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Abstract. Clustering methods provide a powerful tool for the exploratanalysis of
high-dimensional, low-sample size data sets, such as ggmession microarray data.
Unlike classification and regression, cluster analysisiireg no response variable and
thus falls into category of unsupervised learning methblisvever, there are two major
problems: stability of clustering and meaningfulness oftads as cluster representa-
tives. On the one hand, big clusters impose strong smoo#ridgossible loss of very
essential information. On the other hand, small clustezswsually, very unstable and
noisy. Accordingly, they can not be treated as equal andpenident representatives.
To address the above problems, we propose regularisatipret@nt the creation of
super big clusters, and to attract data to existing smatitels. We demonstrate the
effectiveness of this approach to the supervised clasificaf gene expression data.

1 Introduction

The analysis of gene expression data using clustering iggobs has an important
role to play in the discovery, validation, and understagahvarious classes and sub-
classes of cancer [16]. One feature of microarray studigiseidact that the number
of samples collected is relatively small compared to the Imemof genes per sample
which are usually in the thousands. In statistical terms ¥ery large number of pre-
dictors compared to a small number of samples or obsenstiakes the classification
problem difficult. An efficient way to solve this problem is bging dimension reduc-
tion statistical techniques [3].

The SVM-RFE (support vector machine recursive featureiahltion) algorithm was
proposed in [9] to recursively classify the samples with S&idl select genes according
to their weights in the SVM classifiers. However, it was nateP5] that the original
SVM-RFE ranked the genes only once using all samples, arttithedop ranked genes
in the succeeding cross-validation for the classifier. Thia typical cross-validation
(CV) scheme which will generate a biased estimation of srrbr correct CV scheme
it is necessary to repeat feature selection for any CV looighvmay be very expensive
in terms of computational time.

Cluster analysis, an unsupervised learning method [24yjdely used to study the
structure of the data when no specific response variableeisfggr. In contrast to the
SVM-RFE, inthe case of most of clustering algorithms we canfiqggm feature selection
only once.

Recently, several new clustering algorithms (e.g., gridygloretical clustering, model-
based clustering) have been developed with the intenti@onobine and improve the
features of traditional clustering algorithms. Howevédustering algorithms are based
on different assumptions, and the performance of eacherlagtalgorithm depends on
properties of the input dataset. Therefore, the winningtelting algorithm does not ex-
ist for all datasets, and the optimization of existing ahuistg algorithms is still a vibrant
research area [4].

The most popular clustering methods are hierarchical ame¢&ns. However, several
key issues in hierarchical clustering still need to be asklrd. The most serious problem
with this method is its lack of robustness to noise, high disienality, and outliers.



Hierarchical clustering algorithms are also expensivé) bomputationally and in terms
of space complexity, and thus their applicability for thealgsis of large datasets is
limited.

The procedure k-means is relatively scalable and efficidmtnmprocessing large
datasets. In addition, k-means can converge to a local aptiin a small number of
iterations. But, k-means still has several drawbacks.t,Ringe user has to specify the
initial number of clusters and the convergence centroidg wath the initial partitions.
One of the characteristics of gene expression clusteritigaisprior knowledge is not
available. Thus, in order to detect the optimal number odtelts, users have to run the
algorithm repeatedly with different k values, compare thstering results, and make a
decision about the optimal number of clusters accordirigty.a large gene expression
dataset, this extensive fine-tuning process is not prdctita can note here [10] and
[14] where it was proposed to use as a stopping criterion atityrof the data within
any particular cluster. Usually, attempts to estimate tivalmer of Gaussian clusters will
lead to a very high value df [26]. Most simple criteria such a$/C' (Akaike Informa-
tion Criterion[1]) and BIC' (Bayesian Information Criteriof22]) either overestimate
or underestimate the number of clusters, which severelyditheir practical usability.

A second problem in k-means clustering is its sensitivitpa@gse and outliers. Gene
expression data is noisy and has a significant number ofeositiand this can sub-
stantially influence the mean values and thus cluster positi Finally, k-means often
terminates at a local, possibly suboptimal, minimum.

An approach to test the stability of the clustering solusibas been proposed in [6],
[13]. According to this approach, a given data set is reiatplit into two nondisjoint
sets. The sizes of the data sets are free parameters of thed. rAdiebr clustering both
data sets, a predictor is trained on one data set and testhd other data set. Note also
[23], where the random subspace method has been proposaapute cluster stability
scores.

