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Abstract. Clustering methods provide a powerful tool for the exploratory analysis of
high-dimensional, low-sample size data sets, such as gene expression microarray data.
Unlike classification and regression, cluster analysis requires no response variable and
thus falls into category of unsupervised learning methods.However, there are two major
problems: stability of clustering and meaningfulness of centroids as cluster representa-
tives. On the one hand, big clusters impose strong smoothingand possible loss of very
essential information. On the other hand, small clusters are, usually, very unstable and
noisy. Accordingly, they can not be treated as equal and independent representatives.
To address the above problems, we propose regularisation toprevent the creation of
super big clusters, and to attract data to existing small clusters. We demonstrate the
effectiveness of this approach to the supervised classification of gene expression data.

1 Introduction
The analysis of gene expression data using clustering techniques has an important

role to play in the discovery, validation, and understanding of various classes and sub-
classes of cancer [16]. One feature of microarray studies isthe fact that the number
of samples collected is relatively small compared to the number of genes per sample
which are usually in the thousands. In statistical terms this very large number of pre-
dictors compared to a small number of samples or observations makes the classification
problem difficult. An efficient way to solve this problem is byusing dimension reduc-
tion statistical techniques [3].

The SVM-RFE (support vector machine recursive feature elimination) algorithm was
proposed in [9] to recursively classify the samples with SVMand select genes according
to their weights in the SVM classifiers. However, it was notedin [25] that the original
SVM-RFE ranked the genes only once using all samples, and used the top ranked genes
in the succeeding cross-validation for the classifier. Thisis a typical cross-validation
(CV) scheme which will generate a biased estimation of errors. In correct CV scheme
it is necessary to repeat feature selection for any CV loop which may be very expensive
in terms of computational time.

Cluster analysis, an unsupervised learning method [24], iswidely used to study the
structure of the data when no specific response variable is specified. In contrast to the
SVM-RFE, in the case of most of clustering algorithms we can perform feature selection
only once.

Recently, several new clustering algorithms (e.g., graph-theoretical clustering, model-
based clustering) have been developed with the intention tocombine and improve the
features of traditional clustering algorithms. However, clustering algorithms are based
on different assumptions, and the performance of each clustering algorithm depends on
properties of the input dataset. Therefore, the winning clustering algorithm does not ex-
ist for all datasets, and the optimization of existing clustering algorithms is still a vibrant
research area [4].

The most popular clustering methods are hierarchical and k-means. However, several
key issues in hierarchical clustering still need to be addressed. The most serious problem
with this method is its lack of robustness to noise, high dimensionality, and outliers.
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Hierarchical clustering algorithms are also expensive, both computationally and in terms
of space complexity, and thus their applicability for the analysis of large datasets is
limited.

The procedure k-means is relatively scalable and efficient when processing large
datasets. In addition, k-means can converge to a local optimum in a small number of
iterations. But, k-means still has several drawbacks. First, the user has to specify the
initial number of clusters and the convergence centroids vary with the initial partitions.
One of the characteristics of gene expression clustering isthat prior knowledge is not
available. Thus, in order to detect the optimal number of clusters, users have to run the
algorithm repeatedly with different k values, compare the clustering results, and make a
decision about the optimal number of clusters accordingly.For a large gene expression
dataset, this extensive fine-tuning process is not practical. We can note here [10] and
[14] where it was proposed to use as a stopping criterion normality of the data within
any particular cluster. Usually, attempts to estimate the number of Gaussian clusters will
lead to a very high value ofk [26]. Most simple criteria such asAIC (Akaike Informa-
tion Criterion [1]) andBIC (Bayesian Information Criterion[22]) either overestimate
or underestimate the number of clusters, which severely limits their practical usability.

A second problem in k-means clustering is its sensitivity tonoise and outliers. Gene
expression data is noisy and has a significant number of outliers, and this can sub-
stantially influence the mean values and thus cluster positions. Finally, k-means often
terminates at a local, possibly suboptimal, minimum.

An approach to test the stability of the clustering solutions has been proposed in [6],
[13]. According to this approach, a given data set is repeatedly split into two nondisjoint
sets. The sizes of the data sets are free parameters of the model. After clustering both
data sets, a predictor is trained on one data set and tested onthe other data set. Note also
[23], where the random subspace method has been proposed to compute cluster stability
scores.

