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Abstract

We investigate the problem of classifying in-
dividuals based on estimated density func-
tions for each individual. Given labelled
histograms characterizing red blood cells
(RBCs) for different individuals, the learning
problem is to build a classifier which can clas-
sify new unlabelled histograms into normal
and iron deficient classes. Thus, the prob-
lem is similar to conventional classification in
that there is labelled training data, but differ-
ent in that the underlying measurements are
not feature vectors but histograms or density
estimates. We describe a general framework
based on probabilistic hierarchical models for
modelling such data and illustrate how the
model lends itself to classification. We con-
trast this approach with two other alterna-
tives: (1) directly defining distance between
densities using a cross-entropy distance mea-
sure, and (2) using parameters of the esti-
mated densities as feature vectors for a stan-
dard discriminative classification framework.
We evaluate all three methods on a real-world
data set consisting of 180 subjects. The hi-
erarchical modeling and density-distance ap-
proaches are most accurate, yielding cross-
validated error rates in the range of 1 to 2%.
We conclude by discussing the relative merits
of each approach, including the interpretabil-
ity of each model from a clinical diagnostic
viewpoint.

1 INTRODUCTION AND
BACKGROUND

Anemia, a reduction in the circulating red cell mass
that may diminish the oxygen-carrying capacity of the
blood, is one of the most common medical problems.
For diagnostic evaluation of anemia and monitoring
the response to therapy, blood samples from patients
are routinely analyzed to determine the volume of the
red blood cells (RBCs) and the amount of hemoglobin,
the oxygen-transporting protein of the red cell. In
this context it would be highly cost-effective to have
the ability to perform automated low-cost accurate
diagnostic screening of blood-related disorders using
RBC measurements. Many anemia-related diseases
manifest themselves via fundamental changes in the
univariate volume (V) distribution and the univariate
hemoglobin concentration (HC) of RBCs.

Automated techniques have been recently developed
which can simultaneously measure both volume and
hemoglobin concentration of RBCs from a patient’s
blood sample. Flow cytometric blood cell counting
instruments (Technicon H*1, H*2, H*3; Bayer Corpo-
ration, White Plains, NY) make measurements using a
laser light scattering system to provide the red cell vol-
ume distribution, hemoglobin concentration, and joint
red cell volume and hemoglobin concentration distri-
butions. The data we will describe in this paper was
generated by such a machine. Typically it takes in
about 40,000 blood cells and produces a plot of both
the univariate histogram of the V distribution and uni-
variate HC distribution. In addition, it provides a bi-
variate histogram (on a grid of about 100 x 100 cells)
of the joint V-HC distribution. Figure 1 shows a two-
dimensional histogram of the RBC counts in V-HC
space for a healthy individual (control) and for an iron
deficient patient. Existing diagnostic techniques based



on such measurements are largely limited to simple vi-
sual examination of such plots and approximate esti-
mates of abnormality based on the skewness or shift
of the histogram in various directions in the bivari-
ate space. While this general approach will capture
those patients whose distributions are very clearly far
removed from the normal pattern, it is relatively in-
sensitive to more subtle changes and is also likely to
be relatively insensitive to differential diagnosis among
different diseases.

In this paper we will focus on the problem of learning
a classification model from the data for the purposes of
automated diagnostic screening in a clinical environ-
ment. Section 2 will discuss the learning aspects of the
problem in general and make connections with relevant
prior work. In Section 3 we introduce the notion of a
probabilistic hierarchical model for this problem. This
is a powerful framework for modeling data sets where
there are multiple levels of variation in the data (here
we have variation at the individual subject level as
well as at the RBC level). We will show that with rel-
atively large amounts of data at the lowest level of the
hierarchy (as we have here, with 40,000 RBCs in two-
dimensions per subject), that there exists a relatively
efficient closed form approximation to the full Bayesian
solution. In Section 4 we outline how the Expectation-
Maximization (EM) algorithm is used to learn den-
sities from the binned and truncated data. Section
5 discusses two alternative methods for classification:
(1) a distance-based approach to classification based
on pairwise directed divergence between two densities,
and (2) a standard discriminative framework using a
classification tree. In Section 6 we compare the empir-
ical classification performance (using cross-validation)
of the hierarchical approach with the afore-mentioned
alternatives. Section 7 contains a discussion of the
merits of the different approaches, including sugges-
tions on how this framework, focusing in particular on
the interpretability of the learned models.

