA
needs only 117 parameters. Moreover, as the number of
clusters grows from 4 to 8 the number of parameters for
the MFA model grows almost twice as large as before,
but that for MCUFSA remains almost the same (137
parameters). However, as MCUFSA needs less param-
eters to characterize the structure of the clusters, it does
not always provide a good fit. It may fail to fit the
data adequately as it is assuming that the component-
covariance matrices of the factors are diagonal and that
the cluster-error distributions conditional on the factors
are spherical. The MCFA model has 170 and 194 pa-
rameters for � ��� and 8, respectively, with a � p
factors. It will be seen that the MCFA approach provides
a good parsimonious compromise between the MFA and
MCUFSA approaches.

In the context of the analysis of speech recognition
data, Rosti and Gales [11] considered a factor-analytic
approach in which separate mixture distributions are
adopted independently for the factors and for the error
terms conditional on the factors. It thus contains our
model (16) as a special case where the error distribution
conditional on the factors is specified by a single normal
distribution. However, they developed their procedure
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TABLE 1
The number of parameters in models for three

factor-analytic approaches� � � Number of parameters
MFA �.  ¡ ¢ £S¤.¤�.  ¥ ¢ ¦§�.¤.¤¦§ .  ¡ ¢ ¦§�.¤.¤¦§ .  ¥ ¢ ¨d¦§¤.¤

MCFA �.  ¡ ¢ ¦§©.¤�.  ¥ ¢ ¦§¤.¨¦§ .  ¡ ¢ ¨d¦§¤¦§ .  ¥ ¢ ¨S¡/¨
MCUFSA �.  ¡ ¢ ¦.¦G£�.  ¥ ¢ ¦§¨/£¦§ .  ¡ ¢ ¢d¦G£¦§ .  ¥ ¢ ¢.¨/£

for only diagonal component-covariance matrices for the
factors, whereas in our MCFA model these factor co-
variance matrices have no restrictions imposed on them.
Some related work in this context of speech recognition
includes [12-16].

In a related approach with common factor loadings
adopted recently by Galimberti et al. [17] for the data
after mean centring, the factors in (16) are taken to have
a mixture distribution with the constraints that its mean
is the null vector and its covariance matrix is the identity
matrix. As their program applies only to mean-centred
data, it cannot be used to visualize the original data.

In other recent work, Sanguinetti [18] has consid-
ered a method of dimensionality reduction in a clus-
ter analysis context. However, its underlying model
assumes sphericity in the specification of the vari-
ances/covariances of the factors in each cluster. Our pro-
posed method allows for oblique factors, which provides
the extra flexibility needed to cluster more effectively
high-dimensional data sets in practice.

4 FITTING OF FACTOR-ANALYTIC MODELS

The fitting of mixtures of factor analyzers as with
the MFA approach has been considered in [5], using
a variant of the EM algorithm known as the alter-
nating expectation-conditional maximization algorithm
(AECM). With the MCFA approach, we have fit to the
same mixture model of factor analyzers but with the
additional restrictions (10) and (11) on the component
means + # and covariance matrices - # . We also have
to impose the restriction (24) of common diagonal co-
variance matrices ^ . The implementation of the EM
algorithm for this model is described in the Appendix.
In the EM framework, the component label ª � associated
with the observation � � is introduced as missing data,
where « # � �6� ª � � # is one or zero according as � � belongs
or does not belong to the 3 th component of the mixture�)3K�¬5(
	������
 � � N �¬5�
	������
7U&� . The unobservable factors # � are also introduced as missing data in the EM
framework.

As part of the E-step, we require the conditional
expectation of the component labels « # ���)3x��5(
�����/
 � �
given the observed data point � � � N �®5(
	������
�U&� . It
follows that¯ � k�° # ��± � � n�� pr � k�° # � �65 ± � � n� M # ��� � ����� (27)��34�T5(
	������
 � � N �65(
	������
�U&�.

where M # �)� � �e��� is the posterior probability that � � be-
longs to the 3 th component of the mixture. From (16), it
can be expressed under the MCFA model asM # �)� � ������� % #?' �)� � ��rts # 
,rKv # r � Xm^ �Q ! R $ � % R ' �)� � �erts R 
,r�v R r � X²^ � (28)

for 39�65(
�������
 � � N �T5�
������/
GUw�
We also require the conditional distribution of the

unobservable (latent) factors

�g# � given the observed data� � � N �³5(
	�����/
,U&� . The conditional distribution of

� # �
given � � and its membership of the 3 th component of
the mixture (that is, « # � �T5 ) is multivariate normal,��# � ± � � 
 « # �´�T5~µ � �)s # � 
�v �# �.
 (29)

where s # � �~s # X�¶ �# �)� � c rts # � (30)

and v �# ����} � cz¶ �# rK�§v # 
 (31)

and where ¶ # �6�Er�v # r � Xm^ � � � rKv # � (32)