The goal of statistical mixture models, implemented, for example, via the expectation-
maximisation (EM) algorithm [17], is to identify or at leastestimate unknown param-
eters (the means and standard deviations) of underlying probability distributions for
each cluster in order to maximize the likelihood of the observed data distribution. The
EM algorithm is a widely used approach for learning unobserved variables in machine
learning. In probabilistic (soft) clustering, the EM algorithm attempts to approximate
the observed distributions of values based on mixtures of different distributions in differ-
ent clusters [16]. The results of EM clustering are different from those computed by k-
means clustering. While the latter assigns observations toclusters by trying to maximize
the distances between clusters, the EM algorithm computes classification probabilities
rather then actual assignments of observations to cluster.In other words, in this method
each observation belongs to each cluster with a certain probability. Of course, from the
final result it is usually possible to determine the actual assignment of observations to
clusters, based on the (largest) posterior probability of cluster membership.

In this paper, we shall focus on the use of cluster analysis toreduce the number of
variables. The method is to be demonstrated on the supervised classification of the gene
expression data.

2 Threshold-based clustering with merging
Let (xt, yt) , t = 1, . . . , n, be a training sample of observations wherext ∈ R

m is
m-dimensional vector of features, andyt is binary label:yt ∈ {−1, 1}. Boldface letters
denote vector-columns, whose components are labelled using a normal typeface. Let us
denote byX = {xtj , t = 1, . . . , n, j = 1, . . . , m} matrix of explanatory variables.

The aim here is to use clustering to compress matrixX to a limited number of sig-
natures or clusters without loss of essential information.We can employ well-known
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Leader algorithm [11] (pp. 75-76) with two major modifications (1) making centroids
flexible and (2) by including “backward” merging operation of the existing clusters
which are close enough [18]. We shall refer to this modified algorithm as Algorithm 1.
The algorithm requires an update of the matrix of distances between clusters (or cen-
troids) after any transaction. This operation will double the required computation time
assuming that the number of clusters remains constant. But,in fact, the backward oper-
ation may reduce significantly (subject to the properly selected regulation parameters)
the number of clusters or clustering size and, as a consequence, the Algorithm 1 may be
even faster comparing with its analogues without merging operation.
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Figure 1: Algorithm 1: colon data; (a) AMRs (blue stars) and AUCs (black circles), (b) numbers of
clusters (vertical axes) against 100 random permutations (horizontal axes, see for details Section 7.1).

Algorithm 1

1: Select forward and backward threshold parametersHF , HB, HF ≥ HB, and dis-
tanceΦ;

2: initializej := 1, number of clustersk := 1, the first cluster with centroidqk := xj

as a first element in the training dataset;

3: j := j + 1, obtain a sequential data-instancexj and compute

{

D = min
c=1..τ

Φ(xj ,qc);

j = argmin
c=1..τ

Φ(xj ,qc);

4: if D ≤ HF , then assignxj to the clusterc and recomputeqc as a sample average;

5: if D > HF , then create a new cluster with centroidqk+1 := xj , k := k + 1;

6: if k ≥ 2, compute triangle matrix of distances between centroids, find minimal
distancedmin and corresponding centroids;

7: merge 2 nearest clusters ifdmin < HB, k := k − 1;
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8: repeat steps 3-7, until no instances are left in the training set.

As an outcome above algorithm produces matrixQ of k centroids, where we can ex-
pect thatk is much smaller comparing withm, subject to the properly selected forward
and backward regulation parametersHF andHB. All further analysis will be based on
the matrixQ as a replacement of the original matrixX.

3 Regularised k-means clustering
Stability in cluster analysis is strongly dependent on the data set, especially, on how

well separated and how homogeneous the clusters are. Stability is a very important
aspect in cluster analysis. Stability means that a meaningful valid cluster should not
disappear easily if the data set is changed in a non-essential way [12]. On the one hand,
big clusters impose strong smoothing and possible loss of very essential information.
On the other hand, small clusters are, usually, very unstable and noisy. Accordingly,
they can not be treated as equal and independent representatives.

The target of the following below regularisation is to prevent creation of super big
clusters, and to attract data to existing small clusters.
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Figure 2: Algorithm 2: (a) colon data: AMRs (vertical axes) as a function of the numbers of clusters
(horizontal axes):α = 0 (black circles, no regularisation),α = 0.1 (blue stars); (b) leukaemia data:
α = 0 (black circles, no regularisation),α = 0.1 (blue stars).