In terms of related prior work McCallum et al (1998)
and Heskes (1998) used hierarchical models to improve
classification and regression performance, but in the
more standard manner of using feature vectors rather
than densities. Hierarchical models are also widely
used throughout applied statistics (e.g., see Gelman
et al (1995) for a Bayesian perspective). However, we
are not aware of any published work in the machine
learning, pattern recognition, or statistics literature
on using hierarchical models specifically for classify-
ing density functions; in this context, the contribution
here is novel. In the context of screening for iron defi-

ciency using RBCs, McLaren and colleagues in a series
of papers (McLaren, Brittenham, & Hasselblad, 1986;
McLaren et al., 1991; McLaren, 1996) have demon-
strated that the distribution of RBC volume can be
accurately modeled as a mixture of log-normal density
functions. In this paper we extend this work to bivari-
ate V-HC measurements, explicitly model the data-
generating process via a hierarchical model, and evalu-
ate the methodology in terms of classification accuracy
via cross-validation.

2 A MACHINE LEARNING
DESCRIPTION OF THE
PROBLEM

Consider a slightly more general description of the
problem described above. We have N individuals and
each individual belongs to one and only one of K
groups, {c1,...,ckx}. For each individuali,1 <i < N,
in turn we have measurements on a set of n; “lower-
level objects” from that individual (for the RBC prob-
lem these lower-level objects are the individual red
blood cells). Each of the lower-level objects is itself
characterized by a feature-vector (for each patient we
have a set of 2-dimensional counts, coming from the
the RBCs analyzed by the machine). This type of
multi-level structure is not unique to the RBC prob-
lem, there are numerous instances of similar scenarios
which arise in many practical learning applications,
e.g., identifying an individual based on multiple facial
images; based on multiple spoken words; based on mul-
tiple passages of text written by the individual, and so
forth.

This type of data presents two general problems in a
learning context:

1. What is an appropriate classification procedure or
model for assigning a new individual (described in
terms of their RBC measurements) to one of the
K classes?, i.e., what should be the structure of a
model which relates the multiple RBC measure-
ments to the class labels?

2. Having defined the general structure, how can we
learn such a model from data?

One simple approach is to reduce the multiple mea-
surements for each individual to a standard feature
vector of fixed dimensionality. For example, we could
take the mean of the V and HC measurements across
all 40,000 of an individual’s RBCs (or perhaps the
variance, or both, or some other summary statistics).
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Figure 1: Two-dimensional V-HC histograms of the raw data RBC counts for a Control subject and a subject

with Iron Deficient Anemia.

However, we don’t know in advance whether these fea-
tures will be discriminative or not and so this approach
has somewhat of an ad hoc flavor to it.

A powerful idea in this context is the notion of a gener-
ative probabilistic model for the data. It is particularly
relevant in the context of the RBC problem, where the
natural mode of presenting the data to a physician is
in the form of a joint distribution. In other words it
is the language of joint distributions which forms the
existing basis for characterization and description of
blood-related diseases given the V and HC measure-
ments.

Let D; represent the data for the ith individual (i.e.,
D; is a set of approximately 40,000 bivariate V-HC
measurements made on patient i’s blood cells). Thus,
we can think of f(V, HC|0;) as the probability density
function for the joint variation of V' and HC where 6;
is the set of parameters for the model f. It turns out
that, based on prior knowledge of the physical mecha-
nisms of RBC generation and evolution, the functional
form of f can be well-determined as being a mixture
of log-normal density functions; we will return to this
point in Section 4. Thus, assuming the form of f is
known, it remains to estimate the parameters 6; for
individual . We can use standard density estimation
techniques (such as EM, e.g., McLachlan and Krish-
nan, 1997) for this density estimation problem.