We can portray the observed data � � in a -dimensional
space by plotting the corresponding values of the B # � ,
which are estimated conditional expectations of the fac-
tors

��# � , corresponding to the observed data points � � .
From (29) and (30),¯ � � # �2± � � 
 « # � �65d�P�qs # ��qs # XZ¶ �# �)� � c rhs # �.� (33)

We let B # � denote the value of the right-hand side of (33)
evaluated at the maximum likelihood estimates of s # 
 ¶ # ,
and r . We can define the estimated value B � of the N th
factor corresponding to � � asB � � !" # $ � M # �)� � � B�K� B # � � N �65(
	������
�U&� (34)

where, from (28), M # �)� � � B��� is the estimated posterior
probability that � � belongs to the 3 th component. An
alternative estimate of the posterior expectation of the
factor corresponding to the N th observation � � is defined
by replacing M # ��� � �yB��� by B« # � in (34), whereB« # � �j5(
 ·¹¸ BM # �)� � � B���»º BM R ��� � � B���.
��¼��65(
	������
 � �S¼Y½�~3��.
�1��
 ;�¾G¿,À�ÁPÂ ·DÃ À � (35)
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5 SIMULATION EXPERIMENT 1: ACCURACY
OF FACTOR-ANALYTIC APPROXIMATIONS

To illustrate the accuracy of the three factor-analytic
approximations as defined above, we performed a small
simulation experiment. We generated 100 random vec-
tors from each of � � p different three-dimensional
multivariate normal distributions. The first distribution
had the mean vector + � �Ä����
G�,
G�o� � and covariance
matrix -t�f�¬ÅÆ � c 5�� � c 5c 5(� � p �,� Çc 5È��� Ç p

ÉÊ 

while the second distribution had mean vector + W �� p 
 p 
PË�� � and covariance matrix- W � ÅÆ �l5�� ���,� �5(� � p �,� ���� ���,� � p

ÉÊ �
We applied the MFA, MCFA, and the MCUFSA ap-

proaches with a � p to cluster the data into two groups.
We adopted the clustering corresponding to the local
maximizer that gave the largest value of the likelihood
as obtained by implementing the EM algorithm for 50
trial starts, comprising 25 Ì -means starts and 25 random
starts. We used the ArrayCluster http://www.ism.ac.
jp/ Í higuchi/arraycluster.htm, which was developed by
Yoshida et al. [9] to implement the MCUFSA approach.
There were 2 misclassifications for MFA, 4 for MCFA,
and 8 for MCUFSA. As we obtained the parameter
estimates for each model we can also predict each
observation based on the estimated factor scores and
the parameter estimates. In Figures 1, 2, and 3, we
have plotted the predicted observations B� � along with
the actual observations � � by the MFA, MCFA, and
the MCUFSA approaches. For the MFA approach, the
predicted observation is obtained asB� � � !" # $ � M # �)� � � B�K��� B+ # X B\ # B # � � (36)

where B # � � BÎ �# �)� � c B+ # �/
 (37)

where BÎ # ��� B\ # B\ �# X B^ # � � � B\ # � (38)

For the MCFA approach, the predicted observation isB� � � Br B �(
 (39)

where Br is the estimated projection matrix r and whereB � is the estimated factor score for the N th observation,
as defined by (34); similarly, for the MCUFSA approach.

The figures show that the original distribution struc-
ture of two groups is recovered by the estimated factor
scores for MFA and MCFA approaches. Their assumed
models are sufficiently flexible to fit the data where the
directions of the two cluster-error distributions are not
parallel to the axes of the original feature space. On the

other hand the predicted observations for the MCUFSA
approach are not fitted well to the actual distribution of
two groups as shown in Figure 3. With this approach,
the predicted observations tend to be higher than the
actual observations from the first group and lower for
those from the second group. This lack of fit is due
to the strict assumption of a spherical covariance ma-
trix for each component-error distribution and diagonal
component-covariance matrices for the factors. We mea-
sured the difference between the predicted and observed
observations by the mean squared error (MSE),where
MSE=

Q WGÏGÏ� $ � �)� � c B� � � � �)� � c B� � �PF p ��� . The value of the
MSE for the simulated data is 2.30, 3.80, 17.34 for MFA,
MCFA, and MCUFSA, respectively. As to be expected,
the MSE increases in going from MFA to MCFA and then
markedly to MCUFSA.
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Fig. 1. Original observations and the predicted observa-
tions by MFA: Ð Group 1; o Group 2; * predicted for Group
1; + predicted for Group 2
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Fig. 2. Original observations and the predicted observa-
tions by MCFA: Ð Group 1; o Group 2; * predicted for
Group 1; + predicted for Group 2
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Fig. 3. Original observations and the predicted observa-
tions by MCUFSA: Ð Group 1; o Group 2; * predicted for
Group 1; + predicted for Group 2