The goal of statistical mixture models, implemented, faraple, via the expectation-
maximisation (EM) algorithm [17], is to identify or at leasstimate unknown param-
eters (the means and standard deviations) of underlyinigapility distributions for
each cluster in order to maximize the likelihood of the otbsdrdata distribution. The
EM algorithm is a widely used approach for learning unobseémnariables in machine
learning. In probabilistic (soft) clustering, the EM algbm attempts to approximate
the observed distributions of values based on mixturediafrdint distributions in differ-
ent clusters [16]. The results of EM clustering are difféfeom those computed by k-
means clustering. While the latter assigns observatioclsisbers by trying to maximize
the distances between clusters, the EM algorithm complassification probabilities
rather then actual assignments of observations to clustether words, in this method
each observation belongs to each cluster with a certaimapitily. Of course, from the
final result it is usually possible to determine the actualgrsment of observations to
clusters, based on the (largest) posterior probabilityudter membership.

In this paper, we shall focus on the use of cluster analysiedace the number of
variables. The method is to be demonstrated on the supdmigssification of the gene
expression data.

2 Threshold-based clustering with merging

Let (x4, 4¢),t = 1,...,n, be a training sample of observations wheyec R™ is
m-dimensional vector of features, apdis binary label:y, € {—1,1}. Boldface letters
denote vector-columns, whose components are labelled aswormal typeface. Let us
denote byX = {z,;,t =1,...,n,j = 1,..., m} matrix of explanatory variables.

The aim here is to use clustering to compress ma&rito a limited number of sig-
natures or clusters without loss of essential informatidfe can employ well-known



Leader algorithm [11] (pp. 75-76) with two major modificatgd(1) making centroids
flexible and (2) by including “backward” merging operatiohtbe existing clusters
which are close enough [18]. We shall refer to this modifiggbathm as Algorithm 1.
The algorithm requires an update of the matrix of distane®/éen clusters (or cen-
troids) after any transaction. This operation will douliie tequired computation time
assuming that the number of clusters remains constantirBfaict, the backward oper-
ation may reduce significantly (subject to the properly gelg regulation parameters)
the number of clusters or clustering size and, as a conseguire Algorithm 1 may be
even faster comparing with its analogues without mergirgyaon.
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Figure 1: Algorithm 1: colon data; (a) AMRs (blue stars) and@s (black circles), (b) numbers of
clusters (vertical axes) against 100 random permutattomszontal axes, see for details Section 7.1).

Algorithm 1

1: Select forward and backward threshold parametgrsH g, Hr > Hp, and dis-
tanced;

2: initializej := 1, number of clusters := 1, the first cluster with centroid;, := x;
as a first element in the training dataset;

3: j :=j + 1, obtain a sequential data-instanceand compute

D= IEllln (I)(vaqc);
J = argmin®(x;, q.);

c=1..7
4: if D < Hp, then assigk; to the cluster and recompute,. as a sample average;
5. if D > Hp, then create a new cluster with centrejd , := x;, k := k + 1,

6: if £ > 2, compute triangle matrix of distances between centroidd, fiinimal
distancel,,;, and corresponding centroids;

7. merge 2 nearest clustersiif,;, < Hg,k := k — 1;
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8: repeat steps 3-7, until no instances are left in the tigiset.

As an outcome above algorithm produces maf}iaf &£ centroids, where we can ex-
pect thatt is much smaller comparing with, subject to the properly selected forward
and backward regulation parametéfs and H . All further analysis will be based on
the matrix() as a replacement of the original matdx

3 Regularised k-means clustering

Stability in cluster analysis is strongly dependent on thadet, especially, on how
well separated and how homogeneous the clusters are. i§tabid very important
aspect in cluster analysis. Stability means that a meaninvgdid cluster should not
disappear easily if the data set is changed in a non-eskemniid12]. On the one hand,
big clusters impose strong smoothing and possible loss gf essential information.
On the other hand, small clusters are, usually, very unstaibd noisy. Accordingly,
they can not be treated as equal and independent repregesitat

The target of the following below regularisation is to pretvereation of super big
clusters, and to attract data to existing small clusters.
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Figure 2: Algorithm 2: (a) colon data: AMRs (vertical axes)afunction of the numbers of clusters
(horizontal axes).«« = 0 (black circles, no regularisationy, = 0.1 (blue stars); (b) leukaemia data:
a = 0 (black circles, no regularisation),= 0.1 (blue stars).