Thus, we can reduce the problem of learning from mul-
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Figure 2: A graphical model (acyclic directed graph)
for the hierarchical model for RBC generation.

tiple measurements to that of learning from densities,
since the density function in principle accurately de-
scribes all of the information contained in the original
sample D;. At this point it is not clear yet what we
have gained, since it is still not obvious how to model
and classify individuals given their density functions,
i.e., we are still not in the realm of more familiar clas-
sification modeling. In the next section we outline how
the hierarchical modeling framework naturally and el-
egantly will allow us to model both similarities and
differences among individuals based on their density
functions.



3 HIERARCHICAL MODELS FOR
CLASSIFYING DENSITY
FUNCTIONS

3.1 A GENERATIVE HIERARCHICAL
MODEL

Consider the following “generative” model for red
blood cell (RBC) production for individuals (a gen-
erative model is a model which in a sense can “gen-
erate” or “simulate” the observed data: a discrimina-
tive model for example is not usually generative since
it may only describe the decision boundaries between
classes).

1. Choose an individual randomly from the overall
population, call this individual .

2. Assign this individual ¢ to class ¢ with probabil-
ity pr, 1 < k < K (for the RBC problem we have
two classes, K = 2, Controls and Iron Deficient).

3. Choose parameters 8; for individual ¢ using a prior
density function 7 (6;) on parameters for class k
(thus, each class has a density function 7y, describ-
ing the variation in parameters for that class).

4. Generate observations (data) D; for this individ-
ual (namely, n; multivariate measurements, such
as V-HC measurements on the individual’s red
blood cells), conditioned on the parameters 6;,
i.e., we have a data-generating model p(D;|6;).

Figure 2 summarizes the overall framework graphi-
cally. In fact, from a probabilistic viewpoint this is
a formal graphical model for the problem and we can
read off the relevant conditional independence rela-
tions. For example, the data set D; for any individual 4
is independent of all other data sets conditioned on the
parameters 0; which generated data D;. The hierarchi-
cal model is quite plausible as a generative mechanism
for the RBC data. Homogeneity within a class (Con-
trol or Normal) is captured by the assumption that the
parameters of the density functions for individuals be-
longing to that class (namely the 6;’s) are themselves
parametrized by a common class density function. It
is in this parameter space that we will perform clas-
sification: if there is relatively little overlap between
the different class densities in parameter space, then
accurate classification should be possible.

Figure 3 illustrates the general concept of how we
model variability in parameter space. Here we have
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Figure 3: Scatter plot of the estimated mean parame-
ters for individuals from the Iron Deficient and Control
groups, with Gaussian “parameter variation models”
superposed.

fitted each individual at the RBC level with a two-
component mixture density function (full details in
Section 4). Figure 3 is a scatter plot of the loca-
tion of the estimated two-dimensional V-HC bivari-
ate mean for the larger (in probability mass) of the
two components in the fitted density function for each
individual. The Controls and the Iron Deficient indi-
viduals are given different symbols. Furthermore, we
have fit a Gaussian model to the parameters of each
class (the covariance ellipses of these components are
shown); these correspond to the “prior” density func-
tions 7 (@) on the parameters for class cg.

3.2 INTERPRETATION OF THE MODEL

This type of hierarchical model setup is common in
Bayesian statistics. In the Bayesian framework, the
densities 71, (0) on parameters are (naturally) referred
to as priors. In fact in a full Bayesian analysis we
would put another level of priors in the model (“hy-
perpriors”), but as we shall see this is not necessary
for accurate classification of the RBC data.