6 SIMULATION EXPERIMENT 2
To illustrate further the application of the MCFA ap-
proach, we report now the results of a second simulation
experiment performed in situations in which the MCFA
model is valid and in which we know the true under-
yling group structure of the data. A sample of UZ� p ���� -dimensional observations� � ���)� � �E� 
�� �W � � � � N ��5�
�����/
�U&�
was generated from a � ��� component mixture model
of bivariate normal factor � a � p � . Here � �E� is a � � �T5d�
dimensional subvector containing the signal, while � W �
is a � W -dimensional subvector of noise variables with� W � �_cÑ� � , where there are five levels of � W � � W ���
�5d��
 p ��
PÒ(�,
§���o� .

The generated data can be viewed as coming from the
factor-analytic model (16),� �´�6�Er � � 
�r �W � � �g# � X_� # � Â · ¾G¿gÓ�ÁP;(Ô � % # �)34�65(
	������
e�(�/


(40)
where % �]�����D5d��
 % W ���,� p 
 % � �����D5d��
 %,Õ ���,� p 
 and%eÖ �×�,� Ò . The � � `�a submatrix r�� of factor loadings
was specified to ber � � �YØ ���Ù� c ��� ÇÚ��� Ò1�,� Ë���� pZc ���ÜÛ�� � � �� � � �,� � c �,�ÙÛ×�,� �A��� Ë c ��� �f��� Ò c ���Ù��Ý �

The � W `�a submatrix r W corresponding to the � W noise
variables has all elements zero. The mean vectors of
the factors

��# � were specified as s � �¬��� p �Ù�(� � 
ts W �� c�p �Ù�h�o� � 
�s � �Þ� p �Ù�h��� � 
qs Õ �ß��� cZp �Ù�(� � 
�s Ö �ß���K��� � ,
while their covariance matrices were taken to bev � � Ø ���D5��à��á�,� �{�dÝ 
Pv W � Ø ��� �o�Þ��á�,�<5d��Ý 
v � � Ø ��� �o�Þ��á�,�<5d��Ý 
Pv Õ �

Ø ���D5��à��á�,� �{�dÝ 


v Ö �
Ø 56�,� Ç����� Ç(�â5�Ý �

The error terms � # �0� N � 5�
�����/
�U&� were taken to
be distributed independently � �EI
 ^ � , where ^ is a
diagonal matrix �)3w��5(
	������
e�(� . Its first � � elements were
randomly generated from a uniform distribution on the
interval ã ���D5(
P��� Ò�ä , while its remaining � W elements were
randomly generated from a uniform distribution on the
interval ã �,� Ò,
G��� ��ä .

The generated bivariate factor scores  # � are displayed
in Figure 4 for each component 3���34��5�
	������
e��� .
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Fig. 4. Scatter plot of generated bivariate factors for each
of � �J� components

We implemented the MFA and MCFA approaches on
the five data sets corresponding to the five levels of the
number � W of noise variables for each of 24 combinations
of the number of components � and the number of
factors a � � � p 
	�����/
�Û{� a � p 
	������
e�(� . To measure the
agreement between a clustering of the data and their true
group membership, we computed the error rate, where
the latter corresponds to the lowest proportion of errors
with respect to the true grouping over all permutations
of the cluster labels.

In practice, we can use the Bayesian Information Cri-
terion (BIC) of Schwarz [19] to provide a guide to the
choice of the number of factors a and the number of
components � to be used. On the latter choice it is well
known that regularity conditions do not hold for the
usual chi-squared approximation to the asymptotic null
distribution of the likelihood ratio test statistic to be
valid. However, they do hold for tests on the number of
factors at a given level of � , and so we can also use the
likelihood ratio test statistic to choose a ; see [1, Chapter
8]. In this paper, we used the BIC criterion to choose� � a � for given a � � � both in this simulation example and
in the real data sets to be discussed later. With BIC,V :D;(= U is added to twice the negative of the log likelihood
at the solution, where V denotes the number of (free)
parameters in the model. The intent is to choose � � a � to
minimize the negative of this penalized form of the log
likelihood.

With the MFCA approach, the correct combination of� and a was selected for all 5 data sets. On the other
hand, the correct combination was not selected for any
of the data sets with the MFA and MCUFSA approaches.

In Table 2, we give the values of the error rate (ERR)
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and the adjusted Rand index (ARI) for the MFA, MCFA,
and MCUFSA approaches for the correct combination
of � and a � � �å��
 a � p � for each of the five levels of
the number of noise variables � W . The adjusted Rand
index (ARI)[20] takes the value 1 when there is perfect
agreement between the clustering and the true grouping,
and it can be negative.