Algorithm 2

1: Select number of clustersk, distanceΦ and regulation parameterα;

2: split randomly available genes intok subsets (clusters) with approximately the
same size;

3: compute an average (centroid)qc for any clusterc;

4: compute maximum distanceL between genes and centroids;

5: redistribute genes according to

Φ(xj ,qc) + Rc,
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where regularisation termRc = α·L·#c

m
, #c is the size of clusterc at the current

time,m is the total number of genes;

6: recompute centroids;

7: repeat steps 5-6, until convergence (that means stable behavior of the target func-
tion).

Remark 3.1 There may be a situation in the Step 3 of the above algorithm that some of
the clusters are empty. In this situation, the coordinates of the corresponding centroids
were generated using standard uniform random numbers generator. On the one hand,
we want to penalize the system for having empty clusters. On the other hand, we hope
that randomly generated centroid will attract new data to the cluster.

3.1 On the differences between Algorithms 1 and 2
Let us consider a toy example where the elements of the dataset X are distributed

nearly uniformly around somen-dimensional area. In this caseX may be regarded as
inseparable in the sense of the k-means clustering, and it will be logical to splitX into
several approximately equal (in the sense of number of internal data) subsets using the
Algorithm 1. Note that in this particular example the Algorithm 2, used without proper
regularisation, may produce as an outcome one super big cluster.

As a second toy example, let us consider the case with three clustersC1, C2 andC3,
where all three clusters are well separable by the Algorithm2. Suppose that the clusters
C1 andC2 are very important, but small in size spatially. Also, we will assume that the
clustersC1 andC2 are close. Third clusterC3 is very large spatially and the information
containing inC3 is not significant. Now, let us consider performance of the Algorithm 1
as a function of the forward threshold parameterHF . In order to separate clustersC1

andC2 the parameterHF must be small. As an outcome, we will have large number of
clusters (see last line of the following below Table 1, leukaemia case).

Note that we don’t need regularisation in the case of the Algorithm 1, because the for-
ward and backward threshold parameters (as a natural part ofthe algorithm) are playing
the role of efficient regulators.

4 Regularised linear regression model
In supervised classification algorithms, a classifier is trained with all the labelled

training data and used to predict the class labels of unseen test data. In other words, the
label yt may be hidden, and the task is to estimate it using vector of features. Let us
consider the most simple linear decision function

ut = u(xt) =

ℓ
∑

j=1

wj · xtj + b,

wherewi are weight coefficients andb is a bias term.

Remark 4.1 In order to simplify the notations, we will use the same symbols for the
secondry features, which were produced as an outcome of clustering. It is assumed that
ℓ ≪ m.

Let us consider the most basic quadratic minimization model[21] with the following
target function:

L(w) = Ω(µ, n,w) +
n

∑

t=1

(yt − ut)
2 , (1)

whereΩ(µ, n,w) = µ · n · ‖w‖2 is a regularization term with ridge parameterµ.

5



Remark 4.2 The target of the regularization term with parameterµ is to reduce the
difference between training and test results. Value ofµ may be optimized using cross-
validation as discussed in [15]. We used in our experimentsµ = 0.01.

4.1 Gradient-based optimisation
The direction of the steepest decent is defined by the gradient vector

g(w) = {gj(w), j = 1, . . . , ℓ},

where

gj(w) =
∂L(w)

∂wj

= 2µ · n · wj − 2

n
∑

t=1

xtj (yt − ut) .

Initial values of the linear coefficientswi and the bias parameterb may be arbitrary.
Then, we recompute the coefficients

w(i+1) = w(i) + δi · g(w(i)), b(i+1) = b(i) +
1

n

n
∑

t=1

(yt − ut),

wherei is a sequential number of iteration. Minimizing (1) we find the size of the step
according to the formula

δ =
L1 − L2 − µ · n

∑ℓ

j=1 wjgj
∑n

t=1 s2
t + µ · n

∑ℓ

j=1 g2
j

, (2)

where

L1 =
n

∑

t=1

styt, L2 =
n

∑

t=1

stut, st =
ℓ

∑

j=1

xtjgj.

5 Support vector machines
In difference to the linear regression model, the target of the support vector machines

is not to approximate, but to separate the patterns. As an output SVMs create a decision
boundary separating the patterns. This boundary is based onthe most relevant data-
instances (the so-called support vectors).