For our problem, since we have K different classes, the
“marginal prior” on parameters is a mixture model of
the form:

K

w(016) = D _ plex)mr(6]¢%) 1)

k=1

where the p(cy,) are the prior probabilities on each class
(> p(ex) = 1), and the 71(6|¢y) are “component pri-
ors” on the parameters 6 in a class k and 6 here is



a parameter vector. For example, if we have univari-
ate measurements at the RBC level which we wish to
model by a Gaussian density function for each individ-
ual, then we would have 8 = {u,0}. 7 would then be
a bivariate density function on p and o representing
the way p and o vary within class k. Let ¢ represent
the overall set parameters which describe the prior on
0, and let ¢ be the parameters for component & of the
prior. This appears to be quite a reasonable and parsi-
monious description of a generative mechanism for the
data. For example, in Figure 3, we can see both sys-
tematic within- and between-class variability for the
means (the u’s).

3.3 LEARNING THE PRIOR
PARAMETERS ¢ FROM LABELED
DATA

Given a set of RBC measurements from N individu-
als, denote the data by D = {Dy,...,Dn}, where D;
is the set of measurements on blood cells for the ith in-
dividual, 1 < i < N. Conditioned on the parameters,
and given the hierarchical graphical model of Figure
2, the likelihood of the data can be written as:

N

- 0n,8) = [ p(Dil6)). (2)

i=1

p(DIb1, ..

If we don’t know the parameters 6; (as will be the
case in practice), we get the marginal likelihood as a
function of the priors ¢:

L($) = p(Dilé) = /9 p(Dil6:)m(6:]0)d6;  (3)

Given that we have fairly large numbers of blood
cells and are fitting a relatively parsimonious bivari-
ate model to their distribution, it seems reasonable to
assume that the integral above will be peaked around 6
where 6 is the maximum a posteriori (MAP) value rel-
ative to the prior p(6;|¢). (If we further assume that
this prior is relatively flat in this part of parameter
space, then the MAP and maximum likelihood values
will be very close). We will simply denote the value

~

around which the integral is peaked as 6.

Furthermore, assume that our data are labelled, i.e.,
we know which of the K classes each individual belongs
to. (The generalization to unlabelled, or partially la-
beled data is straightforward and useful, but is not
discussed in this paper). Thus, we can focus on esti-
mating ¢y, the parameters describing € conditioned on
membership in class k. For simplicity of notation let

us assume (temporarily) that we only have data from
class k, and that D = {D;,..., Dy} is the data for
the kth class of individuals. Let éi be the estimated
density parameters for the ith individual in this class,
1 <i < N. We have that

arg 1%2XP(¢I§|D) = arg r%?cxp(Dlm)p(dJk)

N
= arg max (H p(Di|¢k)) p(or)

i=1

N

= argmax (E[l /6 ,- p(D;|0;)m, (e,-|¢k)dei> (k)
N

~ arg max (HP(Di|éi)Wk (éi|¢k)) p(¢k)

= argmax (H Tk (@Im)) p($k). (4)

This equation is a standard likelihood (under a con-
ditional independence assumption given the model)
times a prior. In other words, to find the MAP value
for ¢, we can just first find the 8’s for each individual,
and then find the ¢;’s which maximize the MAP ex-
pression above (given a parametric density model for
7k (0]¢r)). If the prior p(¢y ) is relatively flat, it reduces
to maximum likelihood estimation of the ¢ parame-
ters based on the 6; “observations,” 1 <i < N.

For the RBC data, we will be fitting 2-component bi-
variate log-normal mixtures to the original measure-
ments: this will result in roughly 2 means and 3
covariance parameters per component, for a total of
2(2+3)+1 =11 independent parameters in total (i.e.,
each é,- will be an 11-dimensional vector). Details on
how these parameters are fit (at the individual level)
will be provided in Section 4.