It can be seen that in the case of no noise variables� � W ����� , the error rate for the MFA approach is nearly
seven times as large as for the MCFA (46 misallocations
versus 7). As the number of noise variables � W increases,
the performance of the error rate of the MCFA approach
only slightly increases (resulting in at most 2 more mis-
allocations), while the ARI only falls slightly. In contrast,
as � W increases from � W ��� , the performance of the
MFA approach relative to MCFA becomes even poorer
in terms of the error rate and the ARI. Comparing MCFA
with the MCUFSA approach, it can be seen that the error
rate of the latter is around three times that of the former
over the five levels of the number � W of noise variables.

In summary, the MCFA approach has been essentially
unaffected by the presence of the additional noise vari-
ables in this simulated data set. Of course it has been
generated under a model in which the MCFA holds
exactly. The MFA model also holds here as we have seen
in Section 2 that it is more general than the MCFA model.
But as it has to fit more parameters, its performance
here falls away as the signal in the � � �¬5d� variables
is degraded by the presence of a larger number of noise
variables.

TABLE 2
Values of the error rate (ERR) and the adjusted Rand

index (ARI) for the MFA, MCFA, and MCUFSA
approaches in the case of � �J� and a � p

Number �(æ of noise variables
Model 0 10 20 30 40

MFA ERR 0.2300 0.2900 0.2700 0.3250 0.2750
ARI 0.5353 0.4660 0.4830 0.4568 0.4760

MCFA ERR 0.0350 0.0350 0.0450 0.0450 0.0400
ARI 0.9017 0.9017 0.8760 0.8760 0.8883

MCUFSA ERR 0.1100 0.0900 0.1100 0.1050 0.1100
ARI 0.7273 0.7626 0.7162 0.7279 0.7200

7 APPLICATIONS OF MCFA APPROACH TO
CLUSTERING OF REAL DATA SETS

We now report on the application of the MFA, MCFA,
and MCUFSA approaches to cluster tissues in one gene
expression data set and individuals in one chemical mea-
surement data set. We compared the agreement between
the implied clustering obtained with each approach with
the true group membership of each data set. In both
examples there are multiple groups ( � �JË ) for which the
MCFA model is specifically designed to handle through
its use of shared factor loadings for the groups.

7.1 Example 1: Paediatric Leukaemia Gene-
Expression Data

The first real data set concerns the clustering of the
Paediatric Acute Lymphoblastic Leukaemia (ALL) data
of Yeoh et al. [21]. This data set had Uç�[Ò p Û sam-
ples from 9 subtypes of ALL and one normal group.
The classes were BCR-ABL, E2A-PBX1, Hyperdip ( è
50), MLL, T-ALL, TEL-AML1, Hyperdip47-50, Hypodip,
Normal, and Pseudodip. We used here only the Ug� p �o�
samples in the first � ��Ë classes. The final four classes
were either too small to be reliably classified or there was
probably a group structure present that was different
from the given classes. There is some evidence for the
last mentioned possibility as Yeoh et al. [21] claim to have
found a group within the last four classes that did not
correspond to the given classes.

The files selected contained both the value calculated
by MAS 4.0 and an indicator of whether MAS evaluated
the gene as being expressed, absent, or whether data
were missing. The samples were standardized to all
have the same mean of 2500, but the variance was
not standardized. The values of each gene were then
stanardized so that the minimum value for samples
with that gene identified as being expressed was set to
one. Values of a gene where MAS identified it as being
unexpressed or where data were missing were then set
to one. Genes, which had a range of values of less than
500 or which had less than 30 samples where that gene
was identified as being expressed, were deleted. This
reduced the number of genes from 12,625 to 6,350. The
genes were then logarithmically transformed and then
standardized to have mean zero and unit variance.

The remaining 6,350 genes were further reduced by
running the select-genes step of the EMMIX-GENE pro-
cedure [22], whereby a gene is retained if twice the
increase in the log likelihood is greater than a specificed
threshold (here 8) in testing for a single é -component
versus a mixture of two é -components. Also, the mini-
mum size of the two clusters had to be greater than an
imposed threshold of 8.

This reduced the data set to 5,483 genes. The top
2,000 genes in terms of the aforementioned likelihood
ratio statistic were selected and clustered into 50 clus-
ters using the cluster-genes step of the EMMIX-GENE
procedure, which uses essentially a soft-version of Ì -
means to cluster the genes with the intent that highly
correlated genes (genes close in Euclidean distance) are
put together in the same cluster. We then took the means
of these 50 clusters (metagenes) to be our � variables
to which the MFA, MCFA, and MCUFSA approaches
were applied. Given that the number of components
(subtypes) here is not small with � �êË , we imposed
the constraint (24) of common diagonal matrices ^ # in
the formulation of the MFA approach. This constraint is
always imposed with the MCFA approach.