Good performance of a pattern classifier is achieved when thenumber of adjustable
parameters is matched to the size of the training set. Using above idea as a motivation
and according to the Lagrangian method we can transform original classification prob-
lem: minimize‖w‖2, subject toyt · ut ≥ φ > 0, into the dual space. The objective of
the SVM model is to maximize

L(v) =

n
∑

t=1

vt

[

φ −
yt

2

n
∑

j=1

vjyjK(xt,xj)

]

(3)

subject to the following conditions
n

∑

t=1

vtyt = 0, vt ≥ 0,

where

Ktj = K(xt,xj) = 〈xt,xj〉 =

ℓ
∑

v=1

xtvxjv (4)

are elements of the kernel matrix. Performance of the SVM algorithm depends essen-
tially on the regulation parameterφ. We used in our experiments valueφ = 1.

Remark 5.1 Similar to Section 4.1, the target function (3) may be maximised using
gradient based optimisation as it was discussed in [19].
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6 Data
Colon dataset1 represents a matrix of 62 tissue samples (40 negative and 22 positive)

and 2000 genes. The microarray matrix for this set thus hasm = 2000 rows andn = 62
columns.

Leukaemia dataset2 was originally provided in [8], which contains the expression
levels of 7129 genes of 72 patients, among them, 47 patients suffer from acute lym-
phoblastic leukaemia (ALL) and 25 patients suffer from the acute myeloid leukaemia
(AML).

We applied to the data double normalisation. First, we normalised each column to
have means zero and unit standard deviation. Then, we applied the same normalisation
to each row.

7 Experiments
7.1 Colon data
The performance of the Algoritm 1 depends essentially on thesequential order of

the data. Accordingly, we used 100 random permutations of the indexes{1, ..., 2000}.
In line with ensemble machine learning techniques [20], we can consider a classifier
which is based on any single permutation as a base or weak learner. Ensembles are
often capable of greater prediction accuracy than any of their individual members. As
a consequence of the diversity between individual base-learners, an ensemble does not
suffer from overfitting.

Based on the experimental trials, we used constant forward and backward threshold
parameters:HF = 45, HB = 10. Note that Algorithms 1 and 2 were used with
Manhatten and Euclidean distances. As an outcome, the Algorithm 1 produces matrices
of centroids. The corresponding clustering sizes are givenin the Fig. 1(c). Average
number of clusters was 9.44 ranging from 5 to 14.

We used two evaluation criterions: 1) average misclassification rate (AMR) and 1)
area under receiver operation curve (AUC), see Fig. 1(a).

By definition,

AMR =
1

n

n
∑

t=1

δ(ft, yt),

whereft is prediction of the labelyt,

δ(ft, yt) =

{

1 if ft 6= yt;
0, if ft = yt.

We performed LOO (leave-one-out) cross-validation to explore the classification po-
tential of our method. This means that we set aside theith observation and fit the classi-
fier by considering remaining(n− 1) data points. Taking into account small number of
centroids, we used linear regression as a base-learner. We shall denote such a scheme as

RP{100} [Alg.1 + LOO{RLR}] . (5)

The final decision function was computed as a sample average of base-learners. The
corresponding AMR was 0.1612.

1http://microarray.princeton.edu/oncology/affydata/index.html
2http://www.broad.mit.edu/cgi-bin/cancer/publications/
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Table 1:Some selected results (in terms of AMR), where the LOO Scheme1 corresponds to (5)
and Scheme 2 corresponds to (6). Columns “N” show number of the used clusters, and average
number of the used clusters in the case of Algorithm 1.

LOO Step 1 Step 2 Colon N Leukaemia N

1 Alg. 2 SVM 0.1361 9 0.0139 7
2 Alg. 2 SVM 0.1524 9 0.0235 7
1 Alg. 2 RLR 0.1590 11 0.0174 15
1 Alg. 1 SVM 0.1612 9.44 0.0187 653

Fig. 2 represents an average of 100 independent procedures,each of which may be
described as follows. Firstly, we used the regularised k-means Algorithm 2 in order
to compress data to the selected number of clusters where initial allocation of genes
to clusters was drawn at random. Components of the corresponding centroids were
used as representatives of tissues. Then, we conducted evaluation using LOO method
with linear SVM as a base learner. In line with (5), we can denote such scheme as
RP{100} [Alg.2 + LOO{SV M}] . Fig. 2(a) demonstrates AMR as a decreasing func-
tion of number of clusters (black circles) in the case without regularisation. We con-
ducted experiment with up to 100 clusters and observed AMR was above 0.24.