Algorithm 2

1: Select number of clustets distanceb and regulation parameter,

2: split randomly available genes intosubsets (clusters) with approximately the
same size;

3: compute an average (centroig)for any cluster;
4: compute maximum distandebetween genes and centroids;
5: redistribute genes according to

(I)(Xj7 QC> + Rm
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where regularisation termf, = “L#<
m

time, m is the total number of genes;

#c is the size of cluster at the current

6: recompute centroids;

7: repeat steps 5-6, until convergence (that means stabévioe of the target func-
tion).

Remark 3.1 There may be a situation in the Step 3 of the above algoritlatrstbme of
the clusters are empty. In this situation, the coordinatethe corresponding centroids
were generated using standard uniform random numbers géorerOn the one hand,
we want to penalize the system for having empty clustersh®other hand, we hope
that randomly generated centroid will attract new data te thuster.

3.1 On the differences between Algorithms 1 and 2

Let us consider a toy example where the elements of the daXasee distributed
nearly uniformly around some-dimensional area. In this ca3e may be regarded as
inseparable in the sense of the k-means clustering, and ibeviogical to splitX into
several approximately equal (in the sense of number ofnatafata) subsets using the
Algorithm 1. Note that in this particular example the Algbm 2, used without proper
regularisation, may produce as an outcome one super bigpclus

As a second toy example, let us consider the case with thuseecsC',, Cy, andCs,
where all three clusters are well separable by the Algor@hi@uppose that the clusters
C, and(;, are very important, but small in size spatially. Also, welwgsume that the
clustersC; andC, are close. Third cluster; is very large spatially and the information
containing inCs is not significant. Now, let us consider performance of thgohithm 1
as a function of the forward threshold parameftgr. In order to separate clustefg
and(Cs the parametefl» must be small. As an outcome, we will have large number of
clusters (see last line of the following below Table 1, lezrkéa case).

Note that we don’t need regularisation in the case of the Atlgm 1, because the for-
ward and backward threshold parameters (as a natural piwe afgorithm) are playing
the role of efficient regulators.

4 Regularised linear regression model

In supervised classification algorithms, a classifier ism&d with all the labelled
training data and used to predict the class labels of ungs¢data. In other words, the
label y; may be hidden, and the task is to estimate it using vectoraitifes. Let us
consider the most simple linear decision function

l
wp=u(x) = wj -z +Db,
=1

wherew; are weight coefficients angdis a bias term.

Remark 4.1 In order to simplify the notations, we will use the same symfwr the
secondry features, which were produced as an outcome déalug. It is assumed that
<< m.

Let us consider the most basic quadratic minimization migdlwith the following
target function:

L(W) = Q(:uv n, W) + Z (yt - ut)2 ) (l)
t=1
whereQ(u,n,w) = u-n - ||w||? is a regularization term with ridge parameter
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Remark 4.2 The target of the regularization term with paramejeis to reduce the
difference between training and test results. Valug afiay be optimized using cross-
validation as discussed in [15]. We used in our experimgnts(.01.

4.1 Gradient-based optimisation
The direction of the steepest decent is defined by the griagietor

g(W) = {g](W),] = 17 s 7€}7

where
OL(w

) n
gj(w) = Jw. :2u-n-wj—22xtj(yt—ut).
J t=1

Initial values of the linear coefficients; and the bias parametgmay be arbitrary.
Then, we recompute the coefficients

, . . , I
with) = w@ 5. g(w®), plF) = p® 4 - Z(yt — ),
t=1
wherei is a sequential number of iteration. Minimizing (1) we fin@ &ize of the step
according to the formula

¢
5= Ll_LQ_,u'anzlegj 2)
- n ¢ )
>t si+pen Zj:l gjz

where

n n

L
L= Zstyt, Ly = Zstuta 5t = Z%’gj-
j=1

t=1 t=1

5 Support vector machines

In difference to the linear regression model, the targethe@stupport vector machines
is not to approximate, but to separate the patterns. As ggub8¥Ms create a decision
boundary separating the patterns. This boundary is basd¢ldeomost relevant data-
instances (the so-called support vectors).