We implemented the MFA, MCFA, and MCUFSA ap-
proaches with � �[Ë components for the number of
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factors a ranging from 1 to 9. To measure the agreement
between a clustering of the data and their true group
membership, we calculated the error rate and the ARI
plus one other similarity measure, namely the Jaccard
index [23].

The results are presented in Table 3. In the case of
a single factor � a �â5�� , the MFUCSA approach put the
248 tissues into only 5 clusters, and so the error rate
was unable to be calculated. This is noted by NA (not
available) for a ��5 in Table 3. We have also listed in this
table under the heading of BIC, twice the negative of the
log likelihood augmented by

:D;(= U times the number of
(free) parameters V .

TABLE 3
Comparison of MFA, MCFA, and MCUFSA approaches

for implied clustering versus the true membership of
paediatric ALL data

Model Factors BIC ARI Jaccard Error rate
1 4684 0.8006 0.7264 0.1331
2 5261 0.4561 0.3910 0.3911
3 6092 0.2679 0.2649 0.5323

MFA 4 6933 0.2300 0.2360 0.5726
5 7855 0.3162 0.2915 0.4839
6 8868 0.2932 0.2767 0.5040
7 9797 0.2080 0.2232 0.5524
8 10719 0.1879 0.2086 0.5806
9 10205 0.2750 0.2653 0.5202

1 8300 -0.0040 0.1064 0.7540
2 6425 0.3380 0.3129 0.4435
3 5091 0.6159 0.5285 0.3065

MCFA 4 3664 0.7435 0.6604 0.2258
5 3274 0.8447 0.7816 0.1169
6 3069 0.7147 0.6305 0.2419
7 3119 0.6763 0.5878 0.2298
8 3159 0.8327 0.7672 0.1411
9 3251 0.831 0.7649 0.1492

1 9570 ë 0.0064 0.1760 NA
2 6918 0.2901 0.2865 0.5161
3 5749 0.6210 0.5412 0.2903

MCUFSA 4 4368 0.8301 0.7638 0.1411
5 4077 0.6573 0.5701 0.2218
6 3756 0.8101 0.7403 0.1452
7 3808 0.6822 0.5978 0.2621
8 3862 0.5274 0.4472 0.3185
9 3954 0.3738 0.3462 0.3831

It can be seen that the MCFA leads to good values for
the indices and error rate for a ºm� factors, achieving its
lowest error rate (and highest ARI and Jaccard index) fora �å� factors. Apart from its performance for a single
factor � a �[5�� , the MFA approach is not as good as
MCFA. However, the use of BIC to choose a would lead
to this choice of a , whereas with the MCFA and MCUFSA
approaches, it does not lead to the choice of a with the
smallest (largest) error rate (AR/Jaccard indices).

7.2 Example 2: Vietnam Chemical Data with Addi-
tional Noise Added

The second example considers the so-called Vietnam
data which was considered in Smyth et al. [24]. The

Vietnam data set consists of the log transformed and
standardized concentrations of 17 chemical elements to
which four types of synthetic noise variables were added
in [24] to study methods for clustering high-dimensional
data. We used these data consisting of a total of 67
variables (� �×Ë{Û ; 17 chemical concentration variables
plus 50 uniform noise variables). The concentrations
were measured in hair samples from six classes � � �]Ë��
of Vietnamese, and the total number of subjects wereU�� p�p �e� The noise variables were generated from the
uniform distribution on the interval ã<c�p 
 p ä .

We implemented the MFA, MCFA, and MCUFSA ap-
proaches with � �[Ë components for the number of
factors a ranging from 1 to 5. Again with the MFA model,
we imposed the assumption of equal diagonal matricesì #

for the error terms. For each value of a , we computed
the ARI, Jaccard index, and the error rate. They are
displayed in Table 4. It was not possible to obtain results
for the MCUFSA approach for all values of a less than
5.

It can be seen that the lowest error rate and highest
values of the ARI and Jaccard index are obtained by
using a � Ò factors with the MCFA model, which
coincides with the choice on the basis of BIC. The best
result with the MFA model is obtained for a � p factors
(BIC suggests using a �T5 ). It can be seen that the error
rate, ARI, and Jaccard index for MFA and MCUFSA are
not nearly as good as for MCFA.