3.4 CLASSIFICATION GIVEN THE
FITTED MODEL

Assume that we have estimated all the parameters of
the hierarchical model as described above. Now con-
sider a new individual for whom we have RBC mea-
surements, say Dy 41. We would like to know the class
probabilities for this individual:

p(ck|Dn+1) o< p(Dny1ilex)p(cr)
= (/p(DN+1|9N+1)7Tk(9N+1|Ck)d9N+1) p(ck)

o p(D+110n-41)mk (On-+1lex)p(c)
o Wk(0N+1|Ck)p(Ck)- (5)

Thus, based again on the MAP approximation, the
posterior class probabilities have a very simple intu-



itive form: find the parameters 9N+1 to fit the RBC
data for the unclassified individual, and use Bayes’
rule to classify these parameters relative to the prior
7 (0|¢r) (in the equation above, 7 (0|ck) is the same

as m(0|or)).

Thus, we have arrived at a method for perform-
ing probabilistic classification given the hierarchical
model, as well as determining how that model can be
learned from labelled data. To summarize, the proce-
dure is as follows:

Training: For each class k, 1 < k < K:

1. Estimate density function parameters 6; for
each individual ¢ labelled as class k,

2. Estimate the parameters ¢y, of the“prior com-
ponent” 7y (6|dr) using the estimated 6;’s,

3. Estimate the mixture weights in the prior,
p(ck) (e.g., simply as the proportion of indi-
viduals belonging to class k).

Classification: For a new unlabelled individual, with
observed data Dy 41:

1. Estimate the density parameters éNJrl for
this individual

2. Find the maximum (over k) of p(ck|Dn+1) as
described in Equation 5.

4 DENSITY MODELING AT THE
RBC LEVEL

4.1 THE FUNCTIONAL FORM OF THE
RBC DENSITY MODEL

The first step in modeling the data is to character-
ize the two-dimensional V-HC distribution. It can
be shown that the marginal volume distribution of a
single population of RBC is theoretically lognormal.
The lognormality comes from the biological mecha-
nism governing the manner by which cells are pro-
duced (McLaren, Brittenham, and Hasselblad; 1986).
At each “production step” cells divide and have nor-
mal variations in their respective volumes. Since the
process is repetitive and the effect is multiplicative
(i-e. cells divide), the resulting distribution is lognor-
mal. For iron-deficient subjects, the argument follows
that the RBC density can be well-approximated as a
two-component log-normal mixture (McLaren, et al.
, 1991; McLaren, 1996). Specifically, there are two
biological processes that are constantly occurring in a
body: 1) red blood cells are produced in the bone mar-
row; 2) these cells are extruded into the bloodstream

and die after about 120 days. For a healthy individ-
ual a single population of red blood cells is produced
with a mean cell volume and mean hemoglobin con-
centration within the normal range. In iron deficiency
anemia the red blood cells that are produced have de-
creased volume and hemoglobin, below normal for that
of a healthy individual. Thus with development of the
disease, gradually, a second subpopulation of red blood
cells begins to emerge and over a period of time, the
relative ratio of subpopulations of red cells changes.

4.2 TMPLEMENTATION OF MIXTURE
MODELING OF RBC COUNT DATA

The actual values of volumes and hemoglobin concen-
trations are not observed for each blood cell (they are
quantized). In addition, the counts outside the mea-
surable range are also missing. Model fitting under
these conditions (binned and truncated data) has been
studied in McLachlan and Jones (1988) and McLach-
lan and Jones (1990) in connection with fitting uni-
variate volume distributions of RBCs. The theoret-
ical results in the cited papers only handle the one-
dimensional case; the extensions to multiple dimen-
sions are relatively straightforward but are not de-
scribed in any detail here due to space considerations.
The workhorse of the fitting procedure is the EM al-
gorithm (McLachlan and Krishnan, 1997). For this
problem the M-step does not have a closed-form so-
lution as is the case when fitting mixture models to
non-binned data. The main quantities that need to be
evaluated at each EM step are now integrals over the
bins (McLachlan and Jones, 1988).