The structure of the graph was changed dramatically when we applied regularisa-
tion with α = 0.01. Initially, we observed rapid decline of the AMR to the point
k = 15, AMR = 0.1558. Then, AMR grows slowly to the level above 0.21 (over-
fitting may be regarded as the most likely explanation for such growth), and in the case
if number of clusters was more than 60 AMR became stable. Further improvement was
obtained withα = 0.1, see Fig. 2(a) - blue stars. The lowest point corresponds to the
number of clusters k=9 with AMR = 0.1361.

Remark 7.1 The property represented by the Fig. 2 may be used for the selection of the
number of clusters.

Remark 7.2 In the Fig. 1 - 2, we have plotted the AMRs estimated using LOO cross-
validation under assumption that the choice of clusters will be the same during then
validation trials as chosen on the basis of the full data set.However, there will be a
selection bias in these estimates as the clusters should be reformed as a natural part of
any validation trial; see, for example, [2]. But, since the labelsyt of the training data
were not used in the clustering process, the selection bias should not be of a practical
importance.

The validation scheme

RP{100} [LOO{Alg.2 + SV M}] . (6)

requires a lot more computational time comparing with the model (5). Nevertheless, we
tested the model (6) in application to the fixed number of clustersk = 9 with regulation
parameterα = 0.1 and observed AMR = 0.1524.

7.2 Leukaemia data
Based on the experimental trials, we used Algorithm 1 with constant forward and

backward threshold parameters:HF = 52, HB = 35. Again (as in the case of colon),
we conducted experiments against 100 random permutations.The average number of
clusters was 867.4, ranging from 827 to 924. The mean AMR was 0.0561, with range
from 0.0278 to 0.0833.
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The figures in Fig. 2(b) were obtained using an identical procedure (as in the case of
the colon data, see Fig. 2(a)) applied to the leukaemia data,and illustrates very similar
structures. The best result AMR = 0.0253, see Fig. 2(b) - bluestars, corresponds to
α = 0.1, k = 11.

7.2.1 Additional preprocessing steps

We followed the preprocessing steps of [7]: (1) thresholding: floor of 1 and ceiling
of 20000; (2) filtering: exclusion of genes with max / min≤ 2 and (max - min)≤ 100,
where max and min refer respectively to the maximum and minimum expression levels
of a particular gene across a tissue sample. This left us with1896 genes. In addition,
the natural logarithm of the expression levels was taken. Finally, we applied double
normalisation as described in Section 6.

After above preprocessing we observed significant improvement in quality of clas-
sification. The corresponding results are presented in the Table 1, and are competitive
comparing with previous publications [5], [12], where the best reported result for colon
set is AMR = 0.113, and AMR = 0.0139 for leukaemia set.

Remark 7.3 We conducted similar studies in application to the colon data. Firstly, we
observed the following statistical characteristics:min = 5.82, max = 20903, 4.38 ≤
max/min ≤ 1258.6. Then, we took natural logarithm of the expression levels. Based
on our experimental results we can not report any improvement in the quality of classi-
fication.

7.3 Computation time
A Linux computer with speed 3.2GHz, RAM 16GB, was used for most of the com-

putations. The time for the scheme (5) in the case of colon (left column of the Fig. 2)
was about 5 hours. The only one case with 9 clusters, scheme (6), took about 4 hours.
Similar computations for leukaemia data took about 15 hours(4 hours) for the scheme
(5), and 9 hours (3 hours) for the scheme (6), where times for the reduced set with 1896
genes were given in brackets.

8 Concluding remarks
Microarray data analysis is challenging the traditional machine learning techniques

due to the availability of a limited number of training instances and the existence of
large number of genes, together with the inherent various uncertainties. In many cases
machine learning techniques rely too much on the gene selection, which may cause se-
lection bias. Generally, feature selection may be classified into two categories based on
whether the criterion depends on the learning algorithm used to construct the prediction
rule. If the criterion is independent of the prediction rule, the method is said to follow
a filter approach, and if the criterion depends on the rule, the method is said to follow a
wrapper approach [2].

The objective of this study is to develop a filtering machine learning approach and
produce a robust classification for microarray data. The proposed regularized k-means
algorithm represents a very important component of the classification system. The re-
sults that we obtained on two real datasets confirm the potential of our approach.
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