TABLE 4
Comparison of MFA, MCFA, and MCUFSA approaches

for implied clustering versus the true membership of
Vietnam data

Model Factors BIC ARI Jaccard Error rate
1 46758 0.5925 0.4974 0.2277
2 48212 0.6585 0.5600 0.1696

MFA 3 49743 0.6322 0.5342 0.1830
4 51351 0.5392 0.4510 0.2589
5 52846 0.5700 0.4767 0.2679

1 45171 0.3444 0.3447 0.4777
2 44950 0.7288 0.6380 0.1384

MCFA 3 44825 0.8063 0.7248 0.0893
4 44984 0.7081 0.6241 0.2277
5 45151 0.6259 0.5385 0.2634

1 NA NA NA NA
2 NA NA NA NA

MCUFSA 3 NA NA NA NA
4 NA NA NA NA
5 46523 0.5479 0.4572 0.2768

8 LOW-DIMENSIONAL PLOTS VIA MCFA AP-
PROACH

To illustrate the usefulness of the MCFA approach for
portraying the results of a clustering in low-dimensional
space, we have plotted in Figure 5 for the Vietnam data
the estimated posterior means of the factors Bí � as defined
by (34) with the implied cluster labels shown. In this
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plot, we have chosen the second and third factors in the
MCFA model with a �îÒ factors. It can be seen that
the clusters are represented in this plot with very little
overlap. This is not the case in Figure 6, where the first
two canonical variates are plotted. They were calculated
using the implied clustering labels. It can be seen from
Figure 6 that one cluster is essentially on top of another.
The canonical variates are calculated on the basis of the
assumption of equal cluster-covariance matrices, which
does not apply here. The MCFA approach is not predi-
cated on this assumption and so has more flexibility in
representing the data in reduced dimensions.

We have also given in Figure 7 the plot correspsonding
to that in Figure 5 with the true cluster labels shown. It
can be seen there is good agreement between the two
plots. This is to be expected since the error rate of the
MCFA model fitted with a ��Ò factors is quite low
(0.0893).
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Fig. 5. Plot of the (estimated) posterior mean factor
scores via the MCFA approach with the six cluster labels
shown for the Vietnam data
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Fig. 6. Plot of the first two canonical variates based on the
implied clustering via MCFA approach with the six cluster
labels shown for the Vietnam data

9 DISCUSSION AND CONCLUSIONS

In practice, much attention is being given to the use
of normal mixture models in density estimation and
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Fig. 7. Plot of the (estimated) posterior mean factor
scores via the MCFA approach with the true labels shown
for the six classes in the Vietnam data

clustering. However, for high-dimensional data sets, the
component-covariance matrices are highly parameter-
ized and some form of reduction in the number of
parameters is needed, particularly when the number
of observations U is not large relative to the number
of dimensions � . One way of proceeding is to work
with mixtures of factor analyzers (MFA) as studied in
[1, Chapter 8]. This approach achieves a reduction in
the number of parameters through its factor-analytic
representation of the component-covariance matrices.
But it may not provide a sufficient reduction in the
number of parameters, particularly when the number �
of clusters (components) to be imposed on the data is
not small. In this paper, we show how in such instances
the number of parameters can be reduced appreciably by
using a factor-analytic representation of the component-
covariance matrices with common factor loadings. The
approach is called mixtures of common factor analyzers
(MCFA). This sharing of the factor loadings enables the
model to be used to cluster high-dimensional data into
many clusters and to provide low-dimensional plots of
the clusters so obtained. The latter plots are given in
terms of the (estimated) posterior means of the factors
corresponding to the observed data. These projections
are not useful with the MFA approach as in its formu-
lation the factors are taken to be white noise with no
cluster-specific discriminatory features for the factors.

The MFA approach does allow a more general repre-
sentation of the component variances/covariances and
places no restrictions on the component means. Thus it
is more flexible in its modelling of the data. But in this
paper we demonstrate that MCFA provides a compara-
ble approach that can be applied in situations where the
dimension � and the number of clusters � can be quite
large. We have presented analyses of both simulated and
real data sets to demonstrate the usefulness of the MCFA
approach.

In practice, we can use the Bayesian Information Cri-
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terion (BIC) of Schwartz [19] to provide a guide to the
choice of the number of factors a and the number of
components � to be used. On the latter choice it is well
known that regularity conditions do not hold for the
usual chi-squared approximation to the asymptotic null
distribution of the likelihood ratio test statistic to be
valid. However, they do hold for tests on the number
of factors at a given level of � , and so we can also
use the likelihood ratio test statistic to choose a ; see [1,
Chapter 8]. In our examples and simulation experiments
preseneted here, we used BIC, although it did not always
lead to the correct choice of the number of factors a
as, for example, in the paediatric ALL data example. In
future work, we wish to investigate the use of BIC and
other criteria on choosing the number of factors a for a
given number of components � .