Extending the McLachlan and Jones (1990) procedure
to the bivariate case directly leads to a rather slow EM
algorithm (the execution time for a single EM step is
rather large). In the results presented here we used a
heuristic initialization method which resulted in reduc-
ing the computation time for EM by about a factor of
100. A sub-sample of data points (3000 in the results
here) are drawn from the histogram counts assuming
a uniform distribution in each bin (this uniform as-
sumption is clearly incorrect since the true densities
will be smoothly varying in practice, however, the as-
sumption is fine as a rough guess for initialization).
Standard EM is then run to convergence on the sim-
ulated sample. The resulting density is then used as
a starting point for the binned/truncated version of
EM which uses all of the data and performs numer-
ical integration over each bin during each EM step.
This reduces the number of iterations of the full EM
algorithm drastically while not affecting the accuracy
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Figure 4: Contour plots from estimated density esti-
mates for three typical Control patients and three typ-
ical Iron Deficient Anemia patients. The lowest 10%
of the probability contours are plotted to emphasize
the systematic difference between the two groups.

of the solution as the convergence criterion is defined
by the full (but slow) algorithm. It is guaranteed to
return a local maximum of the likelihood function for
binned and truncated data. The process is repeated
10 times with different randomly chosen subsamples
to avoid poor local maxima.

Figure 4 shows the densities which were fit to the his-
togram data by applying this EM mixture modeling
procedure to 3 individuals from each class, in terms
of the lower 10 percent probability contours of the es-
timated mixture density One can see that there are
differences between the two classes, as well as specific
within-class variation.

5 ALTERNATIVE
CLASSIFICATION TECHNIQUES

We compared three qualitatively different approaches
to classifying RBC data:

e The generative hierarchical modeling approach
(described earlier),

e A non-parametric approach based on density dis-
tance and multidimensional scaling (MDS), de-
scribed in Section 5.1, and,

e Discriminative classification using the C5.0 and
CART classification tree algorithms (Quinlan,
1997; Breiman et al (1984)), described in Section
5.2.

1-97 Controls, 98-180 Iron Deficient

1g0 T R R Ty PR o
20 40 60 80 100 120 140 160 180
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Figure 5: Matrix of Kullback-Leibler divergence scores
for the fitted RBC density models.

5.1 DENSITY DISTANCE USING K-L
DIVERGENCE AND
MULTIDIMENSIONAL SCALING
(MDS)

The idea here is to define a distance measure directly
between the densities themselves, and to completely
avoid modelling parameters in parameter-space. A
well-known distance measure between two densities is
the Kullback-Leibler (K-L) distance, defined as the
cross-entropy [ p(6)log %dﬁ. This is not a metric,
but is strictly positive unless p = ¢ everywhere. It can
be made symmetric by defining the K-L divergence as

1 p(0) q(9)
D(p,q) = 5 (/p(@)log q(g)d0+/q(0)logp(a)d0>
(6)
The K-L divergence provides a well-defined notion of
density distance. For a subset of the Control and Iron
Deficient individuals for whom we have RBC data, we
fitted densities to each as described in Section 4 and
calculated the pairwise K-L divergence between each
pair of individuals. The resulting distance matrix is
shown in Figure 5. The separation of the two groups is
very clear from the block-diagonal structure of the ma-
trix (darker pixels in the image correspond to smaller
K-L values, i.e., the densities are more similar). Fur-
thermore, there appears to be a systematic difference
in the two groups in that the Controls (the upper left
block) is much more homogeneous (in terms of density
distances) than the Iron Deficient group (lower right
block) which has greater variability in terms of pair-
wise distances (i.e., there is greater spread among the
densities). This is consistent with Figure 3 where the
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spread in component means is lower for Controls than
for Iron Deficient subjects.

The K-L matrix is useful for exploratory analysis but
does not easily lend itself to classification in the stan-
dard manner. To define a classifier using this data we
use multidimensional scaling (MDS) to approximate
the distance matrix in a vector space (Borg and Groe-
nen, 1997). MDS places each individual (a row or col-
umn from the matrix) in a d-dimensional space such
that the pairwise (matrix) distances between points
are preserved as closely as possible in the Euclidean
vector space. Based on analysis of the fit versus di-
mensionality, we determined that the best number of
dimensions for MDS for this data was 2. The result-
ing MDS-derived vector space, showing the individuals
positioned to reflect as closely as possible their KL di-
vergences, is shown in Figure 6.