Good performance of a pattern classifier is achieved whenuh®er of adjustable
parameters is matched to the size of the training set. Udingeaidea as a motivation
and according to the Lagrangian method we can transfornmnatiglassification prob-
lem: minimize||w||?, subject toy, - u; > ¢ > 0, into the dual space. The objective of
the SVM model is to maximize

n n

L(v) = th ¢ — %Z’ijjK(Xtaxj> (3)

t=1 j=1
subject to the following conditions
Z'Utyt =0, vy >0,
t=1

where
Ky = K(x0,%) = (%0, %) = Y @y @)

are elements of the kernel matrix. Performance of the SVMrélgn depends essen-
tially on the regulation parameteér We used in our experiments valge= 1.

Remark 5.1 Similar to Section 4.1, the target function (3) may be mas@éaiusing
gradient based optimisation as it was discussed in [19].
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6 Data

Colon datasétrepresents a matrix of 62 tissue samples (40 negative andstive)
and 2000 genes. The microarray matrix for this set thushas2000 rows andn = 62
columns.

Leukaemia datasetvas originally provided in [8], which contains the expressi
levels of 7129 genes of 72 patients, among them, 47 patieffesr rom acute lym-
phoblastic leukaemia (ALL) and 25 patients suffer from thata myeloid leukaemia
(AML).

We applied to the data double normalisation. First, we ntis@ad each column to
have means zero and unit standard deviation. Then, we dghkesame normalisation
to each row.

7 Experiments

7.1 Colon data

The performance of the Algoritm 1 depends essentially onsdwguiential order of
the data. Accordingly, we used 100 random permutationseofrttiexes(1, ..., 2000}.

In line with ensemble machine learning techniques [20], &e consider a classifier
which is based on any single permutation as a base or weakeleaéEnsembles are
often capable of greater prediction accuracy than any of theividual members. As
a consequence of the diversity between individual basedes, an ensemble does not
suffer from overfitting.

Based on the experimental trials, we used constant forwaatdackward threshold
parameters:Hr = 45, Hg = 10. Note that Algorithms 1 and 2 were used with
Manhatten and Euclidean distances. As an outcome, theifligol produces matrices
of centroids. The corresponding clustering sizes are gindhe Fig. 1(c). Average
number of clusters was 9.44 ranging from 5 to 14.

We used two evaluation criterions: 1) average misclassidicaate (AMR) and 1)
area under receiver operation curve (AUC), see Fig. 1(a).

By definition,

1 n
AMR = E Z 5(ft7 yt)7
t=1
wheref; is prediction of the labe},,

R e

We performed LOO (leave-one-out) cross-validation to esgthe classification po-
tential of our method. This means that we set asidétthebservation and fit the classi-
fier by considering remainin@: — 1) data points. Taking into account small number of
centroids, we used linear regression as a base-learnehaNelenote such a scheme as

RP{100} [Alg.1 + LOO{RLR}]. (5)

The final decision function was computed as a sample aveffdggse-learners. The
corresponding AMR was 0.1612.

http://microarray.princeton.edu/oncology/affydateéx.html
2http:/lwww.broad.mit.edu/cgi-bin/cancer/publicatidn



Table 1:Some selected results (in terms of AMR), where the LOO ScHenwresponds to (5)
and Scheme 2 corresponds to (6). Columns “N” show numberedfisied clusters, and average
number of the used clusters in the case of Algorithm 1.

LOO Stepl Step2 Colon N | Leukaemia N

1 Alg.2 SVM | 0.1361 9 0.0139 7

2 Alg.2 SVM | 0.1524 9 0.0235 7

1 Alg.2 RLR | 0.1590 11 | 0.0174 15
1 Alg.1 SVM | 0.1612 9.44| 0.0187 653

Fig. 2 represents an average of 100 independent proce@dads of which may be
described as follows. Firstly, we used the regularised kimeAlgorithm 2 in order
to compress data to the selected number of clusters wheia mliocation of genes
to clusters was drawn at random. Components of the corrdgpprentroids were
used as representatives of tissues. Then, we conductaghtwal using LOO method
with linear SVM as a base learner. In line with (5), we can dersuch scheme as
RP{100} [Alg.2 + LOO{SV M}]. Fig. 2(a) demonstrates AMR as a decreasing func-
tion of number of clusters (black circles) in the case with@gularisation. We con-
ducted experiment with up to 100 clusters and observed AMKakave 0.24.