10 APPENDIX

The model (16) underlying the MCFA approach can
be fitted via the EM algorithm to estimate the vector� of unknown parameters. It consists of the mixing
proportions % # , the factor component-mean vectors s # ,
the distinct elements of the factor component-covariance
matrices v # , the projection matrix r based on sharing of
factor loadings, and the common diagonal matrix ^ of
the residuals given the factor scores within a component
of the mixture. In order to apply the EM algorithm to this
problem, we introduce the component-indicator labels« # � , where « # � is one or zero according to whether � �
belongs or does not belong to the 3 th component of
the model. We let ª � be the component-label vector,ª � �6� « �E� 
&������
 « ! � � � . The ª � are treated as missing data,
along with the (unobservable) latent factors  # � within
this EM framework. The complete-data log likelihood is
then given by:D;(=�>*ï �?���G� !" # $ � 8"� $ � « # � k

:D;(= % # X :D;(= ' �)� � �Pr  # �(
 ^ �X :<;�= ' �  # �(��s # 
Pv # �Sn�� (41)ð E-step

On the E-step, we require the conditional expectation
of the complete-data log likelihood,

:D;(=*>*ï �E��� , given the
observed data �Ñ�â�)� � � 
������
�� �8 � � , using the current fit
for � . Let �xñDò/ó be the value of � after the Ì th iteration
of the EM algorithm. Then more specifically, on the � ÌfX5d� th iteration the E-step requires the computation of the
conditional expectation of

:<;�=�>*ï �E��� given � , using � ñôò.ó
for � , which is denoted by õ �?�x�.�xñDò/ó§� .

We let M ñDò/ó# � � M # �)� � �e� ñDò.ó �/
 (42)

where M # ��� � ����� is defined by (28). Also, we let
¯ �göÜ÷Gø

refer to the expectation operator, using � ñDò.ó for � . Then

the so-called õ -function, õ �?�x�.� ñDò.ó � , can be written asõ �E�A�S� ñDò/ó ��� !" # $ � 8"� $ � M ñDò.ó# � k :<;�= % # XZù ñôò.ó� # � XZù ñDò.ó� # � no
 (43)

whereù ñDò.ó� # � � ¯ �göÜ÷Gø k :D;(= ' ��� � �er  # � 
 ^ � ± � � 
 « # � �T5(n (44)

and ù ñDò.óW # � � ¯ �göÜ÷§ø k :D;(= ' �  # � �{s # 
,v # � ± � � 
 « # � �65�no� (45)ð M-step

On the � ÌKX 5�� th iteration of the EM algorithm, the
M-step consists of calculating the updated estimates% ñDò.ú � ó# 
§s ñDò.ú � ó# 
Pv ñDò/ú � ó# 
Pr�ñôò.ú � ó , and ^ ñôò.ú � ó by solving the
equation C õ �?�A���xñDò.ó§�PF C �H�uI� (46)

The updated estimates of the mixing proportions % #are given as in the case of the normal mixture model by

% ñôò.ú � ó# � 8"� $ � M ñDò.ó# � F�U ��34�65(
	������
 � �.� (47)

Concerning the other parameters, it can be shown
using vector and matrix differentiation thatC õ �E�A��� ñDò.ó �PF C s # �]v � �# 8"� $ � M ñDò.ó# � ¯ ��ö¹÷§ø k �  # � c s # � ± � � n�


(48)C õ �E�A�e� ñDò.ó �PF C v � �# �8"� $ � M ñDò.ó# � �W ã v # c ¯ �göÜ÷§ø k �  # � c s # ���  # � c s # � � ± � � n�ä?
 (49)C õ �E�A�e�AñDò.ó��PF C ^ � � �!" # $ � 8"� $ � M ñDò/ó# � �W ã ^ûc ¯ � öÜ÷§ø k �)� � c r  # � �/�)� � c  # � � � ± � � n�äE

(50)C õ �E�A��� ñDò/ó �GF C rK�×!" # $ � 8"� $ � M ñDò.ó# � ã ^ � � k � � ¯ �gö¹÷§ø �  �# � ± � � �c r ¯ � ö¹÷§ø �  # �  �# � ± � � �Sn�äE� (51)

On equating (48) to the zero vector, it follows thats ñDò.ú � ó#
can be expressed ass ñDò.ú � ó# �Ñs ñDò/ó# X Q 8� $ � M ñDò/ó# � ¶ ñDò.ó �# � ñôò.ó# �Q 8� $ � M ñDò/ó# � 
 (52)

where � ñDò.ó# � �~� � c rgñDò.ó?s ñDò/ó# (53)

and ¶ ñDò.ó# ����r ñôò.ó v ñDò.ó# r ñDò.ó � Xm^ ñDò.ó � � � r ñDò/ó v ñDò.ó# � (54)



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

On equating (49) to the null matrix, it follows thatv ñDò.ú � ó# � Q 8� $ � M ñDò/ó# � ¶ ñDò.ó �# � ñDò.ó# � � ñDò.ó �# � ¶ ñôò.óQ 8� $ � M ñDò.ó# �X ��}	� cY¶ ñDò/ó �# r ñDò/ó �§v ñDò.ó# (55)