With MDS as a tool to embed RBC densities into a
vector space (with a well defined notion of “distance”),
we then use a Gaussian mixture-model classifier in this
vector space to classify the “points” (representing in-
dividuals) in this space.

5.2 DISCRIMINATIVE CLASSIFICATION

We also consider a standard discriminative classifier
to classify the fixed-length parameter vectors obtained
from the density modeling of Section 4. We chose clas-
sification trees as a typical method for discriminative
classification using the C5.0 and CART algorithms.
The decision tree approach is the most direct approach

of the three methods for classification and has the ad-
vantage of being relatively interpretable from a clinical
viewpoint.

We also use the discriminative approach on “ad hoc”
features estimated directly from the histogram, Thus,
no attempt is made to model the density of the RBCs
but instead an individual’s histogram is summarized
by a vector of 4 simple features, namely, the univariate
mean and standard deviation for each of V and HC,
as estimated from the histogram. The tree algorithm
is then used to learn a classification model in this 4-
dimensional space. This approach has the advantage
of being considerably simpler than any of the afore-
mentioned classification methods and we will refer to
it as the Baseline method in the rest of the paper.

6 EXPERIMENTAL
METHODOLOGY AND RESULTS

6.1 EXPERIMENTAL METHODS FOR
COMPARING CLASSIFIERS

Data collection for this study was completed during
1995. A reference sample group of healthy individ-
uals was recruited from staff physicians and hospital
employees at the Western Infirmary, Glasgow, Scot-
land. Patients included in the study were seen on the
wards and in the outpatient clinics and referred to the
hospital laboratories for a complete blood count. The
results described here are based on the 97 Control and
83 Iron Deficient subjects in the study.

Each of the three methods begins with the EM es-
timates of the parameters #; for each individual 4,
1 < i < N. These estimates are obtained by fitting a
two-component log-normal mixture density using EM
as described in Section 4. Each set of parameters 6;
has an associated class label (Control or Iron Deficient)
for individual 4.

For each of the three methods we performed 100 cross-
validation runs, where in each run the data were di-
vided into a randomly chosen training set of 80% of the
data and a test set consisting of the remaining 20%.
Overall performance for each method is reported as
the mean and standard deviation of classification ac-
curacy on the test sets over the 100 runs. Note that
the parameter estimation (the running of EM to deter-
mine the éi’s) is completely independent of any other
data or class labels; it is a purely unsupervised pro-
cedure performed on each individuals RBC measure-
ments. Thus, the parameters 6; are estimated once
and for all, before any cross-validation takes place.



The hierarchical model takes the 11-dimensional pa-
rameters and constructs two density models for the pa-
rameters, one for Controls and one for Iron Deficient.
We experimented with two different density models for
the parameters:

1. “11-Parameters”: here we modeled all of the
parameters with a Gaussian mixture model, and
used block covariance matrices which allowed co-
variance between all 4 means and between the 3
independent covariance parameters for each RBC
component.

2. “9-Parameters”: here we re-parametrized some
of the parameters to reflect a more natural scale
for modeling. We modeled both the log-odds of
the component weights and the log of the eigen-
values of the covariance matrices as Gaussian.
We again used a two-component Gaussian mix-
ture model with block diagonal covariance ma-
trix allowing covariance between the 4 means, co-
variance between the 2 log-eigenvalues for each
RBC component, and allowing the log-odds of the
weight to be independent of the other parameters.

On the training data, for each cross-validation run, we
performed a further “internal” cross-validation run to
automatically determine whether a single Gaussian or
a 2-component Gaussian mixture provides the best fit
(using 20 runs of cross-validated likelihood), i.e., each
7 (6) is itself modeled as either a 1 or 2-component
Gaussian mixture. The motivation for this last inter-
nal cross-validation is to allow the model to automat-
ically choose a reasonable structure for the “prior” in
parameter space.