The structure of the graph was changed dramatically whenppéea regularisa-
tion with « = 0.01. Initially, we observed rapid decline of the AMR to the point
k = 15, AMR = 0.1558. Then, AMR grows slowly to the level above 0.21 (over-
fitting may be regarded as the most likely explanation fohsggrowth), and in the case
if number of clusters was more than 60 AMR became stablehBuinprovement was
obtained withae = 0.1, see Fig. 2(a) - blue stars. The lowest point correspondseto t
number of clusters k=9 with AMR = 0.1361.

Remark 7.1 The property represented by the Fig. 2 may be used for thetmieof the
number of clusters.

Remark 7.2 In the Fig. 1 - 2, we have plotted the AMRs estimated using Lf8se
validation under assumption that the choice of clusters$ bglthe same during the
validation trials as chosen on the basis of the full data d@bwever, there will be a
selection bias in these estimates as the clusters shoulefbened as a natural part of
any validation trial; see, for example, [2]. But, since ttabélsy; of the training data
were not used in the clustering process, the selection lhiasld not be of a practical
importance.

The validation scheme
RP{100} [LOO{Alg.2 + SVM}]. (6)

requires a lot more computational time comparing with theleh¢s). Nevertheless, we
tested the model (6) in application to the fixed number ofteltss: = 9 with regulation
parametery = 0.1 and observed AMR = 0.1524.

7.2 Leukaemia data

Based on the experimental trials, we used Algorithm 1 withstant forward and
backward threshold parameteliyx = 52, Hg = 35. Again (as in the case of colon),
we conducted experiments against 100 random permutatidms.average number of
clusters was 867.4, ranging from 827 to 924. The mean AMR wa6Q, with range
from 0.0278 to 0.0833.



The figures in Fig. 2(b) were obtained using an identical @doce (as in the case of
the colon data, see Fig. 2(a)) applied to the leukaemia dathillustrates very similar
structures. The best result AMR = 0.0253, see Fig. 2(b) - btaes, corresponds to
a=0.1k=11.

7.2.1 Additional preprocessing steps

We followed the preprocessing steps of [7]: (1) thresha@dittoor of 1 and ceiling
of 20000; (2) filtering: exclusion of genes with max / min2 and (max - minx 100,
where max and min refer respectively to the maximum and mininexpression levels
of a particular gene across a tissue sample. This left us 1886 genes. In addition,
the natural logarithm of the expression levels was takemalli, we applied double
normalisation as described in Section 6.

After above preprocessing we observed significant imprargrm quality of clas-
sification. The corresponding results are presented in abeTl, and are competitive
comparing with previous publications [5], [12], where thesbreported result for colon
setis AMR =0.113, and AMR = 0.0139 for leukaemia set.

Remark 7.3 We conducted similar studies in application to the colorad&irstly, we
observed the following statistical characteristiesin = 5.82, max = 20903, 4.38 <
maz/min < 1258.6. Then, we took natural logarithm of the expression levelssela
on our experimental results we can not report any improvenmetine quality of classi-
fication.

7.3 Computation time

A Linux computer with speed 3.2GHz, RAM 16GB, was used for nabshe com-
putations. The time for the scheme (5) in the case of coldhdtdumn of the Fig. 2)
was about 5 hours. The only one case with 9 clusters, schem®@& about 4 hours.
Similar computations for leukaemia data took about 15 h¢usours) for the scheme
(5), and 9 hours (3 hours) for the scheme (6), where timeh#raduced set with 1896
genes were given in brackets.

8 Concluding remarks

Microarray data analysis is challenging the traditionathae learning techniques
due to the availability of a limited number of training instes and the existence of
large number of genes, together with the inherent variogsmainties. In many cases
machine learning techniques rely too much on the gene smlegthich may cause se-
lection bias. Generally, feature selection may be claskifi two categories based on
whether the criterion depends on the learning algorithnd tseonstruct the prediction
rule. If the criterion is independent of the prediction rulee method is said to follow
a filter approach, and if the criterion depends on the rukeptiethod is said to follow a
wrapper approach [2].

The objective of this study is to develop a filtering machiearhing approach and
produce a robust classification for microarray data. Th@@sed regularized k-means
algorithm represents a very important component of thesifleation system. The re-
sults that we obtained on two real datasets confirm the paterfitour approach.
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