On equating (50) to the zero vector, we obtain^ ñDò/ú � ó �uü7·ôý = � ^ ñDò.ó� Xm^ ñDò.óW �/
 (56)

where ^ ñDò.ó� � Q ! # $ � Q 8� $ � M ñDò.ó# � ^ ñDò.ó ��} � cYþ ñDò/ó# �Q ! # $ � Q 8� $ � M ñDò.ó# � (57)

and ^ ñDò.óW � Q ! # $ � Q 8� $ � M ñDò/ó# � þ ñôò.ó �# � ñDò.ó# � � ñDò.ó �# � þ ñDò.ó#Q ! # $ � Q 8� $ � M ñôò.ó# � 
 (58)

and whereþ ñDò.ó# �6��r ñDò.ó v ñDò.ó# r ñDò.ó � Xm^ ñDò.ó � � � ^ ñDò.ó � (59)

On equating (51) to the null matrix, we obtainr�ñôò.ú � ów��� !" # $ � r ñDò.ó� # ��� !" # $ � r ñDò/óW # � � � 
 (60)

wherer ñDò.ú � ó� # � 8"� $ � M ñDò.ó# � k � � s ñôò.ó �# X � ñDò.ó �# � ¶ ñôò.ó# n�
 (61)

r ñDò.ú � óW # � 8"� $ � M ñDò.ó# � k ��} � cz¶ ñDò.ó �# rgñDò.ó§�Gv ñDò.ó# X�ÿ ñDò.ó# ÿ ñDò.ó �# no

(62)

and ÿ ñDò/ó# �Ñs ñDò.ó# X�¶ ñôò.ó �# � ñDò.ó# � � (63)

We have to specify an initial value for the vector �
of unknown parameters in the application of the EM
algorithm. A random start is obtained by first randomly
assigning the data into � groups. Let U # 
��� # , and

�
#

be
the number of observations, the sample mean, and the
sample covariance matrix, respectively, of the 3 th group
of the data so obtained ( 34�ß5(
	������
 � ). We then proceed
as follows:

� Set % ñ Ï ó# �~U # F�U .
� Generate random numbers from the standard nor-

mal distrubution � ���,
�5d� to obtain values for the� N 
 Ì � th element of r � � N ��5(
&������
 � � Ì �T5(
	������
 a ).
� Define r ñ Ï ó by r � .
� On noting that the transformed data ^ � ��� W � � sat-

isfies the probabilistic PCA model of Tipping and
Bishop [25] with � W# �ß5�
 it follows that for a given^ ñ Ï ó and rgñ Ï ó , we can specify v ñ Ï ó# asv ñ Ï ó# �Jr ñ Ï ó � ^ ñ Ï ó����
	�� # �� # c��� W# � � � � �# ^ ñ Ï ó�����	 r ñ Ï ó 


where �� W# � Q � R $ � ú ��� # R F�� ��cma �/� The a columns of
the matrix �

#
are the eigenvectors corresponding to

the eigenvalues �
# �Úº �

# W º�������º �
# � of^ ñ Ï ó
������	 � # ^ ñ Ï ó
������	�
 (64)

where
�
#

is the covariance matrix of the � � in the3 th group, and 
#

is the diagonal matrix with diag-
onal elements equal to �

# � 
������
 � # ��� Concerning the
choice of ^ ñ Ï ó , we can take ^ ñ Ï ó to be the diagonal
matrix formed from the diagonal elements of the
(pooled) within-cluster sample covariance matrix of
the � � . The initial value for s # is s ñ Ï ó# �]r ñ Ï ó � �� # �

Some clustering procedure such as Ì -means can be
used to provide non-random partititons of the data,
which can be used to obtain another set of initial val-
ues for the parameters. In our analyses we used both
initialization methods.

As noted previously, the solution Br for the matrix of
factor loadings is unique only up to postmultiplication
by a nonsingular matrix. We chose to postmultiply by the
nonsingular matrix for which the solution is orthonor-
mal; that is, Br � Br|�~}	��� (65)

To achieve this with Br computed as above, we note
that we can use the Cholesky decomposition to find the
upper triangular matrix � of order a so thatBr � BrH� � � � � (66)

Then it follows that if we replace Br byBr � � � 
 (67)

then it will satisfy the requirement (65). With the adop-
tion of the estimate (67) for Br , we need to adjust the
updated estimates Bs # and Bv # to be

� Bs # (68)

and
� Bv # � � 
 (69)

where Bs # and Bv # are given by the limiting values of (52)
and (55), respectively.

An R version of our program is available at http://
www.maths.uq.edu.au/ Í gjm/
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