For the KL-divergence/MDS method, we project the
training data as before using the KL/MDS tech-
nique described earlier and then use an internal cross-
validation strategy (similar to that described above)
to build a Gaussian mixture model for each class in
the MDS space, using the training data. Classification
is then performed on the projected test data points
using this Gaussian mixture model.

6.2 EXPERIMENTAL RESULTS

Table 1 summarizes the mean cross-validated error
rates and standard errors across the different meth-
ods. The discriminative algorithms (C5.0 and CART)
were run on the 11 original parameters, the 9 rescaled
parameters, and the 4 “Baseline” features. For both
trees, the lowest error rate was obtained with the 11

density parameters, followed by the 9 rescaled param-
eters, followed by histogram-based Baseline features.
This suggests that the density modeling is worth-
while in that it leads to lower error rates than simple
histogram-based features.

The KL-MDS method and the Hierarchical method
(with either 9 or 11 features) had lower error rates
than any of the discriminative tree methods (usually
on the order of a factor of 2 lower). The 11-parameter
hierarchical error rate of 1.42% corresponds to about
a 70% decrease in error rate from the error rate of
4.72% of CART on the baseline features and about a
64% decrease in error rate from the 3.99% error rate of
C5.0 on the baseline features. Thus, for this particu-
lar problem, the hierarchical model and the KL-MDS
method appear superior in terms of classification accu-
racy. Note at the time of writing of this paper, paired
experiments have not yet been performed to allow for-
mal statistical hypothesis tests.

For routine clinical classification of RBC data, the de-
cision tree approaches are attractive since the opera-
tion of the classifier can be explained in simple “rule-
like” terms to a clinician. However, as well as being not
quite as accurate in our experiments, tree classifiers do
not produce particularly accurate posterior class prob-
abilities and do not fully characterize the within and
between-class variability. Thus, if clinicians wished to
rank subjects based on likelihood of iron deficiency (for
example), the hierarchical model approach may be the
most useful since it produces much more plausible pos-
terior probabilities than can be produced from the tree
model. In addition, the hierarchical model is intrin-
sically interesting from a medical research viewpoint
since it provides a basis for a complete characteriza-
tion of blood disorders in H-VC space both in terms
of typicality and variability of individuals within each
group, as well as full characterization of group differ-
ences.

The KL-MDS approach is also an interesting alterna-
tive method. It is competitive with the hierarchical
method in terms of accuracy but it suffers from a lack
of interpretability (the MDS dimensions are not neces-
sarily interpretable). However, it clearly has a strong
visual appeal and can be quite useful for exploratory
data analysis in problems of this nature.

7 CONCLUSIONS

We investigated the problem of automated screening
of blood samples of individuals for the purpose of de-
tecting iron deficiency anemia. The problem is more



Table 1: Means and standard deviations of the cross-validated classification error for each of the different

classification models across 100 runs.

[ Method | Features | Mean Error Rate (%) | Standard Deviation ||
C5.0 Baseline 3.99 Not available
9-Parameters 3.49 Not available
11-Parameters 3.36 Not available
CART Baseline 4.72 3.05
9-Parameters 4.11 3.48
11-Parameters 3.53 3.05
KL-MDS 1.56 2.06
Hierarchical | 9-Parameters 2.08 4.98
11-Parameters 1.42 2.57

complex than the typical machine learning classifica-
tion problem since each individual must be classified
based on a bivariate histogram (rather than a feature
vector). Three different techniques for classifying the
individual densities were proposed: (1) a probabilistic
hierarchical model, (2) embedding pairwise KL dis-
tances between densities in a vector space, and (3)
direct discrimination of density or histogram parame-
ters using a classification tree. All methods were ac-
curate in the 96 to 99% range in the cross-validation
experiments, with density-based methods outperform-
ing simpler discriminative methods. We conclude that
accurate low-cost automated screening of subjects for
iron deficiency, using V-HC count data, appears quite
feasible.
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